Exercise sheet 2.
Data structures SoSe 2020

Laszlé Kozma, Katharina Klost

Due 12:00, May 8th, 2020

Exercise 1 Heap variants 2 x 4 Points

(a)

Design an approximate heap data structure that allows (i) inserting a key,
and the operations (ii) extract-small, and (iii) extract-large, which extract (i.e.
output and remove from the data structure) an arbitrary key that is among
the smallest 25%, respectively largest 25% of the keys currently in the data
structure. All operations should take constant amortized time. (Give a precise
analysis and proof of correctness.)

Hint: A few stacks may be sufficient.

Bonus question +5p: A more general approximate heap takes a parameter
(when it is created) and supports the operations (i) insert, and (ii) extract(k),
which, for an arbitrary parameter k, extracts a key with rank between k — en
and k + en. The operations should have amortized runing time O(log%).
Design such a data structure.

Hint: A balanced binary search tree may be useful.

Suppose that a priority queue is used in such a way that every extract-min
operation returns a key that is at least as large as all previously extracted
keys. Further assume that all keys are integers in {1, ..., K'}. Design a priority
queue that supports this kind of usage, in which an arbitrary sequence of m
operations (insert, extract-min, or decrease-key) can be performed in total
time O(m + K).

Hint: An array may be useful.

Exercise 2 Sorted arrays 2 x 4 Points

(a)

Recall the binary counter example in amortized analysis. Consider a variant
where flipping the k-th least significant bit has cost 2¥. Suppose that the
counter has n binary digits. Show that the amortized cost of an increment
operation is O(n).

Suppose you implement a data structure that allows storing a set of keys, sup-
porting the operations of inserting a key into the data structure, and searching,
i.e. determining whether a key is currently in the data structure. The imple-
mentation is based on a collection of sorted arrays. The sizes of the arrays are
powers of two and no two arrays have the same size.

Inserting creates a new array of size 1, then repeatedly merges pairs of arrays
that have the same size, until all array sizes are distinct.

What are the amortized costs of insert and search?

Hint: the result of part (a) may be useful.



Exercise 3 Selection from sorted lists 4 Points

We are given ¢ lists, each sorted in increasing order. Describe an efficient algorithm
for finding the k-th smallest item over all lists. We assume that the items are
pairwise distinct and that the total number of items is at least k. What is the best
running time you can achieve in terms of ¢ and k7

Total: 20 points. Have fun with the solutions!



