(Advanced) Data Structures

Lectures: Laszlé Kozma < lkozma@inf.fu-berlin.de >
Tutorials: Katharina Klost

Contents:
- Selected topics about data structures and applications
- Theory course, M.Sc. level

Course website:
- KVV/Whiteboard
- page.mi.fu-berlin.de/lkozma/ds2020

Organlzatlon: online lectures, group meeting(s):
Lectures: ToeffaelQ-12 first: Tue 21st April 10:15Webex meeting (fallback: Jitsi meet)

Tutorials: Wed 14-16 online meetings Webex

- O-notation, asymptotics

PrereqU|S|t.es: .- computational models (TM, RAM model, pointer machine)
Algorithms/Mathematics - basic data structures (array, list, stack, queue, balanced BST)
(~ HA) - amortised analysis (will recap)

- basic graph algorithms

Books / references:

(see course .websites)

Tutorials:

- one exercise sheet each week

- deadline ~ 10 days .(Tue to next Fri)

- first sheet online, due 1st May (total 11/12)
- details to follow (how to submit, etc.)

- encouradged to'work'in pairs

- one programming exercise (details later)

- cite all sources, collaborators!

To pass:

- exam (oral/written): to be .decided later

- 60% of exercise points, including programming exercise
- active participation in tutorials (details later)

- final grade: exam only.

1. Basic data structures Operations:

S[I] := k (constant)
_ S[1] ;= S[J]
RAM model of computation S[1] := S[J] <op> S[K]

I,J,K can be constant orof the form

centralised memory
S[constant] - ("indirect addressing)

|3 cell can contain integer word on clogn bits

S[0] o (¢ di X X
n¢ “different integers -- since cells'address o
2[5] memory; we can -have at most this many i‘g' §[5[4]]b._+5[?<]b't . i ¢
[2] memory cells) op> can be +,-,* bitwise operations, etc.
Tests:
S[I] <cmp> 9S[]]
b <cmp> can be =, <, <=, etc.

- RAM model is an idealised computer - results stored in memory cells
- Each elementary operation/test takes O(1) time - input/output stored in‘'memory cells
= can implement familiar structures, pointers,-arrays, etc:
Implementmg an array - let's try to implement an array on the RAM machine

1. A = make array(n,c) (we usually don't worry about such low-level details)

2. read(A;i) - - support three basic operations:

3. write(A,i,v) - n.is size of the array, c is initial value (if an array entry

has not been written, it has value c)
- difficulty: we cannot make assumption on initial memory contents
- all three operations should take O(1) time

solution sketch: use 3 arrays

Tme = 2 4. 6 n I 3 I
(o4 3| czzer 72z size current init when we allocate array, we don't
(stores "time" of first writing, or garbage, care about memary content
if not yet written)

Writtep , - make_array(n,c)
(41 6\ 2| 777777t)| allocate arrays Time, Values, Written of size n
(stores indices of cells in order of first writing, size:=n, current:=0, init:=c

correct for cells 1,...;current)
Values & 4 ¢
(o)5z 07

(stores array values, or garbage, if not yet written)

is_written(i)
illustration of ‘state-after three ‘writes: if. (Time[il<=current) and (Written[Timel[i]l=i)
return TRUE

Al4]:=2, Al6l:=5, Al2]:=9 else return FALSE

write(i,v)
Valueslil:=v i
val _ _ read(i
if (is_written(i)) (if) (is_written(i))
do nothing “return Valuesl[i]
else else
current:=current+1 return init

Written[current]:=i
Time[il:=current

Verify correctness and that all three operations take O(1) time.

Implementing a stack with an array

1. S = make_stack() Pusla

2. pop(S) —~

3. push(S,v) rep

All three operations should take O(1) time

M@@m
le
+0\(, o\ be

Idea: Allocate an.array,

keep track of top of the stack
update for each pop/push

Problem: how. large should array be?

pop() ___~ ww‘"l"’“) 7

n:=n-1

output A[n+1] h e dc\)
if (n==[capacity/4])
capacity = [capacity/2] -~ ‘(Ml U() "'Ji B(

D‘VY"")

(Note: we don't reduce capacity even more, bec..we.don't

want to trigger a doubling too soon)

push(v)
n:=n+1
Aln]:=v

if (n==capacity)
allocate A of'size 2n
capacity:=2n
copy over n items into new array
free up old array

Analysis:

the only problem is that push may take time ~n

Doubling/halving strategy
make_stack creates an array of size 3

capacity denotes size of the array, initially 3
n denotes size of stack (number of items), initially 0

We maintain the following invariant at all times:

C/a‘)aff\{‘")l .
. L m & Cepewn
| am < Cepeety

we cannot give O(1) bound on actual cost of push Observation. When we allocate a new array of size 2n and copy n items
(i.e.'when we do a costly push), then there'have been at least n/2

we do an amortized analysis. simple push operations since last allocation.

Amortized costs: Operations make_stack and pop are fine, since actual cost is also constant, 1 unit can pay for it.

make_stack: 1 unit
pop: 1 unit
push: 3 unit

(all three operations have
constant amortized cost)

A simple push actual cost is constant, 1 unit can pay for it, 2 units are deposited.
When it comes to the costly push, by Observation, we have already deposited n units.

This pays for the copying (actual cost O(n)).

Exercise: modify design such that actual cost is constant, not just the amortized.

(should still be array-based, not pointer-based).

Pointer-based data structures

@ (‘;DA/Q’ a node contains a constant number of fields and pointers
\ ——
[

)W@%D@
Skl \'\M(YKM'{'\P\» 7‘

O@MO‘\\\J\
O b@@\w&\g
W
o Ao Bs W kA -&»QA {,_ertA 7 P@N\A}«S Fo{\;\:{-e,(modane s
o o Coet ¥ er OK\V:B@Q Voni oAy (shickon ¢ RAM)
¢ % ‘:2&’«,0% ~ 0 an'l/bvvvc’\"((, Ol:’OM
o o Ad N
= o halw

’\)m\«‘k&(’w b%
£ e \\u(io(e
— Kess 6\({(/‘\{/{‘

_ el \wor %Qﬁw

Heaps (priority queues)

- store a collection of items
- item x has field x.key, from some ordered set (typically integer)

=

- operatlons
= make_heap(). crefe € vy M&)ﬂ
msert H,x)

extract mlrﬂ’H_—? b Y e Ve X.I<47

——

find_min(H)

delete(x) :

meld(HT,F2—~ ¢ X

decreasekey(xk}——~» '
S Q.% . -D\d (ég &Ya\

W&ﬁe,) Wi o

Assume keys only accessed via comparisons. H Heuwes - fa QQDF

—>Thm. At least one of extract_min and insert. must take time Q(logn)

B G //79“’1' __,_,7._Q(VL’OJI/\>

$ insert 1,2, 3, .-, Tn
exctract_min n times
nits = Jraeyz
hd kej é j. keﬁ
“""k"kw: < 2t 2i
- G\FVND
aﬂAO Ok-'avvj

-]70\ \A&vers

Heap implementation:

insert and extract_min
in O(log(n)) time.

We need to traverse a path in the
(balanced) tree

Meld is difficult in array-based heaps: O(n) O

Binomial heaps, Fibonacci heaps, Skew heaps, Hollow heaps, ... _ _ _ _
Fibonacci heaps, and variants implement delete and

extract_min in O(logn), other operations in O(1).
Check which bounds are amortized in which data structure.

Heap application: MEDIAN FILTER

Given a sequence aj,as,as,...,a,

Replace a; by the median of ¢i—x, Gi—g+1, s iy Qit1, - -5 itk forall i=k+1,....,.n—k

window-size: 2k+1

(we need not replace first and last k items) aOc k} 2kan
Application: removing noise Naive algorithm: - find median in each window
P
I \V O (ink)
s More efficient: use two heaps (use linear time selection)

1
.

- replace each point by median in surrounding window
- for some common types of noise, this is effective (corrupted point unlikely to be the median)
- depends on type/amount of noise and window-size, but often effective'in practice

2 st <

Algorithm:
1.puta_l,..., a_{2k+1} into the two heaps according to.the invariant

2. for i=2k+2 to n:

H1 max-heap, size k H2 min-heap, size k+1 x := find_min(H2) (this is the current median)
output x

a:=a_i (next.element in stream)

. . if a<x:

Algorithm idea: insert(H1,a)

else:
as we go through the stream, insert(H2,a)

maintain two heaps that store current window of 2k+1 items:

. delete a;_ from heap that stores it (we have pointer to it)
- a max-heap H1 of size k = (2kt1) P P
- a min-heap H2 of size k+1

restore invariant
(if {H1] > k, extract_max from H1 and insert into ‘H2)
(if [H1| < k, extract_min from H2 and insert into H1)

Invariant:
all items in H1 are < all items in H2

(So minimum of H2 is the median of
the 2k+1 items in H1 and H2.)

Running time: heap operations take O(logk) time in heaps of size ~k.
Initial work (step 1): O(k), as we partition 2k+1 items, build two heaps

Work for processing each item (step 2): O(logk)
Total: O(nlogk)

Exercise: show that O(nlogk) is best possible (Hint: use median.filter to sort)

