
Exercise sheet 8.

Data structures SoSe 2020
László Kozma, Katharina Klost

Due 12:00, June 19th, 2020

Exercise 1 Ancestor queries in trees 2+3 Points

Consider a rooted tree T , with nodes of arbitrary degree. Recall the preorder and
postorder traversal of a tree.

(a) Let x, y be two nodes of T . Show that x is the ancestor of y if and only if x
precedes y in the preorder traversal but not in the postorder traversal.

(b) Using this observation, design a data structure that efficiently supports the
following queries, starting from a tree consisting of a root r:
insert(x) creates a new node, linking it as the rightmost child of x, and returns
a pointer to this node,
delete(x) removes node x if it is a leaf, otherwise reporting error, and
ancestor(x, y) returns true if x is the ancestor of y and false otherwise.

What is the running time of operations?

Hint : You can use the list labeling data structure from class as a black box.

More hint : Store a traversal of the tree from which you can get the ordering
of nodes both by preorder and by postorder.

Exercise 2 List labeling 3 Points

Suppose we implement the algorithm for list labeling from class, but we set the
overflow densities to the same constant value at every node. (Recall that the density
of x is the fraction of leaves in the subtree rooted at x that are nonempty. The
overflow density is the threshold above which the subtree is considered “too dense”.)

Sketch a small example that shows that this strategy can be very inefficient.

Exercise 3 Maintaining a partial order 3 Points

Suppose we store a directed acyclic graph with n vertices (initially there are no
edges).

Maintain an integer label ` for each vertex, so that `(x) < `(y), whenever y is
reachable from x (by following directed edges). If neither of x and y is reachable
from the other, then the labels may be in arbitrary relation.

The operation insert(x, y) adds the directed edge x → y to the graph, updating the
labels, and reporting an error if a cycle has been created.

Show how to implement m insert operations (assume m > n) in time O(m2) (easy).

Bonus (+3p): Improve the running time to O(mn) or better.



Exercise 4 Programming exercise 1 Point

The programming exercise is due June 29th (30 points).

For this time, please write a brief summary (one paragraph) of your plan and/or
progress so far.

Total: 12 points. Have fun with the solutions!


