
Lectures: László Kozma
Tutorials: Katharina Klost

Organization:
Lectures: Tue/Thu 10-12
Tutorials: Wed 14-16

Contents:
- Selected topics about data structures and applications
- Theory course, M.Sc. level

Prerequisites:
Algorithms/Mathematics

(~ HA)

Books / references:

To pass:

(Advanced) Data Structures
< lkozma@inf.fu-berlin.de >

Course website:
- KVV/Whiteboard
- page.mi.fu-berlin.de/lkozma/ds2020

online lectures, group meeting(s):
first: Tue 21st April 10:15

online meetings Webex

Webex meeting (fallback: Jitsi meet)

(see course websites)

- exam (oral/written): to be decided later
- 60% of exercise points, including programming exercise
- active participation in tutorials (details later)
- final grade: exam only.

Tutorials:
- one exercise sheet each week
- deadline ~ 10 days  (Tue to next Fri)
- first sheet online, due 1st May (total 11/12)
- details to follow (how to submit, etc.)
- encouraged to work in pairs
- one programming exercise (details later)
- cite all sources, collaborators!

- O-notation, asymptotics
- computational models (TM, RAM model, pointer machine)
- basic data structures (array, list, stack, queue, balanced BST)
- amortised analysis (will recap)
- basic graph algorithms
- ...



RAM model of computation

1. Basic data structures

Implementing an array

1.  A = make_array(n,c)
2.  read(A,i)
3.  write(A,i,v)

make_array(n,c)
allocate arrays Time, Values, Written of size n
size:=n,  current:=0,  init:=c 

Time

Written

Values

size

is_written(i)
       if (Time[i]<=current) and (Written[Time[i]]=i)

return TRUE
       else return FALSE

read(i)
if (is_written(i))

return Values[i]
else

return init

write(i,v)
Values[i]:=v
if (is_written(i))

do nothing
else

current:=current+1
Written[current]:=i
Time[i]:=current

S[0]
S[1]
S[2]

c log n

centralised memory

nc

Operations:
S[I] := k (constant)
S[I] := S[J]
S[I] := S[J] <op> S[K]

I,J,K can be constant or of the form
S[constant]  ("indirect addressing)

e.g. S[S[4]] := S[6]
<op> can be +,-,*,bitwise operations, etc.

Tests:
S[I] <cmp> S[J]

<cmp> can be =, <, <=, etc.

- results stored in memory cells
- input/output stored in memory cells

cell can contain integer word on            bits
(          different integers -- since cells address
 memory, we can have at most this many 
memory cells)

- RAM model is an idealised computer
- Each elementary operation/test takes O(1) time
- can implement familiar structures, pointers, arrays, etc.

- let's try to implement an array on the RAM machine
(we usually don't worry about such low-level details)
- support three basic operations:
- n is size of the array, c is initial value (if an array entry
has not been written, it has value c)
- difficulty: we cannot make assumption on initial memory contents
- all three operations should take O(1) time 

solution sketch: use 3 arrays

when we allocate array, we don't
care about memory content

illustration of state after three writes:
A[4]:=2, A[6]:=5, A[2]:=9

(stores "time" of first writing, or garbage,
  if not yet written)

(stores array values, or garbage, if not yet written)

(stores indices of cells in order of first writing,
     correct for cells 1,...,current)

current

3n

init

c

Verify correctness and that all three operations take O(1) time.



1.  S = make_stack()
2.  pop(S)
3.  push(S,v)

Implementing a stack with an array

All three operations should take O(1) time

Idea: Allocate an array,
keep track of top of the stack
update for each pop/push
Problem: how large should array be?

We maintain the following invariant at all times:

pop()
n:=n-1
output A[n+1]
if (n==[capacity/4])

capacity = [capacity/2]

(Note: we don't reduce capacity even more, bec. we don't
want to trigger a doubling too soon)

push(v)
n:=n+1
A[n]:=v
if (n==capacity)

allocate A of size 2n
capacity:=2n
copy over n items into new array
free up old array

Analysis:

the only problem is that push may take time ~n

we cannot give O(1) bound on actual cost of push

we do an amortized analysis.

Observation. When we allocate a new array of size 2n and copy n items
(i.e. when we do a costly push), then there have been at least n/2
simple push operations since last allocation.

Amortized costs:

make_stack: 1 unit
pop: 1 unit
push: 3 unit

(all three operations have
constant amortized cost)

Exercise: modify design such that actual cost is constant, not just the amortized.
(should still be array-based, not pointer-based).

A simple push actual cost is constant, 1 unit can pay for it, 2 units are deposited.

When it comes to the costly push, by Observation, we have already deposited n units.

This pays for the copying (actual cost O(n)). 

Operations make_stack and pop are fine, since actual cost is also constant, 1 unit can pay for it.

Doubling/halving strategy

make_stack creates an array of size 3

capacity denotes size of the array, initially 3
n denotes size of stack (number of items), initially 0



Pointer-based data structures

a node contains a constant number of fields and pointers



Heaps (priority queues)

x1, x2, x3, . . . , xninsert  
exctract_min  n times

Ω(log n)

Assume keys only accessed via comparisons.

Thm. At least one of extract_min and insert must take time  

Heap implementation: 

Binomial heaps, Fibonacci heaps, Skew heaps, Hollow heaps, ...

Heap application: MEDIAN FILTER

Given a sequence a1, a2, a3, . . . , an

ai ai−k, ai−k+1, ..., ai, ai+1, . . . , ai+kReplace      by the median of 

Application: removing noise

- store a collection of items
- item x has field x.key, from some ordered set (typically integer)

- operations: 
H := make_heap()
insert(H,x)
extract_min(H)

find_min(H)
delete(x)
meld(H1,H2)
decreasekey(x,k)

 

Naive algorithm:  find median in each window

More efficient: use two heaps

for all i = k + 1, . . . , n− k

Fibonacci heaps, and variants implement delete and 
extract_min in O(logn), other operations in O(1).
Check which bounds are amortized in which data structure.

insert and extract_min
in O(log(n)) time.

We need to traverse a path in the
(balanced) tree

Meld is difficult in array-based heaps: O(n)

window-size: 2k+1
(we need not replace first and last k items)

(use linear time selection)

- replace each point by median in surrounding window
- for some common types of noise, this is effective (corrupted point unlikely to be the median)
- depends on type/amount of noise and window-size, but often effective in practice



H1 max-heap, size k H2 min-heap, size k+1

Exercise: show that O(nlogk) is best possible (Hint: use median filter to sort)

Running time: heap operations take O(logk) time in heaps of size ~k.

Initial work (step 1): O(k), as we partition 2k+1 items, build two heaps
Work for processing each item (step 2): O(logk)
Total: O(nlogk)

Algorithm idea:

as we go through the stream,

maintain two heaps that store current window of 2k+1 items:

- a max-heap H1 of size k
- a min-heap H2 of size k+1

Invariant:

all items in H1 are < all items in H2

(So minimum of H2 is the median of 
the 2k+1 items in H1 and H2.)

ai−(2k+1)

Algorithm:

1. put a_1, ..., a_{2k+1} into the two heaps according to the invariant

2. for i=2k+2 to n:

x := find_min(H2)   (this is the current median)
output x
a:=a_i  (next element in stream)
if a<x:

insert(H1,a)
else:

insert(H2,a)

delete                    from heap that stores it (we have pointer to it)

restore invariant
     (if |H1| > k, extract_max from H1 and insert into H2)
     (if |H1| < k, extract_min from H2 and insert into H1) 


