
Weak Unit Disk Contact Representations
and

Colored Nearest Neighbor Graphs

Dissertation zur Erlangung des akademischen Grades
„Doktor der Naturwissenschaften“ (Dr. rer. nat.)

am

Fachbereich Mathematik und Informatik
der Freien Universität Berlin

vorgelegt von

Jonas Cleve

Berlin, 2024

Betreuer & Erstgutachter: Prof. Dr. Wolfgang Mulzer, Freie Universität Berlin

Zweitgutachter: Prof. Dr. Martin Nöllenburg, Technische Universität Wien

Tag der Disputation: 8. November 2024

iii

Abstract

Instances of geometric problems usually have both a concrete geometric and a more
abstract representation. Given the geometric representation it is often easy to find
the abstract one while the converse is not true: Given an abstract representation it
can be challenging to find a geometric one or decide that no such representation
exists. How challenging it is generally depends on the complexity of the given abstract
representation. In this thesis we study two different problems with the aforementioned
properties:

Weak Unit Disk Contact Representations. A unit disk contact representation (UDCR)
of a graph is a set of interior-disjoint unit disks in the plane (each disk corresponds to
one node) such that two disks touch if and only if their corresponding nodes have an
edge. The notion of weak unit disk contact representations (weak UDCRs) weakens this
condition and only enforces that two disks must touch if the corresponding nodes have
an edge. If two nodes don’t have an edge, their corresponding disks are still allowed
to touch. The problem comes in two flavors: the first are graphs without embedding
where the neighboring disks can be arranged in any order. Here we show that the
problem is NP-hard for trees and provide a linear time algorithm for caterpillars, which
are trees that become paths when all leaves are removed once. The second flavor
are graphs with a fixed embedding where a given order of the neighboring disks in
a weak UDCR must be respected. Here we show that the problem is already NP-hard
for general caterpillars. We also show that we can decide in linear time whether a
caterpillar has a weak UDCR that can be placed on a triangular grid and whose disks
for the path of inner nodes are strictly 𝑥-monotone.

Colored Nearest Neighbor Graphs. In the second part of this thesis we look at a
one-dimensional geometric problem. Here we are given a set of one-dimensional points
and a list of line segments between neighboring points such that every point has at
least one incident line segment. We then assign a non-empty set of colors to each point
and for each assigned color create an edge in this color between the point and the
closest point that also has this color. A valid assignment of colors to the points has two
properties: First, every created edge corresponds to a line segment between the same
endpoints and for every line segment there exists such an edge. Second, there can be
no two edges with different colors between two points.

It is easy to see that such a valid color assignment always exists: select a unique
color for each line segment and assign this color to both endpoints. In this thesis we

v

answer the question of how many colors are needed for a given input and how long it
takes to find a valid assignment. We show that for both one and two colors we can
decide whether a valid assignment exists (and also find it) in linear time. To this end
we make some structural observations that help us narrow down the possible color
assignments that we need to look at. There are two defining structures responsible
for increasing the necessary number of colors: local maxima which are line segments
that are longer than both adjacent line segments, and small gaps which are missing
line segments between two points such that the missing line segment is not longer
than both adjacent line segments. We show that in the worst case the number of local
maxima increases the number of colors logarithmically and the number of small gaps
increases them linearly. Finally, we provide a dynamic program that, given an input
and a number of colors, finds a valid color assignment with this number of colors or
returns that no valid color assignment exists. The running time of this algorithm is
exponential in the number of colors.

vi

Selbstständigkeitserklärung

Ich erkläre hiermit, dass alle verwendeten Hilfsmittel und Hilfen in der Arbeit ange-
geben sind und ich auf dieser Grundlage die Arbeit selbstständig verfasst habe. Die
Arbeit wurde nicht in einem früheren Promotionsverfahren eingereicht.

Ich erkläre gegenüber der Freien Universität Berlin, dass ich die vorliegende Disser-
tation selbstständig und ohne Benutzung anderer als der angegebenen Quellen und
Hilfsmittel angefertigt habe. Die vorliegende Arbeit ist frei von Plagiaten. Alle Ausfüh-
rungen, die wörtlich oder inhaltlich aus anderen Schriften entnommen sind, habe ich
als solche kenntlich gemacht. Diese Dissertation wurde in gleicher oder ähnlicher Form
noch in keinem früheren Promotionsverfahren eingereicht.

Mit einer Prüfung meiner Arbeit durch ein Plagiatsprüfungsprogramm erkläre ich
mich einverstanden.

Berlin, den 27. Juni 2024

Jonas Cleve

vii

Acknowledgements

This thesis concludes several years of learning, teaching, and researching at Freie
Universität Berlin. Many people have supported me during this time and helped me
complete this work.

First, I would like to thank my advisor Wolfgang Mulzer for making it all possible
in various ways. The classes he taught during my master’s studies strengthened my
interest in theoretical computer science and laid the groundwork for my PhD. I’m
grateful for his guidance, supervision, and, most importantly, his trust in my abilities
and perseverance. His valuable feedback has helped to improve this thesis. None of
this would have been possible without his efforts to fund my position and provide
opportunities for me to attend conferences, workshops, and research visits.

I want to thank Martin Nöllenburg for agreeing to be my second reviewer. He also
brought my attention to the problem covered in the first part of this thesis. I enjoyed
our work together on this problem and appreciate his invitation for a research visit in
Vienna.

During my time in the theoretical computer science group, there were numerous
people who made the PhD journey enjoyable—too many to thank individually. I
will fondly remember our fun work trips, educational and interesting coffee rounds,
and pleasant corridor chats. There are, however, some people I would like to thank
separately:

I’m grateful to Kristin for our joint research on colored nearest neighbor graphs,
without which the second part of this thesis wouldn’t exist. Even more important was
having her as a friend and sharing an office in the second part of my PhD. I also want
to thank Nadja for sharing an office with me at the beginning of my PhD and always
being willing to listen to my thoughts. My thanks go to Katharina for her feedback on
the first part of this thesis and to Max for his insights into improving teaching. I will
fondly remember Frank both as a teacher and as a colleague.

Finally, I thank my family for always supporting me and for the knowledge that they
will continue to do so.

ix

Contents

Frequently Used Mathematical Notation xv

1 Introduction 1
1.1 Weak Unit Disk Contact Representations 1
1.2 Colored Nearest Neighbor Graphs . 3
1.3 Publications . 6

I Weak Unit Disk Contact Representations 7

2 Preliminaries 9
2.1 Contact Representations and Contact Graphs 9
2.2 Important Graph Classes . 11
2.3 Rigid Structures Using Tight Disk Packings 11
2.4 Triangular Grids . 13

3 Graphs Without Embedding 15
3.1 A Linear Time Algorithm for Caterpillars 15

3.1.1 Preliminary observation . 16
3.1.2 The Linear Time Algorithm . 16
3.1.3 Correctness of the Linear Time Algorithm 17
3.1.4 Incorrectness of the Previous Proof 22

3.2 NP-hardness for Trees . 22
3.2.1 Not-All-Equal 3SAT and the Logic Engine Construction 22
3.2.2 Rigid Hexagons as Basic Building Blocks 27
3.2.3 Combining Hexagons Into Line Segments 33
3.2.4 A Branching and Flipping Gadget 36
3.2.5 Putting Everything Together . 38

4 Graphs With a Fixed Embedding 45
4.1 A Linear Time Algorithm for Grid-Representable, Strictly 𝑥-Monotone

Caterpillars . 45
4.1.1 Preliminary Observations . 47
4.1.2 The Linear Time Algorithm . 49
4.1.3 Running Time and Correctness 52

xi

Contents

4.2 NP-hardness for General Caterpillars 54
4.2.1 Planar 3SAT . 54
4.2.2 Rigid Caterpillars and Caterpillars With Two Representations . 55
4.2.3 Variable Gadgets . 60
4.2.4 Clause Gadgets . 69
4.2.5 Putting Everything Together . 73

II Colored Nearest Neighbor Graphs 79

5 Introduction and Preliminaries 81
5.1 Multisets and Multigraphs . 81
5.2 Defining Colored Nearest Neighbor Graphs 83

5.2.1 Nearest Neighbor Graphs . 83
5.2.2 Colored Nearest Neighbor Graphs 84
5.2.3 General Position . 86

5.3 One-Dimensional Colored Nearest Neighbor Graphs 87
5.3.1 Problem Statements . 87
5.3.2 Useful Definitions and Observations 90

6 Linear Time Algorithms for One and Two Colors 93
6.1 Solving One Color . 93
6.2 Coloring Local Maxima and Gaps . 94

6.2.1 Restrictions on Other Points . 94
6.2.2 Coloring Local Maxima . 95
6.2.3 Coloring Gaps . 99
6.2.4 Restricted Regions for Input Edges and Gaps 101

6.3 Simplifying the Color Assignments . 101
6.3.1 Reducing the Number of Points With Two Colors 102
6.3.2 Few Color Changes at Gaps . 107
6.3.3 Basic Color Assignments . 109

6.4 Two Colors . 117
6.4.1 Only Adjacent Color Changes Are Important 117
6.4.2 The Realization Graph . 119
6.4.3 The Algorithm . 124

7 Different Bounds on the Number of Colors 127
7.1 A Logarithmic Bound for Inputs Without Small Gaps 127

7.1.1 The Upper Bound . 128
7.1.2 The Matching Lower Bound . 130

7.2 A Linear Bound for Inputs With Small Gaps 133
7.2.1 The Upper Bound . 133
7.2.2 The Matching Lower Bound . 134

xii

Contents

7.3 A Mixed Bound Depending on Small Gaps and Local Maxima 137
7.3.1 The Upper Bound . 138
7.3.2 Running Time of the Construction 141
7.3.3 The Matching Lower Bound . 141

7.4 Conclusion . 142

8 A Dynamic Program for a Fixed Color Number 145
8.1 A Quick Look at the Naive Approach 145

8.1.1 Incremental construction . 146
8.2 The Idea of and Prerequisites for the Dynamic Program 147
8.3 Defining the Dynamic Program . 150

8.3.1 Specification . 151
8.3.2 Useful Helper Functions . 152
8.3.3 Definition . 155
8.3.4 Calling the Dynamic Program 156
8.3.5 Extracting a Color Assignment 157

8.4 Correctness and Running Time . 157
8.4.1 Correctness . 157
8.4.2 Running Time . 159
8.4.3 Conclusion . 161

8.5 Comparing the Dynamic Program and the Naive Approach 162
8.5.1 Running Times Without Small Gaps 163
8.5.2 Running Times Without Local Maxima 163
8.5.3 Running Times in Between . 164

9 Conclusion and Open Problems 167
9.1 Weak Unit Disk Contact Representations 167
9.2 Colored Nearest Neighbor Graphs . 168

Bibliography 171

A Supplementary Material 175

xiii

Frequently Used Mathematical Notation

Both Parts

[1..𝑖] The integer set {1, 2,… , 𝑖}.

2𝐴 The power set of the set 𝐴, i.e., 2𝐴 = {𝐵 | 𝐵 ⊆ 𝐴}.

ℕ All natural numbers {0, 1, 2, 3,…}.

ℕ+ All positive natural numbers {1, 2, 3,…}.

Part I: Weak Unit Disk Contact Representations

[𝐴]𝑏 All subsets of 𝐴 of size 𝑏, i.e., [𝐴]𝑏 = {𝐶 ⊆ 𝐴 | |𝐶| = 𝑏}.

1𝑖,… , 6𝑖 Position 1,… , 6 relative to a disk 𝐷𝑖, see Section 4.1.1.

𝐵(𝑟, 𝑟 ′) The branching gadget with 𝑟, 𝑟 ′ ≥ 3, see Definition 3.7.

𝒟 A disk set consisting of interior-disjoint unit disks; usually refers
to a weak UDCR, see Definitions 2.1 to 2.3.

𝒟𝑖 The 𝑖-restricted weak UDCR of the weak UDCR 𝒟, see Defini-
tion 3.2.

𝐷𝑖 The unit disk in 𝒟 corresponding to node 𝑣𝑖 in the graph, see
Definitions 2.1 to 2.3.

deg(𝑣) The degree of node 𝑣, i.e., the number of adjacent nodes in the
graph.

∃ℝ The complexity class containing all languages with a polynomial
time reduction to the existential theory of the reals.

𝐹(𝐵, 𝑝) The set of all free positions if all positions in 𝐵 ∪ {𝑝} are blocked,
i.e., 𝐹(𝐵, 𝑝) = [1..6] ∖ (𝐵 ∪ {𝑝}), see Definition 4.2.

𝐹𝑙(𝐵, 𝑝), 𝐹𝑟(𝐵, 𝑝) The contiguous set of free positions in 𝐹(𝐵, 𝑝) starting counter-
clockwise and clockwise of 𝑝, respectively, see Definition 4.2.

𝐺𝑖 The 𝑖-restricted caterpillar of the caterpillar 𝐺, see Definition 3.1.

xv

Frequently Used Mathematical Notation

Γ The combinatorial embedding of a graph, i.e., the order of the
adjacent nodes around each node, see page 10.

𝜑𝑖 The free angle of disk 𝐷𝑖 in 𝒟𝑖−1, see Definition 3.3.

𝑅(𝑟) The rigid tree with radius 𝑟, see Definition 3.5. Also called chain-
able hexagon tree for 𝑟 ≥ 3, see page 32.

Part II: Colored Nearest Neighbor Graphs

𝑝 ∘→ 𝑞 Point 𝑞 is the unique nearest neighbor of 𝑝, see Definition 5.4.

𝑝 ∘→𝑐 𝑞 Point 𝑞 is the unique nearest neighbor of 𝑝 among all points that
have color 𝑐, and 𝑝 itself also has color 𝑐, see page 85.

𝑝 ∘→𝑐𝜎 𝑞 Point 𝑞 is the unique nearest neighbor of 𝑝 within the points that
have color 𝑐 assigned by 𝜎 (and 𝑝 is among those points), see
page 85.

𝐵𝑖 A block, i.e., all consecutive points between two special edges,
including one endpoint of each special edge, see Definition 6.6.

𝐵∗
𝑖 An exclusive block, i.e., all consecutive points between two special

edges, excluding the endpoints of the special edges, see Defini-
tion 6.6.

𝐶 ̂𝑐 The set of ̂𝑐 colors {1,… , ̂𝑐}, see Definition 5.6.

ℂ ̂𝑐 The set of all subsets of 𝐶 ̂𝑐 of sizes one and two, see page 91.

𝐸𝑃 The neighbor edges of point set 𝑃, see Definition 5.10.

𝒢(𝐸),𝒢𝐸 All gaps in 𝐸, i.e., all edges in 𝐸𝑃 but not in 𝐸, see Definition 5.12.

𝒢−(𝐸), 𝒢−
𝐸 All small gaps in 𝐸, i.e., all gaps that are not local maxima in 𝐸𝑃,

see Definition 6.2.

ℳ(𝐸), ℳ𝐸 All local maxima in 𝐸, see Definition 5.14.

𝒩(𝑃) The edges of 𝒩𝒢(𝑃), see Definition 5.5.

𝒩(𝑃, 𝜎) The edges of 𝒩𝒢(𝑃, 𝜎), see Definition 5.7.

𝒩𝒢(𝑃) The nearest neighbor graph (NNG) of point set 𝑃, see Defini-
tion 5.5.

𝒩𝒢(𝑃, 𝜎) The colored nearest neighbor graph (CNNG) of point set 𝑃 with
color assignment 𝜎, see Definition 5.7.

xvi

𝑅(𝑝, 𝑞) The restricted region, taking the interval from 𝑝 to 𝑞, flipping it
to the other side of 𝑝 and then excluding 𝑝, see Definition 6.1.

⃖⃗𝑅𝐸(𝑒), ⃗⃗𝑅𝐸(𝑒) The left / right restricted region of edge 𝑒 with respect to input
edge set 𝐸. For local maxima the restricted region is based on 𝑒,
for small gaps it is based on the adjacent edges, see Definition 6.3.

𝒮(𝐸), 𝒮𝐸 All special edges in 𝐸, i.e., all local maxima ℳ𝐸 and all small gaps
𝒢−
𝐸 , see Definition 6.5.

swap𝑎,𝑏(𝑐) A function that returns 𝑎 if 𝑐 = 𝑏, 𝑏 if 𝑐 = 𝑎, and 𝑐 unchanged
otherwise, see Definition 6.4.

xvii

Chapter1
Introduction

When talking about geometric problems, it is generally the case that, in addition to
the geometric representation, we can find a more abstract representation of the same
situation. In this thesis we consider two problems which, very broadly, consider objects
and whether the objects should be considered neighbors or not. The obvious abstract
representation for these situations is a graph: it has a node for each object and an
edge between two nodes if and only if the corresponding objects are considered to
be neighbors. It is easy to obtain the graph, given a geometric representation, as the
geometric representation determines how many objects there are and whether two
of them are neighbors or not. However, the reverse is not generally true: Given a
graph, we need to position the objects in some geometric space such that they are
considered neighbors if and only if they have an edge. Finding a fitting geometric
representation can be easily solvable or NP-hard, depending on various factors: These
factors include the complexity of the problem itself and the complexity of the input
graph. In addition, the problems are generally contained in the complexity class ∃ℝ:
the position of each object can be described by a finite number of real values while the
neighborhood relation can be described by a finite number of (in)equalities per object
pair.

The problem of weak unit disk contact representations which has the aforementioned
properties introduced in Section 1.1 and covered in detail in Part I. The second problem
covered in this thesis does not completely fit the aforementioned properties. Here we
already have some geometric information in the abstract representation. This problem
of colored nearest neighbor graphs is introduced in Section 1.2 and covered in detail in
Part II.

1.1 Weak Unit Disk Contact Representations

A disk contact representation (DCR) for a graph is a set of interior-disjoint disks in the
plane (each disk corresponding to one node) such that two disks touch if and only if
the corresponding nodes are adjacent. Koebe [Koe36] showed nearly a century ago
that planar graphs are exactly the graphs that have a disk contact representation (with
varying radii). Thus, it is possible to decide in linear time whether a graph has a DCR

1

Chapter 1 Introduction

or not with a linear time planarity testing algorithm, e.g., one by Hopcroft and Tarjan
[HT74], Boyer and Myrvold [BM04], or de Fraysseix, de Mendez, and Rosenstiehl
[FMR06]. One drawback is that for general planar graphs the ratio between the largest
and smallest radius in a DCR may be exponential in the number of nodes. Thus, Alam,
Eppstein, Goodrich, Kobourov, and Pupyrev [Ala+14] consider balanced DCRs where
the ratio between the largest and smallest radius is polynomial in the number of nodes.
They show that certain graph classes, e.g., planar graphs with bounded maximum
degree and logarithmic outerplanarity,1 and trees, always admit balanced DCRs while
others, e.g., planar graphs with bounded maximum degree and linear outerplanarity,
sometimes don’t.

Restricting the disks’ radii further such that they are all equal introduces unit disk
contact representations (UDCRs). Breu and Kirkpatrick [BK98] showed that it is NP-hard
to decide whether a given graph has a UDCR. The results were then improved by two
groups at the same time. Klemz, Nöllenburg, and Prutkin [KNP15] (see [KNP22] for
a full version) showed that the problem is already hard for outerplanar graphs. The
linear time decision algorithm for caterpillars (trees that become paths after removing
all leaves) claimed in [KNP15] was retracted in [KNP22] and remains a conjecture.
They also showed that, if the embedding of the graph, i.e., the cyclic order of the
nodes’ neighbors, is fixed, the problem remains NP-hard for outerplanar graphs. This
result was strengthened (independently) by Bowen, Durocher, Löffler, Rounds, Schulz,
and Tóth [Bow+15] who showed that the problem with a given embedding is already
NP-hard for trees.

Results. In this thesis, we relax the notion of UDCRs to weak unit disk contact repre-
sentations (weak UDCRs) where we allow two disks to touch even if their corresponding
nodes do not have an edge. Equivalently, we can say that a graph has a weak UDCR if a
supergraph with the same node set and a superset of the edges exists that has a UDCR.
In Section 3.1 we first provide an algorithm that finds a weak UDCR for caterpillars
in linear time or decides that a given caterpillar does not have a weak UDCR. We
first claimed this result in [Cle20], but the proof turned out to be incorrect. Here
we show why and then provide a different proof for the same result. A more general
algorithm for slightly weaker constraints has been presented by Bhore, Löffler, Nickel,
and Nöllenburg [Bho+21a; Bho+21b]. The authors give a linear time algorithm to
find weak UDCRs for lobsters (trees that become caterpillars after removing all leaves)
such that the disk centers are restricted to the triangular grid and the positions of the
disks of the backbone nodes are strictly 𝑥-monotone.2 The backbone is the path that
remains after removing all leaves of a caterpillar (or all leaves of a lobster, twice). Our

1A graph has outerplanarity 𝑘 if it is planar and 𝑘 is the smallest number such that iteratively removing
all nodes incident to the outer face 𝑘 times results in the empty graph.

2For some more details on their results see the first paragraph in Section 3.1.

2

1.2 Colored nearest neighbor graphs

Graph Class Weak UDCRs Weak Embedded UDCRs

Trees NP-hard (Theorem 3.2) ↑ NP-hard
Caterpillars 𝑂(𝑛) (Theorem 3.1) NP-hard (Theorem 4.2)

Grid-Restricted, Strictly
𝑥-Monotone Caterpillars ↓ 𝑂(𝑛) 𝑂(𝑛) (Theorem 4.1)

Grid-Restricted, Strictly
𝑥-Monotone Lobsters 𝑂(𝑛) [Bho+21b, Lemma 4] —

Table 1.1: An overview of the results regarding weak unit disk contact representations.
The hardness results also apply to all graph classes above and the algorithms
also work for all graph classes below. This is indicated by the arrows. The
result for grid-restricted, strictly 𝑥-monotone lobsters is set apart as it is not
directly comparable with caterpillars and trees.

second result, presented in Section 3.2, is to show that it is NP-hard to decide whether
a tree has a weak UDCR.

When looking at a weak UDCR of a graph, the order of disks around a parent disk is
irrelevant. If, however, we want the disks to be ordered in a certain way, we call this a
weak embedded unit disk contact representation (weak embedded UDCR). In Section 4.1
we present a linear time dynamic programming algorithm that finds a weak embedded
UDCR for a caterpillar such that all disk centers are restricted to the triangular grid and
the positions of the disks on the backbone are strictly 𝑥-monotone. The backbone is the
path that remains after removing all leaves of a caterpillar. Secondly, in Section 4.2 we
show that it is already NP-hard to decide whether a caterpillar has a weak embedded
UDCR.

In Table 1.1 we can see an overview of our results regarding different graph classes.
For both NP-hardness results we also show that the problem is contained in ∃ℝ. This is
the class of all problems which can be reduced in polynomial time to a Boolean formula
of the form ∃𝑥1,… , 𝑥𝑛 ∈ ℝ ∶ 𝐹(𝑥1,… , 𝑥𝑛). Here, 𝐹 is a quantifier-free formula that
allows logically combining equalities and inequalities of polynomials of the variables
𝑥1 to 𝑥𝑛. We also show that the problem is in NP and thus becomes NP-complete if we
only consider the grid-restricted problem.

1.2 Colored Nearest Neighbor Graphs

For the second problem discussed in this thesis, we start by talking about the undirected
nearest neighbor graph (NNG) of a point set. This graph has the points as nodes and
an undirected edge between two nodes if one of the two points is closer to the other
than to any third point from the point set. Whether the point needs to be strictly
closer or not differs in the literature. However, often some kind of general position

3

Chapter 1 Introduction

assumption is made. This results in every point having exactly one other point strictly
closer than all other points. See Paterson and Yao [PY92] or Mitchell and Mulzer
[MM17, Section 32.1] for an overview of general results on NNGs or general proximity
graphs. If we assign one or more colors to each of the points we can then compute
the NNG for each color by only considering the points which have this color. We can
then combine those graphs to obtain one colored nearest neighbor graph (CNNG). This
NNG variant was introduced by van Kapel [Kap14] in the context of puzzle generation.
There, the task is not to compute the CNNG but the following: Given a set of points
in the plane and a set of straight line segments between points, assign colors to the
points such that the resulting CNNG is equal to the input. In their work [Kap14] and
in the subsequent work by Löffler, Kaiser, van Kapel, Klappe, van Kreveld, and Staals
[Löf+14] the authors are mainly interested in practical heuristics for simplifying a
given drawing such that it can be approximated by a CNNG of few points.

A slightly different variant of the problem was then studied by Cleve, Grelier, Knorr,
Löffler, Mulzer, and Perz [Cle+22]. The big difference is that each point is only allowed
to have exactly one color, which means that the point set is partitioned into independent
point sets whose NNGs are calculated independently. The question is then whether
there exists such a partition into a given number of sets such that the combined NNGs
represent the input segments. The first result is that for at least three colors it is
NP-complete to decide whether such a partition exists even if the input has no crossings,
i.e., no two line segments in the input cross in their interior. For two colors, it remains
NP-complete in the general case but becomes solvable in polynomial time if the input
has no crossings.

Results. In this thesis, we restrict ourselves to the one-dimensional case. We define
CNNGs similarly to [Kap14] which means that we allow each point to have more than
one color. The function that assigns the colors to the point is called a color assignment.
If the same edge appears in the NNG of two or more different colors, the result is
a colored nearest neighbor multigraph (CNNM) as the edge is counted for each color
individually. Our goal, however, will be to find CNNGs and not CNNMs: we want to
color the points such that each input edge appears in the NNG for exactly one color.
Since we are restricted to one dimension our input consists of points from ℝ, and we
also only allow edges between two consecutive points. In Chapter 6 we look at the
problem for one and two colors. We obtain an algorithm that lets us decide in linear
time whether a given point set can be colored with one or two colors such that its
CNNG has the given edges. As part of this we observe that for a given set of input
edges there are two situations that need special treatment. On the one hand, we have
local maxima which are edges in the input such that both its left and right adjacent
edge is in the input as well and shorter than the local maximum. On the other hand,
there are small gaps which are missing edges between two consecutive input points
such that this missing edge is not longer than both adjacent edges.

4

1.2 Colored nearest neighbor graphs

Situation Parameters Bound for color number

No special edges 𝑘 = 0, ℓ = 0 1 (Lemma 6.1)

No small gaps 𝑘 ≥ 0, ℓ = 0 ⌊log(𝑘 + 1)⌋ + 1 (Lemmas 7.1 and 7.4)

No local maxima 𝑘 = 0, ℓ ≥ 0 ℓ + 1 (Lemmas 7.6 and 7.8)

No restrictions 𝑘 ≥ 0, ℓ ≥ 0 ℓ + ⌊log(𝑘 + 1)⌋ + 1 (Lemmas 7.9 and 7.10)

Table 1.2: An overview of the tight bounds for the number of colors in a colored nearest
neighbor graphs for different situations. The bounds are relative to the
number of local maxima 𝑘 and the number of small gaps ℓ.

In Chapter 7 we look at whether there are upper and lower bounds on the number
of color needed to solve our problem. Our first result in Section 7.1 is that for inputs
which only have local maxima and no small gaps there is a tight logarithmic bound on
the number of colors needed relative to the number of local maxima. For the number
of local maxima itself, we know that there are at most half as many as the points in our
input. In Section 7.2 we then see that allowing for small gaps there is a tight linear
bound on the number of colors needed relative to the number of small gaps. Same as
local maxima, there can be at most half as many small gaps as there are input points.
Combining the previous results in Section 7.3 we see that the tight bound for inputs
with both local maxima and small gaps is logarithmic in the number of local maxima
and linear in the number of small gaps. See Table 1.2 for an overview of the achieved
bounds.

Situation
and parameters

Dynamic program running time …
…in terms of 𝑘 and ℓ …in terms of 𝑛

No small gaps
(𝑘 > 0, ℓ = 0) 𝑂(log3 𝑘 ⋅ (2𝑘)1+⌊log(𝑘+1)⌋) 𝑂(log3 𝑛 ⋅ 𝑛log𝑛)

No local maxima
(𝑘 = 0, ℓ > 0) 𝑂(ℓℓ+4) 𝑂((𝑛

2)
⌊𝑛/2⌋+3

)

No restrictions
(𝑘, ℓ > 0) 𝑂((log 𝑘 + ℓ)32min(1+⌊log(𝑘+1)⌋+ℓ,𝑘)(𝑘 + ℓ)1+⌊log(𝑘+1)⌋+ℓ)

𝑂(𝑛⌊𝑛/2⌋+3)

Table 1.3: The running times of the dynamic program for colored nearest neighbor
graphs in Chapter 8 for different parameters 𝑘 and ℓ. The results are found
in Theorem 8.1.

5

Chapter 1 Introduction

Finally, in Chapter 8 we design a dynamic program that is able to solve our problem
for arbitrary number of colors. Its running time of

𝑂(̂𝑐32min(̂𝑐,𝑘)𝑚 ̂𝑐) ⊆ 𝑂(̂𝑐32min(̂𝑐,⌊𝑛/2⌋)(
𝑛
2
)

̂𝑐
)

depends on both on the number of special edges 𝑚 and the number of colors ̂𝑐. Thus,
the upper bound on the running time depends on the number of local maxima 𝑘
and the number of small gaps ℓ. See Table 1.3 for an overview over the running
times depending on 𝑘 and ℓ. We will also see that if we don’t have local maxima, the
running time of a naive approach that enumerates a (sufficiently large) subset of all
possible color assignments is faster than our dynamic program. However, as long as
ℓ ∈ 𝑜(𝑘 log 𝑘) the dynamic program has better asymptotic behavior.

1.3 Publications

The results covered in the first part of this thesis are either novel or already appeared
in the following publications. The results in the second part of this thesis are all novel
and have not yet appeared in any publications.

[CCN19] Man-Kwun Chiu, Jonas Cleve, and Martin Nöllenburg. “Recognizing Em-
bedded Caterpillars with Weak Unit Disk Contact Representations Is NP-
hard”. In: Proceedings of the 35th European Workshop on Computational
Geometry (EuroCG). Utrecht, Netherlands, 2019

[Cle20] Jonas Cleve. “Weak Unit Disk Contact Representations for Graphs without
Embedding”. In: Proceedings of the 36th European Workshop on Computa-
tional Geometry (EuroCG). Würzburg, Germany, 2020

6

I
Weak Unit Disk Contact

Representations

7

Chapter2
Preliminaries

In the following chapters we will investigate the problem of weak unit disk contact
representations, as introduced in Section 1.2. In the problem we want to find a set
of non-intersecting unit disks in the plane representing a given abstract graph. To
do this we will first define what contact graphs and contact representations are in
Section 2.1. Since we will look at the complexity of solving the problem for different
graph classes, we briefly recap them in Section 2.2. In Sections 2.3 and 2.4 we look at
some fundamental observations and definitions for the remaining chapters.

2.1 Contact Representations and Contact Graphs

Given a set of pairwise interior-disjoint unit disks in the plane, it is easy to find a graph
representation such that each disk has a corresponding node and two nodes are adjacent
if and only if their corresponding disks touch, i.e., their boundaries intersect. However,
the inverse problem is generally not as easy: Given a graph, find a corresponding set of
pairwise interior-disjoint unit disks in the plane. Such graphs and disk sets are formally
defined as follows:

Definition 2.1. ⊳ unit disk contact
representation
(UDCR)

⊳ unit disk contact
graph (UDCG)

Let 𝐺 = (𝑉, 𝐸) be a simple, undirected graph with 𝑉 = {𝑣1,… , 𝑣𝑛}
and let 𝒟 = {𝐷1,… ,𝐷𝑛} be a set of interior-disjoint unit disks in the plane such that
𝐷𝑖 corresponds to 𝑣𝑖 for all 1 ≤ 𝑖 ≤ 𝑛. We call 𝒟 a unit disk contact representation
(UDCR) of 𝐺 if two disks touch, i.e., intersect in their boundaries, if and only if their
corresponding nodes have an edge. A simple, undirected graph 𝐺 = (𝑉, 𝐸) is a unit
disk contact graph (UDCG) if it has a UDCR.

This model has been studied extensively [Bow+15; BK98; KNP15; KNP22], as seen
in Section 1.1. Thus, in this work we study the following weaker version:

↪

Definition 2.2. ⊳ weak unit disk
contact
representation
(weak UDCR)

⊳ weak unit disk
contact graph
(weak UDCG)

Let 𝐺 = (𝑉, 𝐸) be a simple, undirected graph with 𝑉 = {𝑣1,… , 𝑣𝑛}
and let 𝒟 = {𝐷1,… ,𝐷𝑛} be a set of interior-disjoint unit disks in the plane such
that 𝐷𝑖 corresponds to 𝑣𝑖 for all 1 ≤ 𝑖 ≤ 𝑛. We call 𝒟 a weak unit disk contact
representation (weak UDCR) of 𝐺 if two disks touch (i.e., intersect in their boundaries)

9

Chapter 2 Preliminaries

(a) (b) (c)

Figure 2.1: A graph (a) together with a possible corresponding UDCR (b) and a weak
UDCR (c). The touching disks indicated by the dashed edges in (c) are
only allowed in weak UDCRs.

if their corresponding nodes have an edge. A simple, undirected graph 𝐺 = (𝑉, 𝐸) is a
weak unit disk contact graph (weak UDCG) if it has a weak UDCR.

We observe that in Definition 2.1 we have an equivalence between edges and touching
disks while in Definition 2.2 we only have an implication from edges to touching disks.
Thus, in the weak setting, two disks are allowed to touch, even if no edge exists between
the corresponding nodes. See Figure 2.1 for a graph together with a UDCR as well
as a weak UDCR. In Figure 2.1c we can see that two disks are allowed to touch even
though their corresponding nodes in the graph are not adjacent.

Let 𝒟 be a weak UDCR for a graph 𝐺 = (𝑉, 𝐸). Then for every node 𝑣𝑖 ∈ 𝑉 with
neighbors 𝑣𝑖1 ,… , 𝑣𝑖𝑘 we have that 𝒟 defines a cyclic order of 𝐷𝑖1

,… ,𝐷𝑖𝑘
around 𝐷𝑖.

All cyclic orders for the nodes together form the combinatorial embedding⊳ combinatorial
embedding

Γ of 𝐺 for
the given weak UDCR. Note that, in general, there are infinitely many weak UDCRs
which result in the same combinatorial embedding for 𝐺. If a graph is given together
with a combinatorial embedding we can try to find a weak UDCR which results in this
exact embedding:

Definition 2.3.⊳ weak embedded
unit disk contact
representation
(weak embedded
UDCR)

Let 𝐺 = (𝑉, 𝐸) be a simple, undirected graph with 𝑉 = {𝑣1,… , 𝑣𝑛}
and let Γ be a combinatorial embedding of 𝐺. Let 𝒟 = {𝐷1,… ,𝐷𝑛} be a set of interior-
disjoint unit disks in the plane such that 𝑑𝑖 corresponds to 𝑣𝑖 for all 1 ≤ 𝑖 ≤ 𝑛. We call
𝒟 an weak embedded unit disk contact representation (weak embedded UDCR) of 𝐺 with
respect to Γ if 𝒟 is a weak UDCR of 𝐺 and the combinatorial embedding of 𝐺 for 𝒟
equals Γ.

Since UDCRs are more constrained versions of weak UDCRs the following observation
is obvious:

10

2.2 Important Graph Classes

(a) (b) (c) (d) (e)

Figure 2.2: A progression of graphs that become more complex in each step. We start
with a path (a) which is then the backbone for the caterpillar (b) and the
lobster (c). In (d) every path we pick has nodes with distance more than
two, but no cycles, making it a tree. Drawing (e) contains cycles, but we
can see that every node is incident to the colored outer face.

Observation 2.1. If a set of interior-disjoint unit disks 𝒟 is a UDCR for a graph 𝐺, it also
is a weak UDCR for 𝐺. Thus, if 𝐺 is a UDCG, it is also a weak UDCG.

Corollary 2.1. If a graph 𝐺 has no weak UDCR, it also does not have a UDCR. Thus, if 𝐺
is not a weak UDCG, it is also not a UDCG.

2.2 Important Graph Classes

We will look at NP-hardness or polynomial time algorithms for different graph classes.
These graph classes will be defined here. Let 𝐺 = (𝑉, 𝐸) be a simple, undirected, and
connected graph. ⊳ planar

⊳ outerplanar
⊳ tree
⊳ path
⊳ caterpillar

⊳ backbone
⊳ lobster

Then 𝐺 is planar if it has a planar drawing, i.e., it can be drawn in
the plane without intersecting edges; outerplanar if it has a planar drawing in which
all nodes are incident to the outer face; a tree if its edges do not contain a cycle; a path
if it is a tree and the degree of each node is at most 2; a caterpillar if it is a tree such
that removing all leaves (i.e., nodes with degree 1) results in a path, which is called the
caterpillar’s backbone; and a lobster if it is a tree such that removing all leaves results in
a caterpillar, whose backbone is the lobster’s backbone. See Figure 2.2 for an example
for each of the graph classes.

2.3 Rigid Structures Using Tight Disk Packings

Klemz et al. [KNP22] show that it is NP-hard to decide whether an outerplanar graph
has a UDCR or an embedded UDCR for a given embedding. They use internally-
triangulated outerplanar graphs to force rigid structures to build gadgets for the

11

Chapter 2 Preliminaries

(a) The 6-star has only this
unique weak UDCR.

𝜃
22

2 + 𝜀

(b) Looking at two neighboring leaf disks around the center disks.
If 𝜀 = 0 then 𝜃 = 𝜋

3 but setting 𝜀 > 0 implies 𝜃 > 𝜋
3 . Then

six disks cannot be placed around the center disk.

Figure 2.3: Placing six disks around a center disk yields a tight packing in which each
outer disk touches its two neighboring outer disks. It is not possible that
they do not touch while maintaining six disks.

hardness proofs. For embedded UDCRs Bowen et al. [Bow+15] show NP-hardness
even for trees using similar ideas. In all these proofs the structures cannot change
significantly if we allow the disks of non-adjacent nodes to touch. Thus, it is already
clear that the problem is NP-hard for outerplanar graphs and weak UDCRs as well as
for trees and weak embedded UDCRs. As a result, the goal of this work will be to show
NP-hardness for more constrained graph classes, namely trees and caterpillars. To do
this, we will also need to force rigid structures via specially constructed graphs. We
start by looking at what we mean by rigid.

Given a disk set 𝒟 we translate it by a vector ⃗𝑣 and rotate it around a point 𝑝 by an
angle 𝜃, by applying these transformations to each disk in 𝒟 individually. We say that
two sets of interior-disjoint unit disks 𝒟1 and 𝒟2 are congruent⊳ congruent if and only if we can
translate and rotate 𝒟2 obtaining 𝒟′

2 such that 𝒟1 = 𝒟′
2. This congruence relation is

an equivalence relation which means that we can partition the set of all weak UDCRs
of a given graph into equivalence classes. With this in mind, we can formulate our
notion of rigidity.

Definition 2.4.⊳ rigid A simple, undirected graph 𝐺 is rigid if and only if it has a weak UDCR
𝒟 and for all weak UDCRs 𝒟′ of 𝐺 it holds that 𝒟 and 𝒟′ are congruent.

A simple, undirected graph 𝐺 together with a combinatorial embedding Γ is rigid if
and only if it has a weak embedded UDCR 𝒟 and for all weak embedded UDCRs 𝒟′ of
𝐺 it holds that 𝒟 and 𝒟′ are congruent. In other words, in both cases, 𝐺 is rigid if the
number of equivalence classes of its weak (embedded) UDCRs is exactly one.

Note that, since rigidity only compares the disk sets and not the underlying graph
structure, the embedding of the weak UDCR is not important (unless, of course, we
look for a weak embedded UDCR). With this in mind we can observe the following:

Observation 2.2. The 6-star, i.e., the tree with one internal node and 6 leaves, is rigid.

12

2.4 Triangular Grids

⏟⏟⏟⏟⏟⏟⏟⏟⏟
2

grid distance: 4

Figure 2.4: The triangular grid. In the top left corner we see that two adjacent grid
points have distance 2. In the middle we have an example of a grid-
restricted weak UDCR of a path with six nodes. Finally, on the bottom we
have two grid points with grid distance 4.

Proof. Look at Figure 2.3a to see a weak UDCR of the graph together with its graph
structure. In Figure 2.3b we can see that if two of the outer disks do not touch, then not
all six disks can be placed around the center disks with distance exactly 2 between the
centers of the outer and center disk without at least two outer disks intersecting.

In the following we will use this simple rigid graph as a starting point for more
complicated rigid structures, first without a given embedding, in Section 3.2, and then
with a given embedding, in Section 4.2.

2.4 Triangular Grids

As we can see in Figure 2.3b in the densest possible packing of three disks, their centers
form an equilateral triangle with side length 2. This single triangle can be extended
to an infinite triangular grid ⊳ triangular gridsuch that two disks touch if and only if their centers are
placed on neighboring grid points. Then the grid size ⊳ grid size, i.e., the distance between two
neighboring grid point, is 2. We define the grid distance ⊳ grid distancebetween two grid points as
the number of edges on a shortest path between the points.

If we restrict ourselves to studying weak UDCRs and weak embedded UDCRs whose
disks are all placed on triangular grid points instead of arbitrary locations, many tasks
become easier. We thus define

Definition 2.5. ⊳ grid-restricted
⊳ grid-

representable

A weak UDCR or weak embedded UDCR 𝒟 is grid-restricted if it can be
rotated and translated such that the centers of all disks are located on the triangular grid.
A graph (together with an embedding) is grid-representable if it has a grid-restricted
weak UDCR (or weak embedded UDCR).

In Figure 2.4 we see an example of a grid-restricted weak UDCR as well as a depiction
of the grid distance between two grid points.

13

Chapter3
Graphs Without Embedding

In this chapter we focus on graphs where no specific combinatorial embedding is
required. Thus, given a simple, undirected graph 𝐺, we want to find a weak UDCR 𝒟
or decide that 𝐺 has none; or in other words, decide whether 𝐺 is a weak UDCG. The
results presented in this chapter are twofold: In Section 3.1 we present a linear time
algorithm to find weak UDCRs for caterpillars while in Section 3.2 we show that the
problem becomes NP-hard for trees. These results were previously published in part
and in short form in [Cle20].

3.1 A Linear Time Algorithm for Caterpillars

Our first contribution is an algorithm that, given a caterpillar, finds a weak UDCR in
linear time or decides that no weak UDCR exists. Here some clarifying words are
needed. In [Cle20] we claimed to have a condition that can be checked in linear time
and which tells us whether a caterpillar has a weak UDCR. However, the claim that this
condition is true if and only if a caterpillar has a weak UDCR is not correct—it is only
a necessary but not a sufficient condition. We will show more details in Section 3.1.4.
Before doing that, however, we present an alternate algorithm that runs in linear time.
Note that in the meantime there has been some independent work on the same topic by
Bhore et al. [Bho+21b]. The authors give a linear time algorithm to find a weak UDCR
for grid-representable lobsters such that the positions of the disks of the backbone
nodes are strictly 𝑥-monotone. They also claim that all grid-representable lobsters have
a strictly 𝑥-monotone grid-restricted weak UDCR. However, in personal communication,
Nöllenburg [Nöl24] confirmed that the proof for this claim was found to be flawed and
the result is also not included in the PhD thesis of Terziadis [Ter24]. Their algorithm
naturally works for grid-restricted, strictly 𝑥-monotone caterpillars. The algorithm
presented here works for all caterpillars and is significantly simpler as it can use some
properties of caterpillars.

15

Chapter 3 Graphs Without Embedding

Figure 3.1: Positioning potential caterpillar disks on a triangular grid with the backbone
disks on a horizontal line. We have three backbone nodes with different
colors together with the possible placement positions of their leaf nodes. It
is easy to see the five spots each disk at the end of the backbone has and
that two consecutive backbone disks share two positions where they can
place leaf disks.

3.1.1 Preliminary observation

Before looking at how to actually find a weak UDCR in linear time, we can make some
observations about weak UDCRs:

Observation 3.1. A 𝑘-star with 𝑘 > 6 does not have a weak UDCR.

Proof. We have seen in Observation 2.2 that the 6-star is rigid. Thus, no more disks
can be added to the weak UDCR of the 6-star.

Corollary 3.1. If a graph has a node with more than six neighbors, it does not have a
weak UDCR.

3.1.2 The Linear Time Algorithm

We now show our algorithm responsible for placing the caterpillar’s disks. The idea
is that all disks corresponding to the caterpillar’s backbone are placed on a line and
all disks corresponding to the leaves are placed on a triangular grid that coincides
with the backbone disks. We call the resulting realization a straight weak UDCR⊳ straight weak

UDCR
. See

Figure 3.1 for a depiction of three backbone disks and the possible leaf disks’ positions.
We can observe that the first and last backbone disks have five different spots for
placing leaf disks while all other backbone disks have four such spots. Furthermore,
two consecutive backbone disks share exactly two possible locations for their leaf disks.

The algorithm now works as follows. Given a caterpillar 𝐺 = (𝑉, 𝐸), first determine
its backbone consisting of nodes 𝑏1, 𝑏2,… , 𝑏𝑘 in this order. Then place all backbone
disks on a horizontal line such that the disks of two consecutive nodes touch. Afterwards
go through the backbone disks from left to right and try to place all their respective
leaf disks according to the numbers shown in Figure 3.2. For every backbone disk its

16

3.1 A Linear Time Algorithm for Caterpillars

1

2

3

4

5

6

good bad

(a) The positions on the triangular
grid relative to the center disk are
numbered according to this figure.

2

1

3 5 3

4 2 4 2

5 3 5

6

4

(b) We can see that adjacent backbone disks share two
positions for leaf disks. These positions are 4 and 2
as well as 5 and 3.

Figure 3.2: The potential positions for disks corresponding to leaf nodes.

leaf disks are placed at positions 1, 2, 3, 4, 5, 6 according to Figure 3.2a in this order if
they are free. As we can see in Figure 3.2b position 1 is only free for the first backbone
disk while position 6 is only free for the last backbone disk. If a leaf disk cannot be
placed, it means that a backbone disk has more leaf disks than free positions around it.
Then the algorithm returns that the given caterpillar does not have a weak UDCR.

Since positions 1 and 6 are special positions only relevant for the first and last
backbone node we now focus on the remaining four positions. As we can see in
Figure 3.2a, positions 2 and 3 are good ⊳ good position

⊳ bad position
positions, and 4 and 5 are bad positions. This

is because, as we can see in Figure 3.2b, positions 2 and 3 do not overlap with the
positions around the next backbone disk to the right. On the other hand, positions 4
and 5 occupy positions 2 and 3, respectively, of the next backbone disk to the right.
The algorithm’s placement order ensures that the leaf disks are only placed at bad
positions if no good position is available.

It is clear that the presented algorithm runs in linear time: Determining the backbone
is done by finding all nodes with degree at least two. After placing the backbone on a
horizontal line, every leaf is considered once and at most five positions are considered
per leaf disk.

3.1.3 Correctness of the Linear Time Algorithm

After seeing that the proposed algorithm is, indeed, a linear time algorithm we need
to ensure that it is correct. It is obvious that if the algorithm successfully places all
leaf disks, the result is a weak UDCR. Thus, it remains to show that if a caterpillar has
a weak UDCR 𝒟 the algorithm will find a weak UDCR �̃�. To this end we first define
some properties and constructions that we use in the proof.

Definition 3.1. ⊳ 𝑖-restricted
caterpillar

Given a caterpillar 𝐺 with backbone nodes 𝑏1,… , 𝑏𝑘 in this order. The
𝑖-restricted caterpillar 𝐺𝑖 of 𝐺, for 0 ≤ 𝑖 ≤ 𝑘 is the caterpillar obtained from 𝐺 by
removing all backbone nodes 𝑏𝑗 with 𝑗 > 𝑖 + 1 and all leaves of 𝑏𝑖+1.

17

Chapter 3 Graphs Without Embedding

𝑏1 𝑏2 𝑏3 𝑏4 𝑏5 𝑏6 𝑏7

𝐺2 𝐺5

𝐺

(a) A caterpillar with two restricted
caterpillars highlighted.

𝒟

𝒟2 𝒟5

(b) a weak UDCR as found
by the algorithm.

𝒟

𝒟2 𝒟5

(c) A possible arbitrary
weak UDCR.

Figure 3.3: An example of a caterpillar and two possible weak UDCRs together with
their 2- and 5-restricted variants highlighted.

See Figure 3.3a for an example caterpillar with two restricted parts highlighted.
From the definition we observe that 𝐺0 consists of only 𝑏1 and 𝐺𝑘 = 𝐺.

Definition 3.2.⊳ 𝑖-restricted weak
UDCR

Given a caterpillar 𝐺 with a weak UDCR 𝒟. The 𝑖-restricted weak UDCR
𝒟𝑖 is 𝒟 restricted to the disks corresponding to nodes in the 𝑖-restricted caterpillar 𝐺𝑖.

In Figures 3.3b and 3.3c we see two weak UDCRs for the caterpillar from Figure 3.3a
and the two restricted weak UDCRs for the two restricted caterpillars, highlighted
in the same colors. With the previous two definitions we can now look at how much
space is available around each backbone disk to place its leaves and the next backbone
disk. We define this space in terms of an angle around the disks in which other disks
can be placed.

We first define this free angle⊳ free angle informally for a given weak UDCR 𝒟. See Figure 3.4
for a depiction. For the first backbone node 𝑏1 and its corresponding backbone disk
𝐷1 we look at 𝒟0 = {𝐷1}. Then, we can place the leaf disks and 𝐷2 at any position
around 𝐷1 and thus the free angle of 𝐷1 is 360°, as seen in Figure 3.4a. For 𝒟𝑖 with
1 ≤ 𝑖 ≤ 𝑘 we know that 𝒟𝑖 contains 𝐷𝑖 but not its leaves and not 𝐷𝑖+1 (if it exists).
Then the free angle of 𝐷𝑖 is the angle of the largest cone towards the right such that
any disk touching 𝐷𝑖 placed completely inside the cone does not intersect with any
disk from 𝒟𝑖. In Figure 3.4b we can see the two dotted disks as the outermost positions
for such disk placements. Thus, the cone contains the orange 180° part as well as the
angles 𝛼𝑖,𝑙 and 𝛼𝑖,𝑟. These angles cannot be larger than 60° as a disk placed at a larger
angle intersects 𝐷𝑖−1.

↪

Definition 3.3.⊳ free angle Given a caterpillar 𝐺 with backbone nodes 𝑏1,… , 𝑏𝑘 in this order and
a weak UDCR 𝒟 of 𝐺. Let 𝐷𝑖 ∈ 𝒟 be the disk corresponding to 𝑏𝑖 for all 1 ≤ 𝑖 ≤ 𝑘. We
define the free angle 𝜑𝑖 of 𝐷𝑖 with respect to the (𝑖 − 1)-restricted weak UDCR 𝒟𝑖−1
inductively. In the base case 𝜑1 = 360° as 𝒟0 consists of only 𝐷1, see Figure 3.4a.

For the inductive case look at Figure 3.4. Here we have indicated the two backbone
disks 𝐷𝑖−1 (with center 𝑝𝑖−1) and 𝐷𝑖 as well as the two neighbors of 𝐷𝑖−1 closest to 𝐷𝑖,
namely 𝐷𝑖−1,𝑙 and 𝐷𝑖−1,𝑟. Let 𝛼𝑖,𝑙 be the angle between the closer tangents from 𝑝𝑖−1

18

3.1 A Linear Time Algorithm for Caterpillars

𝐷1

𝜑1 = 360°

(a) The free angle
𝜑1 around 𝐷1
is 360°.

𝐷𝑖𝐷𝑖−1

𝐷𝑖−1,𝑙

𝛼𝑖,𝑙 𝛼𝑖,𝑙

𝛼𝑖,𝑟 𝛼𝑖,𝑟

𝐷𝑖−1,𝑟

𝜑𝑖 = 180°

+min(𝛼𝑖,𝑙, 60°)

+min(𝛼𝑖,𝑟, 60°)𝑝𝑖−1

(b) The free angle 𝜑𝑖 around 𝐷𝑖 consists of 180° (orange) plus the (blue)
angle 𝛼𝑖,𝑙 between 𝐷𝑖 and 𝐷𝑖−1,𝑙 and the (purple) angle 𝛼𝑖,𝑟 between
𝐷𝑖−1,𝑟 and 𝐷𝑟; but at most 60° in both cases. The gray dotted disks
indicate placement of two disks at the extreme positions around 𝐷𝑖.

Figure 3.4: The free angle around the disk 𝐷1 of a 0-restricted weak UDCR and the
disk 𝐷𝑖 of a (𝑖 − 1)-restricted weak UDCR. See Figure 3.5 why both blue
and both purple angles are equal, respectively.

to 𝐷𝑖−1,𝑙 and to 𝐷𝑖. If 𝐷𝑖−1,𝑙 does not exist, let 𝛼𝑖,𝑙 = ∞. Let 𝛼𝑖,𝑟 be the same for 𝐷𝑖−1,𝑟

and 𝐷𝑖. Then 𝜑𝑖 = 180° +min(𝛼𝑖,𝑙, 60°) +min(𝛼𝑖,𝑟, 60°).

We need to show that this inductive definition equals the more informal definition
from before. It is especially important to show that the two angles 𝛼𝑖,𝑙 and the two
angles 𝛼𝑖,𝑟 in Figure 3.4b are actually the same:

Lemma 3.1. Definition 3.3 of the free angle 𝜑𝑖 is exactly the angle of the largest cone
towards the right such that any disk touching 𝐷𝑖 placed completely inside the cone does
not intersect with any disk from 𝒟𝑖.

↪

Proof. We first show that the two angles denoted as 𝛼𝑖,𝑙 in Figure 3.4b are equal. For
this, have a look at Figure 3.5 where we have a zoomed in view of the situation. The
two angles are now denoted 𝛼 and 𝛼′. The three centers of 𝐷𝑖−1,𝑙, 𝐷𝑖−1, and 𝐷𝑖 form
a rhombus together with the center of the dotted disk. This is because the distances
between the connected points are all 2.

If two disks touch, one disk occupies a sector of exactly 60° around the other disk.
Thus, the angle 𝛽 consists of 𝛼 and half of each of the sectors containing 𝐷𝑖−1,𝑙 and
𝐷𝑖. As a result, 𝛽 = 𝛼 + 60°. Since we have a rhombus, we know that 𝛽 + 𝛾 = 180°
which tells us that 𝛾 = 120° − 𝛼. The right angle at the center of 𝐷𝑖 is made up of 𝛾
and 𝛿 which means that 𝛿 = 𝛼 − 30°. If 𝛾 > 90° it follows that 𝛿 < 0 which is not a
problem as it only tells us that the center of the dotted disk is further to the right than
the center of 𝐷𝑖. Finally, 𝛼

′ consists of 𝛿 and a sector containing exactly half of this
dotted disk which makes it 30° large. Thus, 𝛼′ = 𝛼 which tells us that indeed both
angles denoted as 𝛼𝑖,𝑙 in Figure 3.4b are equal. By symmetry the same holds for 𝛼𝑖,𝑟.

19

Chapter 3 Graphs Without Embedding

𝐷𝑖
𝐷𝑖−1

𝐷𝑖−1,𝑙

𝛼
𝛽 𝛾

𝛼′
𝛿

𝛽 = 𝛼 + 60°

𝛾 = 180° − 𝛽 = 120° − 𝛼

𝛿 = 90° − 𝛾 = 𝛼 − 30°

𝛼′ = 𝛿 + 30° = 𝛼 𝐷𝑖
𝐷𝑖−1

𝐷𝑖−1,𝑙

𝛼

𝛽 𝛾

𝛼′
−𝛿

30° 30°

30°

30°

30°

30°

Figure 3.5: Two more detailed views of the upper part of Figure 3.4b to see that the
two angles denoted by 𝛼𝑖,𝑙, here named 𝛼 and 𝛼′, are indeed equal. On
the right side 𝛿 becomes negative if it is calculated as 90° − 𝛾.

If 𝐷𝑖−1,𝑙 touches 𝐷𝑖 then 𝛼𝑖,𝑙 = 0°. In this situation we know that 𝐷𝑖−1,𝑙’s center
lies on the triangular grid whose grid points coincide with the centers of 𝐷𝑖−1 and 𝐷𝑖.
Then the furthest we can place a leaf disk 𝐷 ′

𝑖 of 𝐷𝑖 is with a 60° angle between the
line through the centers of 𝐷𝑖−1 and 𝐷𝑖 and the line through the centers of 𝐷𝑖 and 𝐷 ′

𝑖.
Thus, the cone containing this disk starts at 90°. Due to symmetry we then always
have at 180° to place leaf disks around 𝐷𝑖. Together with the proof that the angles
𝛼𝑖,𝑙 and 𝛼𝑖,𝑟 in Figure 3.4b are respectively equal, we can conclude that Definition 3.3
correctly defines the largest cone towards the right such that any disk touching 𝐷𝑖
placed completely inside the cone does not intersect with any disk from 𝒟𝑖.

With the correct definition of the free angle we can now have another look at the
algorithm and observe that it always finds a weak UDCR for a caterpillar if it has one.

Lemma 3.2. Let 𝐺 be a caterpillar, 𝑏1,… , 𝑏𝑘 its backbone nodes in this order, and
𝑑𝑖 = deg(𝑏𝑖) for all 1 ≤ 𝑖 ≤ 𝑘. If 𝐺 has a weak UDCR 𝒟 then the algorithm finds a weak
UDCR �̃� for 𝐺. For all 1 ≤ 𝑖 ≤ 𝑘 let 𝜑𝑖 be the free angle of 𝑏𝑖’s disk with respect to 𝒟𝑖−1
and �̃�𝑖 be the same with respect to �̃�𝑖−1; then 𝜑𝑖 ≤ �̃�𝑖.

↪

Proof. We first observe that �̃�𝑖 is a multiple of 60° for all 1 ≤ 𝑖 ≤ 𝑘. Let �̃�𝑖,𝑙, �̃�𝑖,𝑟 be the
angles from Definition 3.3 when calculating �̃�𝑖. The algorithm places the disks on grid
points which means that �̃�𝑖,𝑙, �̃�𝑖,𝑟 ∈ {0°, 60°, 120°} and thus �̃�𝑖 ∈ {180°, 240°, 300°}.
Furthermore, let 𝐷𝑖 ∈ 𝒟 be the disk corresponding to backbone node 𝑏𝑖 for all 1 ≤ 𝑖 ≤ 𝑘.
We now show the lemma by induction on the position 1 ≤ 𝑖 ≤ 𝑘 of the backbone node
for which the algorithm places the leaf disks.

Induction base. For 𝑖 = 1 we have that 𝜑1 = �̃�1 = 360° by definition and thus
𝜑1 ≤ �̃�1 is true. We furthermore know that, 𝑑1 ≤ 6 as otherwise 𝒟 would not be a

20

3.1 A Linear Time Algorithm for Caterpillars

weak UDCR due to Observation 3.1. If 𝑘 = 1 the algorithm places the 𝑑1 leaf disks of
𝐷1 at positions 1 up to 𝑑1, and finishes successfully.

If 𝑘 ≥ 2, the algorithm has already placed 𝐷2 at position 6 relative to 𝐷1. Thus, it
places the leaf disks of 𝐷1 at positions 1 up to 𝑑1 − 1. The result is �̃�1. Now, given
�̃�1, we can obtain �̃�2 and compare it with 𝜑2. For 𝑖 = 2 we know that �̃�2,𝑙 ≥ 60° if
and only if 𝑑1 ≤ 4, otherwise �̃�2,𝑙 = 0°. Similarly, �̃�2,𝑟 ≥ 60° if and only if 𝑑1 ≤ 5,
otherwise �̃�2,𝑟 = 0°. It follows that �̃�2 = 180° if and only if 𝑑1 = 6, �̃�2 = 240° if and
only if 𝑑1 = 5, and �̃�2 = 300° if and only if 𝑑1 ≤ 4. For 𝜑2 we know that 𝑑1 disks use
at least 𝑑1 ⋅ 60° from 𝜑1 and there is at most 120° from 𝜑1 that can be used for 𝜑2.
Thus, 𝜑2 ≤ 180° + min(120°, 360° − 𝑑1 ⋅ 60°) which results in 𝜑2 ≤ 180° if 𝑑1 = 6,
𝜑2 ≤ 240° if 𝑑1 = 5, and 𝜑2 ≤ 300° if 𝑑1 ≤ 4. This shows that 𝜑2 ≤ �̃�2.

Induction step. For larger 𝑖 we can now assume that 𝜑𝑖 ≤ �̃�𝑖 is true before placing the
leaf disks of 𝐷𝑖. Since 𝒟 is a weak UDCR we know that 𝑑𝑖 −1 ≤ ⌊ 𝜑𝑖

60°⌋ as every neighbor
of 𝐷𝑖 uses at least 60°; it is 𝑑𝑖 − 1 since 𝐷𝑖−1 is counted in 𝑑𝑖 but is already placed. If
𝑖 = 𝑘 the algorithm finishes after placing 𝑑𝑖 −1 leaf disks around 𝐷𝑖 for which an angle
of �̃�2 available. This is sufficient, as (𝑑𝑖 − 1) ⋅ 60° ≤ ⌊ 𝜑𝑖

60°⌋ ⋅ 60° ≤ 𝜑𝑖 ≤ �̃�𝑖.
If 𝑖 < 𝑘, the algorithm will have already placed 𝐷𝑖+1 at position 6, leaving �̃�𝑖−60° for

the remaining 𝑑𝑖−2 leaf disks. The algorithm can place these disks, since (𝑑𝑖−2)⋅60° =
(𝑑𝑖 − 1) ⋅ 60° − 60° ≤ ⌊ 𝜑𝑖

60°⌋ ⋅ 60° − 60° ≤ ⌊ �̃�𝑖
60°⌋ ⋅ 60° − 60° = �̃�𝑖 − 60°.

We now want to obtain �̃�𝑖+1. By construction, �̃�𝑖+1,𝑟 ≥ 60° if and only if �̃�𝑖 −
(𝑑𝑖 − 1) ⋅ 60° ≥ 60°, otherwise �̃�𝑖+1,𝑟 = 0°. Similarly, �̃�𝑖+1,𝑙 ≥ 60° if and only if
�̃�𝑖−(𝑑𝑖−1)⋅60° ≥ 120°, otherwise �̃�𝑖+1,𝑙 = 0°. This can then be combined into �̃�𝑖+1 =
180° +min(�̃�𝑖+1,𝑙, 60°) +min(�̃�𝑖+1,𝑟, 60°) = 180° +min(120°, �̃�𝑖 − (𝑑𝑖 − 1) ⋅ 60°).

For𝜑𝑖+1 we know that 𝑑𝑖−1 disks are placed around 𝐷𝑖 taking away (𝑑𝑖−1)⋅60° from
𝜑𝑖. From the remaining angle at most 120° can be part of 𝜑𝑖+1. Thus, we can say that
𝜑𝑖+1 ≤ 180°+min(120°,𝜑𝑖 − (𝑑𝑖 − 1) ⋅ 60°) ≤ 180°+min(120°, �̃�𝑖 − (𝑑𝑖 − 1) ⋅ 60°) =
�̃�𝑖+1. This completes the proof.

We have just shown that the algorithm always produces a grid-restricted weak UDCR
whenever there exists a (not necessarily grid-restricted) weak UDCR. It thus follows
immediately, that

Corollary 3.2. All caterpillars that have a weak UDCR have a grid-restricted weak UDCR
and are thus grid-representable.

With the previous lemma we can now finalize this section with

Theorem 3.1. Given a caterpillar 𝐺 with 𝑛 nodes, the algorithm in Section 3.1.2 runs in
Θ(𝑛) time and finds a weak UDCR for 𝐺 if and only if 𝐺 has a weak UDCR.

21

Chapter 3 Graphs Without Embedding

Proof. At the end of Section 3.1.2 we analyzed the running time and saw that the
algorithm does, indeed, run in linear time. It is obvious that, if the algorithm terminates
successfully, the result is a weak UDCR: All backbone disks touch both their backbone
neighbors’ disks and the leaf disks are only placed at positions such that they touch
their parent’s disk. On the other hand, Lemma 3.2 shows that the algorithm always
finds a weak UDCR if a given caterpillar has a weak UDCR.

3.1.4 Incorrectness of the Previous Proof

After showing a correct linear time algorithm we now briefly show why the algorithm
we presented in [Cle20] is not correct. Its correctness relied upon the following claim:

Wrong Claim 3.1 (Cf. [Cle20, Lemma 1]). Let 𝐺 be a caterpillar, 𝑏1,… , 𝑏𝑘 its backbone
nodes in order, and 𝑑𝑖 = deg(𝑏𝑖) for all 1 ≤ 𝑖 ≤ 𝑘. Then 𝐺 has a weak UDCR if and only
if for all 1 ≤ ℓ ≤ 𝑘 ∶ ∑ℓ

𝑖=1 𝑑𝑖 ≤ 4ℓ + 2.

However, as we will see in the following example, this condition in the lemma is not
a sufficient condition. Let 𝐺 be our caterpillar with two backbone nodes 𝑏1 and 𝑏2 and
seven leaf nodes, one leaf node for 𝑏1 and six leaf nodes for 𝑏2. Then 𝑑1 = 2 (one leaf
and 𝑏2) and 𝑑2 = 7 (six leaves and 𝑏1). Checking the condition we have that for ℓ = 1
it holds that 𝑑1 ≤ 6 and for ℓ = 2 it holds that 𝑑1 + 𝑑2 ≤ 10. However, as shown in
Corollary 3.1 the graph cannot have a weak UDCR as 𝑏2 has degree larger than six.

3.2 NP-hardness for Trees

In the previous section we showed that finding a weak UDCR for a caterpillar can
be achieved in linear time. In this section we will show that the same task becomes
NP-hard for trees. This is done by a reduction from Not-All-Equal 3SAT a variant of the
3SAT problem.

3.2.1 Not-All-Equal 3SAT and the Logic Engine Construction

Definition 3.4.⊳ NAE3SAT
⊳ valid assignment

Not-All-Equal 3SAT (NAE3SAT) is the problem of, given a 3SAT formula
𝜙, finding a satisfying assignment for 𝜙 such that in every clause there is at least one
false literal. Such an assignment is called valid.

The definition implies that for every valid assignment in every clause there is one
true literal, one false literal, and one literal that can be either true or false. If a variable
appears as both the positive and negative literal in the same clause we know that this
clause is always satisfied, always has one true and one false literal, and can thus be
removed. Henceforth, we can assume that formulas given to us do not contain such
clauses. In 1978 Schaefer [Sch78] showed that NAE3SAT is an NP-hard problem. To

22

3.2 NP-hardness for Trees

𝑥1

𝑥2

𝑥3

𝑥4
armatures

frame

shaft

flags

Figure 3.6: An example realization of the original logic engine by Eades and Whitesides
[EW96] for the NAE3SAT formula 𝜙 = (𝑥1 ∨ 𝑥2 ∨ 𝑥3)∧(𝑥1 ∨¬𝑥2 ∨ 𝑥4)∧
(𝑥1 ∨ 𝑥3 ∨¬𝑥4). The outer U-shaped frame is fixed and the four C-shaped
armatures each with a chain from top to bottom can be rotated around
the gray horizontal shaft. The flags attached to the chains can be rotated
around the chains. All important parts of the construction happen inside
the highlighted area.

reduce NAE3SAT to a geometric realization problem such as finding a weak UDCR for
a graph, we use a construction introduced by Bhatt and Cosmadakis [BC87], which
was formalized by Eades and Whitesides [EW96] and has been called logic engine since
then.

The original logic engine. We will first briefly describe this construction before
going into more detail of our modified version of the logic engine. An example of a
logic engine can be seen in Figure 3.6. It consists of a U-shaped fixed frame with a
horizontal shaft in the middle. Around this shaft there are as many armatures as there
are variables, four in our example. Each armature consists of a fixed C-shaped part
with an additional vertical chain across the open side of the fixed part. The armatures

23

Chapter 3 Graphs Without Embedding

can be rotated around the shaft into two possible positions that are in the same plane
as the frame. At the chains of each armature, there are flags attached on as many levels
on each side of the shaft as there are clauses in the NAE3SAT formula. In our example
we have three clauses and thus three levels of flags on each side of the shaft. The flags
can be rotated around the chains into two positions in the same plane as the frame
and the armatures. However, certain positions are blocked by the innermost armature
for 𝑥1 and by the frame: The flags attached to the armature for 𝑥1 must point towards
the right while the flags attached to the armature for 𝑥4 must point towards the left.
Eades and Whitesides [EW96, Lemma 1] showed that there is a valid assignment for
the formula if there exists a way to rotate the armatures and flags such that no two
flags overlap.

A crucial observation of this construction, as seen in Figure 3.6, is that each armature
is structurally a cycle and thus the logic engine contains several (nested) cycles. Since
we want to show that finding a weak UDCR is NP-hard for trees, we need the structure
of the logic engine to be tree-like as well. Fortunately, the important part of the
construction is inside the highlighted area in Figure 3.6. We need each chain in either
of the two possible positions and we need the flags that can be in up to two positions
around their chains. Additionally, there needs to be something to the left preventing
the leftmost flags from rotating to the left and the same on the right. In Figure 3.7 we
can see such a construction which only consists of the important parts from Figure 3.6.
We now describe this modified version of the logic engine. Since all rules for placing
and moving the different parts resemble what happens in the original construction,
NP-hardness of this construction will be immediate.

Ourmodified version of the logic engine. Given a NAE3SAT formula𝜙with variables
𝑥1,… , 𝑥𝑛 and clauses 𝑐1,… , 𝑐𝑚, the logic engine⊳ logic engine for 𝜙 is an orthogonal construction
which can be realized in the plane without overlap if and only if there is a valid
assignment for 𝜙. See Figure 3.7 for the realization of a logic engine of a NAE3SAT
formula with four variables and three clauses. The construction consists of a horizontal
line segment, called the shaft⊳ shaft , which is bounded to the left and right by vertical line
segments of equal length, called the left and right side⊳ side , which are attached to the shaft
at their centers. In addition, 𝑛 vertical line segments, called flag poles⊳ flag pole , with the same
length as the sides are attached to the shaft at their centers. The leftmost flag pole
is positioned very close to the left side and the rightmost flag pole is positioned very
close to the right side. The other flag poles are positioned evenly spaced between the
two outermost flag poles. From left to right the flag poles correspond to the variables
𝑥1 to 𝑥𝑛 in 𝜙. Furthermore, the two parts of each flag pole on either side of the shaft
correspond to the two possible choices for a variable and are called the positive⊳ positive /

negative part
and

negative part. In Figure 3.7 the flag poles are thicker at the positive part and thinner at
the negative part.

24

3.2 NP-hardness for Trees

𝑥1 𝑥2 𝑥3 𝑥4

𝑐3

𝑐3

𝑐2

𝑐2

𝑐1

𝑐1

Clause
Variable:

Figure 3.7: An example realization of a logic engine for the NAE3SAT formula 𝜙 =
(𝑥1 ∨ 𝑥2 ∨ 𝑥3) ∧ (𝑥1 ∨¬𝑥2 ∨ 𝑥4) ∧ (𝑥1 ∨ 𝑥3 ∨¬𝑥4). The horizontal shaft
is bounded by the two sides on the left and right. The four flag poles for
the four variables with their thick positive and thin negative parts can be
flipped around the shaft. The flags can be flipped to the left or right around
the flag pole they are attached to. Since 𝑥1’s flag pole is flipped such that
the negative part is on the top and all other flag poles are not flipped it
means that the figure equals to setting 𝑥1 = 0 and 𝑥2 = 𝑥3 = 𝑥4 = 1 which
is a valid assignment.
The upper box on the right shows that the outermost flag poles are forced
to position their flags towards the center. The lower box shows that no two
flags on the same level can be positioned towards each other.

The whole construction is then vertically subdivided into 2𝑚 levels of equal size:
from the shaft upwards we have levels 1 to 𝑚 and downwards we have levels −1 to
−𝑚. On both sides the levels correspond to clauses 𝑐1 to 𝑐𝑚. The same subdivision into
2𝑚 levels is true for the flag poles, with levels 1 to 𝑚 on the positive part and levels −1
to −𝑚 on the negative part. That is, if the flag poles are not flipped (as explained later)
the positions on the flag poles and the levels of the construction coincide. For every
flag pole 𝑖 ∈ {1,… , 𝑛} and level 𝑗 ∈ {1,… ,𝑚,−1,… ,−𝑚} a flag ⊳ flagmay be attached
to the 𝑖th flag pole. A flag is a rectangle of height slightly less than the height of a
level and width slightly less than the width between two flag poles. For every variable
𝑖 ∈ {1,… , 𝑛} and clause 𝑗 ∈ {1,… ,𝑚} we attach flags to the 𝑖th flag pole according
to the following rules. These rules are also depicted in Figure 3.8 and are the same
rules as used by Eades and Whitesides [EW96]:

25

Chapter 3 Graphs Without Embedding

𝑥1 𝑥2 𝑥3

𝑐𝑗

𝑐𝑗

𝑐𝑗 = 𝑥1 ∨¬𝑥2 ∨ 𝑥4

𝑗

−𝑗

𝑗

−𝑗

𝑗

−𝑗

Figure 3.8: Depiction of the flag placing rules for clause 𝑐𝑗 = 𝑥1 ∨¬𝑥2 ∨ 𝑥4 and three
variables 𝑥1, 𝑥2, and 𝑥3. 1. The positive literal 𝑥1 forces a flag on −𝑗. 2. The
negative literal ¬𝑥2 forces a flag on 𝑗. 3. The non-appearing variable 𝑥3
forces flags on both 𝑗 and −𝑗.

1. If 𝑥𝑖 appears as the literal 𝑥𝑖 in 𝑐𝑗, we add a flag to flag pole 𝑖 on position −𝑗, i.e.,
on the negative part.

2. If 𝑥𝑖 appears as the literal ¬𝑥𝑖 in 𝑐𝑗, we add a flag to flag pole 𝑖 on position 𝑗, i.e.,
on the positive part.

3. If 𝑥𝑖 does not appear in 𝑐𝑗, we add two flags to flag pole 𝑖, one on position 𝑗 and
one on position −𝑗. These flags are the ones drawn with a hatching in Figure 3.7.

Given the logic engine, the task is now to draw it in the plane such that no parts of
the drawing overlap. To be able to do this, each flag pole and each flag can be flipped
individually. Each flag pole can be flipped vertically around the horizontal shaft and
each flag can be flipped horizontally around its vertical flag pole. As discussed before
and as we can conclude from the fact that Figure 3.7 is exactly the important part
of Figure 3.6, our construction is functionally equivalent to the original logic engine.
However, for the sake of completeness we provide the idea of the correctness of the
reduction [EW96]. That is, a NAE3SAT formula has a valid assignment if and only
if the corresponding (modified) logic engine construction can be drawn in the plane
without overlap.

On each of the 2𝑚 levels there is enough space for 𝑛 − 1 flags, thus for every level
there must be one flag pole which does not have a flag on this level. A variable 𝑥𝑖 that
does not appear in a clause 𝑐𝑗 has a flag on the 𝑖th flag pole on positions 𝑗 and −𝑗. Thus,
flipping the 𝑖th flag pole (i.e., changing 𝑥𝑖 ’s truth value) has no impact on levels 𝑗 and
−𝑗. It follows that if the 𝑖th flag pole does not have a flag on level 𝑗 in a successful
realization it can mean two things: Either 𝑥𝑖 appears as 𝑥𝑖 in 𝑐𝑗 (a flag is placed only
on position −𝑗 of the flag pole) and the flag pole is not flipped (i.e., 𝑥𝑖 = true) or 𝑥𝑖
appears as ¬𝑥𝑖 in 𝑐𝑗 (a flag is placed only on position 𝑗 of the flag pole) and the flag

26

3.2 NP-hardness for Trees

pole is flipped (i.e., 𝑥𝑖 = false). In both cases the truth value for 𝑥𝑖 also satisfies 𝑐𝑗. On
level −𝑗 the idea is the same with the only difference that the variable must be set to
false if it appears as 𝑥𝑖 in 𝑐𝑗 and set to true if it appears as ¬𝑥𝑖 in 𝑐𝑗. This means that
the variable that does not have a flag on level −𝑗 appears as a false literal in 𝑐𝑗. Thus,
for every clause we have one true and one false literal. It also means that a realization
directly corresponds to a valid assignment. If a flag pole is not flipped, i.e., the positive
part is on the top, the corresponding variable is set to true. It is set to false if the flag
pole is flipped, i.e., the negative part is on the top.

3.2.2 Rigid Hexagons as Basic Building Blocks

Our goal is now to model the structure of the logic engine by a weak UDCR of a tree.
We do this step by step, starting with very basic rigid structures: As discussed in
Section 2.3, one such simple rigid structure is obtained by tightly packing unit disks as
a weak UDCR of a 6-star. The disk centers of this weak UDCR coincide with the grid
points of the triangular grid, as defined in Section 2.4. The main rigid structure we
use for the construction is a rooted tree whose weak UDCR is a hexagon, as already
suggested by the section title. This tree and its weak UDCR can come in arbitrary
sizes. For the hexagonal weak UDCRs we will use the term radius for the largest grid
distance between the disk in the center and any other disk of the weak UDCR. In the
corresponding tree, this will be equivalent to the height of the tree. However, we will
refer to it as the radius of the tree as well.

In Figure 3.9 we can see different examples of trees with various radii 𝑟 and in
Figure 3.10 we see possible weak UDCRs for those trees. More formally, we define
those trees as follows:

↪

Definition 3.5. ⊳ rigid treeThe rigid tree 𝑅(𝑟) with radius 𝑟 ∈ ℕ is a rooted tree defined as follows.
For 𝑟 = 0 it consists of a single node, while for 𝑟 ≥ 1 it is a node with six children.
From those six children there are exactly two of each of the following subtrees: 𝑃(𝑟),
𝐴(𝑟), and 𝐵(𝑟). These subtrees are defined as follows.

• 𝑃(𝑟) is a path consisting of 𝑟 nodes. These are the orange parts in Figures 3.9
and 3.10.

• 𝐴(𝑟) is a single node for 𝑟 = 1. Otherwise, it consists of a root node with three
children: one single node, one subtree 𝑃(𝑟 −1), and one subtree 𝐴(𝑟 −1). These
are the purple parts in Figures 3.9 and 3.10.

• 𝐵(𝑟) is a single node for 𝑟 = 1. Otherwise, it consists of a root node with two
children: one subtree 𝑃(𝑟 − 1) and one subtree 𝐵 ′(𝑟 − 1). These are the light
blue parts in Figures 3.9 and 3.10.

27

Chapter 3 Graphs Without Embedding

𝑃

𝐴

𝐵
𝐵 ′

𝐵 ′

𝑟 = 3

𝐵 ′

𝑃

𝐴

𝐵 𝐵 ′

𝑟 = 4
𝑃

𝐴

𝐵 𝐵 ′

𝐵 ′

𝑟 = 5

Figure 3.9: Three rigid trees with radii 𝑟 = 3, 4, 5. Here, radius means the number of
edges on a longest simple root-leaf-path. The corresponding weak UDCRs
are found in Figure 3.10.

• 𝐵 ′(𝑟) is a single node for 𝑟 = 1. Otherwise, it consists of a root node with three
children: two subtrees 𝑃(𝑟 − 1) and one subtree 𝐵 ′(𝑟 − 1). These are the dark
blue parts in Figures 3.9 and 3.10.

In addition, we define two functions to count the nodes in a tree 𝑇(𝑟) where 𝑇 can
be one of 𝑅, 𝑃, 𝐴, 𝐵, and 𝐵 ′: We define 𝑁𝑇(𝑟) as the total number of nodes in 𝑇(𝑟) and
𝑁 𝑖

𝑇(𝑟) as the number of nodes in 𝑇(𝑟) with distance 𝑖 − 1 from the roota.
aThis means that 𝑁1

𝑇(𝑟) = 1 for all 𝑟 ≥ 1 and all 𝑇 as it only counts the root node.

To show that these trees are actually rigid, as the name suggests, we need to know
how many nodes there are in the different tree and subtree types; in total as well as
those with a certain distance to the root node. For this we make

↪

Observation 3.2. The following equalities regarding the number of nodes of the different
tree types are all true:

• 𝑁 𝑖
𝑃(𝑟) = 1 for all 1 ≤ 𝑖 ≤ 𝑟 and 𝑁𝑃(𝑟) = 𝑟.

• 𝑁 𝑖
𝐴(𝑟) = 𝑖 + 1 for all 2 ≤ 𝑖 ≤ 𝑟, 𝑁1

𝐴(𝑟) = 1, and 𝑁𝐴(𝑟) =
𝑟2+3𝑟−2

2 .

• 𝑁 𝑖
𝐵 ′(𝑟) = 2𝑖 − 1 for all 1 ≤ 𝑖 ≤ 𝑟 and 𝑁𝐵 ′(𝑟) = 𝑟2.

28

3.2 NP-hardness for Trees

𝑃 𝑃

𝐴

𝐴

𝐵

𝐵

𝐵 ′

𝐵 ′

𝑃 𝑃

𝐴

𝐴𝐵 ′

𝐵 ′

𝐵

𝐵

𝐵

𝐵

𝐴

𝐴𝐵 ′

𝐵 ′

𝑃 𝑃

Figure 3.10: Possible weak UDCRs of the three rigid trees with radii 𝑟 = 3, 4, 5 as found
in Figure 3.9. The blue and purple parts on the same side of the orange
disks can be swapped arbitrarily.

• 𝑁 𝑖
𝐵(𝑟) = 2𝑖 − 2 for all 2 ≤ 𝑖 ≤ 𝑟, 𝑁1

𝐵(𝑟) = 1, and 𝑁𝐵(𝑟) = 𝑟2 − 𝑟 + 1.

• 𝑁 𝑖
𝑅(𝑟) = 6(𝑖 − 1) for all 2 ≤ 𝑖 ≤ 𝑟, 𝑁1

𝑅(𝑟) = 1, and 𝑁𝑅(𝑟) = 3𝑟2 + 3𝑟 + 1.

↪

Proof. We already observed before that 𝑁1
𝑇(𝑟) = 1 for all 𝑟 ≥ 1 and 𝑇, since this counts

exactly the one root node. By definition, 𝑃(𝑟) consists of 𝑟 nodes and for every 𝑖 there
is exactly one node since 𝑃(𝑟) is a path.

Looking at 𝐴(𝑟)’s definition we see that for 𝑖 = 2 we have

𝑁2
𝐴(𝑟) = 1 + 𝑁1

𝑃 (𝑟 − 1) + 𝑁1
𝐴(𝑟 − 1) = 1 + 1 + 1 = 2 + 1 = 𝑖 + 1,

and for larger distances 𝑖 with 2 < 𝑖 ≤ 𝑟 we can use induction to see that

𝑁 𝑖
𝐴(𝑟) = 𝑁 𝑖−1

𝑃 (𝑟 − 1) + 𝑁 𝑖−1
𝐴 (𝑟 − 1) = 1 + ((𝑖 − 1) + 1) = 𝑖 + 1.

Adding 𝑁 𝑖
𝐴(𝑟) up for all 1 ≤ 𝑖 ≤ 𝑟 gives us

𝑁𝐴(𝑟) = 𝑁1
𝐴(𝑟) +

𝑟
∑
𝑖=2

𝑁 𝑖
𝐴(𝑟) = 1 +

𝑟
∑
𝑖=2

(𝑖 + 1) = 𝑟 − 1 +
𝑟
∑
𝑖=1

𝑖

= 𝑟 − 1 +
𝑟2 + 𝑟
2

=
𝑟2 + 3𝑟 − 2

2
.

With 𝐵 ′(𝑟)’s structure we can use induction (for which the base case is already shown)
and show that

𝑁 𝑖
𝐵 ′(𝑟) = 2𝑁 𝑖−1

𝑃 (𝑟 − 1) + 𝑁 𝑖−1
𝐵 ′ (𝑟 − 1) = 2 + (2(𝑖 − 1) − 1) = 2𝑖 − 1

for all 2 ≤ 𝑖 ≤ 𝑟 and thus, after adding it all up we obtain

𝑁𝐵 ′(𝑟) =
𝑟
∑
𝑖=1

𝑁 𝑖
𝐵 ′(𝑟) =

𝑟
∑
𝑖=1

(2𝑖 − 1) = −𝑟 + 2
𝑟
∑
𝑖=1

𝑖 = −𝑟 + 𝑟2 + 𝑟 = 𝑟2.

29

Chapter 3 Graphs Without Embedding

(a) One or two children on
their own do not need to
be placed on the grid.

(b) Even if all six nodes have
two children, they can be
placed outside the grid.

(c) One node with three chil-
drenwill force all of them
onto the grid.

Figure 3.11: Depending on the number of children of the 6-star, the corresponding
disks are not necessarily placed on the grid. The constraint is that the
disk centers are placed on the colored arcs.

For 𝐵(𝑟) it follows that for 2 ≤ 𝑖 ≤ 𝑟 we have

𝑁 𝑖
𝐵(𝑟) = 𝑁 𝑖−1

𝑃 (𝑟 − 1) + 𝑁 𝑖−1
𝐵 ′ (𝑟 − 1) = 1 + (2(𝑖 − 1) − 1) = 2𝑖 − 2

and adding it all up we get

𝑁𝐵(𝑟) = 𝑁1
𝐵(𝑟) +

𝑟
∑
𝑖=2

𝑁 𝑖
𝐵(𝑟) = 1 +

𝑟
∑
𝑖=2

(2𝑖 − 2) = 1 +
𝑟
∑
𝑖=1

(2𝑖 − 2)

= 1 − 2𝑟 + 2
𝑟
∑
𝑖=1

𝑖 = 1 − 2𝑟 + 𝑟2 + 𝑟 = 𝑟2 − 𝑟 + 1.

Finally, looking at 𝑅(𝑟) we see that for 2 ≤ 𝑖 ≤ 𝑟 + 1 we have

𝑁 𝑖
𝑅(𝑟) = 2𝑁 𝑖−1

𝑃 (𝑟) + 2𝑁 𝑖−1
𝐴 (𝑟) + 2𝑁 𝑖−1

𝐵 (𝑟)
= 2 + 2((𝑖 − 1) + 1) + 2(2(𝑖 − 1) − 2) = 2 + 2𝑖 + 4𝑖 − 8 = 6𝑖 − 6 = 6(𝑖 − 1).

After adding everything up for all 1 ≤ 𝑖 ≤ 𝑟 + 1 we obtain

𝑁𝑅(𝑟) = 1 +
𝑟+1
∑
𝑖=2

6(𝑖 − 1) = 1 +
𝑟
∑
𝑖=1

6𝑖 = 1 + 3𝑟(𝑟 + 1) = 3𝑟2 + 3𝑟 + 1.

We are now able to see that rigid trees are indeed, as the name suggests, rigid graphs
as defined in Definition 2.4 and that their weak UDCRs form the shape of a hexagon.

Lemma 3.3. All rigid trees 𝑅(𝑟) for all 𝑟 ∈ ℕ are rigid. Furthermore, the weak UDCRs
of 𝑅(𝑟) for all 𝑟 ∈ ℕ are grid-restricted. For 𝑟 ≥ 1 the shape of the weak UDCRs (looking
at the convex hull of all disk centers) is a regular hexagon with side length 2𝑟 and all grid
points inside the hexagon or on its boundary are occupied by disk centers.

30

3.2 NP-hardness for Trees

↪

Proof. We show this by induction on the radius 𝑟. For 𝑟 = 0 it holds trivially as we
have just one disk. For 𝑟 = 1 we have a 6-star which, as seen in Observation 2.2, is
rigid. Since its weak UDCR is a tight packing of seven disks, as seen in Figure 2.3a,
it is grid-restricted. It is also true that the convex hull of all disk centers is a regular
hexagon with side length 2. This hexagon contains exactly seven grid points: the six
on the boundary and the one in the center. Thus, all seven grid points covered by the
hexagon are occupied by disk centers.

We now assume that the lemma holds for 𝑟 − 1. Let 𝒟′ be a weak UDCR of 𝑅(𝑟 − 1).
We try to construct 𝒟, a weak UDCR of 𝑅(𝑟). First, we look at the nodes with distance
to root 𝑟 − 1 that have exactly one or two children. Note that these children are leaves
in 𝑅(𝑟) and do not exist in 𝑅(𝑟 − 1). Placing their disks individually does not enforce
any specific location; the only constraint is that the disk centers must be placed on a
circular arc, see Figure 3.11a. Even if all nodes with distance 𝑟 − 1 to the root had
exactly two children, their placement would not be unique: Placing one child forces the
position of all other children, but the first child has a movement freedom of 60°. See
Figure 3.11b for a depiction of the situation where we can also see that the resulting
shape would not be a hexagon but a dodecagon. We also see that the disk centers are
not necessarily on the grid.

However, at least one node with distance 𝑟 − 1 to the root has three children, a node
in the subtree of type 𝐴. Looking at Figure 3.11c, we see that around the corresponding
disk, all children’s disk centers must be placed on a circular arc of 120°. The two sibling
disks and the parent disk already occupy 180° leaving another 180° for the remaining
three disks. Since we talk about the children’s disk centers, we remove 30° on both
sides, leaving the 120° arc. The disk centers need to have distance at least 60° between
them, leaving no other choice than placing two at the extreme points and one in the
middle.

There are 𝑁𝑟+1
𝑅 (𝑟) = 6𝑟 nodes with distance 𝑟 from the root, exactly those added to

𝑅(𝑟 − 1) to obtain 𝑅(𝑟). Additionally, given any fixed point in a triangular grid, there
are 6𝑠 grid points with grid distance 𝑠 from it. Thus, if the three leaf disk in the subtree
of type 𝐴 are forced to be placed on the grid, all other leaf disks in 𝑅(𝑟) are forced to
be placed on the grid as well. It follows that all weak UDCRs for 𝑅(𝑟) place all their
disks on the grid points with distance at most 𝑟 on the triangular grid, centered in the
root disk. Thus, all weak UDCRs of 𝑅(𝑟) are equal up to rotation and translation, and
henceforth, 𝑅(𝑟) is rigid. In addition, taking the convex hull of all grid points with
distance exactly 𝑟 from the root disk’s center, i.e., the outermost occupied grid points,
forms a regular hexagon with side length 2𝑟.

By induction, in any weak UDCR of 𝑅(𝑟 −1) all grid points inside or on the boundary
of the hexagon with side length 2𝑟 − 2 are occupied by disk centers. We then only
need to confirm that for any weak UDCR of 𝑅(𝑟) the additional disks occupy all grid
points of the larger hexagon’s boundary. This is easy to see, since we already observed

31

Chapter 3 Graphs Without Embedding

1
2

3

0
2
33

1

4

(a) Not placing all disks of a
subtree on a line through
the center results in the
marked position being left
empty.

(b) Forming a 60° angle be-
tween two subtrees leaves
a non-empty region where
no disk can be placed.

(c) Forming a 120° angle be-
tween the two subtrees
leaves an area which can-
not be filled exactly by a
subtree of type 𝐴 or 𝐵.

Figure 3.12: Illegal placements of subtrees of type 𝑃 in a weak UDCR for a chainable
hexagon tree with 𝑟 = 3.

that there are exactly as many additional disks in 𝑅(𝑟) compared to 𝑅(𝑟 − 1) as there
are grid points with distance 𝑟 from the center disk’s grid point. Thus, the new disks
must occupy all grid points on the boundary of the larger hexagon.
This concludes the induction step and thus the proof.

In Figure 3.10 we see one possible weak UDCR for each of the three rigid trees with
radii 3, 4, and 5. We can see that in all three realizations disks of nodes in the subtrees
of type 𝑃 are on a line. This is, indeed, true for all weak UDCRs of rigid trees with
radius 𝑟 ≥ 3. We call them chainable hexagon trees⊳ chainable

hexagon tree
and prove our claim in the following

Lemma 3.4. In all weak UDCRs of chainable hexagon trees, i.e., all rigid trees with radius
𝑟 ≥ 3, the disks corresponding to the two leaf nodes of the subtrees of type 𝑃 are in opposite
corners of the resulting hexagon.

↪

Proof. We are given 𝑅(𝑟) for some 𝑟 ≥ 3 together with a weak UDCR 𝒟. Remember
that by the previous lemma all disks are placed on a triangular grid and inside a regular
hexagon and all positions inside the regular hexagon are occupied by disks. Let 𝐷𝑅 ∈ 𝒟
be the disk corresponding to the root node of 𝑅(𝑟).
We first show that in every weak UDCR of 𝑅(𝑟) each subtree of type 𝑃 places its

disk centers on a line through the center of 𝐷𝑅. Assume that there is a weak UDCR
where the disk centers of a subtree 𝑃 ′ of type 𝑃 are not on a line together with the
root disk. Let 𝐷𝑃 ′ ∈ 𝒟 be the disk corresponding to the root node of 𝑃 ′ and let it,
w.l.o.g., be located to the lower right of 𝐷𝑅. See Figure 3.12a for an example of such a
placement of 𝑃 ′ for 𝑟 = 3. Now we look at the position on the triangular grid where

32

3.2 NP-hardness for Trees

the leaf node of 𝑃 ′ would be placed if it were on a line through the center of 𝐷𝑅. This
position is marked in Figure 3.12a and has a 4 in it. The position has grid distance 𝑟
from the center of 𝐷𝑅 and there is exactly one shortest path to it: going straight to the
lower right without any bends. However, to place a disk on the marked position, there
needs to be a leaf in 𝑅(𝑟) with distance at least 𝑟 + 1 to the root: The shortest path
towards the position cannot be taken as it is blocked by 𝐷𝑃 ′ . Figure 3.12a shows two
possible paths, both of which have length 𝑟 +1. Since no node with distance to the root
more than 𝑟 exists in 𝑅(𝑟), there cannot be a disk at the marked position. However, as
observed before, all positions in the hexagon must be occupied for a weak UDCR of
𝑅(𝑟). Thus, 𝑃 ′ must be placed on a line through the center of 𝐷𝑅.
We now show that if each subtree of type 𝑃 places their disks on a line through the

center of 𝐷𝑅, then they are placed on the same line. Assume, without loss of generality,
that one subtree places its disks towards the left. If the second places its disks towards
the right, the statement is already true. Thus, four remaining directions, which we can
split into two cases due to symmetry, need to be checked:

1. The second subtree of type 𝑃 places its disks on a line towards the lower left (or
symmetrically, the upper left). This situation is depicted in Figure 3.12b. Here,
the hatched disks are positions where no disk can be placed. For all 𝑟 ≥ 3 there
are at least three such positions and thus, this placement is not possible.

2. The second subtree of type 𝑃 places its disks on a line towards the lower right
(or symmetrically, the upper right). A depiction of this situation is found in
Figure 3.12c. Here, there are exactly ∑𝑟

𝑖=1 2𝑖 − 1 = 𝑟2 hatched positions. Those
positions need to be filled by exactly one subtree of type 𝐴 or 𝐵. However,
Observation 3.2 tells us that 𝐴(𝑟) has 𝑁𝐴(𝑟) = 𝑟2+3𝑟−2

2 and 𝐵(𝑟) has 𝑁𝐵(𝑟) =
𝑟2 − 𝑟 + 1 nodes which for 𝑟 ≥ 3 is both less than 𝑟2. Thus, this placement of the
second subtree of type 𝑃 is impossible, as well.

We can conclude that both subtrees of type 𝑃 are placed on the same line through 𝐷𝑅
and thus the two leaves of those subtrees are on opposite corners of the hexagon.

3.2.3 Combining Hexagons Into Line Segments

We can now construct chainable hexagon trees with two specific leaf nodes on opposite
corners of their weak UDCRs. Taking two such trees and joining them together by
merging one such leaf node of each tree into a new node results in a new tree which is
supposed to represent line segments. We define such trees inductively.

↪

Definition 3.6. ⊳ line segment tree

⊳ connector node
⊳ spine
⊳ length

A line segment tree is an inductively defined rigid tree with two specific
connector nodes. Any single chainable hexagon tree 𝑅(𝑟) is a line segment tree with
the two connector nodes being the two leaf nodes of the two subtrees of type 𝑃. We

33

Chapter 3 Graphs Without Embedding

combine two line segment trees 𝑇1 and 𝑇2 with connector nodes 𝑣1 and 𝑣′1 as well as
𝑣2 and 𝑣′2 by merging 𝑣′1 and 𝑣2 into one node. The result is a line segment tree 𝑇 with
connector nodes 𝑣1 and 𝑣′2.

The spine of a line segment tree is the simple path from one connector node to the
other and the length of a line segment tree is the number of nodes on the spine.

See Figure 3.13 for an example line segment tree consisting of three chainable
hexagon trees. When combining two line segment trees we lose one node on the spine
as seen in

Observation 3.3. The length of a line segment tree is 2𝑟+1 in the base case and ℓ1+ℓ2−1
when combining two line segment trees with lengths ℓ1 and ℓ2.

Proof. The spine of a chainable hexagon tree 𝑅(𝑟) (the base case) consists of the two
paths 𝑃(𝑟), each with 𝑟 nodes, and the root node. This results in 2𝑟 + 1 nodes on the
spine. When combining two line segment trees with lengths ℓ1 and ℓ2, two individual
nodes on each spine are merged into one new node. All other nodes on the spine stay
the same. Thus, ℓ1−1+ℓ2−1+1 = ℓ1+ℓ2−1 nodes are on the spine of the resulting
line segment tree.

With this observation we conclude that we can construct a line segment tree for
nearly any length:

Corollary 3.3. Given an odd natural number ℓ ≥ 7, there is a line segment tree with
length ℓ which is constructed by combining at most one chainable hexagon tree 𝑅(4) or
𝑅(5) and a finite number of chainable hexagon trees 𝑅(3).

Proof. For 𝑟 ∈ {3, 4, 5} we have the following: For any ℓ = (2𝑟 + 1) + 6𝑘 with 𝑘 ∈ ℕ
we can combine one chainable hexagon tree 𝑅(𝑟) with 𝑘 times 𝑅(3). This results in
length 2𝑟 + 1 for 𝑅(𝑟) if 𝑘 = 0 and adds 6 for every time we add another 𝑅(3).

For any odd ℓ ≥ 7 we have that ℓ mod 6 ∈ {1, 3, 5}. If ℓ mod 6 = 1 we can write
ℓ = (6+1)+6𝑘 = (2𝑟 +1)+6𝑘 for 𝑟 = 3. Similarly, we obtain 𝑟 = 4 for ℓ mod 6 = 3
and 𝑟 = 5 for ℓ mod 6 = 5.

We now show that line segment trees behave like chainable hexagon trees:

Lemma 3.5. Let 𝑇 be a line segment tree with connector nodes 𝑣 and 𝑣′. Then 𝑇 is rigid
and for all weak UDCRs the disks corresponding to the spine nodes are placed on a line.

↪

Proof. We show this by induction on the number of combining steps to inductively
construct 𝑇. We also show that in all weak UDCR both connector node disks have three
touching disks each, one spine disk and one on either side of the line on which the
spine disks are placed.

34

3.2 NP-hardness for Trees

merge merge

(a) Three weak UDCRs of the chainable hexagon trees with their connector disks (the disks
corresponding to their connector nodes) marked. The indicated connector disks will be
merged into one disk.

(b) After merging the connector disks we see the weak UDCR of the line segment tree.

Figure 3.13: The weak UDCRs of how to construct a line segment tree with length 21.
The underlying tree consists of one 𝑅(4) and two 𝑅(3).

↪

In the base case 𝑇 is a chainable hexagon tree and from Lemma 3.4 our statement
follows directly. We also observe that in every weak UDCR the disks corresponding to
the two connector nodes are placed in the corners of the hexagon. Thus, it has three
touching disks, one of which corresponds to the parent node and the two other are on
either side of the line on which the spine disks are placed.

In the induction step we assume that we are given two line segment trees 𝑇1 and
𝑇2 for which the induction hypothesis holds. By combining one connector node from
each line segment tree, in every weak UDCR the corresponding disk will have exactly
six touching disks. Six disks around a center disk force rigidity of those six disks
(cf. Observation 2.2). Thus, no arbitrary movement around the connection disk is
possible. It remains to show that the connection forces all spine disks on one line which
will conclude the rigidity of the combined construction. Due to the fact that both in 𝑇1
and 𝑇2 the connector node disk has exactly one touching disk on either side of the line

35

Chapter 3 Graphs Without Embedding

through the spine disks, there will be exactly two non-spine disks between the two
spine disks around the combined node’s disk. Thus, the two spine disks together with
the combined node’s disk are on a line and, henceforth, all spine disks are on the same
line. The two connector nodes of the resulting line segment tree did not change while
combining 𝑇1 and 𝑇2 and thus all properties remain as before.

3.2.4 A Branching and Flipping Gadget

Our end goal is to simulate the logic engine presented in Section 3.2.1. To do this, we
need to be able to model more than just line segments. Thankfully, the only additional
construction we need is a four-way intersection which is fixed along one axis and allows
the two side branches on the other axis to be exchanged. This will allow us to simulate
the flag poles as well as the flags. For the flag poles one side is the positive and the
other the negative part and exactly one of them needs to be placed on the top and the
other one on the bottom while the shaft runs horizontally. For the flags one side is the
actual flag and the other is just an empty side branch with nothing attached. They
both need to be flipped left and right while the flag pole runs vertically.

We now define the gadget to model the four-way intersection. A depiction of possible
weak UDCRs can be seen in Figure 3.14.

Definition 3.7.⊳ branching
gadget

The branching gadget 𝐵(𝑟, 𝑟 ′) for 𝑟, 𝑟 ′ ∈ ℕ with 𝑟, 𝑟 ′ ≥ 3 is a tree that
is constructed by combining four chainable hexagon trees and a path. Let 𝑃 ′ = 𝑃(3)
be the path and 𝑅1 = 𝑅(𝑟), 𝑅2 = 𝑅3 = 𝑅(3), and 𝑅4 = 𝑅(𝑟 ′) be the chainable hexagon
trees. Similarly to Definition 3.6, we call the leaf nodes of the subtrees of type 𝑃 in
the chainable hexagon trees connector nodes. We add three children to one connector
node of 𝑅1: one connector node of 𝑅2, one of 𝑅3 and one leaf of 𝑃 ′. Then add an edge
between the remaining leaf of 𝑃 ′ and one connector node of 𝑅4.

We can directly see that the branching gadget has four connectors To ensure that
the branching gadget fulfills the requirements that it is fixed along one axis and allows
the two side branches to be exchanged we show the following

Lemma 3.6. For 𝑟, 𝑟 ′ ∈ ℕ with 𝑟, 𝑟 ′ ≥ 3 the branching gadget 𝐵(𝑟, 𝑟 ′) is rigid. Let 𝑣 be
the connector node of 𝑅1 to which 𝑅2, 𝑅3, and 𝑃

′ are added as children. In any weak UDCR
of 𝐵(𝑟, 𝑟 ′), consider 𝑅1 to be fixed. Then, the positions of 𝑃 ′ and 𝑅4 are fixed relative to
𝐷𝑣, the disk corresponding to 𝑣. Furthermore, there are exactly two fixed positions relative
to 𝐷𝑣 that can be occupied by 𝑅2 and 𝑅3.

↪

Proof. We know from Lemma 3.3 that 𝑅1, 𝑅2, 𝑅3, and 𝑅4 are rigid. Additionally, the
disk corresponding to 𝑅1’s connector node at which the three children are attached
has six touching disks. Hence, the three positions of the three disks of the children’s
connector nodes are fixed on the triangular grid. Therefore, it suffices to see in which

36

3.2 NP-hardness for Trees

𝑅1 𝑅4

𝑅2

𝑅3

𝑃 ′

𝑅1 𝑅4

𝑅3

𝑅2

𝑃 ′

Figure 3.14: Two possible weak UDCRs of the branching gadget. The darker regions
for 𝑅1 and 𝑅4 represent 𝐵(3, 3) while the combination of the darker and
lighter regions for 𝑅1 and 𝑅4 represent 𝐵(4, 4). The four edges where
the five parts are connected are highlighted. The two chainable hexagon
trees 𝑅2 and 𝑅3 can be exchanged while the construction stays rigid (as
shown in Lemma 3.6).

order the three children 𝑅2, 𝑅3, and 𝑃 ′ of 𝑅1 can be placed, i.e., the embedding of 𝑅1
and its children.

Figure 3.14 shows that the counterclockwise embedding 𝑅3, 𝑃
′, 𝑅2 (and thus also

𝑅2, 𝑃
′, 𝑅3) is possible. The figure depicts 𝐵(3, 3) and by looking at the lighter region

as well it also represents 𝐵(4, 4), 𝐵(3, 4), and 𝐵(4, 3). It should also be clear from the
figure that for all larger radii for 𝑅1 and 𝑅4 the weak UDCR can be constructed in the
same manner.

Due to symmetry and renaming it is now only necessary to check whether it is
possible to achieve the counterclockwise embedding 𝑃 ′, 𝑅2, 𝑅3 of the children of 𝑅1.
However, as we can see in Figure 3.15, placing any two of the three children does not
leave enough space to place the remaining child. Here, like above, making 𝑅1 larger
does not change the way the children can be placed, it especially does not suddenly
allow placing the third missing child. Since 𝑅4 is not even in the figure, growing it does
not help either. Hence, the two embeddings from Figure 3.14 are the only possible
ones.

The four chainable hexagon trees 𝑅1, 𝑅2, 𝑅3, and 𝑅4 each have exactly one connector
node remaining that is still a leaf node. We call them 𝑣1, 𝑣2, 𝑣3, and 𝑣4. It follows
from Lemma 3.6 that the position of 𝑣4 relative to 𝑣1 is fixed and for the positions
of 𝑣2 and 𝑣3 relative to 𝑣1 and 𝑣4 there are exactly two possibilities: Either 𝑣2 is to
the left of the line through 𝑣1 and 𝑣4 and 𝑣3 is to the right of this line, or 𝑣3 is to the
left of this line and 𝑣2 to the right of it. We can now attach line segment trees at the
connector nodes to obtain more complex constructions. These constructions, however,
are not necessarily rigid: Attaching another 𝑅(3) to 𝑅2 such that this 𝑅(3) and 𝑅2
form a line segment tree will result in weak UDCRs that can be partitioned into exactly

37

Chapter 3 Graphs Without Embedding

𝑅1

𝑅2

𝑃 ′

𝑅1

𝑃 ′

𝑅3

𝑅1

𝑅3

𝑅2

Figure 3.15: Trying to have the children of 𝑅1 as 𝑃 ′, 𝑅2, 𝑅3 in counterclockwise order
does not yield a weak UDCR. After placing two of the three, there is
insufficient space to place the third. In the left two cases the available
space has an angle of 60° while the missing hexagon needs an angle of
120°. In the right case the grid point to connect 𝑃 ′ is already blocked by
𝑅2.

two equivalence classes: Those in which the additional 𝑅(3) is to the left of the line
through 𝑅1, 𝑃

′, and 𝑅4, and those in which it is to the right of this line. To construct
the logic engine, this is exactly what we want: Exactly two possible realizations which
branch off to the sides of an otherwise rigid construction.

3.2.5 Putting Everything Together

We have seen how to model line segments and four-way intersections at which the two
side branches can be exchanged. One problem remains, namely, that the logic engine
has a four-way intersection which branches off orthogonally while our branching gadget
branches off with a 120° angle. However, this problem is easily mitigated as we can
take any orthogonal logic engine, e.g., the one in Figure 3.7, and tilt all intersections
and moving parts by 30°. The result can be seen in Figure 3.16: First the flags are
tilted 30° upwards and then the flag poles are tilted 30° to the right. In addition, the
flag poles towards the left are enlarged at the shaft such that all flags of the same level
are on a line orthogonal to the flag poles.

It is easy to see that, same as before in Figure 3.7, that there are 2𝑚 levels and on
each level there is space for 𝑛 − 1 flags. The positions of the positive and negative part
of each flag pole can still be exchanged between the top and the bottom. Similarly, the
flags on the leftmost and rightmost flag poles cannot be placed towards the outside
of the construction and two flags of the same clause in neighboring flag poles cannot
be both placed towards each other. While Figure 3.16 suggests that the flags are fully
dimensional (i.e., they are two-dimensional objects), this is not necessary. We could
have the flags be line segments and the construction would work exactly the same. We
also added a small line segment stub to have an actual four-way intersection where
the flags are attached to their flag poles.

38

3.2 NP-hardness for Trees

𝑐3

𝑐2

𝑐1

𝑐3

𝑐2

𝑐1

𝑥1

𝑥2

𝑥3

𝑥4

Figure 3.16: An example realization of a tilted logic engine for the NAE3SAT formula
𝜙 = (𝑥1 ∨ 𝑥2 ∨ 𝑥3)∧(𝑥1 ∨¬𝑥2 ∨ 𝑥4)∧(𝑥1 ∨ 𝑥3 ∨¬𝑥4). We have taken
the logic engine from Figure 3.7 and tilted all intersections and moving
parts by 30°. Similar to the original logic engine the upper box on the
right shows that the outermost flag poles are forced to position their flags
towards the center. The lower box shows that now two flags on the same
level can be positioned towards each other.

39

Chapter 3 Graphs Without Embedding

The construction now consists of line segments and four-way intersections that
branch off with an angle of 120° (or 60° depending on the direction we look at). Both
can be modeled by weak UDCRs of trees, as discussed in the previous sections. Given
the NAE3SAT formula 𝜙 = (𝑥1 ∨ 𝑥2 ∨ 𝑥3) ∧ (𝑥1 ∨¬𝑥2 ∨ 𝑥4) ∧ (𝑥1 ∨ 𝑥3 ∨¬𝑥4), one
possible weak UDCR for the tree obtained from 𝜙 can be seen in Figure 3.17. Here,
the depiction of the weak UDCR is slightly schematic in the sense that we don’t see
the individual unit disks or the tree edges. However, a schematic hexagon represents
a weak UDCR of a tree 𝑅(𝑟) where the line segment through the hexagon represents
the subtrees of type 𝑃. Where two hexagons overlap in one corner, the corresponding
nodes are merged into line segment trees. Similarly to the hexagons, the line segment
in the branching gadget represents the used 𝑃(3). Overall, the figure shows the same
realization we have previously seen in Figures 3.7 and 3.16.

We now describe in more detail on how to obtain a tree 𝑇𝜙 for a given NAE3SAT
formula 𝜙 with 𝑛 variables 𝑥1,… , 𝑥𝑛 and 𝑚 clauses 𝑐1,… , 𝑐𝑚. We will then show that
𝑇𝜙 has a weak UDCR if and only if 𝜙 has a valid assignment.

The shaft. The (in our figures horizontal) shaft is basically a line segment tree with
𝑛 + 1 branching gadgets in between. We start with a branching gadget 𝐵(3, 4) for the
left side of the logic engine. The 𝑅(4) of this gadget is reused for the next branching
gadget, a 𝐵(4, 3), that will be is used for 𝑥1’s flag pole. For all flag poles for 𝑥𝑖 with
1 < 𝑖 < 𝑛 we have a 𝐵(3, 3) which is joined to 𝑥𝑖−1’s branching gadget by an 𝑅(3).
For 𝑥𝑛 we use 𝐵(3, 4) as branching gadget, connected to 𝑥𝑛−1’s branching gadget by
an 𝑅(3), as well. The 𝑅(4) of the branching gadget is reused for the 𝐵(4, 3) used to
branch off the right side of the logic engine.

Overall, the tree constructed for the shaft consists of 𝑛+1 branching gadgets and 𝑛−1
chainable hexagon trees 𝑅(3) which join them together. Since both the used branching
gadgets and the chainable hexagon trees 𝑅(3) have constant size, the constructed
tree has size Θ(𝑛). The tree is also rigid since nothing has been added to sides of the
branching gadget. Thus, the weak UDCR in Figure 3.18a, representing the resulting
tree for four variables, gives us the only possible overall shape.

The flag poles. For the flag poles we construct several similar trees. Let 𝑇𝑃(𝑗) be the
following construction for all 𝑗 ∈ ℕ: We first take 2𝑗 copies of 𝑅(3) and combine them
into a line segment tree. Then we attach 𝑚 overlapping branching gadgets 𝐵(3, 3),
i.e., 𝑅4 of the first branching gadget is reused as 𝑅1 of the second branching gadget,
and so on. Then, for all variables 𝑥𝑖 with 1 ≤ 𝑖 ≤ 𝑛 we attach 𝑇𝑃(𝑛 − 𝑖) to both 𝑅2
and 𝑅3 of the branching gadget reserved for 𝑥𝑖 on the shaft. In Figure 3.17 we can
observe that adding 2 more 𝑅(3) to 𝑥𝑖’s flag pole than 𝑥𝑖+1’s flag pole results in the
branching gadgets for each clause being on a line nearly orthogonal to the flag poles.
This ensures that two flags of neighboring flag poles on the same level will overlap
when placed towards each other.

40

3.2 NP-hardness for Trees

𝑐3

𝑐2

𝑐1

𝑐3

𝑐2

𝑐1

Figure 3.17: One weak UDCR of the tree constructed for the NAE3SAT formula 𝜙 =
(𝑥1 ∨ 𝑥2 ∨ 𝑥3) ∧ (𝑥1 ∨¬𝑥2 ∨ 𝑥4) ∧ (𝑥1 ∨ 𝑥3 ∨¬𝑥4). The black outline
around the flags only highlights them and has no additional meaning. The
hexagons are all 𝑅(3) except for the two larger 𝑅(4). The small orange
120° angles indicate where the branching gadgets connect 𝑅2 and 𝑅3 to
𝑅1. The additional boxes show that unwanted flag placement cannot
happen due to resulting overlaps.

41

Chapter 3 Graphs Without Embedding

(a) The shaft is constructed in
the first step.

(b) In the next step we add
the flag poles.

(c) In the third step we add
the sides.

Figure 3.18: Weak UDCRs of the step-wise construction of the logic engine from Fig-
ure 3.17 with four variables and three clauses. The constructed tree is
rigid during these three steps.

In total, the flag poles need 2𝑚𝑛 branching gadgets as well as 2𝑛2 − 2𝑛 copies
of 𝑅(3). Thus, we add Θ(𝑛2 +𝑚𝑛) additional nodes to the tree. As the flag poles
themselves are rigid and we always add two identical ones to the same branching
gadget on the shaft, the construction stays rigid. In Figure 3.18b we see a weak UDCR
for a resulting tree with four variables and three clauses; all possible weak UDCRs have
the shape shown there.

The sides. After adding the flag poles we still need to add the left and right side of
the logic engine. The criterion here is that they need to be as long as 𝑥1 ’s and 𝑥𝑛 ’s flag
pole, respectively. By counting the length of overlapping branching gadgets we can see
that 𝑚 overlapping branching gadgets have length 𝑚(7 + 3) + 7 = 10𝑚 + 7, since it is
constructed by combining 𝑚 + 1 copies of 𝑅(3) and 𝑚 copies of 𝑃(3). On the other
hand, taking 𝑘 copies of 𝑅(3) as a line segment tree will result in length 6𝑘 + 1. We
can observe that for every 𝑚 divisible by 3 we can construct a line segment tree out of
𝑘 = 5

3𝑚+1 copies of 𝑅(3) which results in length 10𝑚+7, the same as 𝑚 overlapping
branching gadgets. We can thus conclude that constructing a line segment tree out of
⌈53𝑚⌉ + 1 copies of 𝑅(3) will be at least as long as the shortest flag pole.

The right side of the logic engine can be shorter by one 𝑅(3) due to the tilting.
We can thus add two line segment trees consisting of ⌈53𝑚⌉ copies of 𝑅(3) to the
rightmost branching gadget to represent the logic engine’s right side. For the left side,
the construction uses

⌈
5
3
𝑚⌉ + 2(𝑛 − 1) + 1 = ⌈

5
3
𝑚⌉ + 2𝑛 − 1

42

3.2 NP-hardness for Trees

copies of 𝑅(3): ⌈53𝑚⌉ for the height of the overlapping branching gadgets, 2(𝑛 − 1)
for the additional height of 𝑥1’s flag pole and one additional 𝑅(3) to account for the
tilting.

Overall we needΘ(𝑚 + 𝑛) nodes to construct the trees representing the logic engine’s
sides. In Figure 3.18c we see the weak UDCR resulting from the constructed tree so
far for four variables and three clauses. As we add two identical line segment trees to
both sides of each branching gadget, the resulting tree stays rigid and thus the shape
shown in the figure is the only possible one.

The flags. The flags in Figure 3.17 seem to consist of two 𝑅(3), however one of them
is part of the branching gadget and thus, already counted. As a result, for every flag we
add to the construction, we need one additional 𝑅(3). As described in Section 3.2.1,
for every combination of variable 𝑥𝑖 and clause 𝑐𝑗 we add two flags if 𝑥𝑖 does not appear
in 𝑐𝑗 and one flag otherwise. Thus, a total of fewer than 2𝑚𝑛 flags are added; the
exact amount is between 2𝑚𝑛 − 3𝑚 and 2𝑚𝑛 − 2𝑚.1 Thus, another Θ(𝑚𝑛) nodes are
added to the tree by the flags.

Since we only add an 𝑅(3) to one side of a branching gadget for every flag, the
whole construction becomes non-rigid. However, since the branching gadgets allow
only two possible non-congruent weak UDCRs, there are only two ways a flag can be
placed: to the left or the right of the branching gadget.

Having described the full construction we can now finalize this section with

Theorem 3.2. The problem of finding a weak UDCR for a tree is NP-hard.

↪

Proof. As already described at the beginning of Section 3.2, we will reduce to our
problem from Not-All-Equal 3SAT (NAE3SAT). Given a Boolean 3SAT formula 𝜙 with 𝑛
variables and 𝑚 clauses we know that there is a valid assignment of the variables (and
thus 𝜙 is a yes instance for NAE3SAT) if and only if the corresponding logic engine
construction (as presented by Eades and Whitesides [EW96]) can be realized in the
plane without overlaps. We have argued in Section 3.2.1 that a simpler logic engine
is functionally equivalent and in the beginning of Section 3.2.5 argued that we can
even tilt the moving parts without any difference in functionality. This tilted version of
the logic engine can then be modeled by a weak UDCR of a tree 𝑇𝜙 that is constructed
from the given formula 𝜙. We have also shown that 𝑇𝜙 has a weak UDCR if and only
if the logic engine for 𝜙 can be realized in the plane without overlaps. Thus, we can
conclude that 𝜙 is a yes instance for Not-All-Equal 3SAT (NAE3SAT) if and only if 𝑇𝜙
has a weak UDCR.

1Every clause needs at least 2 distinct variables (otherwise there cannot be a true and a false literal in it),
placing at least 2𝑚 times just one flag; on the other hand it has at most 3 distinct variables, placing at
most 3𝑚 times just one flag.

43

Chapter 3 Graphs Without Embedding

It remains to show that what we described is, indeed, a polynomial time reduction.
We described during the construction of 𝑇𝜙 that we use Θ(𝑛) nodes for the shaft,
Θ(𝑛2 +𝑚𝑛) nodes for the flag poles, Θ(𝑚 + 𝑛) nodes for the sides, and Θ(𝑚𝑛) nodes
for the flags. The total number of nodes, and thus the size of 𝑇𝜙 is in Θ(𝑛2 +𝑚𝑛). To
construct 𝑇𝜙 we do not need to perform any additional work, hence the running time
of the reduction is in Θ(𝑛2 +𝑚𝑛) as well.

After showing that the problem is NP-hard, the obvious question is whether the
problem is also contained in NP and thus NP-complete. However, we do not have an
answer to this question. What we can say is that the problem is contained in ∃ℝ. This is
the class of all problems which can be reduced in polynomial time to a Boolean formula
of the form ∃𝑥1,… , 𝑥𝑛 ∈ ℝ ∶ 𝐹(𝑥1,… , 𝑥𝑛). Here, 𝐹 is a quantifier-free formula that
allows logically combining equalities and inequalities of polynomials of the variables 𝑥1
to 𝑥𝑛. It is easy to see that our problem is contained in ∃ℝ with the following reduction.

Given a graph, introduce one pair of variables 𝑥𝑣 and 𝑦𝑣 for each node 𝑣. For each
pair of nodes 𝑢, 𝑣 such that 𝑢 and 𝑣 are connected by an edge we add the constraint
(𝑥𝑢 − 𝑥𝑣)

2 + (𝑦𝑢 − 𝑦𝑣)
2 = 22 to ensure that their disks touch. For all other pairs 𝑢, 𝑣

we add (𝑥𝑢 − 𝑥𝑣)
2 + (𝑦𝑢 − 𝑦𝑣)

2 ≥ 22 to ensure that no two disks intersect. Thus,
given a graph with 𝑛 nodes we construct a formula with 2𝑛 variables and Θ(𝑛2)
(in)equalities of constant size, resulting in a polynomial size formula. It is also easy to
see that the constraints model exactly the requirements from Definition 2.2. The set of
disks is interior-disjoint (for all pairs of disks their centers have distance at least 2) and
adjacent disks must touch (their center have distance exactly 2).

If, however, we are only interested in finding a grid-restricted weak UDCR, we
can show that the problem is contained in NP. Given a graph the certificate of a grid-
restricted weak UDCR gives us the disk center for each node. Since the disks centers are
all on the hexagonal grid, their coordinates can be given as integers. The verification
algorithm then only needs to check that no two disks are placed on the same grid
position and that the disks of adjacent nodes are placed on adjacent grid positions.
This can be easily done in quadratic time by checking all pairs of nodes. This approach
does not work if the weak UDCRs are not grid-restricted, since we cannot be sure that
the disk coordinates have polynomial size in the input.

We can now conclude this chapter with a summary of our results. In Section 3.1 we
showed a linear-time algorithm for finding weak UDCRs for caterpillars. The same
problem is NP-hard for trees, as shown in Section 3.2, by giving a reduction from
NAE3SAT. We showed that the problem is in ∃ℝ and in the grid-restricted case it is
even NP-complete.

44

Chapter4
Graphs With a Fixed Embedding

In the previous chapter we have shown results for weak UDCRs where for all disks the
order of its neighbors could be chosen arbitrarily. Now, we will look at the situation
in which we are not only given a graph 𝐺 but also a combinatorial embedding which
needs to be respected by the weak unit disk contact representation. We defined such
weak embedded unit disk contact representations (weak embedded UDCRs) already
in Definition 2.3. Similar to Chapter 3, this chapter also contains two main results:
In Section 4.1 we present a linear time algorithm to find weak embedded UDCRs
for grid-representable, strictly 𝑥-monotone caterpillars while in Section 4.2 we show
that the problem becomes NP-hard for general caterpillars. The algorithm for weak
UDCRs of caterpillars presented in Section 3.1 cannot be used for graphs with a fixed
embedding since it relies heavily on choosing which side of the caterpillar’s spine the
leaf disks are placed on. If we cannot place the leaf disks freely, the spine disks can be
forced to not lie on a line. This will be used in the NP-hardness proof in Section 4.2.
These results were previously published in short form in [CCN19].

4.1 A Linear Time Algorithm for Grid-Representable, Strictly
𝑥-Monotone Caterpillars

Finding a weak embedded UDCR for a path is trivially done in linear time by placing
all disks on a line. This is especially easy, as there can be no two different embeddings
for paths. Additionally, even for some caterpillars and embeddings we can find a weak
embedded UDCR in linear time, namely for grid-representable, strictly 𝑥-monotone
ones, where the latter is defined as follows.

Definition 4.1. ⊳ strictly
𝑥-monotone

Let 𝐺 be a caterpillar with backbone nodes 𝑏1,… , 𝑏𝑘 in order, and
let Γ an embedding for 𝐺. Let 𝒟 be a weak embedded UDCR for 𝐺, such that for
all 1 ≤ 𝑖 ≤ 𝑘, the disk 𝐷𝑖 ∈ 𝒟 corresponds to backbone node 𝑏𝑖. Then 𝒟 is strictly
𝑥-monotone if for all 1 < 𝑖 ≤ 𝑘 it holds true that 𝐷𝑖’s center is strictly to the right of
𝐷𝑖−1’s center. The caterpillar 𝐺 is strictly 𝑥-monotone if and only if it has a strictly
𝑥-monotone weak embedded UDCR.

45

Chapter 4 Graphs With a Fixed Embedding

𝑏1 𝑏7

(a) 𝐺 has 7 backbone nodes. (b) 𝒟0. (c) 𝒟1.

(d) 𝒟2. (e) 𝒟3. (f) 𝒟4.

(g) 𝒟5. (h) 𝒟6. (i) 𝒟7 = 𝒟.

Figure 4.1: (a) An example caterpillar with embedding and (i) a possible weak em-
bedded UDCR 𝒟 = 𝒟7. In (b–h) we see the intermediate weak embedded
UDCRs𝒟𝑖 with backbone disk 𝐷𝑖+1 highlighted, for all 0 ≤ 𝑖 ≤ 6. Backbone
disks have a darker and leaf disks have a lighter color.

Similarly to the algorithm in Section 3.1.2 for the non-embedded caterpillars, the
algorithm will find grid-restricted weak embedded UDCRs. The idea of the algorithm
is simple: To find a weak embedded UDCR 𝒟 for a given caterpillar 𝐺 with 𝑘 backbone
nodes, we start with a 0-restricted weak embedded UDCR 𝒟0 of only the first backbone
disk.1 We then extend it to a 1-restricted weak embedded UDCR 𝒟1 for 𝐺1, a 2-
restricted weak embedded UDCR 𝒟2 for 𝐺2, and so on, until we have obtained a weak
embedded UDCR𝒟𝑘 = 𝒟 for 𝐺𝑘 = 𝐺. See Figure 4.1 for an example caterpillar together
with one weak embedded UDCR and all intermediate steps.

However, instead of extending an 𝑖-restricted weak embedded UDCR to exactly one
(𝑖 + 1)-restricted weak embedded UDCR the algorithm needs to try out all possible
ways to extend it. For all those extensions it needs to try out all possible extensions
and so on. Naively, this would result in an exponential amount of work, but we will
see that it can be expressed as a dynamic program that runs in linear time.

1Remember that 𝒟𝑖 is the 𝑖-restricted weak embedded UDCR of the 𝑖-restricted caterpillar 𝐺𝑖 as defined
in Definitions 3.1 and 3.2.

46

4.1 A Linear Time Algorithm for Grid-Representable, Strictly 𝑥-Monotone Caterpillars

2
1
3

4
6

5

𝐷𝑖−1

𝐷𝑖

(a) The bottom left disk may only
be occupied by a leaf disk of
the hatched disk at 1𝑖 (which
would be 𝐷𝑖−2).

2
1
3

4
6

5

𝐷𝑖−1

𝐷𝑖

(b) In this situation only up
to three positions next
to 𝐷𝑖 can be occupied by
𝒟𝑖−1.

2
1
3

4
6

5𝐷𝑖−1

𝐷𝑖

(c) The same situation as
(a) but vertically mir-
rored.

Figure 4.2: Possible situations for grid-restricted, strictly 𝑥-monotone weak embedded
UDCRs: the dark blue disk 𝐷𝑖−1 is to the left of dark purple disk 𝐷𝑖. The
light blue disks show possible locations of disks of 𝒟𝑖−1 while the light
purple disks show possible locations for 𝐷𝑖+1 (if it exists).

Before describing the dynamic program, we will first make some observations about
grid-restricted, strictly 𝑥-monotone weak embedded UDCRs that will help us in under-
standing the mechanics the dynamic program will exploit.

4.1.1 Preliminary Observations

Since we talk about grid-restricted weak embedded UDCRs, it is obvious that for any
disk there are exactly six possible grid locations where a touching disk can be placed.
These six locations are identified by the numbers 1 to 6 (from left to right and top
to bottom) as already seen in Figure 3.2a. We will often talk about such a position
relative to a disk. To do this we use the notation 1𝑖 to refer to position 1 relative to
disk 𝐷𝑖. The same is true for all other positions 2 to 6. With this, we are now able to
show some properties of grid-restricted, strictly 𝑥-monotone weak embedded UDCRs:

Lemma 4.1. Let 𝒟 be a grid-restricted, strictly 𝑥-monotone weak embedded UDCR of a
caterpillar 𝐺 with backbone nodes 𝑏1,… , 𝑏𝑘 in this order. Let 𝐷𝑖 ∈ 𝒟 be the disk for 𝑏𝑖
for all 1 ≤ 𝑖 ≤ 𝑘. In addition, for all 0 ≤ 𝑖 ≤ 𝑘, let 𝐺𝑖 be the 𝑖-restricted caterpillar of 𝐺
and 𝒟𝑖 be the 𝑖-restricted weak embedded UDCR. Then for all 1 < 𝑖 ≤ 𝑘 disk 𝐷𝑖−1 is in
position 1𝑖, 2𝑖, or 3𝑖.

In addition, depending on 𝐷𝑖−1’s position, other positions may be occupied by disks in
𝒟𝑖−1: for 𝐷𝑖−1 at 1𝑖 those are 2𝑖 and 3𝑖; for 𝐷𝑖−1 at 2𝑖 they are 1𝑖, 3𝑖, and 4𝑖; and for
𝐷𝑖−1 at 3𝑖 they are 1𝑖, 2𝑖, and 5𝑖.

If 𝐷𝑖−1 is in position 2𝑖 and 3𝑖 is occupied, or 𝐷𝑖−1 is in position 3𝑖 and 2𝑖 is occupied,
then 1𝑖s also occupied.

↪

Proof. The first statement follows directly from Definition 4.1 since 𝐷𝑖 must be strictly
to the right of 𝐷𝑖−1 and thus 𝐷𝑖−1 strictly to the left of 𝐷𝑖.

47

Chapter 4 Graphs With a Fixed Embedding

2

5
1
3

4
6

(a) The blue positions are the
only positions that can be
occupied when the purple
backbone disk is placed.

2

5
1
3

4
6

(b) Placing the next backbone
disk at position 6: blocked
disks can be determined di-
rectly.

2

5
1
3

4
6

(c) Placing the next backbone
disk at position 4: there
is one unlabeled blue disk
that may be blocked.

Figure 4.3: Blue positions may contain a disk, while white position are always empty.
(a) Around the current backbone disk, all positions but 6 may be blocked.
(b) If the next backbone disk is placed at position 6 it is easy to determine
the blocked positions. (c) Placed at position 4 there is one unlabeled blue
position.

For the second statement we look at Figure 4.2. For position 1𝑖 (Figure 4.2b) we see
that the only direct neighbors of 𝐷𝑖−1 can be positions 2𝑖 and 3𝑖. In addition, since all
previous backbone disks lie strictly to the left of 𝐷𝑖−1 they cannot be direct neighbors
of the other positions, either. For position 2𝑖 (Figure 4.2a) we see that the direct
neighbors are 1𝑖 and 4𝑖. However, 1𝑖 may be occupied by backbone disk 𝐷𝑖−2 and thus
its leaf disk may occupy 3𝑖. Only a leaf disk can occupy 3𝑖 as all backbone disks must
be to the left of 𝐷𝑖−1 at 2𝑖; thus 5𝑖 cannot be occupied. Additionally, the only positions
which can be occupied by backbone disks such that one of their leaf disks is placed at
3𝑖 are 1𝑖 or the position to the left of 3𝑖. In the latter case, 1𝑖 must also be occupied
by a backbone disk as it lies on the only strictly 𝑥-monotone grid path from 2𝑖 to the
position left of 3𝑖. Thus, if 3𝑖 is occupied, 1𝑖 is also occupied (by a backbone disk),
proving the third statement.
The second and third statement also hold for 𝐷𝑖−1 at position 3𝑖 by symmetry.

Corollary 4.1. From the previous lemma it follows that the set of occupied disks around
𝐷𝑖 in 𝒟𝑖−1 is contiguous. More specifically, given the sequence 𝑆 = (4𝑖, 2𝑖, 1𝑖, 3𝑖, 5𝑖) of
positions around 𝐷𝑖, excluding 6𝑖, those positions in 𝑆 occupied by disks in 𝒟𝑖−1 form a
contiguous subsequence of 𝑆. Since 6𝑖 is always free, this also implies that the set of free
positions around 𝐷𝑖 is contiguous: More specifically, the subsequence of free positions in
𝑆′ = (3𝑖, 5𝑖, 6𝑖, 4𝑖, 2𝑖) is contiguous.

In order to know where we can place neighbors of 𝐷𝑖, is it sufficient to know which
of the six positions around it are occupied. In addition, since all previous backbone

48

4.1 A Linear Time Algorithm for Grid-Representable, Strictly 𝑥-Monotone Caterpillars

disks lie to the left of 𝐷𝑖, and the next backbone disks are placed to the right of 𝐷𝑖
they should not interfere (too much). See Figure 4.3a where we show in dark blue
the most extreme previous backbone disk positions and in light blue all positions that
may be occupied (never all at the same time) when placing the central purple disk
𝐷𝑖. The white positions are always free. When placing the next backbone disk 𝐷𝑖+1
at position 6𝑖, as seen in Figure 4.3b, we can compute which of the six positions are
occupied around 𝐷𝑖+1 from the knowledge which of the six positions around 𝐷𝑖 are
occupied. This can be seen by the fact that the non-white positions inside the shaded
hexagon are all labeled with the positions around 𝐷𝑖 or are 𝐷𝑖 itself. If, however, we
place 𝐷𝑖+1 at position 4𝑖, there is one blue position (above 2𝑖 and 4𝑖) inside the shaded
hexagon. That is, we cannot compute all occupied positions around 𝐷𝑖+1 only from
the positions around 𝐷𝑖. We can include this missing position (and the symmetric one
below 3𝑖 and 5𝑖) in the positions that we keep track of, which results in a rhombus
shaped region which we can see in Figure 4.4a. If we extend the shaded hexagons in
Figures 4.3b and 4.3c by one disk to the top and bottom we also see that only white or
already labeled disk are added. We can thus conclude

Observation 4.1. While incrementally constructing a grid-restricted, strictly 𝑥-monotone
weak embedded UDCR, it is sufficient to know which of the eight positions depicted in
Figure 4.4a around a backbone disk are occupied, to calculate the same information for
the next backbone disk.

4.1.2 The Linear Time Algorithm

As described before, the idea of the algorithm is to try out all possible ways to incre-
mentally construct a grid-restricted, strictly 𝑥-monotone weak embedded UDCR for a
given caterpillar 𝐺 with its embedding Γ and 𝑘 backbone nodes 𝑏1,… , 𝑏𝑘. For this we
need to know whether an existing 𝑖-restricted weak embedded UDCR can be extended
to a full weak embedded UDCR. According to Observation 4.1 the only information we
need for this is which of the eight positions around 𝐷𝑖 are occupied. We thus formulate
the algorithm as a dynamic program

Realizable ∶ [1..𝑘] × 2[1..8] → {true, false}.

The first input 𝑖, with 1 ≤ 𝑖 ≤ 𝑘, tells us which backbone node 𝑏𝑖 we are currently
considering. The second input, a subset of [1..8], tells us, which of the eight positions
around the already placed disk 𝐷𝑖 are blocked by disks from 𝒟𝑖−1 corresponding to
𝐺𝑖−1. Given this information we should then return true if and only if 𝒟𝑖−1 can be
extended to a weak embedded UDCR 𝒟 of 𝐺.

However, to formulate and understand the dynamic program we need some addi-
tional definitions:

49

Chapter 4 Graphs With a Fixed Embedding

2
6

4

5
1

8
3

7

(a) Eight positions around the
center disk are considered
by the dynamic program.

𝑝 = 4
𝐵 = {1, 3, 8}

𝐹𝑟(𝐵, 𝑝) = {6, 5}
𝐹𝑙(𝐵, 𝑝) = {2}

2
6

4

5
1

8
3

7

(b) Three blocked positions
and position 4 for the
next backbone node.

𝑝 = 6
𝐵 = {1, 2, 4, 7}

𝐹𝑟(𝐵, 𝑝) = {5, 3}
𝐹𝑙(𝐵, 𝑝) = ∅

2
6

4

5
1

8
3

7

(c) Four blocked positions
and position 6 for the
next backbone node.

Figure 4.4: The dynamic program needs to consider the eight positions shown in (a).
In (b) and (c) we see example situations from the algorithm with different
blocked positions and different position for the next backbone disk.

Definition 4.2. Let 𝐺 be a caterpillar with backbone nodes 𝑏1,… , 𝑏𝑘 in this order and
an embedding Γ. Then, let 𝑛𝑖 be the number of leaf neighbors of 𝑏𝑖 for all 1 ≤ 𝑖 ≤ 𝑘.
For all 1 < 𝑖 < 𝑘 let 𝑙𝑖 be the number of leaf neighbors of 𝑏𝑖 between 𝑏𝑖+1 and 𝑏𝑖−1
in counterclockwise order according to Γ. These are the leaves to the left of a line
from 𝑏𝑖 through 𝑏𝑖+1 in any drawing of 𝐺 respecting Γ. Similarly, let 𝑟𝑖 be the same but
in clockwise order, which are those leaves to the right. For 𝑖 ∈ {1, 𝑘} let 𝑙𝑖 = 𝑛𝑖 and
𝑟𝑖 = 0.

Given 𝐵 ⊆ [1..8] and 𝑝 ∈ {4, 5, 6} let 𝐹(𝐵, 𝑝) = [1..6]∖ (𝐵 ∪ {𝑝}) the set of all free
positions around the center. Then, let 𝐹𝑙(𝐵, 𝑝) be the contiguous set of all free positions
counterclockwise of 𝑝, i.e., we start one position counterclockwise of 𝑝, continue
counterclockwise until we hit the first blocked position, and collect all encountered
free positions as 𝐹𝑙(𝐵, 𝑝). 𝐹𝑟(𝐵, 𝑝) is the same but in clockwise direction.

See Figures 4.4b and 4.4c for two examples of the latter definitions. In Figure 4.4b
we have 𝐵 = {1, 3, 8} and 𝑝 = 4, and thus, 𝐹(𝐵, 𝑝) = {2, 6, 5}. To compute 𝐹𝑙(𝐵, 𝑝)
we start at position 2 and then already encounter the blocked position 1. For 𝐹𝑟(𝐵, 𝑝)
we start at 6, continue to 5 and then encounter blocked position 3. Similarly, in
Figure 4.4c there are no free positions counterclockwise of position 6 and two free
positions clockwise.

As previously discussed, Observation 4.1 tells us that the knowledge, which of the
eight positions from Figure 4.4a around a backbone disk are occupied, is sufficient
to know which positions around the next backbone disk are occupied. However, to
describe our algorithm we must be able to explicitly compute them. To do this, we
introduce the function

shift ∶ 2[1..8] × {4, 5, 6} → 2[1..8].

Given a set of occupied positions and the position of the next backbone disk, it returns
the set of occupied positions around the next backbone disk. The function is easily

50

4.1 A Linear Time Algorithm for Grid-Representable, Strictly 𝑥-Monotone Caterpillars

1

8

3

4

5

6

4

6

2

1

7

3 5

8

2

7

𝐷𝑖

𝐷𝑖+1

(a) The new backbone disk is
placed at position 4 rela-
tive to the old backbone
disk, see also Eq. (4.1).

1

4

5

6

5

8

3

1 6

2 4

72

7

8

3

𝐷𝑖

𝐷𝑖+1

(b) The new backbone disk is
placed at position 5 rela-
tive to the old backbone
disk, see also Eq. (4.2).

7

4

7

5

8

2

1

8

3

7

4

5

61

2

3
𝐷𝑖

𝐷𝑖+1

(c) The new backbone disk is
placed at position 6 rela-
tive to the old backbone
disk, see also Eq. (4.3).

Figure 4.5: The blocked positions around the old backbone disk 𝐷𝑖 are taken to obtain
the blocked positions around the new backbone disk 𝐷𝑖+1. This effectively
shifts the rhombus of blocked positions by the arrow. The gray labels on
the left indicate positions relative to 𝐷𝑖 while the dark labels on the right
indicate positions relative to 𝐷𝑖+1.

described as

shift(𝐵, 4) = {3} ∪ {1 | 2 ∈ 𝐵} ∪ {2 | 7 ∈ 𝐵} ∪ {5 | 6 ∈ 𝐵} ∪ {8 | 5 ∈ 𝐵} (4.1)
shift(𝐵, 5) = {2} ∪ {1 | 3 ∈ 𝐵} ∪ {3 | 8 ∈ 𝐵} ∪ {4 | 6 ∈ 𝐵} ∪ {7 | 4 ∈ 𝐵} (4.2)
shift(𝐵, 6) = {1} ∪ {2 | 4 ∈ 𝐵} ∪ {3 | 5 ∈ 𝐵} (4.3)

where {𝑎 | 𝑏 ∈ 𝐵} is {𝑎} if 𝑏 ∈ 𝐵 and otherwise the empty set. A depiction to
understand better which previous positions imply which new positions can be found in
Figure 4.5.

We now describe our dynamic program Realizable(𝑖, 𝐵), whose pseudocode can be
found in Algorithm 4.1. To see whether a given caterpillar has a weak embedded
UDCR we call Realizable(1,∅) and check whether the result is true or false.

At first, we look at the base case for 𝑖 = 𝑘 in lines 2 to 3. Here, we only check whether
the occupied positions directly around 𝐷𝑘 together with the 𝑛𝑘 remaining leaf disks to
be placed are not more than six. The recursive case (lines 4 to 10) is more involved.
First, we will try to place 𝐷𝑖+1, the next backbone disk, at all three possible positions
that are not occupied (line 5). For this placement of 𝐷𝑖+1 at position 𝑝, in line 6 we
then obtain all free positions counterclockwise of 𝑝 and iterate through all possibilities
to place the 𝑙𝑖 left leaf nodes of 𝑏𝑖 among those free positions.2 The same is done
in line 7 for the positions and leaf nodes to the right. Then, in line 8, the algorithm
calculates which positions are occupied relative to the next backbone disk from the
2We use the notation [𝐴]𝑏 to mean [𝐴]𝑏 = {𝐶 ⊆ 𝐴 | |𝐶| = 𝑏}.

51

Chapter 4 Graphs With a Fixed Embedding

Algorithm 4.1: The dynamic program to find out whether a caterpillar 𝐺 with 𝑘 back-
bone nodes has a grid-restricted, strictly 𝑥-monotone weak embedded
UDCR.

1: function Realizable(𝑖, 𝐵)
2: if 𝑖 = 𝑘 then ▷ The base case; no more backbone disks to place.
3: return 𝑛𝑘 ≤ 6 − |𝐵 ∩ [1..6]| ▷ Check for sufficient free positions for leaves.
4: else ▷ The recursive case with 𝑖 < 𝑘.
5: for all 𝑝 ∈ {4, 5, 6} ∖ 𝐵 do ▷ All free and allowed positions for 𝐷𝑖+1.
6: for all 𝑃𝑙 ∈ [𝐹𝑙(𝐵, 𝑝)]

𝑙𝑖 do ▷ Possible placements to the left.2

7: for all 𝑃𝑟 ∈ [𝐹𝑟(𝐵, 𝑝)]
𝑟𝑖 do ▷ Possible placements to the right.2

8: 𝐵 ′ ← shift(𝐵 ∪⋅ 𝑃𝑙 ∪⋅ 𝑃𝑟 ∪⋅ {𝑝}, 𝑝) ▷ Obtain new blocked positions.
9: if Realizable(𝑖 + 1, 𝐵 ′) then ▷ If a valid extension is found …

10: return true ▷ … we can return successfully.
11: return false

occupied positions 𝐵 and the neighboring disks placed at positions 𝑃𝑙, 𝑃𝑟, and 𝑝. If
the current placement can be extended to a weak embedded UDCR, which is checked
by recursively calling 𝑅 for the next backbone node with the new blocked positions in
line 9, then we can return successfully in line 10. If, however, none of the placements
result in a weak embedded UDCR, we finally return that no weak embedded UDCR
exists in line 11.

4.1.3 Running Time and Correctness

Since 𝑅 is a dynamic program, it is evaluated at most once for every possible input.
The number of possible inputs is at most 28 = 256 for the set 𝐵 and at most 𝑘 for the
current backbone node 𝑖. Thus, at most 𝑂(𝑘) different inputs exist. To bound the
running time of each call to 𝑅 we observe that the base case obviously runs in constant
time. For the recursive case, the loop in line 5 runs at most three times. Both loops in
lines 6 and 7 run as often as there are possibilities to place leaf disks of the current
backbone disk among the free positions. However, 0 ≤ 𝑙𝑖, 𝑟𝑖 ≤ 4 and the number of
free positions to the left and right is at most 4 as well. That is, the number of times
each loop runs is never larger than max0≤𝑎,𝑏≤4 (

𝑎
𝑏) = 6. Thus, the number of times

lines 8 and 9 are executed is constant, and both lines can be computed in constant
time, assuming that Realizable(𝑖 + 1, 𝐵 ′) has already been calculated.

We can thus conclude that the dynamic program runs in 𝑂(𝑘) time if the caterpillar
with its embedding is given as a list of 𝑘 pairs with the numbers of left and right leaf
nodes. If, however, the caterpillar is given as a graph with ordered neighbors, we
first need to compute these numbers which takes an additional 𝑂(𝑛) time. Thus, the
running time of the dynamic program is always linear in the size of the given input or
more generally 𝑂(𝑛) as 𝑘 ≤ 𝑛.

52

4.1 A Linear Time Algorithm for Grid-Representable, Strictly 𝑥-Monotone Caterpillars

To show correctness we want to see that the algorithm returns “true” if and only if
the presented caterpillar with its embedding has a grid-restricted, strictly 𝑥-monotone
weak embedded UDCR:

Lemma 4.2. Let 𝐺 be a caterpillar with embedding Γ and backbone nodes 𝑏1,… , 𝑏𝑘 in
this order. Then the 𝑅 finds a grid-restricted, 𝑥-monotone weak embedded UDCR if and
only if 𝐺 has a grid-restricted, 𝑥-monotone weak embedded UDCR.

↪

Proof. We first show that 𝑅 only returns “true” if it has actually found a grid-restricted,
𝑥-monotone weak embedded UDCR. Since we only ever place disks at one of the six
grid locations around the backbone disks, the resulting construction is grid-restricted.
In addition, the next backbone disks are always placed strictly to the right of the current
backbone disk, making the construction strictly 𝑥-monotone. From Observation 4.1 we
know that the set 𝐵 passed to 𝑅 is sufficient to calculate the same information for the
next backbone disk and thus, using induction, for all following backbone disks. This
means, that we never assume a position to be free while it is actually occupied. In
addition, as suggested in line 8 of Algorithm 4.1 the selected positions for the next
backbone disk and the left and right leaf disks are all disjoint from each other and the
already occupied positions. This means that no two disks are ever placed at the same
position. Thus, if 𝑅 returns “true” it has actually found a grid-restricted, 𝑥-monotone
weak embedded UDCR.

We now show that the dynamic program also finds a grid-restricted, 𝑥-monotone
weak embedded UDCR if one exists. Let 𝒟 be such a weak embedded UDCR. We show
by induction over 𝑖 that for any 𝑖-restricted weak embedded UDCR 𝒟𝑖 of 𝒟 the dynamic
programwill try placing the disks exactly as in𝒟𝑖. For 𝑖 = 1we know that 𝐵 = ∅ in 𝑅. In
line 5, the dynamic program then tries our all three possible positions of 𝐷2 one of which
must be its position in 𝒟1. Since 𝐵 = ∅ we have that 𝐹𝑙(𝐵, 𝑝) = 𝐹𝑟(𝐵, 𝑝) = [1..6]∖{𝑝}
and from Definition 4.2 we know that 𝑙1 = 𝑛1, the number of leaf nodes of 𝑏1 and
𝑟1 = 0. Thus, line 6 enumerates all possible ways to place the 𝑛1 leaf disks while
line 7 loops exactly once with 𝑃𝑟 = ∅ since [𝐹𝑟(𝐵, 𝑝)]

𝑟1 = [𝐹𝑟(𝐵, 𝑝)]
0 = {∅}. Hence,

Realizable(1,∅) tries out all possible placements for the second backbone disk together
with all possible placements of the leaf disks. 𝒟1 must be among all those possibilities.

For the inductive step, i.e., 1 < 𝑖 < 𝑘, we can assume that𝒟𝑖−1 has one corresponding
selection of 𝑝, 𝑃𝑙, 𝑃𝑟 in Realizable(𝑖 − 1, 𝐵𝑖−1) for 𝐵𝑖−1 depending on 𝒟𝑖−2 (or 𝐵𝑖−1 = ∅
if 𝑖 = 2). This corresponding selection results in calling Realizable(𝑖, 𝐵𝑖) with 𝐵𝑖 =
shift(Bi-1 ∪⋅ Pl ∪⋅ Pr ∪⋅ {p}, p). It also means that the positions blocked around 𝐷𝑖 in 𝒟𝑖−1
are exactly the positions in 𝐵𝑖. We need to show that Realizable(𝑖, 𝐵𝑖) will try out
the placement of the additional neighboring disks of 𝐷𝑖 that result in 𝒟𝑖. Again, the
dynamic program tries out all three positions for 𝐷𝑖+1 that are available, among them
the one in 𝒟𝑖. It then tries out all possible placements of left leaf disks in the free
positions to the left of 𝐷𝑖+1. Here there could be a problem, since we only look at the

53

Chapter 4 Graphs With a Fixed Embedding

free positions until the first occupied position. If there were any free positions between
the occupied positions, we may not try the placement in 𝒟𝑖. However, Corollary 4.1
tells us that the set of occupied disks is contiguous and thus line 6 tries out all possible
free positions counterclockwise between 𝐷𝑖+1 and 𝐷𝑖−1. The same arguments apply
for the leaf disks and free positions on the right; line 7.

Finally, for 𝑖 = 𝑘 the dynamic program just checks whether there are sufficient
free positions to place all remaining leaf disks. This implicitly allows for all possible
placements and thus especially for the one in 𝒟𝑘 = 𝒟.

Combining the running time analysis at the beginning of this section with Lemma 4.2
we can conclude with

Theorem 4.1. Given a caterpillar 𝐺 with 𝑛 nodes, the dynamic program in Section 4.1.2
runs in Θ(𝑛) time and finds a grid-restricted, strictly 𝑥-monotone weak embedded UDCR
for 𝐺 if and only if 𝐺 has such a weak embedded UDCR.

4.2 NP-hardness for General Caterpillars

The algorithm presented in the previous section only works for restricted caterpillars,
that is, those with a grid-restricted, strictly 𝑥-monotone weak embedded UDCR. The
reason is that, for general caterpillars, the problem becomes NP-hard. We will show
hardness via a reduction from Planar 3SAT.

4.2.1 Planar 3SAT

As the name suggests, Planar 3SAT is a 3SAT variant. The planarity is a property of
the graph associated with a given 3SAT formula, which is defined as follows:

Definition 4.3.⊳ associated graph Let 𝜙 be a 3SAT formula with 𝑛 variables 𝑥1,… , 𝑥𝑛 and 𝑚 clauses
𝑐1,… , 𝑐𝑚. We call the graph 𝐺(𝜙) = (𝑉, 𝐸) the associated graph of 𝜙 where

• 𝑉 = {𝑥1,… , 𝑥𝑛} ∪ {𝑐1,… , 𝑐𝑚},

• for all 1 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑗 ≤ 𝑚 we have that {𝑥𝑖, 𝑐𝑗} ∈ 𝐸 if 𝑥𝑖 appears in 𝑐𝑗 as
either 𝑥𝑖 or ¬𝑥𝑖,

• {𝑥𝑖, 𝑥𝑖+1} ∈ 𝐸 for all 1 ≤ 𝑖 < 𝑛, and additionally {𝑥𝑛, 𝑥1} ∈ 𝐸.

If the associated graph of a formula 𝜙 is planar then this is an instance of the Planar
3SAT problem:

Definition 4.4.⊳ Planar 3SAT Given a 3SAT formula 𝜙 and its associated graph 𝐺(𝜙) together with
a planar embedding, Planar 3SAT is the problem of deciding whether 𝜙 is satisfiable.

54

4.2 NP-hardness for General Caterpillars

𝑥1 𝑥2

𝑥3

𝑥4

𝑐2

𝑐3

𝑐1

(a) A planar embedding of 𝐺(𝜙). The cycle
through the variables is dashed.

𝑥1 𝑥3

𝑐2

𝑐3

𝑐1

𝑥2 𝑥4

(b) A rectilinear drawing of the planar embed-
ding in Figure 4.6a.

Figure 4.6: Given 𝜙 = (¬𝑥1 ∨ 𝑥2 ∨ 𝑥3) ∧ (𝑥1 ∨ 𝑥2 ∨ 𝑥4) ∧ (¬𝑥2 ∨ 𝑥3 ∨ 𝑥4) we see its
associated graph 𝐺(𝜙) and two different representations.

An example of a planar drawing of an associated graph can be found in Figure 4.6a.
It was shown by Lichtenstein [Lic82] that Planar 3SAT remains an NP-hard problem.
See Tippenhauer [Tip16] for an overview of various variations of Planar 3SAT. Knuth
and Raghunathan [KR92] use a slightly different construction from which we can
deduce that it is always possible to rearrange the planar drawing of an associated graph
such that all variables are on a horizontal line and all edges are rectilinear. A rectilinear
drawing of the associated graph from Figure 4.6a is shown in Figure 4.6b. Given this
rectilinear drawing, we construct a path that follows nearly all edges present: First,
remove the clause nodes and the edge {𝑥𝑛, 𝑥1} from the drawing and leave everything
else, especially the edges connecting the variable to the (now removed) clause nodes
in place. The result for our example can be seen in Figure 4.7a. We can now start at
the leftmost variable node and trace around all edges and stop once we could close
the path to a cycle. See Figure 4.7b for the resulting path; here we also highlight the
positions where the variable and clause nodes were placed previously.

Constructing this path will be the first step of reducing from Planar 3SAT to our
problem of finding a weak embedded UDCR for a given caterpillar. The idea is that we
will be able to construct a caterpillar which, when realized as a weak embedded UDCR,
is forced to follow the path in Figure 4.7b. With some additional gadgets, which we
will develop in the next sections, we will be able to find a weak embedded UDCR for
the caterpillar constructed from a 3SAT formula 𝜙 if and only if 𝜙 is satisfiable.

4.2.2 Rigid Caterpillars and Caterpillars With Two Representations

To be able to construct a caterpillar whose weak embedded UDCR follows the path as
described in the previous definition and depicted in Figure 4.7b the caterpillar needs

55

Chapter 4 Graphs With a Fixed Embedding

𝑥1 𝑥3𝑥2 𝑥4

𝑐1

𝑐3

𝑐2

(a) In the first step we remove the edge
{𝑥4, 𝑥1} and the three clause nodes from
Figure 4.6b.

𝑐1

𝑐3

𝑥1 𝑥2 𝑥3 𝑥4

𝑐2

(b) The path is constructed by tracing around
all edges. The parts at which the nodes
were placed are highlighted accordingly.

Figure 4.7: How to construct the path from the rectilinear drawing Figure 4.6b.

to be rigid as previously defined in Definition 2.4. The ideas are similar to the ones we
have already seen for graphs without embedding in Section 3.2.2. It is easy to see that
a certain type of caterpillar is rigid:

Lemma 4.3. Let 𝐺 be a caterpillar with backbone nodes 𝑏1,… , 𝑏𝑘, 𝑘 ≥ 1, and let Γ be a
combinatorial embedding of 𝐺. If 𝐺 has a weak embedded UDCR with respect to Γ then 𝐺
is rigid and all weak embedded UDCR can be placed on the triangular grid if deg(𝑏1) = 6
and deg(𝑏𝑖) = 4 for all 1 < 𝑖 ≤ 𝑘. Additionally, for all weak embedded UDCR and all leaf
children 𝑣 of 𝑏𝑘, at most three of the six grid positions around 𝑣’s disk are free.

↪

Proof. We show this by induction on the length of the backbone 𝑘. For 𝑘 = 1 we have
a 6-star which is shown to be rigid in Observation 2.2. From this we also know that
all disks in a weak embedded UDCR are placed on the triangular grid. We know that
every leaf disk in a weak embedded UDCR of a 6-star has three of its neighboring grid
locations already occupied: one by the root node’s disk and two by two other leaf
nodes’ disks. Thus, they all have exactly three grid locations around them left free.

Now, for 𝑘 > 1, let 𝐺 ′ be the caterpillar that results from removing all leaves of 𝑏𝑘
in 𝐺 and let Γ′ be the resulting embedding. Then 𝐺 ′ has backbone 𝑏1,… , 𝑏𝑘−1 and it
remains that deg(𝑏1) = 6 and deg(𝑏𝑖) = 4 for all 1 < 𝑖 ≤ 𝑘 − 1. Since 𝐺 has a weak
embedded UDCR with respect to Γ, 𝐺 ′ must also have a weak embedded UDCR with
respect to Γ′. We can thus apply the induction hypothesis and it follows that 𝐺 ′ is rigid.
Let 𝒟′ be a weak embedded UDCR for 𝐺 ′ obtained by taking a weak UDCR 𝒟 for 𝐺
and removing the disks whose nodes are not in 𝐺 ′, i.e., the leaf nodes of 𝑏𝑘. Have a

56

4.2 NP-hardness for General Caterpillars

𝐷𝑘

(a) The node 𝑏𝑘 is the left
child of its parent 𝑏𝑘−1.

𝐷𝑘

(b) The node 𝑏𝑘 is the middle
child of its parent 𝑏𝑘−1.

𝐷𝑘

(c) The node 𝑏𝑘 is the right
child of its parent 𝑏𝑘−1.

𝐷𝑘

(d) The resulting weak em-
bedded UDCR of 𝐺 bends
to the left.

𝐷𝑘

(e) The resulting weak em-
bedded UDCR of 𝐺 contin-
ues straight on.

𝐷𝑘

(f) The resulting weak em-
bedded UDCR of 𝐺 bends
to the right.

Figure 4.8: An example depiction of the induction step from Lemma 4.3, for 𝑘 = 4.
(a–c) Possible weak embedded UDCRs for the same graph 𝐺 ′ with the only
difference that 𝑏𝑘 (whose disk 𝐷𝑘 is highlighted) is the (a) left, (b) middle,
or (c) right child of 𝑏𝑘−1.
(d–f) The resulting weak embedded UDCRs for the graph 𝐺, the three
situations corresponding to the three situations in (a–c) above them.

look at Figures 4.8a to 4.8c for three different examples of weak embedded UDCRs for
𝐺 ′ for different embeddings of 𝑏𝑘 and its sibling leaves relative to 𝑏𝑘−1 in 𝐺 ′.

We know, by induction, that 𝒟′ is on a triangular grid. From the induction hypothesis
it also follows that 𝑏𝑘 ’s disk 𝐷𝑘 has at most three grid locations left around it. However,
since 𝑏𝑘 has three children in 𝐺 and 𝐺 has a weak embedded UDCR, there must be
space for at least three disks left around 𝐷𝑘. Since Γ tells us in which order the three
children of 𝑏𝑘 should be drawn, there is exactly one way to place the three child disks
of 𝑏𝑘, meaning that 𝐺 is rigid. Additionally, all three child disks of 𝑏𝑘 already have
three grid locations around them blocked, as seen in Figures 4.8d to 4.8f where we can
see the weak embedded UDCRs for 𝐺 consistent with the previous weak embedded
UDCRs for 𝐺 ′.

As a result, we are able to construct arbitrary paths that remain on a triangular
grid as weak embedded UDCRs of caterpillars. See Figure 4.9a for an example weak
embedded UDCRs. Here, the backbone disks are colored differently, together with

57

Chapter 4 Graphs With a Fixed Embedding

(a) A weak embedded UDCR
of a rigid caterpillar.

(b) Both disks are as far to the
left as possible.

(c) The first disk is as far to
the left as possible while
the second is as far to the
right as possible.

(d) Both disks that can be
moved around are placed
somewhere in the middle.

(e) The first disk is as far to
the right as possible while
the second is as far to the
left as possible.

(f) Both disks are as far to the
right as possible.

Figure 4.9: Possible weak embedded UDCRs of (a) a rigid caterpillar and (b–f) a cater-
pillar consisting of two connected rigid parts. In (b–f) we have highlighted
the two small regions in which the first and second purple backbone disks
can be placed. Furthermore, the bigger gray area with a 60° angle is the
area and which the backbone nodes will always stay if the purple caterpillar
continues only straight.

their child disks, such that we can distinguish them more easily. We can thus easily see
that all but the first and last backbone nodes have exactly two leaf children (degree
four). Meanwhile, the first backbone node has five leaf children (degree six) and the
last has three leaf children (degree four as well), all exactly as required by Lemma 4.3.

In Figures 4.9b to 4.9f we can see that it is even possible to construct a caterpillar
that consists of two rigid parts which are connected in a non-rigid way. Here we have
the blue part and the purple part, both of which are rigid (they fulfill the requirements
of Lemma 4.3). However, they can rotate relative to each other while being slightly
restricted by the orange leaf disk. We can see in the figures that there are two parts
that have rotational freedom of 60° each: The first purple backbone disk around the
last blue backbone disk and the second purple backbone disk around the first purple
backbone disk. This freedom is highlighted by the two (dotted) angles in each figure.
Overall, the most extreme representation to the left (Figure 4.9b) and to the right

58

4.2 NP-hardness for General Caterpillars

(a) As far to the top as possi-
ble.

(b) As far to the bottom as
possible.

(c) Somewhere between (a)
and (b).

Figure 4.10: Adding another child to the construction from Figures 4.9b to 4.9f at the
first purple backbone disk results in less freedom of movement.

(Figure 4.9f) show that the direction of the purple rigid part will stay inside the gray
60° sector.

Ideally, however, wewould like to havemore control over the possible weak embedded
UDCRs and not have infinitely many possibilities with any angle between 0° and 60°.
One way to obtain such a situation can be seen in Figure 4.10. Here we take the
caterpillar used in Figures 4.9b to 4.9f and add a leaf disk to the first purple backbone
disk. We chose its embedding such that it is placed on the other side of the backbone
than the single leaf disk of the previous blue backbone disk. This additional disk
prevents the purple weak embedded UDCR from changing its angle relative to the blue
weak embedded UDCR. However, the first purple backbone disk can still rotate around
the last blue backbone disk with a 60° angle. The resulting weak embedded UDCRs can
be grouped into two categories, those that lie completely on the triangular grid and
those that do not. In the first category we have two possible weak embedded UDCRs:
one in which the purple part is as far to the top as possible, see Figure 4.10a, and one
in which it is as far to the bottom as possible, see Figure 4.10b. All other realizations
place the purple part somewhere in between and thus not on the grid. An example
weak embedded UDCR can be seen in Figure 4.10c.

We have achieved more control over the possible weak embedded UDCRs. However,
the number of equivalence classes of the weak embedded UDCRs is still infinite. We
would like the weak embedded UDCRs to have only a finite number of equivalence
classes and also have that all weak embedded UDCRs are realized on a grid. This is
possible by constructing a caterpillar that results in a tight disk packing which prevents
movement. See Figure 4.11 for the possible and impossible weak embedded UDCRs
of such a caterpillar which we call two-way gadget ⊳ two-way gadget. As we can see in Figures 4.11a
and 4.11b, the two extreme positions can be realized without any problems. If, however,
we were to try to position the purple weak embedded UDCR in some position in between,
it will immediately overlap with the blue weak embedded UDCR on the bottom right,
as indicated in Figure 4.11c. It follows that this construction is exactly what we wanted
to achieve. A caterpillar with exactly two different weak embedded UDCRs, which

59

Chapter 4 Graphs With a Fixed Embedding

(a) As far to the top as possi-
ble.

(b) As far to the bottom as
possible.

(c) An intermediate position
forces an overlap.

Figure 4.11: The two-way gadget: We use the construction idea from Figure 4.10 and
extend the two rigid parts such that they are adjacent on the opposite side
of the movement side. This guarantees that any intermediate position,
e.g., (c), creates an overlap between the two parts. Then only the two
extreme positions (a) and (b) are possible.

both lie completely on a triangular grid. This idea will help us further in the following
section.

4.2.3 Variable Gadgets

We now want to combine the ideas developed in the previous section together with the
idea of the path that should represent a Planar 3SAT instance, as seen in Figure 4.7b.
The goal is to construct a variable gadget, i.e., a caterpillar whose weak embedded
UDCRs have exactly two equivalence classes such that they can be assigned the truth
values true and false. Furthermore, this gadget must allow for arbitrary many caterpil-
lars going towards a clause gadget (still to be designed) and coming back. The idea
for the variable gadget is similar to something we have already seen for the graphs
without embedding. In Figure 3.11b in Section 3.2.2 we have seen a small hexagon
whose leaf disks can be realized in many ways including two extreme positions on the
grid.

Our idea is similar and can be seen in Figure 4.12. Assume that we have a rigid
hexagon with radius 2, the light and dark blue parts in our figures. We can now
construct six rigid caterpillars (the three purple and three orange weak embedded
UDCRs in the figures) that are attached to the disks in the center of each side of the
hexagon. Since each caterpillar is connected to the blue hexagon in the same fashion
as the construction in Figure 4.10, the caterpillars can be realized in two extreme
positions that coincide with the grid (Figures 4.12a and 4.12b) but also all intermediate
positions (Figure 4.12c). Furthermore, there are exactly as many disks directly around
the blue hexagon as there are grid positions around it (for this see the corresponding
arguments in the proof of Lemma 3.4). It follows that placing one such caterpillar also
determines the placement of the other caterpillars.

60

4.2 NP-hardness for General Caterpillars

1

(a) The counterclockwise ex-
treme position.

0

(b) The clockwise extreme
position.

?

(c) One of the many interme-
diate positions.

Figure 4.12: Assuming that the blue hexagon in the middle is rigid, the six rigid parts
around it can have two extreme positions (a) and (b). However, the weak
embedded UDCR can take any position in between, as seen in (c).

1

(a)

0

(b)

?

(c)

Figure 4.13: A larger version of the construction in Figure 4.12 that still has two
extreme positions (a) and (b). However, it remains that infinitely many
intermediate positions exist, as seen in (c).

One big assumption in Figure 4.12 is that the inner hexagon is rigid. Furthermore,
since the six outgoing caterpillars are not connected to anything, the underlying graph
is not a caterpillar. A first step towards mitigating both problems can be found in
Figure 4.13. Here, we have grown the inner hexagon and changed the six caterpillars
going somewhere undetermined into caterpillars that span the whole side of the
hexagon. This keeps the general ideas from Figure 4.12 in place, namely that placing
one of the outer caterpillars will determine the position of the other caterpillars.
Additionally, the two possible extreme positions from Figures 4.12a and 4.12b can
still be found as seen in Figures 4.13a and 4.13b, but it remains that all intermediate
positions are possible, e.g., the one in Figure 4.13c. We can also see that the backbone

61

Chapter 4 Graphs With a Fixed Embedding

(a) The outer parts are shifted counterclock-
wise. The highlight is detailed in Fig-
ure 4.15a.

(b) The outer parts are shifted clockwise. The
highlight is detailed in Figure 4.15b.

Figure 4.14: The exactly two possible weak embedded UDCRs of the cyclic caterpillar
for a variable hexagon. Details of the highlighted parts are found in
Figures 4.15a and 4.15b, respectively.

nodes together with the darker nodes of the inner hexagon form a cycle. If we were
to cut this cycle open at one position, the resulting graph would be a caterpillar. We
call such a graph a cyclic caterpillar⊳ cyclic caterpillar , which we can also define as any graph that, after
removing all leaf nodes once, results in a cycle. In addition to the possible intermediate
weak embedded UDCRs, the other remaining problem with Figure 4.13 is that the
interior hexagon needs to be made rigid such that the darker blue parts connecting the
outer caterpillars, stay in place. These two problems will be mitigated now.

In Figure 4.14 we see the exactly two possible weak embedded UDCRs of the cyclic
caterpillar which solves both issues that we just mentioned. The figure uses a more
abstract way to represent the weak embedded UDCRs: First, all parts that have the
same color are rigid. Second, instead of individual disks, we use line segments to
represent the backbone disks (the darker middle color) and the leaf disks (the lighter
colors on both sides). Only where two rigid parts meet, we have left the actual disks to
see exactly how they connect. We now look at the two issues this construction solves:
First, the interior consists of rigid caterpillars whose weak embedded UDCRs interlock
with each other and thus prevent them from moving relative to each other. They also
provide connections to the outer parts exactly one disk away from each corner, such
that moving the outer parts to one extreme position it forces the other parts to move as
well. Second, the highlighted part, which can also be seen in more detail in Figure 4.15,
uses the two-way gadget from Figure 4.11 to prevent any weak embedded UDCR that

62

4.2 NP-hardness for General Caterpillars

(a) The two outer weak em-
bedded UDCRs are shifted
as much counterclockwise
as possible.

(b) Both outer weak embed-
ded UDCRs are shifted as
much clockwise as possi-
ble.

(c) Some disks overlap if the
two outer weak embed-
ded UDCRs are not shifted
to one of their extremes.

Figure 4.15: One corner of a bigger rigid hexagon around which six caterpillars should
move between exactly two possible positions. The possible positions are
(a) true and (b) false. (c) Any other position results in an overlap. The
colored line segments are used as abstract representations of the weak
embedded UDCRs of the caterpillars.

is not one of the two extreme positions. In Figure 4.15c we can see the overlap of the
two outer parts if we try to position them outside the extreme positions.

We now have a cyclic caterpillar which has exactly two weak embedded UDCRs.
However, looking back at Figure 4.7b we observe that, in order to be used for a variable,
we need to be able to extend the caterpillar to the top, right, bottom, and left. To do this,
we look at Figure 4.16. Here, the depiction of the weak embedded UDCRs has become
even more abstract. Instead of representing a caterpillar’s weak embedded UDCR by
three adjacent paths with different intensities, we represent it by one thicker path
which represents both the backbone and the leaf disks. We can compare Figures 4.14a
and 4.16a as well as Figures 4.14b and 4.16d to see that they represent the same weak
embedded UDCR, respectively. In order to extend the caterpillar of our construction
we can cut open four of the outer parts (top, bottom, top left, and top right) and in
each case we run the two (now independent) caterpillars parallel towards one side.
The result can be found in Figures 4.16b and 4.16e.

Depending on what happens with the parts to which these two parallel caterpillars
will be connected, it may be that these two parts move relative to each other. This
needs to be prevented as otherwise we cannot guarantee that the construction works
as intended. We thus introduce another gadget to force two adjacent weak embedded
UDCRs into a specific position relative to each other. This lock gadget ⊳ lock gadgetcan be seen in

63

Chapter 4 Graphs With a Fixed Embedding

(a)

to clause

to clause

(b)

to clause

to clause

(c)

(d)

to clause

to clause

(e)

to clause

to clause

(f)

Figure 4.16: The evolution of the variable hexagon. Starting from the cyclic caterpillar
in (a) and (d) we split four outer parts in (b) and (e) and finally add the
lock gadget to ensure rigidity of the outer parts in (c) and (f).

(a) The desired weak embedded UDCR of the
lock gadget.

4

4

(b) To realize both parts apart from each
other they must be shifted by four disks.

Figure 4.17: A lock gadget which forces two (mostly) independent caterpillars into a
specific weak embedded UDCR relative to each other. It is only possible
to find a different weak embedded UDCR if they are apart by at least four
disks. By enlarging the construction this distance can be made as big as
needed.

64

4.2 NP-hardness for General Caterpillars

Figure 4.17. The idea is that, if the two weak embedded UDCRs can move relative to
each other by just a few grid positions, there will always be some overlap unless they
are realized exactly as seen in Figure 4.17a. Of course, if they can move further apart,
for example four disks, as seen in Figure 4.17b, they can be realized differently. If,
however, the possible movement comes just from the two-way gadget (Figure 4.11), i.e.,
a possible movement of only one disk, then the locked realization is the only possible
one. Additionally, if the possible movement is larger but still bounded, we can just
grow the lock gadget.

We now take this lock gadget and attach it to the four parallel caterpillars we have
constructed in Figures 4.16b and 4.16e and see the resulting weak embedded UDCRs
in Figures 4.16c and 4.16f. We call this construction a variable hexagon ⊳ variable hexagon. This now
ensures that the two points where these outer parts are connected to the inner parts of
the hexagon always move together and thus ensure that shifting one outer part forces
all other outer parts to shift as well. The variable hexagon is a caterpillar (or more
correctly, a combination of caterpillars) which can be extended on the top, bottom,
left, and right and which has exactly two weak embedded UDCRs. However, in order
to become a full variable gadget, it needs to be placed next to multiple other variable
gadgets which are all realized independently. Additionally, in order to have multiple
caterpillars going from a variable gadget to several clause gadgets we will need to join
multiple variable hexagons together to form one variable gadget.

In Figure 4.18 we show how to construct a variable gadget ⊳ variable gadgetfrom multiple variable
hexagons. We do so by taking a variable hexagon (Figure 4.16) then connecting its
two top right outgoing caterpillars to the bottom left outgoing caterpillars of a variable
hexagon that has been rotated by 180°. This rotated variable hexagon is then connected
via its bottom right outgoing caterpillars to the top left outgoing caterpillars of another
(not rotated) variable hexagon. As we can see in Figure 4.18a, the connection between
the first and second variable hexagon differs slightly from the connection between the
second and third variable hexagon. Since the third variable hexagon is equal to the first
we can repeat this construction as often as we want. We can also observe that the outer
parts of the variable hexagons rotate in alternating directions, just like gearwheels
do. However, this construction works only if we assume the interior of the variable
hexagons to be fixed in the plane. Without this, in Figure 4.18a, nothing prevents the
interior of the second variable hexagon to move one grid point towards the top left
which would make the outer parts turn counterclockwise relative to the interior.

To prevent this from happening we need to fix the interior to its desired position in
the plane. We observe that if the variable hexagons’ interior parts move, they can never
move only to the left or right. There is always a vertical component in its movement
when positioning it different from what is desired. Thus, restricting the variable
hexagons’ vertical movements relative to each other will be effective in preventing any
movement of the interiors. We know that if the variable hexagons’ interiors do not move,
the outer parts on the top and bottom of each variable hexagon only move horizontally

65

Chapter 4 Graphs With a Fixed Embedding

(a) With fixed interior parts, the outer parts’ rotational directions alternate like gearwheels.

socket

plug

(b) The plugs and sockets prevent vertical movement, see Figure 4.19.

(c) All (dark and light) blue parts are fixed relative to each other.

Figure 4.18: A variable gadget out of (a) three variable hexagons which can move
relative to each other. We can (b) constrain vertical movement due to
the interlocking construction and (c) add a fixed frame ensures that all
variable hexagons are fixed relative to the frame.

66

4.2 NP-hardness for General Caterpillars

(a) (b)

Figure 4.19: Trying to rotate two adjacent variable hexagons in the same direction
leads to an overlap of the construction added in Figure 4.18b.

relative to each other. With this information we add more sophisticated caterpillars to
the top and bottom (those outer parts that shall connect to the clauses) which prevent
any vertical movement relative to each other. The resulting construction can be seen in
Figure 4.18b, and we call the two parts the plug ⊳ plug

⊳ socket

and socket. We can observe that the
construction allows the horizontal movement, yet it constrains any (partial) vertical
movement. In Figure 4.19 we can see how trying to construct the second variable
hexagon in a way that is not consistent with the desired outcome will lead to an overlap
between the plug and the socket. More specifically, in Figure 4.19a we have the first
variable hexagon in counterclockwise rotation and then try to construct the second one
with counterclockwise rotation as well. This leads to the inner parts moving upwards
and thus creating the highlighted overlap. The same holds for Figure 4.19b where we
try to construct both variable hexagons with clockwise rotation.

We now have a construction that allows us to chain an arbitrary amount of variable
hexagons together such that they turn together like gearwheels in alternating directions.
Additionally, the whole construction has exactly two weak embedded UDCRs. What
remains open is how to combine multiple such constructions, one for each variable such
that their two weak embedded UDCRs can be obtained independently of each other.
That is, we want all interior parts of all the variable hexagons for all variables to be in
a fixed position relative to each other. The way we do it is by adding a frame to the
left and right side of the construction which is kept on the same vertical level by also
interfacing with the neighboring variable hexagons through their plugs and sockets.
Look at Figure 4.18c where this is shown in blue on the left and right side. Due to the
plug and socket the two new parts cannot move vertically with respect to the variable
hexagons. Additionally, where the frame is connected to the variable hexagons we use
an extended form of the two-way gadget, that can be seen in Figure 4.21. The purple
and blue lower part is just the two-way gadget (Figure 4.11) and the purple upper
part is fixed relative to the purple lower part due to the lock gadget (Figure 4.17).
Both blue parts are also fixed relative to each other by another lock gadget. Thus, in
Figure 4.18c, there are exactly two possible ways to position the (orange and purple)

67

Chapter 4 Graphs With a Fixed Embedding

(a) In this realization the purple connectors on the top and bottom are shifted to the right the
orange connectors are shifted to the left.

(b) In this realization the purple connectors on the top and bottom are shifted to the left the
orange connectors are shifted to the right.

Figure 4.20: A variable gadget consisting of three variable hexagons. In (a) we have the
same figure as Figure 4.18c while in (b) we have the only other possibility
to realize the underlying graph.

moving parts of the construction relative to the fixed dark and light blue parts. Those
two possible ways are found in Figure 4.20. For a breakdown of the order in which the
different parts form the whole construction see Figure A.1.

It is clear that the variable gadget in Figure 4.18c is not a single caterpillar: There
are multiple connection points⊳ connection

points
, each of which consists of two neighboring caterpillar

ends between which an additional caterpillar can or must be inserted. In Figure 4.18c
there are eight connection points: one above and one below each of the three variable
hexagons, one to the left, and one to the right. If all of these connection points except
one are closed, we obtain a single caterpillar. Thus, we can say that we have obtained

68

4.2 NP-hardness for General Caterpillars

(a) (b)

Figure 4.21: The connection between the frame added in Figure 4.18c and the first
variable hexagon in the variable gadget. Both possible positions are shown.

a way to build a caterpillar that has exactly two weak embedded UDCRs and whose
number of connection points can be arbitrarily large (2𝑘 + 1 both on the top and on
the bottom for any 𝑘 ∈ ℕ). In addition, all connection points above and below the
variable gadget move only horizontally and only by exactly one grid point. Both above
and below they also alternate their movements going from left to right through all
connections points. We can furthermore combine 𝑛 (for any 𝑛 ∈ ℕ) such caterpillars,
such that each has two weak embedded UDCRs independent of each other, resulting
in a total of 2𝑛 different weak embedded UDCRs overall. This will be used to represent
the 𝑛 variables in a given 3SAT formula.

4.2.4 Clause Gadgets

After seeing how to construct a gadget for each variable we now need to find a gadget
for clauses. That is, for every clause 𝐶 we want to find a construction that is connected
to the variable gadgets of the variables that appear in 𝐶 and that has a weak embedded
UDCR if and only if 𝐶 can be satisfied.

Similar to other clause gadgets in Planar 3SAT reductions (e.g., [Bow+15]) we
take the idea that a clause gadget for a clause 𝐶 is a finite space that is partly occupied
by each literal that has a truth value false. If we can then constrain the space for a
clause such that it can only accommodate at most two literals, we know that at least
one literal must be true. In our case we will design the gadget such that each literal
has a weak embedded UDCR which will want to occupy the clause space in case the
literal is false; however, at most two of the three weak embedded UDCRs can occupy
the space.

In Figure 4.22 we show the idea of the gadget that we will design. Here, the space to
be occupied by at most two of the three parts is the dashed central line. In Figure 4.22a
all three parts are in their configuration for true and thus none of them has a disk on a

69

Chapter 4 Graphs With a Fixed Embedding

true

true

true

(a)

false

true

false

(b)

false

false

true

(c)

true

false

false

(d)

Figure 4.22: The idea for the clause gadget. A false literal will occupy space on the
central dashed line. At most two of the three parts can occupy space there
at the same time.

grid position on the line. If any of the three parts is in its configuration for false it is
moved exactly one grid point horizontally towards the center line. The two left parts
are moved to the right and thus one disk occupies one grid point on the central line.
The right part is moved to the left and thus between the two fixed parts on the top
and bottom, it occupied all but one position on the center line. It follows that it is
impossible to move all three parts towards the center line as this would occupy one
more grid point than there is available. In Figures 4.22b to 4.22d we can see the three
possible representations in which exactly one part is in its true configuration.

Of course, the weak embedded UDCRs shown in Figure 4.22 are not rigid, especially
the two on the left. However, in Figures 4.23 and 4.24 we show two caterpillars, one
for the left and one for the right part, that are rigid except for the purple parts. Both
constructions are shown in their true configuration with respect to the shown center
line. For the left part we can see in Figures 4.23b and 4.23c two examples where we
try to place the purple backbone disks differently from what we can see in Figure 4.23a.
In Figure 4.23b we see the most extreme clockwise rotation possible, but we observe
that there is an overlap in the top right part. An attempt to not turn it as far can be
seen in Figure 4.23c which also has an overlap. The arrows indicate the movement
of two disks between the two figures. As we can see, there is always at least one disk
that intersects with the darker caterpillar’s weak embedded UDCR. Thus, the only part
in Figure 4.23a that can move arbitrarily is the lower purple leaf disk which can be
placed anywhere on a 60° degree arc. However, no matter where it is placed along the
arc, its center will be on or on the other side of the center line, if the construction is
realized in its false configuration. It is also the only disk of the whole construction to
be on this line.

The same idea holds true for the right part which is detailed in Figure 4.24. The
purple part is not rigid and it may bend by 60° as there is one leaf disk missing. However,
as exemplified in Figures 4.24b and 4.24c if we try to bend the purple part we will
have an intersection of the blue parts. Thus, the weak embedded UDCR in Figure 4.24a
is the only possible way to realize the two blue parts relative to each other. However,

70

4.2 NP-hardness for General Caterpillars

(a) The only weak embedded
UDCRs; the one purple
disk can rotate a bit.

(b) Due to the overlap, this is
not a valid weak embed-
ded UDCR.

(c) Another impossible weak
embedded UDCR.

Figure 4.23: A caterpillar for the left parts of a clause gadget. Apart from the movement
of one disk, the rest of the caterpillar is rigid. As indicated in (b) and (c),
any rotation has an overlap.

(a) The only weak embedded
UDCRs; the purple disks
can move around a bit.

(b) Due to the overlap, this is
not a valid weak embed-
ded UDCR.

(c) Another impossible weak
embedded UDCR.

Figure 4.24: A caterpillar for the right part of a clause gadget. The purple disks on the
left can move around a bit, while the rest of the caterpillar is rigid.

due to the lack of one leaf disk, the other purple leaf disks on the left side can move
around on an at most 60° arc, depending on the placement of the other leaf disks.

Using the two constructions with the same idea as in Figure 4.22 we can see one
possible weak embedded UDCR of a clause gadget in Figure 4.25. The construction
from Figure 4.24 is increased in length such that both left parts can fit into the one
disk space left by this construction. In the figure we can see that two of the three parts
are in their false configuration and one (bottom left) is in its true configuration. It is
clear that trying to put it in its false configuration as well, i.e., moving it one grid point
to the right, is not possible.

71

Chapter 4 Graphs With a Fixed Embedding

falsetrue

falsetrue

false true

Figure 4.25: One possible weak embedded UDCR of the full clause gadget where two
literals (top left and right) are set to false and the third one (bottom left)
is set to true.

72

4.2 NP-hardness for General Caterpillars

4.2.5 Putting Everything Together

With the variable and clause gadgets we look back at the full picture for a given
formula, as exemplified in Figure 4.7. An observant reader may have wondered why,
during the construction of the variable gadget, we have never specified which of the
two possible weak embedded UDCRs should mean true and which should mean false.
The reason is that we can choose this for every variable gadget independently, as
long as it is consistent with all clause gadgets it is connected to. This brings us to
the last remaining task: connecting the variable gadgets to the clause gadgets. A
full picture of one weak embedded UDCR of the caterpillar for the example formula
𝜙 = (¬𝑥1 ∨ 𝑥2 ∨ 𝑥3)∧(𝑥1 ∨ 𝑥2 ∨ 𝑥4)∧(¬𝑥2 ∨ 𝑥3 ∨ 𝑥4) (the one also used previously)
can be found in Figure 4.26 (pages 74 and 75). Note that, in contrast to the variable
gadgets we have seen before (e.g., in Figure 4.18) the variable gadgets used in this
figure only consist of one or two variable hexagons. This was an optimization we
made to fit the whole weak embedded UDCR into a readable figure. We will make
some additional remarks regarding this optimization in a few paragraphs. For the
construction of the caterpillar we had to decide for every variable which of its two weak
embedded UDCRs should have the meaning of true and which the meaning of false.

For 𝑥1 we have two clauses: 𝑐1 on the bottom in which 𝑥1 appears as a negative
literal ¬𝑥1 and 𝑐2 on the top in which 𝑥1 appears as 𝑥1. For both clause gadgets the
extensions of the variable gadget for 𝑥1 enter the clause gadget from the left. A false
value for the literal means that the respective part of the weak embedded UDCR pushes
into the clause gadget, which means moving to the right in these two cases. Since
one literal is the positive literal 𝑥1 and one literal is the negative literal ¬𝑥1 we only
need one variable hexagon in the variable gadget for 𝑥1: We define a counterclockwise
rotation to mean true and a clockwise rotation to mean false. Then, setting 𝑥1 to true
moves the literal 𝑥1 out of the clause gadget for 𝑐2 on the top and pushes the literal
¬𝑥1 into the clause gadget for 𝑐1 on the bottom. Setting 𝑥1 to false does the exact
opposite, exactly as we need.

Then the top and bottom can be directly connected to their respective clause gadgets,
and we only need one variable hexagon in the variable gadget.

For 𝑥2 we need to connect to all three clause gadgets. Additionally, in the two
gadgets on top 𝑥2 appears once as 𝑥2 and once as ¬𝑥2. Thus, we use two variable
hexagons for 𝑥2 such that for 𝑐2 setting 𝑥2 to true means moving to the left where for
𝑐3 setting 𝑥2 to false means moving to the left. The last clause gadget to which we
need to connect 𝑥2 is 𝑐1 on the bottom in which 𝑥2 appears as 𝑥2. We locate it to the
left of 𝑥2 and thus from the two possible connection points on the bottom we choose
the one for which setting 𝑥2 to true means moving to the right.

For 𝑥3 and 𝑥4 we can apply the same ideas and see that for both we also only need
one variable hexagon: In both clauses it appears in, 𝑥3 appears as 𝑥3, on the top setting
it to true should move to the left and on the bottom it should move to the right. For 𝑥4

73

Chapter 4 Graphs With a Fixed Embedding

𝑥1 = true 𝑥2 = false 𝑥3 = true 𝑥4 = false

𝑥1

𝑥2
𝑥4

¬𝑥2

𝑥3
𝑥4

𝑥3

𝑥2

¬𝑥1

true

true

false

false
false

true false

true

74

4.2 NP-hardness for General Caterpillars

𝑥1 = true 𝑥2 = false 𝑥3 = true 𝑥4 = false

𝑥1

𝑥2
𝑥4

¬𝑥2

𝑥3
𝑥4

𝑥3

𝑥2

¬𝑥1

true

true

false

false
false

true false

true

Figure 4.26: One full weak embedded UDCR for the caterpillar constructed for the
3SAT formula 𝜙 = (¬𝑥1 ∨ 𝑥2 ∨ 𝑥3) ∧ (𝑥1 ∨ 𝑥2 ∨ 𝑥4) ∧ (¬𝑥2 ∨ 𝑥3 ∨ 𝑥4).
The construction implies the choice of 𝑥1 = true, 𝑥2 = false, 𝑥3 = true,
and 𝑥4 = false which is a satisfying assignment for 𝜙.

75

Chapter 4 Graphs With a Fixed Embedding

we only have two clauses, both on the top, and it appears as 𝑥4 in both. We can thus
connect both clauses to the same connection point as one caterpillar.

From the realization in Figure 4.26 we can then infer that setting 𝑥1 and 𝑥3 to true
as well as 𝑥2 and 𝑥4 to false is a valid assignment for 𝜙. This can be easily checked
to be true as 𝑥3 = true satisfies 𝑐1 = (¬𝑥1 ∨ 𝑥2 ∨ 𝑥3) and 𝑐3 = (¬𝑥2 ∨ 𝑥3 ∨ 𝑥4) while
𝑥1 = true satisfies 𝑐2 = (𝑥1 ∨ 𝑥2 ∨ 𝑥4).

As noted before, in Figure 4.26 some choices were made such that we need as few
variable hexagons for each variable as possible. The reason is that the figure should
not be too large and thus unreadable in the details. However, we could also choose a
less creative and more rigid way of building the caterpillar. Given a rectilinear drawing
of the planar embedding of the associated graph 𝐺(𝜙) of a 3SAT formula 𝜙, let 𝑡𝑖 and
𝑏𝑖 be the number of clauses 𝑥𝑖 is connected on the top and on the bottom, respectively.
For the variable gadget for 𝑥𝑖 we could then use 2 ⋅ max{𝑡𝑖, 𝑏𝑖} variable hexagons.
This way we could always say that a counterclockwise rotation of the leftmost variable
hexagon means that the variable is set to true and a clockwise rotation means that it is
set to false. We would have sufficient connection points to connect all relevant clause
gadgets to the variable as at least two connection points with opposite movements are
reserved for each clause gadget.

Overall, from the construction we can conclude

Theorem 4.2. The problem of finding a weak embedded UDCR for a caterpillar with a
given embedding is NP-hard.

↪

Proof. As seen in the whole Section 4.2, we reduce from Planar 3SAT. Given a 3SAT
formula 𝜙 with 𝑛 variables and 𝑚 clauses we find a rectilinear drawing of a planar
embedding of its associated graph. From this drawing we then see how many variable
hexagons we need for each variable and how to connect the clause gadgets to the
variable gadgets, such that we can construct the caterpillar 𝐶(𝜙) for 𝜙.

To ensure that we can construct 𝐶(𝜙) in polynomial time, we bound its size by
looking at the individual components:

• We have 𝑚 clause gadgets each of which has constant size. Thus, we need 𝑂(𝑚)
nodes for all clause gadgets.

• We have 𝑛 variable gadgets which in total need at most 6𝑚 variable hexagons:
at most 2 for each of the 3𝑚 literals in the formula. Each variable hexagon has
constant size which means that all variable gadgets need 𝑂(𝑛 +𝑚) nodes for all
variable gadgets.

• What is left are the caterpillar parts which connect the variable gadgets to the
clause gadgets. Each such connection goes vertically by at most the number of
clauses and horizontally by at most the number of variable hexagons plus the

76

4.2 NP-hardness for General Caterpillars

number of variable gadgets. This leads to 𝑂(𝑚 + 𝑛) necessary nodes for each
connection, totaling in 𝑂(𝑚2 +𝑚𝑛) nodes for all connections.

Overall, the size of 𝐶(𝜙) is bounded by 𝑂(𝑚2 +𝑚𝑛).
We can also see that 𝐶(𝜙) has a weak embedded UDCR if and only if 𝜙 is satisfiable.

If it is satisfiable we have a satisfying variable assignment which means that in the
weak embedded UDCR in which the variable gadgets resemble this assignment, for
every clause gadget we have at least one of the three parts that is not pushed into the
gadget, making it realizable. On the other hand, if we find a weak embedded UDCR we
know that every variable gadget is in exactly one of two states which has the meaning
of setting the corresponding variable to true or false. In the weak embedded UDCR
each clause gadget must have at least one part that is not pushed into the gadget. This
part corresponds to the literal that satisfies this clause.

Similar to the previous chapter for graphs without embedding, the obvious question
now is whether the problem is not only NP-hard but also contained in NP and thus
NP-complete. As before, we do not have an answer to this question for the general
problem, but we can again show that the problem is contained in ∃ℝ.

Given a graph, introduce one pair of variables 𝑥𝑣 and 𝑦𝑣 for each node 𝑣. For each
pair of nodes 𝑢, 𝑣 such that 𝑢 and 𝑣 are connected by an edge we add the constraint
(𝑥𝑢 − 𝑥𝑣)

2 + (𝑦𝑢 − 𝑦𝑣)
2 = 22 to ensure that their disks touch. For all other pairs 𝑢, 𝑣

we add (𝑥𝑢 − 𝑥𝑣)
2 + (𝑦𝑢 − 𝑦𝑣)

2 ≥ 22 to ensure that no two disks intersect. So far this
is the same construction as for graphs without embedding, and it will give as a weak
UDCR if possible. However, this will generally not conform to the given embedding.

Given the weak UDCR we can easily check whether it conforms to the embedding
with the following test: We draw an oriented line through the centers of two disks that
should be next to each other according to the embedding. The orientation of the line
is from the first to the second disk in counterclockwise order. Now, there is a disk in
between the first and the second in counterclockwise order if and only if this disk’s
center is to the right of the oriented line. Similarly, there is a disk between the second
and the first in counterclockwise order if and only if this disk’s center is to the left of
the oriented line. See Figure 4.27 for two situations, the first in which all other disks
are to the left of the line and the second where there is a disk to the right of the line.
We thus only need to add constraints in the following way for every node with more
than two adjacent nodes. We look at all adjacent nodes and their cyclic order. For
every successive pair of nodes 𝑢, 𝑣 in counterclockwise order and every remaining node
𝑤 we add the constraint that (𝑥𝑤, 𝑦𝑤) must be to the left of the oriented line through
(𝑥𝑢, 𝑦𝑢) and (𝑥𝑣, 𝑦𝑣). This constraint can be easily checked with the orientation test,
see, e.g., Preparata and Shamos [PS93, Section 2.2.1] or de Berg, Cheong, van Kreveld,
and Overmars [Ber+08, Excercise 1.4.a]. The corresponding constraint added for each
such node triple is then

𝑥𝑢𝑦𝑣 − 𝑥𝑢𝑦𝑤 − 𝑥𝑣𝑦𝑢 + 𝑥𝑣𝑦𝑤 + 𝑥𝑤𝑦𝑢 − 𝑥𝑤𝑦𝑣 > 0.

77

Chapter 4 Graphs With a Fixed Embedding

(a) (b)

Figure 4.27: (a) If all disk centers of the other child disks are to the left of an oriented
line through two disk centers, we know that those two disks are next to
each other in the embedding. (b) If, on the other hand, a disk center is to
the right of this oriented line, we know that this disk is placed between
those two disks.

Since every node has at most six adjacent nodes (otherwise it cannot have a weak
embedded UDCR) the number of these additional constraints is linear in the total
number of nodes. Thus, the constructed formula still has polynomial size and can be
constructed in polynomial time. We have also argued that these additional constraints
exactly model the additional constraints due to the embedding. This shows that the
problem is contained in ∃ℝ.

If, however, we are only interested in finding a grid-restricted weak UDCR, we
can show that the problem is contained in NP. Given a graph the certificate of a grid-
restricted weak UDCR gives us the disk center for each node. Since the disks centers are
all on the hexagonal grid, their coordinates can be given as integers. The verification
algorithm then only needs to check that no two disks are placed on the same grid
position and that the disks of adjacent nodes are placed on adjacent grid positions.
This can be easily done in quadratic time by checking all pairs of nodes. In addition,
for each node we need to check whether the placement of the disks of its adjacent
nodes conforms to the given embedding. Since there are only six possible positions and
up to six adjacent nodes, this can be done in constant time per node. This approach
does not work if the weak UDCRs are not grid-restricted, since we cannot be sure that
the disk coordinates have polynomial size in the input.

We can now conclude this chapter with a summary of our results. In Section 4.1 we
showed a linear-time algorithm for finding a grid-restricted weak embedded UDCR
for strictly 𝑥-monotone caterpillars with a given embedding. The general problem of
finding a weak embedded UDCR is NP-hard for caterpillars, as shown in Section 4.2,
by giving a reduction from Planar 3SAT. We showed that the problem is in ∃ℝ and in
the grid-restricted case it is even NP-complete.

78

II
Colored Nearest Neighbor Graphs

79

Chapter5
Introduction and Preliminaries

In the well-known connect the dots puzzle [Wik23], a form of puzzle generally created
for children, we are given 𝑛 points in the plane, numbered from 1 to 𝑛. The task is then
to connect two successively numbered points with a straight line segment. The result is
a straight-line drawing of a path. This type of puzzle dates back at least over a hundred
years as an example in a newspaper from 1915, seen in Figure 5.1, shows [She15].

A somewhat similar puzzle was introduced by van Kapel [Kap14] ten years ago,
where we are given a set of points in the plane, each of which has at least one color.
The task is then as follows: for each point and each color it has, we look for the closest
point that also has this color and connect both points with a straight line segment.
Since this problem is easy to solve, we are more interested in the problem of creating
such a puzzle. Given a set of line segments, how do we color their endpoints such that
connecting them as described before results in the same set of line segments?

A slightly different variant of the problem where each point is given exactly one color
is shown to be NP-complete for two dimensions and more than two colors by Cleve
et al. [Cle+22]. If maximal line segments are allowed to have points in their interior
then it even remains NP-complete for two colors. As a result, we will focus on the
one-dimensional case, where we are given a sorted set of one-dimensional points. We
want to color the points such that any resulting connection is only between neighboring
points, and no connection is made more than once.

The organization of this chapter is as follows. In Section 5.1 we first define multisets
and multigraphs, which is used afterwards in Section 5.2 to define what a (colored)
nearest neighbor graph is, in general. Section 5.3 then goes into more details about
the one-dimensional case, defines the computational problems we will talk about, and
make some useful observations about the one-dimensional case.

5.1 Multisets and Multigraphs

We will need the notion of multisets and multigraphs later to properly define colored
nearest neighbor graphs. Thus, we will first introduce some basic definitions for
multisets, based on Syropoulos [Syr01].

81

Chapter 5 Introduction and Preliminaries

Figure 5.1: A newspaper clipping from December 1915 showing a connect the dots
puzzle [She15].

Definition 5.1 (cf. [Syr01, Definitions 2 and 4]).⊳ multiset
⊳ multiplicity
⊳ multiset equality

A multiset S over a set 𝑈 is a pair
(𝑈,𝑚S), where 𝑚S ∶ 𝑈 → ℕ is a function that tells us the multiplicity of each element
of 𝑈 in S.

Two multisets S = (𝑈,𝑚S) and T = (𝑉,𝑚T) are equal, written as S = T, if and only
if 𝑈 = 𝑉 and for all 𝑥 ∈ 𝑈 we have 𝑚S(𝑥) = 𝑚T(𝑥).

With this definition, it is easy to see that ordinary sets are just special cases of
multisets:

↪

Observation 5.1 (cf. [Syr01, Remark 1]). Any set 𝑆 ⊆ 𝑈 that is a subset of a universe 𝑈
is a multiset (𝑈, 𝜒𝑆) where 𝜒𝑆 ∶ 𝑈 → {0, 1} is the characteristic function of 𝑆, that is,

𝜒𝑆(𝑥) = {
1 if 𝑥 ∈ 𝑆,
0 otherwise.

82

5.2 Defining Colored Nearest Neighbor Graphs

We can thus compare the equality of a multiset S and a set 𝑆 by checking whether
S = (𝑈,𝜒𝑆) or not. Similarly, every multiset in which each element appears either exactly
once or not at all can be considered a set.

Due to the previous observation, we can interpret any set as a multiset and any
multiset that contains each element at most once as a set. If an element appears in two
multisets, we want an operation that combines both multisets by adding the individual
multiplicities of the element:

Definition 5.2 (cf. [Syr01, Definition 7]). ⊳ multiset sumGiven two multisets A = (𝑈,𝑚A) and
B = (𝑈,𝑚B) over the same set 𝑈 we define the multiset sum A ⊎ B of A and B as the
multiset C = (𝑈,𝑚C) with 𝑚C(𝑥) = 𝑚A(𝑥) + 𝑚B(𝑥) for all 𝑥 ∈ 𝑈.

Similar to sets and multisets, we have the notion of graphs and multigraphs. While
graphs only have a binary value that decides for each edge whether it is in the graph
or not, a multigraph can have the same edge multiple times:

Definition 5.3. ⊳ multigraphAn undirected multigraph 𝐺 is a pair (𝑉,E) where 𝑉 can be any set of
nodes and E = ((𝑉

2),𝑚E) is a multiset of undirected edges.

Similarly to multisets, an undirected multigraph 𝐺 = (𝑉,E) where the edge multiset
E contains each edge at most once can and will be interpreted in this thesis as an
undirected graph 𝐺 with the edge set E interpreted as a set.

5.2 Defining Colored Nearest Neighbor Graphs

Even though our focus will be on the one-dimensional case, we will first define the
different aspects that lead to the more generally defined problem.

5.2.1 Nearest Neighbor Graphs

We first begin by defining what it means to be a nearest neighbor.

Definition 5.4. ⊳ unique nearest
neighbor

⊳ connects to

Let 𝑃 ⊆ ℝ𝑑 be a point set in the 𝑑-dimensional Euclidean space and
let 𝑝, 𝑞 ∈ 𝑃 such that 𝑝 ≠ 𝑞. Then 𝑞 is the unique nearest neighbor of 𝑝, denoted as
𝑝 ∘→ 𝑞, if and only if

dist(𝑝, 𝑞) < min
𝑟∈𝑃∖{𝑝,𝑞}

dist(𝑝, 𝑟)

where dist ∶ ℝ𝑑 × ℝ𝑑 → ℝ≥0 is the Euclidean distance metric. Thus, ∘→ is a binary
relation on the point set, i.e., ∘→∶ 𝑃 × 𝑃. We also say that 𝑝 connects to 𝑞.

With this definition, we have two immediate observations:

83

Chapter 5 Introduction and Preliminaries

𝑝1

𝑝3
𝑝4

𝑝5
𝑝2

(a) An NNG of five points 𝑃
where the circle indicates
𝑝3 ∘→ 𝑝4. As 𝑝4 ∘→ 𝑝3,
∘→ is not symmetric.

𝑝1

𝑝3
𝑝4

𝑝5
𝑝2

(b) This color assignment 𝜎
assigns {1} to 𝑝1, {1, 2, 3}
to 𝑝2, {1, 2} to 𝑝3, {1, 3}
to 𝑝4, and {3} to 𝑝5.

𝑝1

𝑝3
𝑝4

𝑝5
𝑝2

(c) In 𝒩(𝑃, 𝜎) for 𝜎 no edge
appears in more than one
color; it is thus a CNNG.

Figure 5.2: An example point set with an NNG, a color assignment, and a CNNG.

Observation 5.2. The relation ∘→ is generally not symmetric. Furthermore, ∘→ is a
partial function ∘→∶ 𝑃 → 𝑃.

Proof. For the first statement look at Figure 5.2a. Here 𝑝3 ∘→ 𝑝4 but 𝑝4 ∘→ 𝑝3 since
𝑝4 ∘→ 𝑝5. For the second statement, observe that, due to its definition, ∘→ is right-
unique, i.e., there is at most one point on the right-hand side of the relation. Thus, ∘→
is a partial function.

Using the ∘→ relation we now construct an undirected graph that relates two points
if and only if one is the unique nearest neighbor of the other:

Definition 5.5.⊳ nearest neighbor
graph (NNG)

Let 𝑃 ⊆ ℝ𝑑 be a 𝑑-dimensional point set. Then, its nearest neighbor
graph (NNG), denoted by 𝒩𝒢(𝑃), is an undirected graph 𝐺 = (𝑃, 𝐸). We have an edge
between two points if one of the two is the unique nearest neighbor of the other, i.e.,

𝐸 = {{𝑝, 𝑞} ∈ (
𝑉
2
) | 𝑝 ∘→ 𝑞 ∨ 𝑞 ∘→ 𝑝}.

Since the node set of the NNG is the same as the input, we generally only care about
the edges of the NNG. We thus use the notation 𝒩(𝑃) to denote the edges 𝐸 of 𝒩𝒢(𝑃).

Even though the nearest neighbor graph is an undirected graph, we will often depict
nearest neighbor graphs as directed graphs where there is an edge (𝑝, 𝑞) if and only
if 𝑝 ∘→ 𝑞. The reason is that this way we can always extract the information which
point connects to which other point in which color. This would not be possible if we
only showed the NNG’s undirected edges. See Figure 5.2a for an example NNG of five
points.

5.2.2 Colored Nearest Neighbor Graphs

As described in the introduction, our goal is to assign colors to each point. For this we
will be given a number of colors we are allowed to use, and each point should have

84

5.2 Defining Colored Nearest Neighbor Graphs

at least one color and has otherwise no restrictions on the colors assigned. This is
formalized in

Definition 5.6. ⊳ color set
⊳ color assignment
⊳ colored points

Let 𝑃 ⊆ ℝ𝑑 be a 𝑑-dimensional point set and let ̂𝑐 ∈ ℕ+ be a number
of colors. We define 𝐶 ̂𝑐 = {1,… , ̂𝑐} as the color set with ̂𝑐 colors. A color assignment
𝜎 ∶ 𝑃 → 2𝐶 ̂𝑐 ∖∅ is a function which assigns a non-empty subset of colors to each point.
We denote by 𝑃𝑐∈𝜎 = {𝑝 ∈ 𝑃 | 𝑐 ∈ 𝜎(𝑝)} all points which have 𝑐 ∈ 𝐶 ̂𝑐 among their
assigned colors. If 𝜎 is clear from the context, we shorten the notation to 𝑃𝑐. We call
𝑃𝑐∈𝜎 or 𝑃𝑐 the 𝑐-colored points of 𝑃.

An example color assignment can be seen in Figure 5.2b where different points are
assigned different numbers of colors. The nearest neighbor graph of the colored points
is then obtained by combining the nearest neighbor graphs for each color.

Definition 5.7. ⊳ colored nearest
neighbor
multigraph
(CNNM)

⊳ colored nearest
neighbor graph
(CNNG)

Let 𝑃 ⊆ ℝ𝑑 be a 𝑑-dimensional point set and let 𝜎 ∶ 𝑃 → 2𝐶 ∖ ∅
be a color assignment. Then, for every color 𝑐 ∈ 𝐶, let 𝐸𝑐 = 𝒩(𝑃𝑐) be the edges
of the nearest neighbor graph of the points that have color 𝑐. Let then E = ⨄𝑐∈𝐶 𝐸𝑐
where ⊎ is the multiset sum and E is the resulting multiset. Then, the colored nearest
neighbor multigraph (CNNM)𝒩𝒢(𝑃, 𝜎) is the multigraph (𝑃,E); any edge that appears
in multiple nearest neighbor graphs of different colors appears multiple times in
𝒩𝒢(𝑃, 𝜎) as well.

If no edge appears more than once in 𝒩𝒢(𝑃, 𝜎), it is interpreted as an ordinary
graph and called a colored nearest neighbor graph (CNNG). This is the case if 𝐸𝑐∩𝐸𝑐′ = ∅
for all distinct 𝑐, 𝑐′ ∈ 𝐶, or in other words, if ⨄𝑐∈𝐶 𝐸𝑐 = ⋃𝑐∈𝐶 𝐸𝑐.

Since the node set of the CNNM is equal to the input points, we generally only care
about the edges of the CNNM. We use the notation 𝒩(𝑃, 𝜎) to denote the edges E of
𝒩𝒢(𝑃, 𝜎).

The CNNG of the example color assignment can be seen in Figure 5.2c. We can
see that it is a union of the three NNGs with edges 𝐸1 = {{𝑝1, 𝑝2}, {𝑝3, 𝑝4}}, 𝐸2 =
{{𝑝2, 𝑝3}}, and 𝐸3 = {{𝑝2, 𝑝4}, {𝑝4, 𝑝5}}.

Our focus will be on the colored nearest neighbor graphs (as opposed to colored
nearest neighbor multigraphs) which, as defined, ensure that every edge exists because
of exactly one color. However, some intermediate results work for CNNMs and are thus
stated as such.

Sometimes it will be useful to quickly state that 𝑝 ∘→ 𝑞 with respect to the 𝑐-colored
points 𝑃𝑐 for some color 𝑐 ∈ 𝐶. We do this by saying 𝑝 ∘→𝑐 𝑞. If we need to make clear
which color assignment 𝜎 we talk about, we indicate this by writing 𝑝 ∘→𝑐𝜎 𝑞.

As a first observation for CNNMs we can see that a color that is assigned to fewer
than two points can be ignored:

85

Chapter 5 Introduction and Preliminaries

Figure 5.3: An example nearest neighbor graph of a two-dimensional point set where
the highlighted point in the middle does not connect to any point since its
nearest neighbor is not unique.

Observation 5.3. Let 𝑃 ⊆ ℝ𝑑 be a 𝑑-dimensional point set and let 𝜎 ∶ 𝑃 → 2𝐶 ∖∅ be
a color assignment. If |𝑃𝑐| < 2 for some 𝑐 ∈ 𝐶 we can remove color 𝑐 from 𝜎 to obtain
𝜎′ ∶ 𝑃 → 2𝐶∖{𝑐} ∖∅ with 𝒩(𝑃, 𝜎′) = 𝒩(𝑃, 𝜎).

Proof. If |𝑃𝑐| < 2 then 𝐸𝑐 = ∅ as the NNG of an empty point set or a point set with
just one point does not contain any edge. Thus, removing 𝑐 from 𝜎 does not change
the edges of the CNNM.

As a result, for the rest of this work, we can assume that in any given color assignment
each color is assigned to at least two points, unless specifically stated otherwise.

5.2.3 General Position

Let 𝑃 ⊆ ℝ𝑑 be a 𝑑-dimensional point set and 𝑝, 𝑞 ∈ 𝑃 two different points. The way we
defined the ∘→ relation, we can see that 𝑝 ∘→ 𝑞 only if all other points are strictly further
away from 𝑝. If there is another point 𝑞′ ∈ 𝑃∖{𝑝, 𝑞} with dist(𝑝, 𝑞′) = dist(𝑝, 𝑞), then
neither 𝑝 ∘→ 𝑞 nor 𝑝 ∘→ 𝑞′. This may lead to the situation that 𝑝 does not connect to
any other point (in some color that it is assigned). See Figure 5.3 for a two-dimensional
example.

We want to ensure, however, that this situation does not arise in the situations
that we analyze. Every point should always connect to exactly one point. That is, we
only want to look at point sets 𝑃 such that ∘→ is a total function with respect to 𝑃.
Furthermore, it should also hold for any color assignment that ∘→𝑐 is a total function
for all colors 𝑐.

The easiest way to ensure this is by guaranteeing that for every point the distances
to all other points are all distinct. For point sets that do not fulfill this criterion, it can
be achieved by a small random perturbation of each point.

Definition 5.8.⊳ general position A 𝑑-dimensional point set 𝑃 = {𝑝1, 𝑝2,… , 𝑝𝑛} ⊆ ℝ𝑑 is in general posi-
tion if and only if for all distinct 𝑖, 𝑗, 𝑘 ∈ [1..𝑛] it holds that dist(𝑝𝑖, 𝑝𝑗) ≠ dist(𝑝𝑖, 𝑝𝑘).

86

5.3 One-Dimensional Colored Nearest Neighbor Graphs

5.3 One-Dimensional Colored Nearest Neighbor Graphs

We now look at specific properties of one-dimensional CNNGs. Here the given point
set is a subset of ℝ. This has some direct implications that we will explore now. From
now on we will assume that all point sets are in general position and also that they are
already sorted from left to right. We define these two properties for our convenience as

Definition 5.9. ⊳ input point setLet 𝑃 = {𝑝1,… , 𝑝𝑛} ⊆ ℝ be a one-dimensional point set. We call 𝑃
an input point set if 𝑃 is in general position and the elements in 𝑃 are ordered, i.e.,
𝑝1 < 𝑝2 < ⋯ < 𝑝𝑛.

Then it is easy to obtain its nearest neighbor graph 𝒩(𝑃):

Observation 5.4. Let 𝑃 = {𝑝1,… , 𝑝𝑛} ⊆ ℝ be an input point set. Every point has at
most two candidates to which they can connect, those closest to it to the left and right.
Thus, we can compute 𝒩(𝑃) in 𝑂(𝑛) time.

Proof. Since we have one-dimensional points we know that 𝑝1 ∘→ 𝑝2 and 𝑝𝑛 ∘→ 𝑝𝑛−1.
Furthermore, for all 𝑖 ∈ [2..(𝑛 − 1)] we have either 𝑝𝑖 ∘→ 𝑝𝑖−1 or 𝑝𝑖 ∘→ 𝑝𝑖+1. For
every point we can thus decide in constant time to which point it connects and add
those edges to 𝒩(𝑃), giving a linear time algorithm.

As a result of this observation, we can see that the edge candidates come from a
limited set of possible edges. Since every point can only connect to its immediate
neighbors we can define this set as

Definition 5.10. ⊳ neighbor edges
⊳ illegal edge

Let 𝑃 = {𝑝1,… , 𝑝𝑛} ⊆ ℝ be an input point set. We call the set

𝐸𝑃 = {𝑒𝑖 = {𝑝𝑖, 𝑝𝑖+1} | 𝑖 ∈ [1..(𝑛 − 1)]}

the neighbor edges of 𝑃. All edges between points in 𝑃 that are not in the set of neighbor
edges are called illegal edges.

In Figure 5.4a we can see the neighbor edges of an example point set together with
its NNG whose edges are a subset of 𝐸𝑃. Considering the additional colors we can now
define the two problems that are the focus of the remaining chapters in this thesis.

5.3.1 Problem Statements

The first problem is about finding a color assignment such that the resulting graph
contains exactly all neighbor edges.

↪

Problem 5.1. Let 𝑃 ⊆ ℝ be an input point set and ̂𝑐 ∈ ℕ+ be a number of colors.
The 1-Dimensional Colored Nearest Neighbor Graph (1D-CNNG) problem is the

87

Chapter 5 Introduction and Preliminaries

𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝6

𝑒1 𝑒2 𝑒3 𝑒4 𝑒5

𝑃:

𝐸𝑃:

𝒩(𝑃):

(a) A one-dimensional point set 𝑃 with all
neighbor edges 𝐸𝑃. On top, we see 𝒩(𝑃)
which includes all but one edge of 𝐸𝑃.

𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝6𝑃:

(b) Different subsets 𝐸 ⊆ 𝐸𝑃. The lower three
are input edge sets, the upper two are not;
the problematic points are highlighted.

Figure 5.4: A point set with its neighbor edges, its NNG, and some subsets of 𝐸𝑃.

problem of finding a color assignment 𝜎 with ̂𝑐 colors such that 𝒩(𝑃, 𝜎) = 𝐸𝑃, i.e., the
resulting edges should be exactly the neighbor edges of 𝑃.

In addition, the 1-Dimensional ColoredNearest Neighbor GraphOptimization
(1D-CNNG-Opt) problem is the problem of finding the smallest number 𝑐∗ ∈ ℕ+ such
that there is a solution for the 1D-CNNG problem with ̂𝑐 = 𝑐∗.

In Figure 5.5a we depict an example input point set for the 1D-CNNG-Opt problem
together with a possible solution. The figure shows the color assignment and the
resulting CNNG. Since 𝐸𝑃 is an ordinary set it is clear from the definition that any
solution to Problem 5.1 must result in a CNNG and not just a CNNM.

For the second problem we want to generalize the 1D-CNNG and 1D-CNNG-Opt
problem to subsets of the neighbor edges. Thus, we first define which subsets of the
neighbor edges will be considered:

Definition 5.11.⊳ input edge set Let 𝑃 ⊆ ℝ be an input point set. Then a set 𝐸 ⊆ 𝐸𝑃 is called an input
edge set if and only if every point in 𝑃 has at least one edge in 𝐸; more formally if and
only if for all 𝑝 ∈ 𝑃 there is an edge {𝑞, 𝑟} ∈ 𝐸 such that 𝑝 = 𝑞 or 𝑝 = 𝑟.

When we write 𝑒𝑖 ∈ 𝐸 or 𝑒𝑖 ∉ 𝐸, we mean that 𝑒𝑖 = {𝑝𝑖, 𝑝𝑖+1}, i.e., it is the 𝑖th edge
in 𝐸𝑃 from left to right.

The idea here is that we allow the removal of edges; however, every point needs to
have at least one incident edge: For every color assignment and every point 𝑝 there is
at least one color 𝑐 assigned to the point and thus 𝑝 ∘→𝑐 𝑞 for some other point 𝑞. See
Figure 5.4b for example subsets of 𝐸𝑃, some of which are input edge sets and others
which are not because there are isolated nodes.

Since every point in 𝑃 has at least one incident edge, the union of all endpoints of the
edges in 𝐸 gives us the input point set 𝑃. It is thus generally not necessary to provide
both 𝑃 and 𝐸, and it suffices to provide only 𝐸. If, in the remainder of this thesis, we
only say that we are given an input edge set 𝐸 ⊆ 𝐸𝑃, it is clear that 𝑃 is the underlying
input point set.

We want to be able to reference those edges that are missing in an input set 𝐸.
Therefore, we give those edges a special name:

88

5.3 One-Dimensional Colored Nearest Neighbor Graphs

𝜎
𝒩(𝑃, 𝜎)

𝑃, 𝐸𝑃

(a) A two color solution for a 1D-CNNG-Opt
instance.

𝜎
𝒩(𝑃, 𝜎)

𝑃, 𝐸

(b) A two color solution for a 1D-CNNG-Gaps-
Opt instance.

Figure 5.5: Two example instances for 1D-CNNG-Opt and 1D-CNNG-Gaps-Opt on the
same point set. Both solutions are optimal and require two colors.

Definition 5.12. ⊳ gapsLet 𝐸 ⊆ 𝐸𝑃 be an input edge set. Then any 𝑒 ∈ 𝐸𝑃 ∖ 𝐸 is called a gap.
We define the set of gaps in 𝐸 as 𝒢(𝐸) = 𝐸𝑃 ∖ 𝐸, and we often use the slightly more
concise notation 𝒢𝐸.

The second problem can now be defined as follows:

Problem 5.2. Let 𝐸 ⊆ 𝐸𝑃 be an input edge set and ̂𝑐 ∈ ℕ+ be a number of colors.
The 1-Dimensional Colored Nearest Neighbor Graph With Gaps (1D-CNNG-
Gaps) problem is the problem of finding a color assignment 𝜎 with ̂𝑐 colors such that
𝒩(𝑃, 𝜎) = 𝐸, i.e., the resulting edges should be exactly the input edge set.

In addition, the 1-Dimensional Colored Nearest Neighbor Graph With Gaps
Optimization (1D-CNNG-Gaps-Opt) problem is the problem of finding the smallest
number 𝑐∗ ∈ ℕ+ such that there is a solution for the 1D-CNNG-Gaps problem with
̂𝑐 = 𝑐∗.

In Figure 5.5b we depict an example input point set with an input edge set as input
to the 1D-CNNG-Opt problem. It also shows the color assignment and the resulting
CNNG of a possible solution. Since 𝐸𝑃 and thus also 𝐸 is an ordinary set it is clear from
the definition that any solution to Problem 5.2 must result in a CNNG and not just a
CNNM.

To talk about the solutions and whether a color assignment is a solution for a specific
problem instance, we define what it means for a color assignment to be valid:

Definition 5.13. ⊳ validLet 𝑃 ⊆ ℝ be an input point set. Any color assignment 𝜎 with
𝒩(𝑃, 𝜎) = 𝐸𝑃 is called valid for 𝑃. If 𝑃 and the fact that we talk about the 1D-CNNG
problem is clear from context, we just say that 𝜎 is valid.

Let 𝐸 ⊆ 𝐸𝑃 be an input edge set. Any color assignment 𝜎 with 𝒩(𝑃, 𝜎) = 𝐸 is called
valid for 𝐸. If 𝐸 and the fact that we talk about the 1D-CNNG-Gaps problem is clear
from context, we just say that 𝜎 is valid.

From the problem definitions it is obvious that 1D-CNNG-Gaps and 1D-CNNG-
Gaps-Opt are at least as hard as 1D-CNNG and 1D-CNNG-Opt, respectively. Solving
1D-CNNG just means solving 1D-CNNG-Gaps for the input edge set 𝐸 = 𝐸𝑃. The same
holds true for the relation between 1D-CNNG-Gaps-Opt and 1D-CNNG-Opt.

89

Chapter 5 Introduction and Preliminaries

𝑒1 𝑒2 𝑒3 𝑒4 𝑒6𝑒5 𝑒7𝐸𝑃 ∶
ℳ(𝐸1) = {𝑒2, 𝑒4}𝐸1 ∶

𝐸2 ∶
𝐸3 ∶

ℳ(𝐸2) = ∅
ℳ(𝐸3) = {𝑒2}

Figure 5.6: Three different input edge sets 𝐸𝑖 ⊆ 𝐸𝑃 with their corresponding high-
lighted local maxima ℳ(𝐸𝑖).

As a result, the following chapters will mostly focus on 1D-CNNG-Gaps and 1D-
CNNG-Gaps-Opt unless there is a distinction, as for example in Chapter 7.

5.3.2 Useful Definitions and Observations

Let 𝑃 = {𝑝1,… , 𝑝𝑛} be an input point set and 𝐸𝑃 its neighbor edges. As the nearest
neighbor graphs heavily depend on the distances between two points, we define
‖𝑒𝑖‖ = dist(𝑝𝑖, 𝑝𝑖+1) for all edges 𝑒𝑖 = {𝑝𝑖, 𝑝𝑖+1} ∈ 𝐸𝑃 as the length of the edge.

For any input edge set we can check how long an edge is in relation to its adjacent
edges, if they are present in the input edge set. If an edge is longer than both its
adjacent edges (which is only possible if they are both present in the input edge set)
we will generally treat it differently than the other edges. This warrants the following

Definition 5.14.⊳ local maximum Let 𝐸 ⊆ 𝐸𝑃 be an input edge set for an input point set 𝑃 ⊆ ℝ with 𝑛
points. An edge 𝑒𝑖 ∈ 𝐸 is called a local maximum if and only if both neighbor edges are
present in 𝐸 and shorter than 𝑒𝑖. The set of all such edges is called the local maxima of
𝐸 and referred to as ℳ(𝐸); we will often use the slightly more concise notation ℳ𝐸:

ℳ(𝐸) = {𝑒𝑖 ∈ 𝐸 ∖ {𝑒1, 𝑒𝑛−1} | 𝑒𝑖−1, 𝑒𝑖+1 ∈ 𝐸 ∧ ‖𝑒𝑖‖ > max(‖𝑒𝑖−1‖, ‖𝑒𝑖+1‖)}.

Look at Figure 5.6 to see three different input edge sets and their respective high-
lighted local maxima. We can see that even though 𝑒4 is a local maximum in 𝐸1 and
present in 𝐸2 it is not a local maximum in 𝐸2 since its adjacent edge 𝑒5 is missing. Even
though 𝑒7 is longer than 𝑒6 it is not a local maximum since it does not have an adjacent
edge to its right. From ℳ(𝐸)’s definition it follows immediately that we can quickly
calculate it:

Observation 5.5. Let 𝐸 ⊆ 𝐸𝑃 be an input edge set for an input point set 𝑃 ⊆ ℝ with 𝑛
points. Then ℳ(𝐸) can be computed in linear time 𝑂(𝑛).

So far we have defined a color assignment as a function which assigns a non-empty
set of colors to each point. As we will now see, to solve both Problems 5.1 and 5.2 we
can restrict this to assigning either one or two colors to each point:

90

5.3 One-Dimensional Colored Nearest Neighbor Graphs

Lemma 5.1. Let 𝑃 = {𝑝1,… , 𝑝𝑛} ⊆ ℝ be an input point set and 𝐸 ⊆ 𝐸𝑃 be an input
edge set. In any valid color assignment 𝜎 every point is assigned at most as many colors
as it has incident edges in 𝐸.

Proof. As stated after Observation 5.3 we can assume that 𝜎 assigns each of its colors
to at least two points. Assume that 𝜎 assigns more colors to a point 𝑝𝑖 than it has
incident edges in 𝐸.

If 𝑝𝑖 has two incident edges, assume without loss of generality that {1, 2, 3} ⊆ 𝜎(𝑝𝑖).
Since 𝑃 is in general position it follows that there are 𝑝𝑗, 𝑝𝑘, 𝑝𝑙 ∈ 𝑃 with 𝑝𝑖 ∘→1 𝑝𝑗,
𝑝𝑖 ∘→2 𝑝𝑘, and 𝑝𝑖 ∘→3 𝑝𝑙. If two of those three points are equal it means that the
resulting edge appears in two colors and thus the resulting CNNM is not a CNNG.
If they are all distinct, only two of them can be 𝑝𝑖−1 and 𝑝𝑖+1. Let without loss of
generality 𝑝𝑗 be the point such that 𝑝𝑗 ∉ {𝑝𝑖−1, 𝑝𝑖+1}. Then the edge {𝑝𝑖, 𝑝𝑗} which is
not in 𝐸 will be present in 𝒩(𝑃, 𝜎). In both cases we can conclude that 𝜎 is not valid.

If 𝑝𝑖 has only one incident edge, assume without loss of generality that {1, 2} ⊆ 𝜎(𝑝𝑖).
Then there are 𝑝𝑗, 𝑝𝑘 ∈ 𝑃 with 𝑝𝑖 ∘→

1 𝑝𝑗 and 𝑝𝑖 ∘→
2 𝑝𝑘. As before, if 𝑝𝑗 = 𝑝𝑘, the same

edge appears in colors 1 and 2. On the other hand, if 𝑝𝑗 ≠ 𝑝𝑘 only one of them can be
the endpoint of the only edge incident to 𝑝𝑖. Thus, the other point is not adjacent to 𝑝𝑖
which means that an edge, that is not in 𝐸 will be in 𝒩(𝑃, 𝜎). In both cases 𝜎 is not
valid.

Even though Lemma 5.1 talks only about the 1D-CNNG-Gaps problem, it holds for
the 1D-CNNG problem as well, since it is just a special case of the 1D-CNNG-Gaps
problem. As a result of the lemma, given a color assignment 𝜎 ∶ 𝑃 → 2𝐶 ̂𝑐 ∖∅ with ̂𝑐
colors, we can constrain its codomain to all subsets of 𝐶 ̂𝑐 of size one and two, denoted
by ℂ ̂𝑐 = {𝑆 ⊆ 𝐶 ̂𝑐 | 1 ≤ |𝑆| ≤ 2}. Thus, 𝜎 can be seen as a function 𝜎 ∶ 𝑃 → ℂ ̂𝑐 and
in the remainder of this work we will treat every color assignment as such.

91

Chapter6
Linear Time Algorithms for One and Two

Colors

After having defined the problems that we want to solve, we first want to explore them
slowly by starting with only few allowed colors. In Section 6.1 we will first see which
inputs can be solved with just one color which is basically no color at all. This decision
is easily done in linear time. Then, Section 6.2 explores how to color the endpoints of
local maxima or edges that are not present in the input. This prepares us to introduce a
restricted version of color assignments in Section 6.3 which turn out to be as powerful
as normal color assignments. We finally solve the problems for two colors in Section 6.4
in linear time by constructing a helper graph that models the valid color assignments.

6.1 Solving One Color

We now start by looking at the case where we are only allowed to use one color to color
our point set 𝑃 ⊆ ℝ. This quickly turns out to be the same as constructing the NNG of
the underlying point set, ignoring the color. Since a color assignment assigns at least
one color to every point there is exactly one color assignment 𝜎1 with one color: the
one which assigns this color 1 to every point. But then the point set 𝑃1 for color 1 is
exactly the same as 𝑃 itself, meaning that 𝒩(𝑃) = 𝒩(𝑃1) = 𝒩(𝑃, 𝜎1). This is best
summarized as

Observation 6.1. Let 𝑃 ⊆ ℝ be an input point set. Then, for all color assignments 𝜎1
with one color, 𝒩(𝑃) = 𝒩(𝑃, 𝜎1).

In our next step we look at what the NNG of a one-dimensional point set looks like.
Since every point connects to the closer of its at most two neighbors it means that if
two neighboring points are far apart that their connecting edge will not be present in
the NNG. This means that none of the local maxima of the neighbor edges will be in
𝒩(𝑃), as shown in

Lemma 6.1. Let 𝑃 = {𝑝1,… , 𝑝𝑛} ⊆ ℝ be an input point set. Then𝒩(𝑃) = 𝐸𝑃∖ℳ(𝐸𝑃),
that is, 𝑃’s nearest neighbor graph contains all neighbor edges except the local maxima.

93

Chapter 6 Linear Time Algorithms for One and Two Colors

Proof. Let 𝑒𝑖 ∈ 𝐸𝑃 be a neighbor edge of 𝑃. We first look at the case that 𝑒𝑖 ∈ ℳ(𝐸𝑃).
This means that 𝑒𝑖 is neither the leftmost nor the rightmost edge and that it is longer than
both its adjacent edges. More formally, 1 < 𝑖 < 𝑛 − 1 and ‖𝑒𝑖‖ > max(‖𝑒𝑖−1‖, ‖𝑒𝑖+1‖).
Since 𝑒𝑖 is longer than its adjacent edges, we know that 𝑝𝑖 is closer to 𝑝𝑖−1 than to 𝑝𝑖+1
which implies that 𝑝𝑖 ∘→ 𝑝𝑖−1. Similarly, 𝑝𝑖+1 is closer to 𝑝𝑖+2 than to 𝑝𝑖, meaning that
𝑝𝑖+1 ∘→ 𝑝𝑖+2. It follows that the edge {𝑝𝑖, 𝑝𝑖+1} = 𝑒𝑖 does not appear in 𝒩(𝑃). Have a
look at Figure 6.2a to see an example of such an edge.
We now look at the case that 𝑒𝑖 ∉ ℳ(𝐸𝑃), which means that the negation of the

above formal statement is true. If 𝑖 = 1 or ‖𝑒𝑖‖ < ‖𝑒𝑖−1‖ it is clear that 𝑝𝑖 ∘→ 𝑝𝑖+1. If
𝑖 = 𝑛 − 1 or ‖𝑒𝑖‖ < ‖𝑒𝑖+1‖ it follows that 𝑝𝑖+1 ∘→ 𝑝𝑖. In all cases we can conclude that
𝑒𝑖 ∈ 𝒩(𝑃).
Thus, for all 𝑒𝑖 ∈ 𝐸𝑃 we have that 𝑒𝑖 ∈ 𝒩(𝑃) if and only if 𝑒𝑖 ∉ ℳ(𝐸𝑃) which

concludes the proof.

With this knowledge we can now easily compute the NNG of a point set. To decide
whether we can obtain a given input edge set we just check whether the input edge
set is the same as the NNG of the point set. This is summarized in

Lemma 6.2. Let 𝑃 ⊆ ℝ be an input point set and 𝐸 ⊆ 𝐸𝑃 be an input edge set. We can
solve the 1D-CNNG-Gaps problem for 𝐸 and ̂𝑐 = 1 in linear time.

Proof. Observation 6.1 tells us that the CNNM for one color is exactly the NNG of the
point sets. Thus, we can just look at𝒩(𝑃). Lemma 6.1 tells us that𝒩(𝑃) = 𝐸𝑃∖ℳ(𝐸𝑃).
From Observation 5.5 we know that we can compute ℳ(𝐸𝑃) in linear time with which
we compute 𝒩(𝑃) in linear time. We then only need to return whether 𝒩(𝑃) = 𝐸.

6.2 Coloring Local Maxima and Gaps

As seen in the previous section, we cannot color local maxima with just one color such
that they appear in the resulting CNNG. We will first make some observations about
restrictions that arise from wanting a point to connect to a specific other point. This
information will be used for observing in which ways local maxima and also gaps can
or must be colored to obtain a valid color assignment. In the end we will generalize
these restrictions so that the concept can be used later on in the algorithm.

6.2.1 Restrictions on Other Points

When constructing a color assignment, we will do it in a way by stating that a point
𝑝 should connect to another point 𝑞 in color 𝑐. This is, of course, only possible if all
other points 𝑟 with dist(𝑝, 𝑟) < dist(𝑝, 𝑞) do not have color 𝑐. Since 𝑝 should only ever
connect to its left or right neighbor point, we can see that the condition is trivially
met for all points on the same side of 𝑝 as 𝑞: all points different from 𝑞 are further

94

6.2 Coloring Local Maxima and Gaps

𝑝 𝑞

𝑞 − 𝑝
𝑅(𝑝, 𝑞)

(a)

𝑝𝑞

𝑞 − 𝑝
𝑅(𝑝, 𝑞)

(b)

Figure 6.1: Two examples of a restricted region, (a) one on the left and (b) one on the
right.

away from 𝑝. The points on the other side of 𝑝, however, may interfere. This is exactly
the problem with local maxima: Let 𝑒𝑖 = {𝑝𝑖, 𝑝𝑖+1} be a local maximum. Then 𝑝𝑖 is
always closer to 𝑝𝑖−1 than to 𝑝𝑖+1 and if 𝑝𝑖 is supposed to connect to 𝑝𝑖+1 in color 𝑐
then 𝑝𝑖−1 cannot have color 𝑐. In fact, there may be an arbitrary number 𝑘 such that 𝑝𝑖
is closer to all points 𝑝𝑖−𝑘,… , 𝑝𝑖−1 than to 𝑝𝑖+1, and they must all be excluded from
having color 𝑐 assigned. This is formalized by the following definition for which two
examples can be found in Figure 6.1.

Definition 6.1. ⊳ restricted regionLet the set of all half-open intervals on ℝ be defined as

𝕀 = ⋃
𝑎,𝑏∈ℝ∧𝑎<𝑏

(𝑎, 𝑏] ∪ [𝑎, 𝑏).

We then define the restricted region of two points 𝑝, 𝑞 ∈ ℝ with 𝑝 ≠ 𝑞 as the function
𝑅 ∶ ℝ × ℝ → 𝕀. The result is the half-open set of points 𝑟 ∈ ℝ to which 𝑝 is at least as
close as to 𝑞 and which are not on the same side of 𝑝 as 𝑞. Or more formally:

𝑅(𝑝, 𝑞) = {
[𝑝 − (𝑞 − 𝑝), 𝑝) = [2𝑝 − 𝑞, 𝑝) if 𝑝 < 𝑞,
(𝑝, 𝑝 + (𝑝 − 𝑞)] = (𝑝, 2𝑝 − 𝑞] if 𝑝 > 𝑞.

With this definition we can now easily describe the constraints that arise from
wanting a point 𝑝𝑖 to connect to its neighbor 𝑝𝑖+1 in color 𝑐: We must ensure that no
point in 𝑃 ∩ 𝑅(𝑝𝑖, 𝑝𝑖+1) has color 𝑐 among its colors.

6.2.2 Coloring Local Maxima

We have seen in Lemma 6.1 that coloring with just one color will always exclude the
local maxima of 𝐸𝑃. This can now easily be explained by looking at the restricted
regions. Let 𝑒𝑖 = {𝑝𝑖, 𝑝𝑖+1} be a local maximum. In order for 𝑝𝑖 ∘→ 𝑝𝑖+1 to happen,
there can be no point inside 𝑅(𝑝𝑖, 𝑝𝑖+1). However, since 𝑒𝑖 is a local maximum, it is
always the case that 𝑝𝑖−1 ∈ 𝑅(𝑝𝑖, 𝑝𝑖+1). Due to symmetry, the same holds when looking
at 𝑝𝑖+2. Thus, to color the endpoints of a local maximum such that the local maximum
is present in a CNNM we are forced to use more than one color.

Let 𝑃 = {𝑝1,… , 𝑝𝑛} ⊆ ℝ be an input point set and let 𝑒𝑖 ∈ 𝐸𝑃 be a local maximum.
First, we only consider all possible ways to color the endpoints of 𝑒𝑖 and its two adjacent

95

Chapter 6 Linear Time Algorithms for One and Two Colors

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑒𝑖

𝑝𝑖 𝑝𝑖+1𝑝𝑖−1 𝑝𝑖+2

𝑐1∶

(a) The use of only one color
excludes edge 𝑒𝑖 as seen
in Lemma 6.1.

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑒𝑖

𝑝𝑖 𝑝𝑖+1𝑝𝑖−1 𝑝𝑖+2

𝑐1∶ 𝑐2∶

(b) These two situations re-
sult in a colored nearest
neighbor graph.

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑒𝑖

𝑝𝑖 𝑝𝑖+1𝑝𝑖−1 𝑝𝑖+2

𝑐1∶ 𝑐2∶

(c) These results are either no
CNNGs or do not include
the edge 𝑒𝑖.

Figure 6.2: The different ways to color the endpoints of a local maximum 𝑒𝑖 and the
adjacent points with up to two colors. Each box shows one possible way
to color. The colors above each point are those assigned to it. The arrows
indicate which point connects to which other point in each color. We only
show where 𝑝𝑖 and 𝑝𝑖+1 connect to.

points with up to two colors. In Figure 6.2 we can find a depiction of all structurally
different possibilities without illegal edges. There we see the input point set and input
edge set in black on the bottom of each figure. Above it, we see up to three boxes,
each of which represents one possible (part of a) color assignment. For each color
assignment we introduce one layer per color: if a point 𝑝𝑖 is given this color, we place
a colored marker on this layer above 𝑝𝑖. The arrows then represent the NNG for each
individual color which makes it easy to see whether combining those NNGs into a
CNNM results in the desired CNNG.

We notice that the figure only has arrows going out from 𝑝𝑖 and 𝑝𝑖+1. The reason is
that if 𝑝𝑖−2, 𝑝𝑖−1, and 𝑝𝑖 have a common color 𝑐, then 𝑝𝑖−1 connects to 𝑝𝑖 or to 𝑝𝑖−2
depending on which one is closer. Since it may be that 𝑝𝑖−1 ∘→ 𝑝𝑖−2, we cannot expect
that 𝑒𝑖−1 will be present due to 𝑝𝑖−1 connecting to 𝑝𝑖. We can only be sure that 𝑒𝑖−1 is
present by enforcing that 𝑝𝑖 ∘→ 𝑝𝑖−1 is true. Using symmetric arguments, the same
holds true for 𝑝𝑖+1 and 𝑝𝑖+2. As a result the figure also ignores a color that may be
given to 𝑝𝑖−1 or 𝑝𝑖+2 if it is not also a color for 𝑝𝑖 or 𝑝𝑖+1, respectively.

Even though there are 34 = 81 possible ways to color four points with two colors,
we only show 6 in Figure 6.2. We have removed all structural duplicates, that is, the
situations that can be obtained by mirroring the color assignment or swapping the two
colors. We have also ignored the cases that have at least one the following properties:

(1) A color 𝑐 is given to exactly one of the four points. Call this point 𝑝𝑘. If no other
point in 𝑃 has this color, we can just remove the color and obtain the same CNNM,
as seen in Observation 5.3. If 𝑝𝑘 is either 𝑝𝑖 or 𝑝𝑖+1 the resulting edge is illegal

96

6.2 Coloring Local Maxima and Gaps

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑒𝑖

𝑝𝑖 𝑝𝑖+1𝑝𝑖−1 𝑝𝑖+2

𝑐1∶ 𝑐2∶ 𝑐3∶

(a) This is the only solution
with three colors that re-
sults in a CNNG.

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑒𝑖

𝑝𝑖 𝑝𝑖+1𝑝𝑖−1 𝑝𝑖+2

𝑐1∶ 𝑐2∶ 𝑐3∶

(b) Edge 𝑒𝑖+1 appears twice.

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑒𝑖

𝑝𝑖 𝑝𝑖+1𝑝𝑖−1 𝑝𝑖+2

𝑐1∶ 𝑐2∶ 𝑐3∶

(c) Edge 𝑒𝑖 is not present and
both 𝑒𝑖−1 and 𝑒𝑖+1 appear
twice.

Figure 6.3: The additional possible color assignments for a local maximum if we allow
three or more colors.

as is goes to some 𝑝𝑗 with 𝑗 < 𝑖 − 1 or 𝑗 > 𝑖 + 2. Otherwise, i.e., if 𝑝𝑘 is either
𝑝𝑖−1 or 𝑝𝑖+2, this is covered by property (3).

(2) Two adjacent points do not have a common color. This means that there will be no
edge between these points.

(3) One of the outer points, 𝑝𝑖−1 or 𝑝𝑖+2, has a color that their adjacent inner point
does not have. The point will then either connect to the other inner or outer point,
giving an illegal edge, or it will connect to the outside of the shown four points.
As said before, this can then be ignored and the color removed.

(4) Each point is given both colors. In this case, we have the edges shown in Figure 6.2a
with the only difference that both edges appear in both colors.

The code used to enumerate all possible color assignments and then ignore those
with certain properties can be found in Listing A.1. As we can see in Figure 6.2 there
are then only two possible ways to color the points of and adjacent to a local maximum
𝑒𝑖 such that the result is a CNNG, namely the two ways in Figure 6.2b. Even if we allow
more than two colors, we can observe that more than three colors cannot happen: To
not have property (2) the two endpoints of 𝑒𝑖 need to share a common color, meaning
that they can have at most three colors in total. In addition, property (3) forbids us
that an outer point has a color their adjacent inner point does not have. Thus, only up
to three colors are possible. Ignoring, as before, the situations which are obtained by
mirroring or renaming the colors, there are only three additional color assignments
with three colors that do not fulfill any of properties (1) to (3). These three can be
seen in Figure 6.3 and the code to enumerate them is found in Listing A.1. Only the
color assignment in Figure 6.3a yields the desired CNNG.

As a result, the three color assignments of a local maximum that yield a CNNG are
those in Figures 6.2b and 6.3a. They can be divided into two different kinds of color
assignments:

97

Chapter 6 Linear Time Algorithms for One and Two Colors

𝑝𝑖 𝑝𝑖+1𝑝𝑖−1 𝑝𝑖+2

no 𝑐1

𝑅(𝑝𝑖+1, 𝑝𝑖)𝑒𝑖

(a) If color assignment (i) is chosen, the
choice of colors is restricted on one side
of the local maximum.

𝑝𝑖 𝑝𝑖+1𝑝𝑖−1 𝑝𝑖+2

no 𝑐2no 𝑐2

𝑒𝑖
𝑅(𝑝𝑖+1, 𝑝𝑖)

𝑅(𝑝𝑖, 𝑝𝑖+1)

(b) If color assignment (ii) is chosen, the
choice of colors is restricted on both sides
of the local maximum.

Figure 6.4: The constraints imposed by the two different color assignments for local
maxima with two colors. If a point inside the hatched area had the forbid-
den color, the respective endpoint of the local maximum 𝑒𝑖 would connect
to it instead of the other endpoint of 𝑒𝑖.

(i) Either 𝑝𝑖 or 𝑝𝑖+1 has two colors and one of the colors is chosen for the points to its
left and the other for the points to its right. This is the upper part of Figure 6.2b.

(ii) Both 𝑝𝑖 and 𝑝𝑖+1 have two colors such that at least one color 𝑐 is shared by both
(if both colors are shared, pick one as 𝑐). The color of 𝑝𝑖 that is not 𝑐 is used for
𝑝𝑖−1 and the color of 𝑝𝑖+1 that is not 𝑐 is used for 𝑝𝑖+2. This is the situation in
Figure 6.3a and the lower part of Figure 6.2b.

So far we have ignored all points to the left of 𝑝𝑖−1 and to the right of 𝑝𝑖+2. However,
as seen in Section 6.2.1 in order for an edge 𝑒𝑖 to appear due to 𝑝𝑖 connecting to 𝑝𝑖+1
with color 𝑐 it must be that no point inside 𝑅(𝑝𝑖, 𝑝𝑖+1) is allowed to be assigned color 𝑐.
In Figure 6.4 we can see visualizations of these restricted regions. For each restricted
region, the thin line segment above the local maximum indicates the two points whose
distance is the length of the restricted region. The thicker line segment and the hatched
area have the same length and indicate the actual restricted region, as labeled. The
color also indicates the color that no point inside this region is allowed to have and
this is also stated above the hatched region.

On the one hand Figure 6.4a shows the situation for color assignment (i) where only
one endpoint has two colors and thus only 𝑝𝑖+1 ∘→𝑐1 𝑝𝑖 but not 𝑝𝑖 ∘→

𝑐1 𝑝𝑖+1. As a result,
there is only one restricted region 𝑅(𝑝𝑖+1, 𝑝𝑖) to the right of the local maximum. In
Figure 6.4b, on the other hand, we see the situation for color assignment (ii) where
both endpoints have two colors and thus both 𝑝𝑖 ∘→

𝑐2 𝑝𝑖+1 and 𝑝𝑖+1 ∘→𝑐2 𝑝𝑖. Consequently,
there are restricted regions on both sides of the local maximum.

Since the constraints imposed by color assignment (ii) are a strict superset of the
constraints imposed by color assignment (i), it seems to be never worse to choose color
assignment (i) over color assignment (ii) for a local maximum. Indeed, as we will see
in Section 6.3.1, we will be able to focus solely on color assignments that color local
maxima with color assignment (i). However, we will first look at how to color the
endpoints of gaps in the input edge set.

98

6.2 Coloring Local Maxima and Gaps

6.2.3 Coloring Gaps

As seen in Lemma 6.1, coloring with only one color will exclude all local maxima in 𝐸𝑃
from the CNNG. As a result, if the input edge set 𝐸 has a gap that is a local maximum
in 𝐸𝑃 it is easily excluded from the CNNG by giving both endpoints the same color. If
the gap is not such a local maximum, we will need a change of color. To distinguish
between these two types of gaps we give them special names:

Definition 6.2. ⊳ big gaps
⊳ small gaps

Let 𝑃 ⊆ ℝ be an input point set and 𝐸 ⊆ 𝐸𝑃 be an input edge set. A
gap 𝑒 ∈ 𝒢𝐸 is called big if it is a local maximum in 𝐸𝑃, i.e., 𝑒 ∈ ℳ(𝐸𝑃), and small
otherwise. We denote the set of small gaps in 𝐸 by 𝒢−(𝐸) = 𝒢(𝐸) ∖ 𝐸𝑃, and we often
use the slightly more concise notation 𝒢−

𝐸 .

Since we have already established that the endpoints of a gap both have exactly one
color (see Lemma 5.1) the only question that remains is whether both of them should
be given the same or different colors. With the following observation we can see which
choice is possible for which kind of gap. In Figure 6.5 we can also see depictions of
the four cases. In contrast to local maxima, where the task is to bring one endpoint
to connect to the other endpoint, for gaps we need to prevent the endpoints from
connecting to each other. To put it differently, for a gap 𝑒𝑖 = {𝑝𝑖, 𝑝𝑖+1} we want that
𝑝𝑖 ∘→

𝑐 𝑝𝑖−1 and 𝑝𝑖+1 ∘→𝑐
′
𝑝𝑖+2 for (not necessarily distinct) colors 𝑐, 𝑐′ ∈ 𝐶 ̂𝑐. As a result,

the restricted regions shown in Figure 6.5 are not to the left and right of the gap but
start at one of the endpoints and go towards the other endpoint. It depends on the
length of the edge next to the gap, whether the other endpoint is contained in the
restricted region.

Observation 6.2. Let 𝑃 = {𝑝1,… , 𝑝𝑛} ⊆ ℝ be an input point set, 𝐸 ⊆ 𝐸𝑃 be an input
edge set, and 𝜎 ∶ 𝑃 → ℂ ̂𝑐 be a valid color assignment. Then for all gaps 𝑒𝑖 = {𝑝𝑖, 𝑝𝑖+1} ∈
𝒢𝐸 the following holds:

1. If 𝑒𝑖 is small, it follows that 𝜎(𝑝𝑖) ≠ 𝜎(𝑝𝑖+1).

2. If 𝑒𝑖 is big, it can be that either 𝜎(𝑝𝑖) ≠ 𝜎(𝑝𝑖+1) or 𝜎(𝑝𝑖) = 𝜎(𝑝𝑖+1).

↪

Proof. We first observe that 𝑒𝑖−1, 𝑒𝑖+1 ∈ 𝐸 since 𝐸 is an input edge set. From Lemma 5.1
we also know that |𝜎(𝑝𝑖)| = |𝜎(𝑝𝑖+1)| = 1.

If 𝑒𝑖 is small we know that 𝑝𝑖 ∘→ 𝑝𝑖+1 or 𝑝𝑖+1 ∘→ 𝑝𝑖. Thus, if it were that 𝜎(𝑝𝑖) =
𝜎(𝑝𝑖+1) = {𝑐} for some 𝑐 ∈ 𝐶 it would follow that 𝑝𝑖 ∘→

𝑐 𝑝𝑖+1 or 𝑝𝑖+1 ∘→𝑐 𝑝𝑖 and thus
𝑒𝑖 ∈ 𝐸𝑐 ⊆ 𝐸. See Figure 6.5a for an example where we can see that 𝑝𝑖 ∘→

𝑐1 𝑝𝑖+1 instead
of the desired 𝑝𝑖 ∘→

𝑐1 𝑝𝑖−1. It must thus follow that 𝜎(𝑝𝑖) ≠ 𝜎(𝑝𝑖+1), for which we can
see in Figure 6.5b that then there is no problem.

99

Chapter 6 Linear Time Algorithms for One and Two Colors

𝑝𝑖−1 𝑝𝑖+2𝑝𝑖 𝑝𝑖+1

no 𝑐1
no 𝑐1𝑅(𝑝𝑖, 𝑝𝑖−1)

𝑅(𝑝𝑖+1, 𝑝𝑖+2)

(a) The left edge is larger than the small gap.
Giving the same color to 𝑝𝑖 and 𝑝𝑖+1 re-
sults in the wrong edge from 𝑝𝑖 as it is
closer to 𝑝𝑖+1 than to 𝑝𝑖−1.

𝑝𝑖−1 𝑝𝑖+2𝑝𝑖 𝑝𝑖+1

no 𝑐1
no 𝑐2𝑅(𝑝𝑖, 𝑝𝑖−1)

𝑅(𝑝𝑖+1, 𝑝𝑖+2)

(b) If both endpoints of a small gap are given
different colors, then 𝑝𝑖 and 𝑝𝑖+1 will not
connect to each other, exactly as desired.

𝑝𝑖−1 𝑝𝑖+2𝑝𝑖 𝑝𝑖+1

no 𝑐1
no 𝑐1𝑅(𝑝𝑖, 𝑝𝑖−1)

𝑅(𝑝𝑖+1, 𝑝𝑖+2)

(c) A big gap can have the same color for
both endpoints as they are further away
from each other than their respective other
neighboring points.

𝑝𝑖−1 𝑝𝑖+2𝑝𝑖 𝑝𝑖+1

no 𝑐1
no 𝑐2𝑅(𝑝𝑖, 𝑝𝑖−1)

𝑅(𝑝𝑖+1, 𝑝𝑖+2)

(d) Since the same color for both endpoints
works for big gaps, as seen in (c), then
giving different colors works as well.

Figure 6.5: The results of coloring the endpoints of a small gap, see (a) and (b), and a
big gap, see (c) and (d), with the same or with different colors.

If, on the other hand, 𝑒𝑖 is big we know that 𝑝𝑖 ∘→ 𝑝𝑖−1 and 𝑝𝑖+1 ∘→ 𝑝𝑖+2. If
𝜎(𝑝𝑖) = 𝜎(𝑝𝑖+1) = {𝑐} for some 𝑐 ∈ 𝐶, it follows that 𝑐 ∈ 𝜎(𝑃𝑖−1) and 𝑐 ∈ 𝜎(𝑃𝑖+2)
otherwise 𝜎 wouldn’t be valid. It then implies that 𝑝𝑖 ∘→

𝑐 𝑝𝑖−1 and 𝑝𝑖+1 ∘→𝑐 𝑝𝑖+2, as can
be seen in Figure 6.5c. On the other hand, if 𝜎(𝑝𝑖) = {𝑐} ≠ {𝑐′} = 𝜎(𝑝𝑖+1) it follows
with the same arguments that 𝑐 ∈ 𝜎(𝑃𝑖−1) and 𝑐′ ∈ 𝜎(𝑃𝑖+2) and thus 𝑝𝑖 ∘→

𝑐 𝑝𝑖−1 and
𝑝𝑖+1 ∘→𝑐

′
𝑝𝑖+2. Figure 6.5d shows this situation.

The problem in Figure 6.5a is that one of the restricted regions contains the other
endpoint which has the same color. If we have a small gap this is always the case: if
we both restricted regions do not contain the other endpoint then the gap is longer
than both adjacent edges which makes it a big gap. Even though Figure 6.5 makes it
look like we only need to check whether 𝑝𝑖 and 𝑝𝑖+1 lie inside the restricted regions
associated with the other endpoint, this is not the case. There may be more points
inside these regions, especially if for example 𝑒𝑖−1 is very large compared to 𝑒𝑖. If one
of those points has the same color as 𝑝𝑖 it will also be that 𝑝𝑖 connects to this point
instead of 𝑝𝑖−1.

100

6.3 Simplifying the Color Assignments

6.2.4 Restricted Regions for Input Edges and Gaps

We have seen in Sections 6.2.2 and 6.2.3 that both for local maxima and for gaps it is
important to look at the restricted regions to determine whether a color assignment
will result in the desired edges in the corresponding CNNM. However, the restricted
regions differ between those of local maxima and those of gaps. For a local maximum
(or more generally an edge) the restricted regions are defined by both endpoints while
for gaps the restricted regions are defined by one endpoint and its adjacent point that
is not the other endpoint. As a result, we want to homogenize the differences into
combined functions.

Definition 6.3. ⊳ left restricted
region

⊳ right restricted
region

Let 𝑃 = {𝑝1,… , 𝑝𝑛} ⊆ ℝ be an input point set, 𝐸 ⊆ 𝐸𝑃 be an input
edge set, and 𝕀 the half-open intervals on ℝ as defined in Definition 6.1. We define the
left restricted region ⃖⃗𝑅𝐸 ∶ 𝐸𝑃 → 𝕀 and the right restricted region ⃗⃗𝑅𝐸 ∶ 𝐸𝑃 → 𝕀 with respect
to 𝐸 as follows:

⃖⃗𝑅𝐸(𝑒𝑖 = {𝑝𝑖, 𝑝𝑖+1}) = {
𝑅(𝑝𝑖, 𝑝𝑖+1) if 𝑒𝑖 ∈ 𝐸,
𝑅(𝑝𝑖+1, 𝑝𝑖+2) if 𝑒𝑖 ∉ 𝐸,

⃗⃗𝑅𝐸(𝑒𝑖 = {𝑝𝑖, 𝑝𝑖+1}) = {
𝑅(𝑝𝑖+1, 𝑝𝑖) if 𝑒𝑖 ∈ 𝐸,
𝑅(𝑝𝑖, 𝑝𝑖−1) if 𝑒𝑖 ∉ 𝐸.

Even tough the left restricted regions start at different endpoints for edges and gaps
they have in common that they extend towards the left, starting at one of the endpoints.
Additionally, a point with the wrong color in a left restricted region will prevent left
starting endpoint from connecting in this color to the point to its right. The mirrored
observation holds true for the right restricted regions.

6.3 Simplifying the Color Assignments

Given a point set there are a lot of possible color assignments. From all of those we are
only interested in the color assignments where two consecutive points are assigned a
common color if the edge between them is in the input edge set. An upper bound on
the number of possible color assignments is ̂𝑐𝑛: Think about coloring from left to right.
Then a point with both incident edges in the input edge set can have either a single
color shared with the point to its left or an additional color from the remaining ̂𝑐 − 1
colors. A point that has only one incident edge either has its color fixed or can choose
from ̂𝑐 − 1 different colors, resulting in at most ̂𝑐𝑛 color assignments. This number is
quite big and the color assignment have little structure. In this section we will define
basic color assignments (BCAs) which will have as few color changes and points with
more than one color as possible. This will also give them more structure we can then
use for our linear time algorithm in Section 6.4. We will first observe in Section 6.3.1
that the only points that have to have two colors are endpoints of local maxima (and

101

Chapter 6 Linear Time Algorithms for One and Two Colors

only one of the two endpoints). We will show that any valid color assignment can be
transformed into a valid color assignment that fulfills this criterion. In Section 6.3.2 we
will then see that only small gaps need to have different colors for their endpoints. This
is also done by transforming valid color assignments that don’t fulfill this criterion into
ones that do. With this we will then be able to define BCAs in Section 6.3.3. This will
allow us to focus only on those specific color assignments, not only in the upcoming
algorithm but also in the remainder of this thesis.

6.3.1 Reducing the Number of Points With Two Colors

Our first goal is to transform any given color assignment into a color assignment that
has the lowest possible number of points with two colors. To do this, we will take
a color assignment and transform it into a new color assignment which reduces the
number of colors from two to one for exactly one point. For all other points, the number
of colors will remain the same.

Definition 6.4.⊳ 𝑖-reduction
⊳ swapℓ,𝑟

Let 𝑃 = {𝑝1,… , 𝑝𝑛} ⊆ ℝ be an input point set and 𝜎 ∶ 𝑃 → ℂ ̂𝑐 be a
color assignment with ̂𝑐 ≥ 2 colors. Let 𝑝𝑖 ∈ 𝑃 be a point with two colors 𝜎(𝑝𝑖) = {ℓ, 𝑟},
such that 𝑝𝑖 ∘→

ℓ 𝑝𝑖−1 and 𝑝𝑖 ∘→
𝑟 𝑝𝑖+1. We then define the color assignment 𝜎𝑖 ∶ 𝑃 → ℂ ̂𝑐

as follows and call it the 𝑖-reduction of 𝜎:

𝜎𝑖(𝑝𝑗) =
⎧⎪
⎨
⎪
⎩

𝜎(𝑝𝑗) if 𝑗 < 𝑖,
{ℓ} if 𝑗 = 𝑖,
{swapℓ,𝑟(𝑐) | 𝑐 ∈ 𝜎(𝑝𝑗)} if 𝑗 > 𝑖,

with swapℓ,𝑟(𝑐) =
⎧⎪
⎨
⎪
⎩

ℓ if 𝑐 = 𝑟,
𝑟 if 𝑐 = ℓ,
𝑐 otherwise.

In words: The 𝑖-reduction of a color assignment 𝜎 removes the color from 𝑝𝑖 with
which it connects to the right. Furthermore, for all points to the right of 𝑝𝑖 the two
colors from 𝑝𝑖 in 𝜎 are swapped. See Figure 6.6 for a color assignment and three
example 𝑖-reductions for different points 𝑝𝑖. The main advantage of Definition 6.4 is
that 𝜎𝑖 has exactly one point less with two colors than 𝜎. However, to be able to use
this, we need to show that 𝜎𝑖 results in the same CNNG as 𝜎, at least for those 𝜎 that
are valid. We will show that this is the case for most choices of 𝑝𝑖:

↪

Lemma 6.3. Let 𝑃 = {𝑝1,… , 𝑝𝑛} ⊆ ℝ be an input point set, 𝐸 ⊆ 𝐸𝑃 be an input edge
set, and 𝜎 ∶ 𝑃 → ℂ ̂𝑐 be a valid color assignment. Let 𝑝𝑖 be a point with two colors in 𝜎
and 𝜎𝑖 the 𝑖-reduction of 𝜎. Then 𝒩(𝑃, 𝜎𝑖) = 𝒩(𝑃, 𝜎), which implies that 𝜎𝑖 is valid, if
and only if

(a) 𝑝𝑖 is not the endpoint of a local maximum in 𝐸, or

102

6.3 Simplifying the Color Assignments

𝑝𝑖𝑝1 𝑝𝑛𝑝𝑖−1 𝑝𝑖+1

𝜎/𝐸

𝜎𝑖/𝐸
′

Colors: 1 2 3

swap1,2(⋅)

(a) If 𝑝𝑖 is not the endpoint of a local maximum we obtain the same edges for both color
assignments 𝜎 and 𝜎𝑖.

𝑝1 𝑝𝑛

𝜎/𝐸

𝜎𝑖/𝐸
′

Colors: 1 2 3

𝑝𝑖𝑝𝑖−1 𝑝𝑖+1

swap1,2(⋅)

(b) Here 𝑝𝑖 is the endpoint of a local maximum and the other endpoint 𝑝𝑖−1 also has two colors.
Again, we obtain the same edges for 𝜎 and 𝜎𝑖.

𝑝1 𝑝𝑛

𝜎/𝐸

𝜎𝑖/𝐸
′

Colors: 1 2 3

𝑝𝑖𝑝𝑖−1 𝑝𝑖+1

swap1,3(⋅)

(c) If 𝑝𝑖 is the endpoint of a local maximum and the other endpoint 𝑝𝑖−1 does not have two
colors, then the local maximum is missing in 𝐸 ′ for 𝜎𝑖.

Figure 6.6: A color assignment 𝜎 with its 𝑖-reduction 𝜎𝑖 for three different points 𝑝𝑖. In
(a) and (b) 𝑝𝑖 has colors 1 and 2, 𝜎𝑖 removes 2 from 𝑝𝑖, and swaps 1 and 2
to the right of 𝑝𝑖. In both examples we can see that 𝜎𝑖 produces the same
CNNG as 𝜎. For (c) we remove 3 from 𝑝𝑖 and swap 1 and 3 to its right.
Here, the resulting edges 𝐸 ′ do not contain the local maximum {𝑝𝑖−1, 𝑝𝑖}
because neither 𝑝𝑖−1 nor 𝑝𝑖 has two colors in 𝜎𝑖.

103

Chapter 6 Linear Time Algorithms for One and Two Colors

(b) 𝑝𝑖 is such an endpoint and the other endpoint also has two colors.

↪

Proof. For the proof, let 𝐸 ′ = 𝒩(𝑃, 𝜎𝑖), that is, we want to show that 𝐸 ′ = 𝐸 if and
only if assumption (a) or (b) holds.

𝐸 ′ ≠ 𝐸 is implied if neither assumption (a) nor (b) is fulfilled. We first show that if 𝑝𝑖
fulfills neither assumption (a) nor (b) then 𝐸 ′ ≠ 𝐸. If neither assumption (a) nor (b)
are true for 𝑝𝑖 it excludes all points that are not endpoints of local maxima and all
endpoints of local maxima whose other endpoint also has two colors. As a result 𝑝𝑖
must be an endpoint of a local maximum and its other endpoint must have only one
color. The local maximum can be either to the left or to the right of 𝑝𝑖. Assume without
loss of generality that it is 𝑒𝑖, that is, it is to the right of 𝑝𝑖. Then, the other endpoint of
𝑒𝑖 is 𝑝𝑖+1 and by assumption it has only one color. Thus, |𝜎(𝑝𝑖+1)| = |𝜎𝑖(𝑝𝑖+1)| = 1.
Additionally, |𝜎𝑖(𝑝𝑖)| = 1 by Definition 6.4. This means that we have two endpoints of
a local maximum, both with just one color.

If 𝑝𝑖 and 𝑝𝑖+1 have different colors, i.e., 𝜎𝑖(𝑝𝑖) ≠ 𝜎𝑖(𝑝𝑖+1), then 𝑒𝑖 ∉ 𝐸 ′ and it follows
that 𝐸 ′ ≠ 𝐸. Otherwise, let 𝑐 be the common color, i.e., 𝜎𝑖(𝑝𝑖) = 𝜎𝑖(𝑝𝑖+1) = {𝑐}. If
𝑐 ∉ 𝜎𝑖(𝑝𝑖−1) or 𝑐 ∉ 𝜎𝑖(𝑝𝑖+2) then 𝑒𝑖−1 ∉ 𝐸 ′ or 𝑒𝑖+1 ∉ 𝐸 ′, respectively, which also shows
that 𝐸 ′ ≠ 𝐸. However, if 𝑐 ∈ 𝜎𝑖(𝑝𝑖−1) and 𝑐 ∈ 𝜎𝑖(𝑝𝑖+2) then 𝑒𝑖 ∉ 𝐸 ′ since 𝑝𝑖 ∘→

𝑐
𝜎𝑖

𝑝𝑖−1
and 𝑝𝑖+1 ∘→𝑐𝜎𝑖

𝑝𝑖+2. See Figure 6.6c for an example where 𝑒𝑖 ∉ 𝐸 ′.

𝐸 ′ = 𝐸 is implied if assumption (a) or (b) is fulfilled. We now show that if 𝑝𝑖 fulfills
assumption (a) or (b) then 𝐸 ′ = 𝐸. An example for each assumption is shown in
Figures 6.6a and 6.6b. Let 𝑃1 = 𝑃1∈𝜎 and 𝑃2 = 𝑃2∈𝜎 as well as 𝑃 ′

1 = 𝑃1∈𝜎𝑖
and 𝑃 ′

2 = 𝑃2∈𝜎𝑖
be the points with color 1 and 2 in 𝜎 and 𝜎𝑖, respectively. Assume that, without loss of
generality, 𝜎(𝑝𝑖) = {1, 2}, 𝑝𝑖 ∘→

1
𝜎 𝑝𝑖−1, and 𝑝𝑖 ∘→

2
𝜎 𝑝𝑖+1. Since 𝜎𝑖 only changes colors 1

and 2 it is obvious that for all 𝑝 ∈ 𝑃 we have that 𝜎𝑖(𝑝) ∖ {1, 2} = 𝜎(𝑝) ∖ {1, 2}. It
follows that 𝐸 ∖ (𝐸1 ∪ 𝐸2) = 𝐸 ′ ∖ (𝐸 ′

1 ∪ 𝐸 ′
2). In order for 𝐸 ′ = 𝐸 to hold me must show

that 𝐸 ′
1 ∪ 𝐸 ′

2 = 𝐸1 ∪ 𝐸2 and to show that 𝒩(𝑃, 𝜎𝑖) is a CNNG we additionally need to
show that 𝐸 ′

1 ∩ 𝐸 ′
2 = ∅. To do this we look at each point 𝑝𝑗 and see how it changes

(if at all) to which other points it connects with colors 1 and 2. In the following we
will often have 𝑐 ∈ {1, 2} be one of the two interesting colors. We then use ̄𝑐 to denote
̄𝑐 = swap1,2(𝑐), that is, the color from 1 and 2 that is not 𝑐.
For the following points 𝑝𝑗 ∈ 𝑃 assume now that 1 ∈ 𝜎(𝑝𝑗) or 2 ∈ 𝜎(𝑝𝑗) as otherwise

𝑝𝑗 cannot be the endpoint of an edge in 𝐸1, 𝐸2, 𝐸
′
1 or 𝐸 ′

2. If 𝜎(𝑝𝑗) ∩ {1, 2} = ∅ then
it follows that 𝜎𝑖(𝑝𝑗) ∩ {1, 2} = ∅ and thus it will connect to the same point(s) in its
assigned color(s) for both 𝜎 and 𝜎𝑖.

1. 𝑗 = 1: We know that 𝜎(𝑝1) = {𝑐} and also that 𝑝1 ∘→𝑐𝜎 𝑝2 and thus 𝑐 ∈ 𝜎(𝑝2). If
𝑖 > 2 both 𝑝1 and 𝑝2 keep their colors in 𝜎𝑖 and thus 𝑝1 ∘→𝑐𝜎𝑖

𝑝2. If 𝑖 = 2 we know
that 𝑝2 ∘→1𝜎 𝑝1 by assumption and thus 𝑐 = 1. Since 𝜎𝑖(𝑝𝑖) = {1}, it follows that

104

6.3 Simplifying the Color Assignments

↪

also 𝑝1 ∘→1𝜎𝑖
𝑝2. Thus, 𝑒1 ∈ 𝐸𝑐 implies that 𝑒1 ∈ 𝐸 ′

𝑐 and since 𝑝1 has only one color
it cannot be that 𝑒1 ∈ 𝐸 ′

̄𝑐.

2. 1 < 𝑗 < 𝑖 − 1: We know that 𝜎𝑖 is the same as 𝜎 for 𝑝𝑗 and both its neighbors.
For 𝑐 ∈ {1, 2}, we know that 𝑝𝑗 ∘→

𝑐
𝜎 𝑝𝑗−1 or 𝑝𝑗 ∘→

𝑐
𝜎 𝑝𝑗+1 if 𝑐 ∈ 𝜎(𝑝𝑗).

If 𝑝𝑗 ∘→
𝑐
𝜎 𝑝𝑗+1 then we know that ⃖⃗𝑅𝐸(𝑒𝑗) ∩ 𝑃𝑐 = ∅. Since all points in ⃖⃗𝑅𝐸(𝑒𝑗) have

the same colors in 𝜎 and 𝜎𝑖 it follows that ⃖⃗𝑅𝐸(𝑒𝑗) ∩ 𝑃 ′
𝑐 = ∅ as well. This means

that 𝑝𝑗 ∘→
𝑐
𝜎𝑖

𝑝𝑗+1.

If 𝑝𝑗 ∘→𝑐𝜎 𝑝𝑗−1 then we know that ⃗⃗𝑅𝐸(𝑒𝑗) ∩ 𝑃𝑐 = ∅. It thus cannot be that
𝑝𝑖 ∈ ⃗⃗𝑅𝐸(𝑒𝑗) since 𝜎(𝑝𝑖) = {1, 2}. As a result, all points in ⃗⃗𝑅𝐸(𝑒𝑗) have the same
colors in 𝜎 and 𝜎𝑖 it follows that ⃗⃗𝑅𝐸(𝑒𝑗) ∩ 𝑃 ′

𝑐 = ∅ as well. This means that
𝑝𝑗 ∘→

𝑐
𝜎𝑖

𝑝𝑗−1.

3. 𝑗 = 𝑖 − 1: We know that 1 ∈ 𝜎(𝑝𝑖−1) by assumption which implies 1 ∈ 𝜎𝑖(𝑝𝑖−1).
We also know that 1 ∈ 𝜎(𝑝𝑖) and 1 ∈ 𝜎𝑖(𝑝𝑖). Furthermore, 𝜎𝑖 and 𝜎 are the
same for all points to the left, especially 𝑝𝑖−2. Then, 𝑝𝑖−1 ∘→1𝜎 𝑝𝑖 directly implies
𝑝𝑖−1 ∘→1𝜎𝑖

𝑝𝑖 and 𝑝𝑖−1 ∘→1𝜎 𝑝𝑖−2 directly implies 𝑝𝑖−1 ∘→1𝜎𝑖
𝑝𝑖−2.

If 2 ∈ 𝜎(𝑝𝑖−1) it must be that 𝑝𝑖−1 ∘→2𝜎 𝑝𝑖−2 as otherwise 𝑒𝑖−1 would appear twice
in 𝐸. Since 2 ∈ 𝜎(𝑝𝑖) as well, it must then also be that 𝑝𝑖−2 is closer to 𝑝𝑖−1 than
𝑝𝑖. Then we have that 𝑝𝑖−1 ∘→2𝜎𝑖

𝑝𝑖−2.

4. 𝑗 = 𝑖: For 𝑝𝑖 we know that 𝑝𝑖 ∘→
1
𝜎 𝑝𝑖−1 and 𝑝𝑖 ∘→

2
𝜎 𝑝𝑖+1. Since 𝜎𝑖(𝑝𝑖) = {1}, we

know that 𝑝𝑖 can now only connect to one instead of both neighbor points. We
know, however, that 1 ∈ 𝜎𝑖(𝑝𝑖−1) and 1 ∈ 𝜎𝑖(𝑝𝑖+1) due to the definition of 𝜎𝑖.
Thus, 𝑝𝑖 cannot be the endpoint of an illegal edge in 𝐸 ′

1. We will now show that
𝑝𝑖 ∘→

1
𝜎𝑖

𝑝𝑖−1 implies 𝑝𝑖+1 ∘→1𝜎𝑖
𝑝𝑖 and that 𝑝𝑖 ∘→

1
𝜎𝑖

𝑝𝑖+1 implies 𝑝𝑖−1 ∘→1𝜎𝑖
𝑝𝑖. Then we

will know that both edges 𝑒𝑖−1 and 𝑒𝑖 that are present in 𝐸 are also present in 𝐸 ′.

If 𝑝𝑖 ∘→1𝜎𝑖
𝑝𝑖+1, it means that 𝑝𝑖 is closer to 𝑝𝑖+1 than to 𝑝𝑖−1. See Figure 6.6

for both of the following situations. In case assumption (a) holds, i.e., 𝑝𝑖 is
not the endpoint of a local maximum, there are two possible explanations: One
possibility is that 𝑝𝑖−1 is closer to 𝑝𝑖 than to 𝑝𝑖−2 which then automatically implies
that 𝑝𝑖−1 ∘→1𝜎𝑖

𝑝𝑖. The other possibility is that the edge 𝑒𝑖−2 to the left of 𝑝𝑖−1 is
not present in 𝐸, that is, it is a gap. This means that 𝑝𝑖−1 ∘→1𝜎 𝑝𝑖 and no point in
𝑅(𝑝𝑖−1, 𝑝𝑖), which is to the left of 𝑝𝑖−1 has color 1 in 𝜎. But then the same holds
for 𝜎𝑖 since it assigns the same colors as 𝜎 for all points to the left of 𝑝𝑖. Thus, it
also follows that 𝑝𝑖−1 ∘→1𝜎𝑖

𝑝𝑖.

If, on the other hand, assumption (b) holds, it must be that 𝑒𝑖−1 is the local
maximum since ‖𝑒𝑖‖ < ‖𝑒𝑖−1‖ because 𝑝𝑖 ∘→

1
𝜎𝑖

𝑝𝑖+1. Then we know that 𝜎(𝑝𝑖−1) =
𝜎𝑖(𝑝𝑖−1) = {1, 𝑐} for some color 𝑐 ≠ 1. It then follows that 𝑝𝑖−1 ∘→𝑐𝜎 𝑝𝑖−2 and

105

Chapter 6 Linear Time Algorithms for One and Two Colors

↪

𝑝𝑖−1 ∘→1𝜎 𝑝𝑖. The latter then also holds for 𝜎𝑖 since to the left of 𝑝𝑖−1 all points
have the same colors in 𝜎 and 𝜎𝑖. We thus have 𝑝𝑖−1 ∘→1𝜎𝑖

𝑝𝑖.

If 𝑝𝑖 ∘→
1
𝜎𝑖

𝑝𝑖−1, it means that 𝑝𝑖 is closer to 𝑝𝑖−1 than to 𝑝𝑖+1. Here we have the
symmetric situation as the one before with the only difference that to the right
of 𝑝𝑖 all points change colors 1 and 2 from 𝜎 to 𝜎𝑖. This means, however, that
relative to the other points to the right of 𝑝𝑖 there is no change. Since we have
not used any argument about the points to the right of 𝑝𝑖 for the previous case
we can use all the symmetric arguments for this case. This then shows that we
will always have 𝑝𝑖+1 ∘→1𝜎𝑖

𝑝𝑖.

5. 𝑗 = 𝑖 + 1: We know that 2 ∈ 𝜎(𝑝𝑖+1) by assumption which implies that 1 ∈
𝜎𝑖(𝑝𝑖+1). We also know that 2 ∈ 𝜎(𝑝𝑖) and 1 ∈ 𝜎𝑖(𝑝𝑖). Additionally, if 2 ∈
𝜎(𝑝𝑖+2) we know that 1 ∈ 𝜎𝑖(𝑝𝑖+2). Then, 𝑝𝑖+1 ∘→2𝜎 𝑝𝑖 directly implies 𝑝𝑖+1 ∘→1𝜎𝑖

𝑝𝑖
and 𝑝𝑖+1 ∘→2𝜎 𝑝𝑖+2 directly implies 𝑝𝑖+1 ∘→1𝜎𝑖

𝑝𝑖+2.

If 1 ∈ 𝜎(𝑝𝑖+1) it must be that 𝑝𝑖+1 ∘→1𝜎 𝑝𝑖+2 as otherwise 𝑒𝑖 would appear twice in
𝐸, in colors 1 and 2. Since 1 ∈ 𝜎(𝑝𝑖) as well, it must be that 𝑝𝑖+1 is closer to 𝑝𝑖+2
than to 𝑝𝑖. As a result we know that 2 ∈ 𝜎𝑖(𝑝𝑖+1) and 2 ∈ 𝜎𝑖(𝑝𝑖+2) and there is
no point in 𝑅(𝑝𝑖+1, 𝑝𝑖+2). Then we have that 𝑝𝑖+1 ∘→2𝜎𝑖

𝑝𝑖+2.

6. 𝑖 + 1 < 𝑗 < 𝑛 − 1: We know that 𝜎𝑖 has colors 1 and 2 swapped for 𝑝𝑗 and both
its neighbors. For 𝑐 ∈ {1, 2}, we know that 𝑝𝑗 ∘→

𝑐
𝜎 𝑝𝑗−1 or 𝑝𝑗 ∘→

𝑐
𝜎 𝑝𝑗+1 if 𝑐 ∈ 𝜎(𝑝𝑗).

If 𝑝𝑗 ∘→
𝑐
𝜎 𝑝𝑗−1, then we know that ⃗⃗𝑅𝐸(𝑒𝑗−1) ∩ 𝑃𝑐 = ∅. Since to the right of 𝑝𝑖 all

colors 1 and 2 are swapped we know that ⃗⃗𝑅𝐸(𝑒𝑗−1) ∩ 𝑃 ′
̄𝑐 = ∅. It is also the case

that ̄𝑐 ∈ 𝜎𝑖(𝑝𝑗) and ̄𝑐 ∈ 𝜎𝑖(𝑝𝑗−1) which then means that 𝑝𝑗 ∘→̄
𝑐
𝜎𝑖

𝑝𝑗−1.

If 𝑝𝑗 ∘→𝑐𝜎 𝑝𝑗+1, then we know that ⃖⃗𝑅𝐸(𝑒𝑗−1) ∩ 𝑃𝑐 = ∅. It thus cannot be that
𝑝𝑖 ∈ ⃖⃗𝑅𝐸(𝑒𝑗−1) since 𝜎(𝑝𝑖) = {1, 2}. As a result, all points in ⃖⃗𝑅𝐸(𝑒𝑗−1) have colors
1 and 2 swapped and thus ⃖⃗𝑅𝐸(𝑒𝑗−1) ∩ 𝑃 ′

̄𝑐 = ∅. It is also the case that ̄𝑐 ∈ 𝜎𝑖(𝑝𝑗)
and ̄𝑐 ∈ 𝜎𝑖(𝑝𝑗+1) which then means that 𝑝𝑗 ∘→̄

𝑐
𝜎𝑖

𝑝𝑗+1.

7. 𝑗 = 𝑛: We know that 𝜎(𝑝𝑛) = {𝑐} and also that 𝑝𝑛 ∘→𝑐𝜎 𝑝𝑛−1 and thus 𝑐 ∈
𝜎(𝑝𝑛−1). If 𝑖 < 𝑛−1 both 𝑝𝑛 and 𝑝𝑛−1 have the same colors in 𝜎𝑖 but swapped and
thus 𝑝𝑛 ∘→̄𝑐𝜎𝑖

𝑝𝑛−1. If 𝑖 = 𝑛 − 1 we know that 𝑝𝑛−1 ∘→2𝜎 𝑝𝑛 by assumption and thus
𝑐 = 2. Since 𝜎𝑖(𝑝𝑖) = {1}, it follows that 𝑝𝑛 ∘→1𝜎𝑖

𝑝𝑛−1 since 𝜎𝑖(𝑝𝑛) = { ̄𝑐} = {1}.
Thus, 𝑒𝑛−1 ∈ 𝐸𝑐 implies that 𝑒𝑛−1 ∈ 𝐸 ′

̄𝑐 and since 𝑝𝑛 has only one color it cannot
be that 𝑒𝑛−1 ∈ 𝐸 ′

𝑐.

For each 𝑝𝑗 except 𝑝𝑖 we have now shown that 𝑝𝑗 ∘→
𝑐
𝜎 𝑝𝑘 implies that 𝑝𝑗 ∘→

𝑐′
𝜎𝑖

𝑝𝑘 where
𝑐′ = 𝑐 for 𝑗 < 𝑖 and 𝑐′ = ̄𝑐 for 𝑗 > 𝑖. This shows that those edges created by some
𝑝𝑗 ≠ 𝑝𝑖 in 𝐸 are exactly those created by the same 𝑝𝑗 in 𝐸 ′. It especially also shows
that no edge 𝑒𝑗 ∉ {𝑒𝑖−1, 𝑒𝑖} appears twice in 𝐸 ′. For 𝑝𝑖 we have shown that both its

106

6.3 Simplifying the Color Assignments

incident edges 𝑒𝑖−1 and 𝑒𝑖 are always present in 𝐸 ′. And since 𝑝𝑖 has only one color
it automatically follows that those edges only appear once in 𝐸 ′. Thus, we know that
𝐸 ′ = 𝐸, as claimed.

At the end of Section 6.2.2 we already said that we will be able to focus on color
assignments where for each local maximum only one endpoint has two colors. Given
a valid color assignment, we can exhaustively apply Lemma 6.3 which turns a point
with two colors into a point with one color in each application. In the resulting color
assignment, which is still valid, the only points left with two colors are endpoints of
local maxima whose other endpoint has only one color. This means that in the resulting
color assignment all local maxima are colored with color assignment (i) (see page 98).
It has the advantage that there is only one restricted region for each local maximum
instead of two, thus increasing the number of possible valid color assignments. We
now have a tool that already simplifies the color assignments a lot, it remains to look
at what happens at gaps.

6.3.2 Few Color Changes at Gaps

Observation 6.2 tells us that a small gap will always need two different colors for its
endpoints but that a big gap may have the same or different colors for its endpoints.
We will now see that for every valid color assignment with two different colors for the
endpoints of a big gap, there exists a valid color assignment that assigns the same color
to those endpoints.

Lemma 6.4. Let 𝑃 = {𝑝1,… , 𝑝𝑛} ⊆ ℝ be an input point set, 𝐸 ⊆ 𝐸𝑃 be an input edge set,
and 𝜎 ∶ 𝑃 → ℂ ̂𝑐 be a valid color assignment. If there is a big gap 𝑒𝑖 = {𝑝𝑖, 𝑝𝑖+1} ∈ 𝒢𝐸∖𝒢−

𝐸
such that 𝜎(𝑝𝑖) ≠ 𝜎(𝑝𝑖+1) then there exists a valid color assignment 𝜎′ ∶ 𝑃 → ℂ ̂𝑐 with
𝜎′(𝑝𝑖) = 𝜎′(𝑝𝑖+1) and for all 𝑝 ∈ 𝑃 we have that |𝜎(𝑝)| = |𝜎′(𝑝)|.

↪

Proof. Assume, without loss of generality, that 𝜎(𝑝𝑖) = {1} and 𝜎(𝑝𝑖+1) = {2}. We
then define 𝜎′ as follows (reusing swap1,2(⋅) from Definition 6.4):

𝜎′(𝑝𝑗) = {
𝜎(𝑝𝑗) if 𝑗 ≤ 𝑖,
{swap1,2(𝑐) | 𝑐 ∈ 𝜎(𝑝𝑗)} if 𝑗 > 𝑖.

It is then obvious that |𝜎(𝑝)| = |𝜎′(𝑝)| for all 𝑝 ∈ 𝑃 and also that 𝜎′(𝑝𝑖) = 𝜎′(𝑝𝑖+1).
Let 𝒩(𝑃, 𝜎′) = 𝐸 ′. We then need to show that 𝐸 ′ = 𝐸 which, since only colors 1 and 2
are different between 𝜎 and 𝜎′, means that we need to show that 𝐸 ′

1 ∪ 𝐸 ′
2 = 𝐸1 ∪ 𝐸2

and that 𝐸 ′
1 ∩ 𝐸 ′

2 = ∅.

Edge 𝑒 appears twice. First, assume that there is an edge 𝑒 = {𝑝𝑎, 𝑝𝑏} ∈ 𝐸 ′
1 ∩ 𝐸 ′

2
with 𝑎 < 𝑏. Then it must be that 𝜎′(𝑝𝑎) = 𝜎′(𝑝𝑏) = {1, 2} which can only be true if
𝜎(𝑝𝑎) = 𝜎(𝑝𝑏) = {1, 2} as well. Furthermore, there can be no point 𝑝𝑐 between 𝑝𝑎

107

Chapter 6 Linear Time Algorithms for One and Two Colors

↪

and 𝑝𝑏 with {1, 2} ∩ 𝜎′(𝑝𝑐) ≠ ∅ as then 𝑝𝑎 and 𝑝𝑏 would rather connect to 𝑝𝑐 instead
of each other in the color shared with 𝑝𝑐. The same then holds true for 𝜎 by definition
of 𝜎′.

For both 𝑐 = 1 and 𝑐 = 2 it must also be that 𝑅(𝑝𝑎, 𝑝𝑏) or 𝑅(𝑝𝑏, 𝑝𝑎) contains no
point with color 𝑐: If both restricted regions contained a point with color 𝑐 then 𝑝𝑎
would connect in color 𝑐 to this point in 𝑅(𝑝𝑎, 𝑝𝑏) and 𝑝𝑏 would connect to the one in
𝑅(𝑝𝑏, 𝑝𝑎). Thus, 𝑒 would not be present in color 𝑐, contradicting our assumption. Then,
in 𝜎 we have that at least one of the two restricted regions contains no point in at least
one of the two colors 1 and 2: If both restricted regions contained points with both
colors in 𝜎 we can see the color swap in 𝜎′ can only make changes such all points with
one color in one restricted region are changed to the other color. The other restricted
region would still contain points of both colors, which would not allow for 𝑒 to appear
in both colors. As a result, there is one endpoint of 𝑒 and one color from 1 and 2 such
that the endpoint connects to the other endpoint of 𝑒 in this color in 𝒩(𝑃, 𝜎). Then
𝑒 ∈ 𝐸 which also means that 𝑏 = 𝑎 + 1.

If now 𝑒 were not a local maximum then either one of the adjacent edges wouldn’t
be in 𝐸 or one of 𝑒’s endpoints would be closer to the other endpoint then to any other
point. If one of the adjacent edges is not in 𝐸 then we have a direct contradiction to
the assumption that 𝜎 is valid: in a valid color assignment any point has at most as
many colors as incident edges (Lemma 5.1). If one of 𝑒’s endpoints is closer to the
other endpoint then all other edges, it would mean that 𝑒 appears in both colors in 𝐸,
a contradiction to the assumption that 𝜎 is valid. Then 𝑒 is a local maximum and since
𝜎 is valid it must be that 𝑝𝑎 ∘→1𝜎 𝑝𝑎−1, 𝑝𝑎 ∘→2𝜎 𝑝𝑏, 𝑝𝑏 ∘→2𝜎 𝑝𝑎, and 𝑝𝑏 ∘→1𝜎 𝑝𝑏+1 (or with
1 and 2 swapped). Since 𝑒 is a local maximum we know that the big gap {𝑝𝑖, 𝑝𝑖+1}
is to the left or to the right of the edges adjacent to 𝑒. More precisely, we know that
𝑝𝑏+1 ≤ 𝑝𝑖 or 𝑝𝑖+1 ≤ 𝑝𝑎−1. But then in 𝜎′ the points from 𝑝𝑎−1 to 𝑝𝑏+1 either all have
the same colors as in 𝜎 or they all have colors 1 and 2 swapped. Then the situation
around 𝑒 is the same in 𝜎′ as in 𝜎, meaning that 𝑒 only appears once. This obviously
contradicts our assumption that 𝑒 appears twice and shows that it is not possible for an
edge to appear twice in 𝐸 ′.

Edge 𝑒 appears in 𝐸 ′ but not in 𝐸. Now, assume that there is an edge 𝑒 = {𝑝𝑎, 𝑝𝑏} ∈
𝐸 ′
1 ∪ 𝐸 ′

2 ∖ (𝐸1 ∪ 𝐸2) with 𝑎 < 𝑏.
If 𝑏 ≤ 𝑖 then 𝜎′(𝑝𝑎) = 𝜎(𝑝𝑎) and 𝜎′(𝑝𝑏) = 𝜎(𝑝𝑏). Assume without loss of generality

that 𝑒 ∈ 𝐸 ′
1. We then know that 𝑝𝑎 connects to the same point with color 1 with respect

to 𝜎′ as with respect to 𝜎. Since we assume that 𝑒 ∉ 𝐸 it cannot be that 𝑝𝑎 ∘→1𝜎 𝑝𝑏
and thus it also is true that 𝑝𝑎 ∘→1𝜎′ 𝑝𝑏. It must then be the case that 𝑝𝑏 ∘→1𝜎′ 𝑝𝑎 but
𝑝𝑏 ∘→1𝜎 𝑝𝑎. Since 𝜎 is valid, it must be that 𝑝𝑏 ∘→1𝜎 𝑝𝑏+1 which means that 𝑝𝑏 is closer
to 𝑝𝑏+1 than to 𝑝𝑎. In order for 𝑝𝑏 ∘→1𝜎′ 𝑝𝑎 to happen and not 𝑝𝑏 ∘→1𝜎′ 𝑝𝑏+1 it must be
that 1 ∉ 𝜎′(𝑝𝑏+1) and thus 𝜎′(𝑝𝑏+1) ≠ 𝜎(𝑝𝑏+1). This can only be if 𝑏 +1 > 𝑖 and since
𝑏 ≤ 𝑖 it follows that 𝑏 = 𝑖 and 𝑏 + 1 = 𝑖 + 1. But {𝑝𝑏, 𝑝𝑏+1} = {𝑝𝑖, 𝑝𝑖+1} is a big gap

108

6.3 Simplifying the Color Assignments

and thus if 𝑝𝑏 ∘→1𝜎 𝑝𝑏+1 is true then this gap would be present in 𝐸 contradicting the
assumption that 𝜎 is valid.

If 𝑎 > 𝑖 we can apply the symmetric arguments and conclude that this is impossible,
as well.

Finally, if 𝑎 ≤ 𝑖 and 𝑏 > 𝑖 let 𝑐 ∈ {1, 2} be the color such that 𝑒 ∈ 𝐸 ′
𝑐. We know

that 𝜎′(𝑝𝑖) = 𝜎′(𝑝𝑖+1) = {1}. If 𝑐 = 1 then it must be that 𝑝𝑎 = 𝑝𝑖 and 𝑝𝑏 = 𝑝𝑖+1: If
𝑎 < 𝑖 or 𝑏 > 𝑖 + 1 then there is a point with color 1 between 𝑝𝑎 and 𝑝𝑏 and 𝑒 ∉ 𝐸 ′

1,
a contradiction. Since 𝜎 is valid it is the case that 1 ∈ 𝜎(𝑝𝑎−1) and 2 ∈ 𝜎(𝑝𝑏+1). As
a result 1 ∈ 𝜎′(𝑝𝑎−1) and 1 ∈ 𝜎′(𝑝𝑏+1) but then, since 𝑒 is a big gap, we have that
𝑝𝑎 ∘→1𝜎′ 𝑝𝑎−1 and 𝑝𝑏 ∘→

1
𝜎′ 𝑝𝑏+1. This is a contradiction to the assumption that 𝑒 ∈ 𝐸 ′

1.
If 𝑐 = 2 we know that 𝑎 < 𝑖 and 𝑏 > 𝑖 + 1 since 𝜎′(𝑝𝑖) = 𝜎′(𝑝𝑖+1) = {1}. However,

since 𝜎′(𝑝𝑎) = 𝜎(𝑝𝑎) it would mean that 𝑝𝑎 ∘→2𝜎 𝑝𝑖+1 since 𝜎(𝑝𝑖+1) = {2} and 𝑝𝑖+1
is between 𝑝𝑎 and 𝑝𝑏. Then there is an illegal edge {𝑝𝑎, 𝑝𝑖+1} ∈ 𝐸 contradicting the
assumption that 𝜎 is valid.

Edge 𝑒 appears in 𝐸 but not in 𝐸 ′. Lastly, assume that there is an edge 𝑒 = {𝑝𝑎, 𝑝𝑎+1} ∈
𝐸1 ∪ 𝐸2 ∖ (𝐸 ′

1 ∪ 𝐸 ′
2). Additionally, assume that 𝑐 is the color such that 𝑒 ∈ 𝐸𝑐.

If 𝑎 + 1 ≤ 𝑖 then we have that 𝜎′(𝑝𝑎) = 𝜎(𝑝𝑎) and 𝜎′(𝑝𝑎+1) = 𝜎(𝑝𝑎+1). Then, if
𝑝𝑎 ∘→𝑐𝜎 𝑝𝑎+1 it follows that 𝑝𝑎 ∘→𝑐𝜎′ 𝑝𝑎+1 since there is no difference between 𝜎 and 𝜎′

to the left of 𝑝𝑎. This is a contradiction to the assumption that 𝑒 ∉ 𝐸 ′. If 𝑝𝑎+1 ∘→𝑐𝜎 𝑝𝑎,
assume that 𝑝𝑎+1 ∘→𝑐𝜎′ 𝑝𝑎 which means that 𝑝𝑎+1 ∘→𝑐𝜎′ 𝑝𝑏 for some 𝑝𝑏 > 𝑝𝑎+1. It must
then be that 𝜎′(𝑝𝑏) ≠ 𝜎(𝑝𝑏) which can only be the case if 𝑏 > 𝑖. If 𝑐 = 1 then there
can be two situations: If 𝑎 + 1 < 𝑖 then we know that 1 ∈ 𝜎(𝑝𝑖), but then it would be
that 𝑏 ≤ 𝑖, a contradiction. If 𝑎 + 1 = 𝑖, we know that 𝑝𝑎+1 is closer to 𝑝𝑎 then to any
other point since {𝑝𝑖, 𝑝𝑖+1} is a big gap. This would mean that 𝑒 ∈ 𝐸 ′

𝑐, a contradiction.
In case 𝑐 = 2 we know that 2 ∉ 𝜎′(𝑝𝑖+1) which means that 𝑏 > 𝑖 + 1. But, since
2 ∈ 𝜎(𝑝𝑖+1) the assumption that 𝑝𝑎+1 ∘→𝑐𝜎′ 𝑝𝑏 would imply that 𝑝𝑎+1 ∘→𝑐𝜎 𝑝𝑖+1 since
𝑝𝑎+1 < 𝑝𝑖+1 < 𝑝𝑏. This would mean that 𝑒 ∉ 𝐸, a contradiction.
We have shown that it is impossible for an edge to appear twice in 𝐸 ′

1 ∪ 𝐸 ′
2 or that

there is an edge that is only in 𝐸1 ∪ 𝐸2 but not in 𝐸 ′
1 ∪ 𝐸 ′

2 or vice versa. Thus, we can
conclude that 𝐸1 ∪ 𝐸2 = 𝐸 ′

1 ∪ 𝐸 ′
2 which means that 𝐸 = 𝐸 ′ and this that 𝜎′ is valid.

We have now seen that a big gap can always be colored with the same color for both
endpoints. At the same time, we know that small gaps need to have different colors for
their endpoints.

6.3.3 Basic Color Assignments

As a result of the previous two sections we can see that the only edges that need some
special consideration are the local maxima and the small gaps. For all other neighbor
edges we have seen that it is sufficient if both endpoints have a common color for the
edge to exist or, in the case of a big gap, not exist. This means that we will often talk

109

Chapter 6 Linear Time Algorithms for One and Two Colors

about whether an edge from the neighbor edges is a local maximum or a small gap
with respect to an input edge set. To make it easier we provide the following

Definition 6.5.⊳ special edges Let 𝐸 ⊆ 𝐸𝑃 be an input edge set, ℳ𝐸 its set of local maxima, and 𝒢−
𝐸

its set of small gaps. Any edge from 𝐸 that is either a local maximum or a small gap
is called a special edge. All those edges combined form the set of special edges in 𝐸,
defined as 𝒮(𝐸) = ℳ𝐸 ∪ 𝒢−

𝐸 , also referred to by 𝒮𝐸.

We can make an easy observation on the number of the special edges:

Observation 6.3. Let 𝐸 ⊆ 𝐸𝑃 be an input edge set for an input point set 𝑃 with 𝑛 points
and 𝒮𝐸 be the set of special edges. Then 2|𝒮𝐸| + 2 ≤ 𝑛 or put differently 𝒮𝐸 ≤ ⌊𝑛/2⌋ − 1.

Proof. A local maximum needs to have an edge to both its left and right. These two
edges must be shorter than the local maximum and thus cannot be local maxima
themselves. Similarly, a small gap needs to have an edge on both its sides and since
those edges are then adjacent to a gap they cannot be local maxima either. Thus,
between two special edges there must be a normal edge and the leftmost and rightmost
edge in 𝐸 cannot be a special edge.

Then both outermost points from 𝑃 are not endpoints of special edges. Additionally,
every point can be the endpoint of at most one special edge while every special edge
needs two endpoints. We thus have at most ⌊𝑛/2 − 2⌋ = ⌊𝑛/2⌋ − 1 special edge.

For an input edge set the corresponding input point set can be partitioned into
the endpoints of special edges and all other points. We can group those other points
together that are (transitively) adjacent: two points are in the same group if they don’t
have a special edge between them. We define this more formally as

↪

Definition 6.6.⊳ exclusive blocks
⊳ blocks

Let 𝑃 = {𝑝1,… , 𝑝𝑛} ⊆ ℝ be an input point set, 𝐸 ⊆ 𝐸𝑃 be an input
edge set, and 𝒮𝐸 = {𝑢1,… , 𝑢𝑚} with 𝑢𝑗 = {𝑝𝑎𝑗

, 𝑝𝑎𝑗+1
} for all 1 ≤ 𝑗 ≤ 𝑚 be the set of

special edges sorted from left to right.
We then define 𝑚 + 1 exclusive blocks 𝐵∗

𝑗 each containing the points between two
consecutive special edges, excluding the special edges’ endpoints:

𝐵∗
0 = {𝑝𝑖 ∈ 𝑃 | 𝑝𝑖 < 𝑝𝑎1

},

𝐵∗
𝑗 = {𝑝𝑖 ∈ 𝑃 | 𝑝𝑎𝑗+1

< 𝑝𝑖 < 𝑝𝑎𝑗+1
} for all 1 ≤ 𝑗 < 𝑚, and

𝐵∗
𝑚 = {𝑝𝑖 ∈ 𝑃 | 𝑝𝑎𝑚+1 < 𝑝𝑖}.

110

6.3 Simplifying the Color Assignments

𝐵∗
0 𝐵0 𝐵∗

1 𝐵1 𝐵∗
2 𝐵2 𝐵3 𝐵∗

4𝐵4

𝑢1 ∈ ℳ𝐸 𝑢2 ∈ 𝒢−
𝐸 𝑢3 ∈ 𝒢−

𝐸 𝑢4 ∈ ℳ𝐸

𝐵∗
3

Figure 6.7: An input edge set and its corresponding blocks. There are four special
edges 𝑢1 to 𝑢4 and thus five (exclusive) blocks. Note that 𝐵∗

3 is empty since
the right endpoint of 𝑢3 and the left endpoint of 𝑢4 are neighbors.

We also define 𝑚 + 1 blocks 𝐵𝑗 which include their encompassing special edges’
closest endpoints:

𝐵0 = 𝐵∗
0 ∪ {𝑝𝑎1

},

𝐵𝑗 = 𝐵∗
𝑗 ∪ {𝑝𝑎𝑗+1

, 𝑝𝑎𝑗+1
} for all 1 ≤ 𝑗 < 𝑚, and

𝐵𝑚 = 𝐵∗
𝑚 ∪ {𝑝𝑎𝑚+1}.

See Figure 6.7 for an example input edge set and its corresponding blocks. We can
see here that big gaps are not important as one is contained in 𝐵∗

2. Furthermore, an
exclusive block may be empty, as demonstrated by 𝐵∗

3.
We now use the blocks and the special edges to define a special kind of color

assignment. This kind of color assignment will be the only kind that we will need to
look at, as will be shown later.

Definition 6.7. ⊳ basic color
assignment
(BCA)

Let 𝐸 ⊆ 𝐸𝑃 be an input edge set and 𝐵0,… , 𝐵𝑚 be the corresponding
blocks. Let 𝜎 ∶ 𝑃 → ℂ ̂𝑐 be a color assignment. We call 𝜎 a basic color assignment (BCA)
with respect to 𝐸 if it fulfills the following criteria:

1. For all blocks 𝐵𝑗 all points in it have a common color, i.e., there exists a 𝑐𝑗 ∈ 𝐶 ̂𝑐
such that 𝑐𝑗 ∈ 𝜎(𝑝) for all 𝑝 ∈ 𝐵𝑗.

2. For two adjacent blocks 𝐵𝑗 and 𝐵𝑗+1 the colors 𝑐𝑗 and 𝑐𝑗+1 shared by their points
are different.

3. For every local maximum 𝑢𝑖 ∈ 𝒮𝐸 ∩ℳ𝐸 one endpoint has the two colors 𝑐𝑖−1
and 𝑐𝑖 of the blocks 𝐵𝑖−1 and 𝐵𝑖 incident to 𝑢𝑖. The other endpoint has only the
color 𝑐𝑖−1 or 𝑐𝑖 of the block it is contained in.

4. Any point that is not an endpoint of a local maximum has only one color, the
color of the block it is contained in.

Since the input edge set 𝐸 will be generally clear from the context, we will mostly just
say that 𝜎 is a basic color assignment (BCA).

111

Chapter 6 Linear Time Algorithms for One and Two Colors

With this definition we can then show that if there exists a valid color assignment
for an input edge set with the given number of colors, then there exists a valid BCA
with the same number of colors:

Lemma 6.5. Let 𝑃 ⊆ ℝ be an input point set, 𝐸 ⊆ 𝐸𝑃 be an input edge set, and 𝜎 ∶ 𝑃 → ℂ ̂𝑐
be a valid color assignment. Then there exists a valid BCA 𝜎′ ∶ 𝑃 → ℂ ̂𝑐.

↪

Proof. If we apply Lemma 6.3 exhaustively we transform 𝜎 into a valid color assignment
𝜎∗ in which every point except one endpoint of each local maximum has exactly one
color; for each local maximum exactly one endpoint has two colors. We can then apply
Lemma 6.4 exhaustively to transform 𝜎∗ into another valid color assignment 𝜎′ where
for every big gap its endpoints have the same color. Since Lemma 6.4 does not change
the number of colors of any point, it thus still holds that no point has two colors except
one endpoint of each local maximum. It remains to show that 𝜎′ fulfills all criteria to
be a BCA.

For criterion 1 assume that there is a block 𝐵𝑗 and two points 𝑝𝑖, 𝑝𝑘 ∈ 𝐵𝑗 with 𝑝𝑖 < 𝑝𝑘
such that the two points don’t have a common color. If there are multiple such pairs of
points, we choose one with the least amount of points between them. Then it must
be that 𝑝𝑘 = 𝑝𝑖+1: No point 𝑝𝑙 with 𝑝𝑖 < 𝑝𝑙 < 𝑝𝑘 can have two colors. If 𝑝𝑙 existed
and didn’t share a color with 𝑝𝑖 or 𝑝𝑘 this would violate the assumption that 𝑝𝑖 and
𝑝𝑘 have as few points between them as possible, because both 𝑝𝑖 and 𝑝𝑙 as well as 𝑝𝑙
and 𝑝𝑘 would be closer pairs. If 𝑝𝑙 existed and shared a color with either 𝑝𝑖 or 𝑝𝑘 we
would have the same assumption violation. However, we now have two neighboring
points 𝑝𝑖 and 𝑝𝑖+1 that don’t have a common color. Thus, 𝑒𝑖 = {𝑝𝑖, 𝑝𝑖+1} ∉ 𝒩(𝑃, 𝜎′).
If 𝑒𝑖 ∈ 𝐸, this is a contradiction to the fact that 𝜎′ is valid. On the other hand, if 𝑒𝑖 ∉ 𝐸
it follows that 𝑒𝑖 is a gap and because both endpoints are in the same block it is a big
gap. However, since Lemma 6.4 was applied exhaustively, it must be that all endpoints
of big gaps have the same color, a contradiction. Thus, criterion 1 must hold for 𝜎′.

For criterion 2 assume that there is a special edge 𝑢𝑗 = {𝑝𝑖, 𝑝𝑖+1} such that for its
two incident blocks 𝐵𝑗−1 and 𝐵𝑗 the shared colors 𝑐𝑗−1 and 𝑐𝑗 are the same. This means
that 𝑐𝑗 ∈ 𝜎′(𝑝𝑖) and 𝑐𝑗 ∈ 𝜎′(𝑝𝑖+1). If 𝑢𝑗 is a small gap we know then that 𝑝𝑖 ∘→

𝑐𝑗 𝑝𝑖+1

or 𝑝𝑖+1 ∘→
𝑐𝑗 𝑝𝑖 which would mean that 𝑢𝑗 ∈ 𝒩(𝑃, 𝜎′), a contradiction since 𝜎′ is valid.

If 𝑢𝑗 is a local maximum we know that 𝑝𝑖 ∘→
𝑐𝑗 𝑝𝑖−1 and 𝑝𝑖+1 ∘→

𝑐𝑗 𝑝𝑖+2 and thus 𝑢𝑖 does
not appear in 𝒩(𝑃, 𝜎′) with color 𝑐𝑗. However, since not both endpoints have a second
color, 𝑢𝑖 does not appear in 𝒩(𝑃, 𝜎′) at all, a contradiction. As a result, criterion 2
must hold for 𝜎′.

For criterion 3 we look at each local maximum 𝑢𝑗 = {𝑝𝑖, 𝑝𝑖+1} ∈ 𝒮𝐸 ∩ℳ𝐸. Let 𝑐𝑗−1
and 𝑐𝑗 be the shared colors with 𝑐𝑗−1 ≠ 𝑐𝑗 for 𝑢𝑗 ’s incident blocks according to criteria 1
and 2. It follows that 𝑐𝑗−1 ∈ 𝜎′(𝑝𝑖) and 𝑐𝑗 ∈ 𝜎′(𝑝𝑖+1). We have already observed at
the beginning of this proof that for each local maximum exactly one endpoint has two
colors and the other has one color. Let, without loss of generality, 𝑝𝑖 be the endpoint

112

6.3 Simplifying the Color Assignments

with two colors. Since 𝑢𝑗 ∈ 𝐸, it must be that 𝑢𝑗 ∈ 𝒩(𝑃, 𝜎′). For this to happen, 𝑝𝑖
and 𝑝𝑖+1 must have a common color. Since 𝑝𝑖 is allowed exactly one addition color, this
color must then be 𝑐𝑗, the color assigned to 𝑝𝑖+1. Thus, criterion 3 holds for 𝜎′.

For criterion 4 we already noted that in 𝜎′ all points have exactly one color except
for one endpoint of each local maximum that has two colors. Thus, it is clear that any
point that is not the endpoint of a local maximum has only one color. Due to criterion 1
it must be the color shared with all other points in its block.
We have shown that 𝜎′ which is constructed by applying first Lemma 6.3 and then

Lemma 6.4 exhaustively is valid and fulfills all criteria of Definition 6.7 and is thus a
BCA.

We now know that for every valid color assignment there exists a valid BCA and we
can even transform the former into the latter. This lets us restrict ourselves to look for
BCAs which will be much easier due to their restricted structure. We will now also
see that for a given BCA we don’t need to check all points and its connection(s) to see
whether the BCA is valid. In fact, we will only need to check the endpoints of special
edges as we will show in

Lemma 6.6. Let 𝑃 = {𝑝1,… , 𝑝𝑛} ⊆ ℝ be an input point set, 𝐸 ⊆ 𝐸𝑃 be an input edge
set, 𝜎 ∶ 𝑃 → ℂ ̂𝑐 be a BCA, and let 𝐸 ′ = 𝒩(𝑃, 𝜎) be the edges of the resulting CNNM. If 𝜎
is not valid, i.e., 𝐸 ′ ≠ 𝐸, then the following statements hold:

1. For all edges 𝑒𝑖 ∈ 𝐸 with 𝑒𝑖 ∉ 𝐸 ′ we know that 𝑒𝑖 is either a local maximum or
directly to the left or right of a small gap, i.e., either 𝑒𝑖 ∈ ℳ𝐸, 𝑒𝑖+1 ∈ 𝒢−

𝐸 , or
𝑒𝑖−1 ∈ 𝒢−

𝐸 .

2. For all edges 𝑒 ∈ 𝐸 ′ that appear more than once in 𝐸 ′ both 𝑒’s endpoints are endpoints
of local maxima.

3. For all edges 𝑒 = {𝑝𝑖, 𝑝𝑗} ∈ 𝐸 ′ such that 𝑒 ∉ 𝐸 there exists a color 𝑐 ∈ 𝐶 ̂𝑐 such that
𝑝𝑖 ∘→

𝑐 𝑝𝑗 and 𝑝𝑖 is the endpoint of a special edge. Furthermore, 𝑒 is an illegal edge,
i.e., 𝑒 ∉ 𝐸𝑃 and thus not a gap.

↪

Proof. We start with the first statement. Let 𝑒𝑖 = {𝑝𝑎, 𝑝𝑎+1} ∈ 𝐸 be an edge such that
𝑒𝑖 ∉ 𝐸 ′. Since 𝜎 is a BCA and 𝑒𝑖 is not a gap there is a color 𝑐 ∈ 𝐶 ̂𝑐 such that 𝑐 ∈ 𝜎(𝑝𝑎)
and 𝑐 ∈ 𝜎(𝑝𝑎+1). Assume first that 𝑒𝑖 is not next to a gap and not a local maximum.
This assumption tells us that at least one of ‖𝑒𝑖−1‖ > ‖𝑒𝑖‖ or ‖𝑒𝑖‖ < ‖𝑒𝑖+1‖ holds. If,
on the other hand, 𝑒𝑖 is next to a big gap 𝑒𝑗 with 𝑗 ∈ {𝑖 − 1, 𝑖 + 1} then ‖𝑒𝑗‖ > ‖𝑒𝑖‖.
As a result 𝑝𝑎 ∘→ 𝑝𝑎+1 or 𝑝𝑎+1 ∘→ 𝑝𝑎 and since both points have a common color 𝑐 it
must be that 𝑝𝑎 ∘→𝑐 𝑝𝑎+1 or 𝑝𝑎+1 ∘→𝑐 𝑝𝑎. Thus, 𝑒𝑖 ∈ 𝐸 ′, a contradiction. It must then be
that 𝑒𝑖 is either a local maximum or next to a small gap.

113

Chapter 6 Linear Time Algorithms for One and Two Colors

We now show the second statement. If an edge appears more than once in 𝐸 ′ both
endpoints must have the same two colors. Since only endpoints of local maxima have
two colors, the claim follows directly.

Finally, we show the last statement. If we have an edge 𝑒 = {𝑝𝑖, 𝑝𝑗} ∈ 𝐸 ′ with 𝑖 < 𝑗
that does not appear in 𝐸, there are two possibilities. Either 𝑒 ∈ 𝐸𝑃 which means that
𝑒 is a gap in 𝐸 or 𝑒 ∉ 𝐸𝑃 meaning it’s an illegal edge. We first show that 𝑒 cannot be
a gap: It cannot be a small gap since in a BCA both endpoints of a small gap do not
have a common color. If 𝑒 were a big gap, then 𝑗 = 𝑖 + 1, and since 𝑝𝑖 and 𝑝𝑗 are in the
same exclusive block it would be that 𝑝𝑖−1, 𝑝𝑖, 𝑝𝑖+1, and 𝑝𝑖+2 all have a common color
𝑐. However, since 𝑒 is a big gap, then 𝑝𝑖 ∘→

𝑐 𝑝𝑖−1 and 𝑝𝑗 ∘→
𝑐 𝑝𝑗+1 and thus 𝑒 would

not be in 𝐸 ′, a contradiction. As a result, 𝑒 must be an illegal edge, i.e., 𝑗 < 𝑖 − 1 or
𝑗 > 𝑖 + 1. Assume, without loss of generality, that 𝑝𝑖 ∘→

𝑐 𝑝𝑗 for some 𝑐 ∈ 𝐶 ̂𝑐. Assume
furthermore that 𝑝𝑖 is not the endpoint of a special edge. Then 𝜎(𝑝𝑖) = {𝑐} as 𝑝𝑖 has
only one color and also both adjacent points will also have color 𝑐 since 𝜎 is a BCA and
𝑝𝑖 is in an exclusive block. But then 𝑝𝑖 will connect to either 𝑝𝑖−1 or 𝑝𝑖+1 contradicting
the assumption that 𝑒 is an illegal edge.

With this result we will be able to more easily show that a given BCA is valid: We
will assume that the BCA is not valid and we then know that the only edges and points
we need to check are those described in Lemma 6.6. We will now directly use this
lemma to give an exact characterization for when a BCA is valid and when it is not:

Lemma 6.7. Let 𝐸 ⊆ 𝐸𝑃 be an input edge set for an input point set 𝑃 = {𝑝1,… , 𝑝𝑛} ⊆ ℝ.
Let 𝜎 ∶ 𝑃 → ℂ ̂𝑐 be a BCA. Then 𝜎 is valid if and only if the following conditions hold:

1. For all small gaps 𝑒𝑖 = {𝑝𝑖, 𝑝𝑖+1} ∈ 𝒢−
𝐸 , let 𝜎(𝑝𝑖) = {𝑐𝑙} and 𝜎(𝑝𝑖+1) = {𝑐𝑟} be

its endpoints’ colors. Then, for all points 𝑝 ∈ 𝑃 ∩ ⃖⃗𝑅𝐸(𝑒𝑖) it holds that 𝑐𝑟 ∉ 𝜎(𝑝)
and for all points 𝑝 ∈ 𝑃 ∩ ⃗⃗𝑅𝐸(𝑒𝑖) it holds that 𝑐𝑙 ∉ 𝜎(𝑝).

2. For all local maxima 𝑒𝑖 = {𝑝𝑖, 𝑝𝑖+1} ∈ ℳ𝐸 with two colors for the right endpoint,
let 𝜎(𝑝𝑖) = {𝑐𝑙} and 𝜎(𝑝𝑖+1) = {𝑐𝑙, 𝑐𝑟} be the endpoints’ colors. Then, for all
points 𝑝 ∈ 𝑃 ∩ ⃗⃗𝑅𝐸(𝑒𝑖) it holds that 𝑐𝑙 ∉ 𝜎(𝑝).

3. For all local maxima 𝑒𝑖 = {𝑝𝑖, 𝑝𝑖+1} ∈ ℳ𝐸 with two colors for the left endpoint, let
𝜎(𝑝𝑖) = {𝑐𝑙, 𝑐𝑟} and 𝜎(𝑝𝑖+1) = {𝑐𝑟} be the endpoints’ colors. Then, for all points
𝑝 ∈ 𝑃 ∩ ⃖⃗𝑅𝐸(𝑒𝑖) it holds that 𝑐𝑟 ∉ 𝜎(𝑝).

↪

Proof. We first show that if all three conditions hold, then 𝜎 is valid. We do this by
showing that if 𝜎 is not valid then at least one of the conditions does not hold. Let
𝐸 ′ = 𝒩(𝑃, 𝜎) be the edges of the CNNM for 𝜎. It must then be that there is an edge
𝑒𝑖 ∈ 𝐸 ∖𝐸 ′, an edge that appears multiple times in 𝐸 ′ (i.e., 𝐸 ′ is a multiset), or an edge
𝑒 ∈ 𝐸 ′ ∖ 𝐸. We can use Lemma 6.6 to see that we can restrict ourselves to checking
specific edges or points in all three cases.

114

6.3 Simplifying the Color Assignments

↪

Assume first that there is an edge 𝑒𝑖 = {𝑝𝑖, 𝑝𝑖+1} ∈ 𝐸∖𝐸 ′. Statement 1 of Lemma 6.6
tells us that 𝑒𝑖 is either a local maximum or adjacent to a small gap. If 𝑒𝑖 is a local
maximum we know that either 𝜎(𝑝𝑖) = {𝑐𝑙} and 𝜎(𝑝𝑖+1) = {𝑐𝑙, 𝑐𝑟} or 𝜎(𝑝𝑖) = {𝑐𝑙, 𝑐𝑟}
and 𝜎(𝑝𝑖+1) = {𝑐𝑟} for two distinct colors 𝑐𝑙, 𝑐𝑟 ∈ 𝐶 ̂𝑐. In the first case it cannot be
that 𝑝𝑖+1 ∘→𝑐𝑙 𝑝𝑖 since 𝑒𝑖 ∉ 𝐸 ′. It must then be that there is a point 𝑝𝑘 > 𝑝𝑖+1 such
that 𝑝𝑖+1 ∘→𝑐𝑙 𝑝𝑘. But then both 𝑐𝑙 ∈ 𝜎(𝑝𝑘) and 𝑝𝑘 ∈ ⃗⃗𝑅𝐸(𝑒𝑖) must be true, and thus
condition 2 does not hold. In the second case it cannot be that 𝑝𝑖 ∘→𝑐𝑟 𝑝𝑖+1 since
𝑒𝑖 ∉ 𝐸 ′. It must then be that there is a point 𝑝𝑘 < 𝑝𝑖 such that 𝑝𝑖 ∘→

𝑐𝑟 𝑝𝑘. But then both
𝑐𝑟 ∈ 𝜎(𝑝𝑘) and 𝑝𝑘 ∈ ⃖⃗𝑅𝐸(𝑒𝑖) must be true, which means that condition 3 does not hold.

If 𝑒𝑖 is adjacent to a small gap, assume first that 𝑒𝑖−1 ∈ 𝒢−
𝐸 is this gap. We then know

that there are two distinct colors 𝑐𝑙, 𝑐𝑟 ∈ 𝐶 ̂𝑐 such that 𝜎(𝑝𝑖−1) = {𝑐𝑙} and 𝜎(𝑝𝑖) = {𝑐𝑟}.
Since 𝜎 is a BCA and 𝑝𝑖 and 𝑝𝑖+1 are in the same block, it follows that 𝑐𝑟 ∈ 𝜎(𝑝𝑖+1).
Due to our assumption it cannot be that 𝑝𝑖 ∘→

𝑐𝑟 𝑝𝑖+1 which means that there must be
a 𝑝𝑘 < 𝑝𝑖 such that 𝑝𝑖 ∘→

𝑐𝑟 𝑝𝑘. But then both 𝑐𝑟 ∈ 𝜎(𝑝𝑘) and 𝑝𝑘 ∈ 𝑅(𝑝𝑖, 𝑝𝑖+1) must
be true and by definition ⃖⃗𝑅𝐸(𝑒𝑖) = 𝑅(𝑝𝑖, 𝑝𝑖+1). Then condition 1 does not hold. If
𝑒𝑖+1 and not 𝑒𝑖, as assumed, is the small gap, the symmetric arguments also show that
condition 1 does not hold.
Assume now that there is an edge 𝑒 = {𝑝𝑖, 𝑝𝑗} ∈ 𝐸 ′ that appears more than once

in 𝐸 ′. Statement 2 of Lemma 6.6 tells us that both endpoints are endpoints of local
maxima. Additionally, it must be that 𝜎(𝑝𝑖) = 𝜎(𝑝𝑗) = {𝑐1, 𝑐2} for two distinct colors
𝑐1, 𝑐2 ∈ 𝐶 ̂𝑐. Let without loss of generality be that 𝑝𝑖 < 𝑝𝑗. We now show that it must be
the case that 𝑝𝑗 = 𝑝𝑖+1. Assume that 𝑝𝑗 > 𝑝𝑖+1. We know that, since 𝜎 is a BCA, 𝑝𝑖+1
must have either 𝑐1 or 𝑐2 assigned to it; let it be 𝑐1, without loss of generality. But then
𝑝𝑖 ∘→

𝑐1 𝑝𝑖+1 and because 𝑝𝑖 < 𝑝𝑖+1 < 𝑝𝑗 it would be the case that 𝑝𝑗 connected with
color 𝑐1 to 𝑝𝑖+1 or possibly a point between 𝑝𝑖+1 and 𝑝𝑗; certainly not 𝑝𝑖. Thus, 𝑒 would
not be present in 𝐸 ′ in color 𝑐1, a contradiction. Now that we know that 𝑝𝑗 = 𝑝𝑖+1 we
know that 𝑒𝑖−1 and 𝑒𝑖+1 are local maxima and thus 𝑝𝑖 and 𝑝𝑖+1 are the right and left
endpoint of their local maximum, respectively. This also means that 𝑝𝑖 and 𝑝𝑖+1 are
closer to each other than to their respective other endpoints of their local maxima. Let,
without loss of generality, 𝜎(𝑝𝑖−1) = {𝑐1}. Then, it is clear that 𝑝𝑖+1 ∈ ⃗⃗𝑅𝐸(𝑒𝑖−1) and
since 𝑐1 ∈ 𝜎(𝑝𝑖+1) condition 2 does not hold. Looking at 𝑝𝑖+1 we see with symmetric
arguments that condition 3 does not hold either.

Lastly, assume that there is an edge 𝑒 = {𝑝𝑖, 𝑝𝑗} ∈ 𝐸 ′ such that 𝑒 ∉ 𝐸. Let 𝑐 ∈ 𝐶 ̂𝑐 be
the color in which 𝑒 appears in 𝐸 ′ and assume without loss of generality that 𝑝𝑖 ∘→

𝑐 𝑝𝑗.
Statement 3 of Lemma 6.6 tells us that then 𝑒 is an illegal edge and 𝑝𝑖 is the endpoint
of a special edge 𝑢𝑘 ∈ 𝒮𝐸. Let, without loss of generality, 𝑝𝑖 be the left endpoint of 𝑢𝑘
and thus 𝑢𝑘 = 𝑒𝑖.

If 𝑢𝑘 is a local maximum, first assume that 𝑝𝑖 is the endpoint with two colors, which
means that 𝜎(𝑝𝑖) = {𝑐𝑙, 𝑐𝑟}, 𝑐𝑙 ∈ 𝜎(𝑝𝑖−1), and 𝜎(𝑝𝑖+1) = {𝑐𝑟} for two distinct colors
𝑐𝑙, 𝑐𝑟 ∈ 𝐶 ̂𝑐. Then it cannot be that 𝑐 = 𝑐𝑙 because 𝑝𝑖 ∘→

𝑐𝑙 𝑝𝑖−1 since 𝑝𝑖 is closer to 𝑝𝑖−1

115

Chapter 6 Linear Time Algorithms for One and Two Colors

than to any other point and 𝑝𝑗 is not 𝑝𝑖−1 since 𝑒 is an illegal edge. Thus, it must be that
𝑐 = 𝑐𝑟 which means that 𝑝𝑗 is to the left of 𝑝𝑖, i.e., 𝑝𝑗 < 𝑝𝑖−1. But then 𝑝𝑖 must be closer
to 𝑝𝑗 than to 𝑝𝑖+1 and 𝑝𝑗 must have color 𝑐𝑟. This means that 𝑝𝑗 ∈ 𝑅(𝑝𝑖, 𝑝𝑖+1) which is
⃖⃗𝑅𝐸(𝑒𝑖) by definition, and together with 𝑐𝑟 ∈ 𝜎(𝑝𝑗) this shows that condition 3 does not
hold. If 𝑝𝑖 is the endpoint with one color, we know that 𝜎(𝑝𝑖) = {𝑐𝑙}, 𝑐𝑙 ∈ 𝜎(𝑝𝑖−1),
and 𝜎(𝑝𝑖+1) = {𝑐𝑙, 𝑐𝑟} for two distinct colors 𝑐𝑙, 𝑐𝑟 ∈ 𝐶 ̂𝑐. Since 𝑐𝑙 is the only color
assigned to 𝑝𝑖, it must be that 𝑐 = 𝑐𝑙. However, 𝑝𝑖 ∘→

𝑐𝑙 𝑝𝑖−1 since 𝑝𝑖 is closer to 𝑝𝑖−1
than to 𝑝𝑖+1 which means that 𝑝𝑗 = 𝑝𝑖−1. This is a contradiction to our assumption
that 𝑒 is an illegal edge. If 𝑝𝑖 were the right endpoint of 𝑢𝑘, the symmetric arguments
would show that condition 2 does not hold.

If 𝑢𝑘 is a small gap, remember that we assume that 𝑝𝑖 is its left endpoint, and let
𝜎(𝑝𝑖) = {𝑐𝑙} and 𝜎(𝑝𝑖+1) = {𝑐𝑟} be the gap’s endpoints’ colors. Then 𝑝𝑗 cannot
be to the left of 𝑝𝑖 since 𝑝𝑖 would always connect with color 𝑐𝑙 to 𝑝𝑖−1 instead of 𝑝𝑗.
Additionally, 𝑝𝑗 = 𝑝𝑖−1 is not possible since 𝑒 is an illegal edge, and thus 𝑝𝑗 > 𝑝𝑖+1 must
hold. In order for 𝑝𝑖 ∘→

𝑐𝑟 𝑝𝑗 to happen it must be that 𝑐𝑟 ∈ 𝜎(𝑝𝑗) and 𝑝𝑗 ∈ 𝑅(𝑝𝑖, 𝑝𝑖−1) =
⃗⃗𝑅𝐸(𝑒𝑖) which shows that condition 1 does not hold. The symmetric arguments hold if
𝑝𝑖 were the right endpoint of 𝑢𝑘.
We have now shown that in all cases which may make 𝜎 not valid we can conclude

that at least one of the three conditions does not hold. As a result we can conclude
that if all three conditions hold that then 𝜎 is valid.

We now show that if 𝜎 is valid then all three conditions hold.
Look at all small gaps 𝑒𝑖 = {𝑝𝑖, 𝑝𝑖+1} ∈ 𝒢−

𝐸 and let 𝜎(𝑝𝑖) = {𝑐𝑙} and 𝜎(𝑝𝑖+1) = {𝑐𝑟}
the endpoints’ colors. Since 𝜎 is a BCA we know that 𝑐𝑙 ≠ 𝑐𝑟 and since 𝜎 is valid it must
be that 𝑝𝑖 ∘→

𝑐𝑙 𝑝𝑖−1 and 𝑝𝑖+1 ∘→𝑐𝑟 𝑝𝑖+2. This is only possible if there is no point to the
right of 𝑝𝑖 with color 𝑐𝑙 to which 𝑝𝑖 is closer than to 𝑝𝑖−1. Or in other words, no point
inside ⃗⃗𝑅𝐸(𝑒𝑖) can have color 𝑐𝑙. The same holds for 𝑝𝑖+1, ⃖⃗𝑅𝐸(𝑒𝑖) and color 𝑐𝑟. Thus,
condition 1 holds.

Look at all local maxima 𝑒𝑖 = {𝑝𝑖, 𝑝𝑖+1} ∈ ℳ𝐸 with two colors for the right endpoint
and let 𝜎(𝑝𝑖) = {𝑐𝑙} and 𝜎(𝑝𝑖+1) = {𝑐𝑙, 𝑐𝑟} be the endpoints’ colors. We then know
that 𝑐𝑙 ∈ 𝜎(𝑝𝑖−1) since 𝜎 is a BCA and 𝑝𝑖−1 and 𝑝𝑖 are in the same block. Since 𝑒𝑖
is a local maximum, it follows that 𝑝𝑖 ∘→

𝑐𝑙 𝑝𝑖−1. Then it must be that 𝑝𝑖+1 ∘→𝑐𝑙 𝑝𝑖 as
otherwise 𝑒𝑖 ∉ 𝒩(𝑃, 𝜎) which would contradict the assumption that 𝜎 is valid. But
then there can be no point with color 𝑐𝑙 inside ⃗⃗𝑅𝐸(𝑒𝑖), showing that condition 2 holds.
With symmetric arguments we can see that condition 3 holds for all local maxima

with two colors for its left endpoint.
We have shown that all three conditions hold if 𝜎 is valid, which concludes the

proof.

With Lemma 6.7 we now have a powerful tool to determine whether a BCA is valid.
We only need to check whether (a subset of) the restricted regions of each special edge
contain other points with a forbidden color. This also tells us that the 1D-CNNG-Gaps

116

6.4 Two Colors

problem (and thus also the 1D-CNNG problem) is contained in NP: Given an input
point set and an input edge set we know that any BCA has linear size in the input. In
addition, using Lemma 6.7, we can check whether the BCA is valid in polynomial time.
With this knowledge for the general case we will now start tackling the special case for
̂𝑐 = 2.

6.4 Two Colors

After the previous structural observations we will now see which inputs can be success-
fully colored if we are allowed to use two colors. From Lemma 6.5 we know that we
only need to look for BCAs. In order to find a BCA we then only need to decide for
each local maximum in the input edge set whether its left or right endpoint should
have two colors. All colors for the other points are then already determined since with
two colors, the colors of the blocks have to alternate. Assuming that the input edge
set has 𝑘 local maxima, there are 2𝑘 different BCAs (or 2𝑘+1 if we count those with
swapped colors) that we would need to check whether they result in a CNNG. Since
the number of local maxima can be linear in the number of input points (remember
Observation 6.3), we want to find a fast algorithm.

6.4.1 Only Adjacent Color Changes Are Important

We will now see that, luckily, we do not need to check all BCAs. For two colors every
odd-numbered block will have one color while every even-numbered block will have
the other color. As a result, every special edge will have one endpoint with one color
and one endpoint with the other color (for local maxima one endpoint even has both
colors). In addition, the endpoints of special edges are the only points at which a color
changes when going from left to right (or right to left) along the points. This leads to
the following

Lemma 6.8. Let 𝑃 = {𝑝1,… , 𝑝𝑛} ⊆ ℝ be an input point set, 𝐸 ⊆ 𝐸𝑃 an input edge set,
𝒮𝐸 = {𝑢1,… , 𝑢𝑚} be the special edges, and 𝜎 ∶ 𝑃 → ℂ2 be a BCA with two colors. For
every special edge 𝑢𝑖 let 𝑐𝑖,𝑙 be the color shared among block 𝐵𝑖−1 to the left of 𝑢𝑖 and 𝑐𝑖,𝑟
be the color shared among block 𝐵𝑖 to the right of 𝑢𝑖. Then both following statements
hold:

1. For all 𝑢𝑖 with 𝑖 < 𝑚 the closest point to the right of 𝑢𝑖 with color 𝑐𝑖,𝑙 is the endpoint
of 𝑢𝑖+1 with two colors if 𝑢𝑖+1 is a local maximum or the right endpoint of 𝑢𝑖+1 if it
is a small gap.

2. For all 𝑢𝑖 with 𝑖 > 1 the closest point to the left of 𝑢𝑖 with color 𝑐𝑖,𝑟 is the endpoint
of 𝑢𝑖−1 with two colors if 𝑢𝑖−1 is a local maximum or the left endpoint of 𝑢𝑖−1 if it is
a small gap.

117

Chapter 6 Linear Time Algorithms for One and Two Colors

no 𝑐2
no 𝑐1

𝑒 𝑒′

⃖⃗𝑅𝐸(𝑒) ⃖⃗𝑅𝐸(𝑒
′)

(a) Both left endpoints can have two colors, as
the left endpoint of 𝑒 is not inside ⃖⃗𝑅𝐸(𝑒

′).

no 𝑐2

no 𝑐2

𝑒 𝑒′

⃖⃗𝑅𝐸(𝑒)

⃗⃗𝑅𝐸(𝑒
′)

(b) Two colors for the left endpoint of 𝑒 and
right endpoint of 𝑒′ is always possible.

no 𝑐1

𝑒 𝑒′

⃗⃗𝑅𝐸(𝑒)
⃖⃗𝑅𝐸(𝑒

′)
no 𝑐1

(c) Both restricted regions contain the end-
point with two colors.

𝑒 𝑒′

⃗⃗𝑅𝐸(𝑒)

⃗⃗𝑅𝐸(𝑒
′)

no 𝑐2

no 𝑐1

(d) ⃗⃗𝑅𝐸(𝑒) contains both endpoints of 𝑒′, even
the right one with two colors.

Figure 6.8: The four possible ways to color the two highlighted local maxima 𝑒 and 𝑒′

with two colors. The color assignment works if none of the shown restricted
regions contain the point with two colors of the other local maximum.

Proof. We will show statement 1 and then statement 2 follows due to symmetry. If
𝑖 < 𝑚 we know that the color shared in 𝐵𝑖 is 𝑐𝑖,𝑟 and then the color shared in 𝐵𝑖+1 is
𝑐𝑖+1,𝑟 = 𝑐𝑖,𝑙 again, since we have only two alternating colors. No point in 𝐵∗

𝑖 has color
𝑐𝑖,𝑙 since they all have only one color. The right endpoint of 𝑢𝑖+1 definitely has color
𝑐𝑖,𝑙 assigned to it, since it is the leftmost point in 𝐵𝑖+1. If 𝑢𝑖+1 is a small gap or its right
endpoint has two colors, then 𝑢𝑖+1 ’s left endpoint has only color 𝑐𝑖,𝑟 = 𝑐𝑖+1,𝑙; thus 𝑢𝑖+1 ’s
right endpoint is the leftmost one with 𝑐𝑖,𝑙. Only if 𝑢𝑖+1 is a local maximum whose left
endpoint has two colors, then its left endpoint also has color 𝑐𝑖,𝑙 = 𝑐𝑖+1,𝑟 assigned to it
and is thus the leftmost points with this color.

With Lemmas 6.7 and 6.8 we can already infer that we need to check only few
conditions in order to determine whether a given BCA is valid: If we have a small gap
𝑢𝑖 ∈ 𝒮𝐸 ∩𝒢−

𝐸 we need to ensure that the right endpoint of 𝑢𝑖+1 is not inside ⃗⃗𝑅𝐸(𝑢𝑖). In
the case that 𝑢𝑖+1 is a local maximum with two colors for its left endpoint we also need
to ensure that its left endpoint is not inside ⃗⃗𝑅𝐸(𝑢𝑖). The mirrored checks apply for
𝑢𝑖−1. If we have a local maximum 𝑢𝑖 ∈ 𝒮𝐸 ∩ℳ𝐸 and we have two colors for its right
endpoint, we also need to ensure that the right endpoint of 𝑢𝑖+1 is not inside ⃗⃗𝑅𝐸(𝑢𝑖).
In the case that 𝑢𝑖+1 is a local maximum with two colors for its left endpoint we also
need to ensure that its left endpoint is not inside ⃗⃗𝑅𝐸(𝑢𝑖). If we have two colors for its
left endpoint, we apply the mirrored versions of the checks.

118

6.4 Two Colors

We can see examples of the situations between two adjacent local maxima 𝑒 and 𝑒′

in Figure 6.8. To describe those, we will use the term inside or outside endpoint to refer
to the local maximum’s endpoint that is closer or further away from the other local
maximum, respectively. Here we look at the four possible combinations to assign two
colors to either the left or the right endpoint of each local maximum. In this situation
it is possible to assign two colors to both left endpoints (Figure 6.8a) since 𝑒′ is short
enough that its left restricted region does not contain the left endpoint of 𝑒. It is, of
course always possible to assign two colors to outside endpoints of the local maximum
(Figure 6.8b) as the restricted regions face away from each other. Giving both inside
endpoints two colors (Figure 6.8c) can work if the local maxima are further away
from each other. In this situation, however, both restricted regions contain the other
inside endpoint. As a result, the corresponding CNNM has both local maxima missing
and the edge between them appears twice. Finally, giving both right endpoints two
colors (Figure 6.8d) does not work in this situation as the right restricted region of 𝑒
contains both endpoints of 𝑒′ and thus also the right endpoint with two colors. The
corresponding CNNM lacks 𝑒 but includes an illegal edge between both right endpoints
of 𝑒 and 𝑒′.

In Figure 6.9 we can then see different situations between a local maximum 𝑒 and
a small gap 𝑒′. For the small gap we have three different situations: One where
its restricted region does not contain any endpoints of 𝑒 (Figures 6.9a and 6.9b),
one where it contains one of the two endpoints (Figures 6.9c and 6.9d), and one
where it contains both endpoints (Figures 6.9e and 6.9f). In the first two situations
(Figures 6.9a and 6.9c) choosing 𝑒’s left endpoint for two colors works but in the
last situation (Figure 6.9e) it does not since the left restricted region of 𝑒′ contains
both endpoints. For choosing 𝑒’s right endpoint for two colors, we see that it does
not work in the last two situations (Figures 6.9d and 6.9f) since it is contained in the
left restricted region of 𝑒′. In the first situation (Figure 6.9b) it does not work in this
situation since 𝑒’s right restricted region contains both endpoints of 𝑒′.

Finally, in Figure 6.10 we can observe two different situations for two small gaps
next to each other. Here we only need to ensure that the restricted region does not
contain the outside endpoint of the other small gap. Thus, there are generally only two
situations. In Figure 6.10a we have the situation in which a restricted region contains
both endpoints of the other small gap and thus an illegal edge is created and the edge
next to the small gap is missing. In Figure 6.10b, on the other hand, we see a valid
solution since no outside endpoint is contained in the restricted regions.

With the information on which BCAs are valid and how to check it we can now start
with the first steps towards the actual algorithm.

6.4.2 The Realization Graph

We now know from Lemma 6.7 that to decide whether a given BCA is valid, we only
need to check whether the relevant restricted regions of all special edges contain a

119

Chapter 6 Linear Time Algorithms for One and Two Colors

no 𝑐1

no 𝑐2

𝑒 𝑒′

⃖⃗𝑅𝐸(𝑒)

⃖⃗𝑅𝐸(𝑒
′)

(a) No restricted region contains any problem-
atic points.

no 𝑐1
no 𝑐1

𝑒 𝑒′

⃗⃗𝑅𝐸(𝑒)

⃖⃗𝑅𝐸(𝑒
′)

(b) ⃗⃗𝑅𝐸(𝑒) contains both endpoints of 𝑒′, result-
ing in an illegal edge and 𝑒 missing.

no 𝑐2
no 𝑐1

𝑒 𝑒′

⃖⃗𝑅𝐸(𝑒
′)

⃖⃗𝑅𝐸(𝑒)

(c) ⃖⃗𝑅𝐸(𝑒
′) contains the right endpoint of 𝑒, but

it has only one color.

no 𝑐1

𝑒 𝑒′

no 𝑐1
⃖⃗𝑅𝐸(𝑒

′)

⃗⃗𝑅𝐸(𝑒)

(d) ⃖⃗𝑅𝐸(𝑒
′) contains the right endpoint of 𝑒,

creating the wrong edge.

𝑒 𝑒′

no 𝑐2
⃖⃗𝑅𝐸(𝑒)

⃖⃗𝑅𝐸(𝑒
′)

no 𝑐1

(e) ⃖⃗𝑅𝐸(𝑒
′) contains both endpoints of 𝑒, result-

ing in the wrong edge.

𝑒 𝑒′

no 𝑐1
⃗⃗𝑅𝐸(𝑒)

⃖⃗𝑅𝐸(𝑒
′)

no 𝑐1

(f) ⃖⃗𝑅𝐸(𝑒
′) contains both endpoints of 𝑒, result-

ing in the wrong edge.

Figure 6.9: A small gap 𝑒′ may be in conflict with a neighboring local maximum 𝑒. (a)
and (b): If ⃖⃗𝑅𝐸(𝑒

′) does not contain any endpoint of 𝑒, it depends on the
size of 𝑒 which choice of endpoint is valid. (c) and (d): If ⃖⃗𝑅𝐸(𝑒

′) contains
one endpoint of 𝑒, then this endpoint cannot have two colors. (e) and (f):
If ⃖⃗𝑅𝐸(𝑒

′) contains both endpoints of 𝑒, then no choice for 𝑒 is valid.

120

6.4 Two Colors

no 𝑐1
⃗⃗𝑅𝐸(𝑒)

𝑒 𝑒′

⃖⃗𝑅𝐸(𝑒
′)

no 𝑐1

(a) The left restricted region of 𝑒′ contains
both endpoints of 𝑒.

no 𝑐1

⃖⃗𝑅𝐸(𝑒
′)

⃗⃗𝑅𝐸(𝑒)

𝑒 𝑒′

no 𝑐1

(b) No restricted region of 𝑒 or 𝑒′ contains
both endpoints of the other small gap.

Figure 6.10: Two neighboring small gaps may interfere if a restricted region of one
gap contains both endpoints of the other gap, as seen in (a). If this is not
the case then we have a valid solution, see (b).

point with the wrong color. By Lemma 6.8 for every special edge the points which
have the wrong color are endpoints of the adjacent special edges. In the last section
we also saw many examples of how adjacent special edges and their color assignments
interact.

Given an input edge set 𝐸 ⊆ 𝐸𝑃 we will now create a directed acyclic graph for 𝐸
which we call the realization graph 𝐻 = (𝑉, 𝐴). The graph will model all possible BCAs
and its creation will be the biggest part of the upcoming algorithm to find a BCA with
respect to 𝐸 with two colors. Let 𝒮𝐸 = {𝑢1,… , 𝑢𝑚} be the special edges. Then, each
𝑢𝑖 ∈ 𝒮𝐸 has a node in 𝐻 for every way the color can change at 𝑢𝑖. This means that
each small gap has one node ⃡𝑢𝑖 while local maxima have two nodes ⃗⃖𝑢𝑖 and ⃗⃗𝑢𝑖. We also
add a start node 𝑠 and an end node 𝑡. Formally, we can define 𝑉 as

𝑉 = {𝑠, 𝑡} ∪ { ⃡𝑢𝑖 | 𝑢𝑖 ∈ 𝒢−
𝐸 } ∪ ⋃

𝑢𝑖∈ℳ𝐸

{ ⃗⃖𝑢𝑖, ⃗⃗𝑢𝑖}.

For the arcs 𝐴 in 𝐻 we first add all possible arcs from 𝑠 to nodes corresponding to
𝑢1 and from nodes corresponding to 𝑢𝑚 to 𝑡. We then create certain arcs between
nodes corresponding to adjacent special edges. As we have seen in Section 6.4.1 it is
sufficient to check adjacent special edges to see whether the choice of endpoints of local
maxima which are assigned two colors is valid. That is, the following conditions for
when an arc is created are exactly the conditions from Lemma 6.7 with the knowledge
from Lemma 6.8 that it suffices to check the endpoints of the adjacent special edges.
We therefore look at all adjacent pairs 𝑢𝑖 = {𝑝𝑎, 𝑝𝑎+1} and 𝑢𝑖+1 = {𝑝𝑏, 𝑝𝑏+1} for all
1 ≤ 𝑖 < 𝑚 and distinguish them by whether they are local maxima or small gaps:

• For the case that 𝑢𝑖, 𝑢𝑖+1 ∈ 𝒢−
𝐸 we observed that we can color with two colors

as long as both restricted regions do not contain both endpoints of the other
small gap. As a result we add the edge (⃡𝑢𝑖, ⃡𝑢𝑖+1) if and only if 𝑝𝑎 ∉ ⃖⃗𝑅𝐸(𝑢𝑖+1) and
𝑝𝑏+1 ∉ ⃗⃗𝑅𝐸(𝑢𝑖). Remember Figure 6.10 for two possible outcomes.

121

Chapter 6 Linear Time Algorithms for One and Two Colors

• If 𝑢𝑖 ∈ ℳ𝐸 and 𝑢𝑖+1 ∈ 𝒢−
𝐸 we must ensure that the endpoint of 𝑢𝑖 that changes

color is not inside ⃖⃗𝑅𝐸(𝑢𝑖+1). Thus, we add (⃗⃖𝑢𝑖, ⃡𝑢𝑖+1) if 𝑝𝑎 ∉ ⃖⃗𝑅𝐸(𝑢𝑖+1), see
Figure 6.9a for an example. Furthermore, if the right endpoint of 𝑢𝑖 should have
two colors, then 𝑢𝑖 ’s right restricted region must not contain the right endpoint of
𝑢𝑖+1. Hence, we add (⃗⃗𝑢𝑖, ⃡𝑢𝑖+1) only if 𝑝𝑎+1 ∉ ⃖⃗𝑅𝐸(𝑢𝑖+1) and 𝑝𝑏+1 ∉ ⃗⃗𝑅𝐸(𝑢𝑖). See
Figure 6.9b for a situation in which the arc would not be added.

• If 𝑢𝑖 ∈ 𝒢−
𝐸 and 𝑢𝑖+1 ∈ ℳ𝐸 we have the symmetric situation to the one before.

Thus, add arc (⃡𝑢𝑖, ⃗⃗𝑢𝑖+1) if 𝑝𝑏+1 ∉ ⃗⃗𝑅𝐸(𝑢𝑖), and add (⃡𝑢𝑖, ⃗⃖𝑢𝑖+1) only if 𝑝𝑏 ∉ ⃗⃗𝑅𝐸(𝑢𝑖)
and 𝑝𝑎 ∉ ⃖⃗𝑅𝐸(𝑢𝑖+1).

• If 𝑢𝑖, 𝑢𝑖+1 ∈ ℳ𝐸, we have four possible arcs between their respective nodes. The
arc (⃗⃖𝑢𝑖, ⃗⃗𝑢𝑖+1) is always added, see Figure 6.8b for a depiction. For the other arcs
we need to check the relevant restrictions: If 𝑝𝑏+1 ∉ ⃗⃗𝑅𝐸(𝑢𝑖) we can add the arc
(⃗⃗𝑢𝑖, ⃗⃗𝑢𝑖+1); see Figure 6.8d for a situation in which the arc could not be added.
If 𝑝𝑎 ∉ ⃖⃗𝑅𝐸(𝑢𝑖+1) we can add the arc (⃗⃖𝑢𝑖, ⃗⃖𝑢𝑖+1); see Figure 6.8a for a situation in
which the arc could be added. The last arc (⃗⃗𝑢𝑖, ⃗⃖𝑢𝑖+1) is added only if 𝑝𝑏 ∉ ⃗⃗𝑅𝐸(𝑢𝑖)
and 𝑝𝑎+1 ∉ ⃖⃗𝑅𝐸(𝑢𝑖+1); see Figure 6.8c for a depiction of a situation in which the
arc would not be added.

We now have a realization graph for a specific input edge set. In this graph we may
be able to find 𝑠-𝑡 paths, i.e., paths that start at the source 𝑠 and end at the sink 𝑡. For
every such path 𝑄 we first define a color assignment, show that it is a BCA, and then
show that it is valid for 𝐸.

Definition 6.8.⊳ corresponding
color assignment

Let 𝑃 = {𝑝1,… , 𝑝𝑛} ⊆ ℝ be an input point set, 𝐸 ⊆ 𝐸𝑃 an input edge
set, 𝐻 = (𝑉, 𝐴) be the corresponding realization graph, 𝒮𝐸 = {𝑢1,… , 𝑢𝑚} be the
special edges, and 𝐵0,… , 𝐵𝑚 be the blocks for 𝐸. Let furthermore, 𝑄 be an 𝑠-𝑡 path in
𝐻. We then define the corresponding color assignment 𝜎𝑄 ∶ 𝑃 → ℂ2 as follows.

For all 0 ≤ 𝑖 ≤ 𝑚 the points in block 𝐵𝑖 are assigned the color set {(𝑖 mod 2) + 1}.
This means that 𝜎𝑄(𝑝) = {(𝑖 mod 2) + 1} for all 𝑝 ∈ 𝑃 if 𝑝 ∈ 𝐵𝑖. As we can see, this
part is independent of 𝑄.

We now only need to change some points to have both colors. For every local
maximum {𝑝𝑘, 𝑝𝑘+1} = 𝑢𝑖 ∈ 𝒮𝐸 ∩ℳ𝐸, if 𝑄 contains ⃗⃖𝑢𝑖 then set 𝜎𝑄(𝑝𝑘) = {1, 2}, and
if 𝑄 contains ⃗⃗𝑢𝑖 then set 𝜎𝑄(𝑝𝑘+1) = {1, 2}.

From its definition it is relatively easy to see that 𝜎𝑄 is a BCA:

Observation 6.4. Let 𝑃 ⊆ ℝ be an input point set, 𝐸 ⊆ 𝐸𝑃 an input edge set, 𝐻 = (𝑉, 𝐴)
be the corresponding realization graph, and 𝒮𝐸 = {𝑢1,… , 𝑢𝑚} be the special edges. Let
furthermore, 𝑄 be an 𝑠-𝑡 path in 𝐻 and 𝜎𝑄 the corresponding color assignment. Then 𝜎𝑄
is a BCA.

122

6.4 Two Colors

Proof. We check the four criteria from Definition 6.7 individually: It is clear that
criteria 1 and 2 are met by definition. For criterion 4 we can see that the second part of
𝜎𝑄 ’s definition only applies for endpoints of local maxima; thus all other points do not
get a second color. It is also clear that criterion 3 follows directly if we can ensure that
for each local maximum 𝑢𝑖 a path 𝑄 will contain exactly one of ⃗⃖𝑢𝑖 and ⃗⃗𝑢𝑖. Due to its
construction 𝐻 only contains arcs from 𝑠 to nodes corresponding to 𝑢1, arcs from nodes
corresponding to 𝑢𝑖 to nodes corresponding to 𝑢𝑖+1 for all 1 ≤ 𝑖 < 𝑚, and arcs from
nodes corresponding to 𝑢𝑚 to 𝑡. As a result, any 𝑠-𝑡 path in 𝐻 must contain exactly one
node for each special edge 𝑢𝑖 ∈ 𝒮𝐸, thus fulfilling criterion 3.

It now remains to show that for every 𝑠-𝑡 path 𝑄 the corresponding BCA 𝜎𝑄 is valid:

Lemma 6.9. Let 𝐸 ⊆ 𝐸𝑃 be an input edge set, and 𝐻 = (𝑉, 𝐴) be the corresponding
realization graph. Let 𝑄 be an 𝑠-𝑡 path in 𝐻 and 𝜎𝑄 ∶ 𝑃 → ℂ2 be the corresponding BCA.
Then 𝜎𝑄 is valid.

Proof. As mentioned before, the combination of Lemma 6.7 and Lemma 6.8 tells us
exactly which conditions we need to check for each special edge to determine whether
a BCA is valid. That is, we need to check the conditions from Lemma 6.7, but it is
sufficient to check the endpoints of the closest special edge on either side. These
conditions are exactly those that are checked before adding an arc to 𝐻. Hence, an
arc in 𝐻 between two nodes exists only if the corresponding color assignment is valid
when restricted to the corresponding special edges and the three blocks around and
between them.

After seeing that every 𝑠-𝑡 path corresponds to a valid BCA we now want to show
the reverse, namely that every valid BCA has a corresponding 𝑠-𝑡 path. This way we
can show that if there is a valid BCA, we can find it in the realization graph.

Lemma 6.10. Let 𝐸 ⊆ 𝐸𝑃 be an input edge set, and 𝐻 = (𝑉, 𝐴) be the corresponding
realization graph. Let 𝜎 ∶ 𝑃 → ℂ2 be a valid BCA. Then there exists an 𝑠-𝑡 path 𝑄 in
𝐻 such that the corresponding BCA 𝜎𝑄 ∶ 𝑃 → ℂ2 equals 𝜎 (possibly after swapping the
colors in 𝜎).

↪

Proof. First, assume that 𝜎 assigns color 1 to the first block, i.e., the same color assigned
by all BCAs 𝜎𝑄 for any corresponding to an 𝑠-𝑡 path𝑄. That is, if 𝜎(𝑝1) = {2} then swap
colors 1 and 2 in 𝜎. Let 𝒮𝐸 = {𝑢1,… , 𝑢𝑚} be the special edges. We now construct
an 𝑠-𝑡 path 𝑄 by selecting its nodes of 𝐻. Those are obviously 𝑠, 𝑡, and ⃡𝑢𝑖 for all small
gaps 𝑢𝑖 ∈ 𝒮𝐸 ∩𝒢−

𝐸 . In addition, for all local maxima {𝑝𝑎, 𝑝𝑎+1} = 𝑢𝑖 ∈ 𝒮𝐸 ∩ℳ𝐸 select
either ⃗⃖𝑢𝑖 if 𝜎(𝑝𝑎) = {1, 2} or ⃗⃗𝑢𝑖 if 𝜎(𝑝𝑎+1) = {1, 2}. Since 𝜎 is a BCA, we know that
exactly one endpoint of each local maximum has two colors and thus exactly one node
for each local maximum is selected. As a result we have selected exactly one node for

123

Chapter 6 Linear Time Algorithms for One and Two Colors

each 𝑢𝑖 ∈ 𝒮𝐸, let those nodes be called ̃𝑢𝑖 ∈ { ⃡𝑢𝑖, ⃗⃖𝑢𝑖, ⃗⃗𝑢𝑖} for 𝑢𝑖 ∈ 𝒮𝐸. Then we define
the 𝑠-𝑡 path as 𝑄 = (𝑠, ̃𝑢1,… , ̃𝑢𝑚, 𝑡).

We now need to show that 𝑄 is an actual path in 𝐻. From 𝐻’s construction it is clear
that there is an arc from 𝑠 to ̃𝑢1 and an arc from ̃𝑢𝑚 to 𝑡. It remains to show that for
all 1 ≤ 𝑖 < 𝑚 the arc (̃𝑢𝑖, ̃𝑢𝑖+1) exists. Let {𝑝𝑎, 𝑝𝑎+1} = 𝑢𝑖 and {𝑝𝑏, 𝑝𝑏+1} = 𝑢𝑖+1 be
the corresponding special edges. In the construction of 𝐻 all arcs are added that do
not create a conflict with Lemma 6.7. Thus, there can be no interference with the
restricted regions corresponding to ̃𝑢𝑖 and ̃𝑢𝑖+1, and as a result, the arc (̃𝑢𝑖, ̃𝑢𝑖+1) exists
in 𝐻. In conclusion, 𝑄 is an actual 𝑠-𝑡 path in 𝐻, and we have the corresponding BCA
𝜎𝑄.

The last step is now to show that 𝜎 = 𝜎𝑄. Both color assignments are BCAs and start
with color 1 for 𝐵0 which also means that the colors for all other blocks are fixed and
thus the same in 𝜎 and 𝜎𝑄. The only possible difference is the choice which of the two
endpoints of each local maximum should have two colors. Since we select ⃗⃖𝑢𝑖 for 𝑄 if
𝑢𝑖 ’s left endpoint has two colors in 𝜎 the result is that the same is true in 𝜎𝑄. Similarly,
we select ⃗⃗𝑢𝑖 for 𝑄 if 𝑢𝑖’s right endpoint has two colors in 𝜎 and as a result the same is
true in 𝜎𝑄. Thus, we can conclude that 𝜎 = 𝜎𝑄.

6.4.3 The Algorithm

With the previous sections we have already done most of the work for the actual
algorithm that finds a color assignment for a given input. We can now describe this
algorithm very concisely and then show its correctness as well as its linear running
time.

The input to the algorithm is an input edge set 𝐸 ⊆ 𝐸𝑃 where 𝑃 ⊆ ℝ is an input
point. The goal is to find a valid color assignment 𝜎 ∶ 𝑃 → ℂ2 with two colors. As the
first step in the algorithm we construct the realization graph 𝐻 for 𝐸. We then look for
an 𝑠-𝑡 path 𝑄 in 𝐻. If no such path exists, we return “𝐸 cannot be colored with two
colors”. Otherwise, we return 𝜎𝑄, the corresponding color assignment.

As we can see, the top level algorithm is rather short. We first show that it actually
runs in linear time.

Lemma 6.11. Given an input edge set for an input point set with 𝑛 points, the algorithm
in Section 6.4.3 runs in 𝑂(𝑛) time.

↪

Proof. Let 𝑘 be the number of local maxima in 𝐸, ℓ be the number of small gaps, and
𝑚 = 𝑘 + ℓ be their sum. From Observation 6.3 we know that 𝑚 < ⌊𝑛/2⌋.

In the first step we construct the realization graph. 𝐻 contains 2 + 2𝑘 + ℓ ≤ 𝑛 + 2
nodes and at most 4(𝑚 − 1) + 4 = 4𝑚 ≤ 2𝑛 edges. For each potential edge we need
to check at most two points whether they are inside a restricted region, which can be
done in constant time per check. Thus, the construction of 𝐻 takes 𝑂(𝑛) time. Finding

124

6.4 Two Colors

the 𝑠-𝑡 path 𝑄 can be done by breadth-first or depth-first search which both take 𝑂(𝑛)
time. Finally, constructing 𝜎𝑄 is also done in linear time: We have one pointer to the
points and one to the path 𝑄 and both are only advanced from left to right. In the
simplest case a point’s color is defined as the previous point’s color. Only when the
point is an endpoint of the special edge corresponding to the current node in 𝑄 we
assign two colors or switch colors.

We also need to show that the algorithm is correct, that is, the returned color
assignments result in the correct CNNG and it always finds a color assignment if one
exists.

Lemma 6.12. The algorithm in Section 6.4.3 is correct. That is, given an input edge
set 𝐸 ⊆ 𝐸𝑃, the algorithm returns a valid BCA 𝜎 ∶ 𝑃 → ℂ2 if and only if a valid color
assignment with two colors exists.

Proof. Assume that a valid color assignment 𝜎′ with two colors exists. We can transform
it to a valid BCA �̃� ∶ 𝑃 → ℂ2 according to Lemma 6.5. Furthermore, according to
Lemma 6.10, a valid BCA implies the existence of an 𝑠-𝑡 path 𝑄 in the realization graph
𝐻 for 𝐸 such that the corresponding BCA 𝜎𝑄 equals �̃� (possibly after swapping the
colors in �̃�). Thus, 𝜎𝑄 is valid which concludes the first direction of the equivalence.
For the other direction we already know from Lemma 6.9 that if an 𝑠-𝑡 path exists in 𝐻
that the corresponding BCA 𝜎𝑄 is valid. Thus, the algorithm is correct.

We can now conclude this section by combining the previous results plus the result
in Lemma 6.2 for one color:

Theorem 6.1. Let 𝐸 ⊆ 𝐸𝑃 be an input edge set for the input edge set 𝑃 ⊆ ℝ. We can
solve the 1D-CNNG-Gaps problem for 𝑃 and 𝐸 in linear time in the size of 𝑃 (and thus 𝐸)
for both ̂𝑐 = 1 and ̂𝑐 = 2.

Proof. For ̂𝑐 = 1 we have shown in Lemma 6.2 that we can solve the problem in linear
time. For ̂𝑐 = 2 we have the algorithm in the beginning of Section 6.4.3 which runs in
linear time according to Lemma 6.11 and is correct as shown in Lemma 6.12.

Remember that solving the 1D-CNNG-Gaps problem in linear time for ̂𝑐 ∈ {1, 2}
means that we can also solve the 1D-CNNG problem in linear time for up to two
colors. The property we observed in Section 6.4.1, which is that we only need to check
neighboring special edges for conflicts with wrongly colored points, is restricted to
the case with two colors. This means that the presented algorithm cannot be easily
extended to more colors. In Chapter 8 we will present a dynamic program to solve
the problem with arbitrarily many colors but only after looking at the bounds on the
number of colors needed in Chapter 7.

125

Chapter7
Different Bounds on the Number of Colors

After solving the problem for up to two colors, the natural next goal is to try to solve it
for an arbitrary number of colors. However, we defer this to Chapter 8. We first want
to look at the worst case behavior of our problems, more specifically at the number of
colors needed to solve a given instance in the worst case. We look at the number of
colors with respect to the various parameters of the input. At first thought the number
of points 𝑛 in the input point set seems to be the most relevant parameter, and we will
also describe all our bounds with respect to 𝑛. However, as we could already see before,
the most relevant part of each input is the set of special edges. Thus, the number of
local maxima 𝑘, the number of small gaps ℓ, and the total number of special edges 𝑚
will be the first parameter we are interested in.

In Section 7.1 we first show that every instance for the 1D-CNNG problem (the one
without gaps) can be solved with at most a logarithmic number of colors with respect to
𝑘. We also present a construction that always needs that many colors. We will also note
that this generalizes to the 1D-CNNG-Gaps problem as long as all gaps are big gaps,
i.e., ℓ = 0. For the general 1D-CNNG-Gaps problem we will see in Section 7.2 that we
are only able to give a linear upper bound on the number of colors needed. In fact,
we can also construct instances for the 1D-CNNG-Gaps problem that cannot be solved
with fewer than a linear number of colors. These instances will rely only on small
gaps and will include no local maxima, i.e., 𝑘 = 0. In Section 7.3 we then combine
the previous results into a bound that depends logarithmically on the number of local
maxima and linearly on the number of small gaps. We also provide a construction to
show that this bound is tight.

7.1 A Logarithmic Bound for Inputs Without Small Gaps

We start with the bounds by looking at the 1D-CNNG-Opt problem. For this problem,
we want to find an upper bound on the number of colors needed to find a valid color
assignment. In this situation we do not have any gaps which means that the only
special edges we need to take care of are local maxima.

127

Chapter 7 Different Bounds on the Number of Colors

7.1.1 The Upper Bound

The only special edges we have are local maxima. Thus, for each local maximum we
have to choose which endpoint should get two colors. On the other hand, for each
local maximum we can base this decision on the number of different colors contained
in each of its restricted regions. If we choose the endpoint such that the respective
restricted region contains as few colors as possible, we will only add a new color if the
restricted regions on both sides need the same number of colors. This is the idea for

Lemma 7.1. Let 𝑃 = {𝑝1,… , 𝑝𝑛} ⊆ ℝ with 𝑛 ≥ 2 be an input point set and its neighbor
edges 𝐸𝑃 be the corresponding input edge set with 𝑘 local maxima. Then there exists a
valid BCA 𝜎 ∶ 𝑃 → ℂ ̂𝑐 with ̂𝑐 ≤ 1 + ⌊log(𝑘 + 1)⌋ ≤ ⌊log𝑛⌋.

↪

Proof. We show this by induction on the number of local maxima 𝑘. We first note that,
since we don’t have any gaps, the only special edges that can force us to use more
colors are other local maxima.

Induction base 𝑘 = 0. If we have no local maxima we know from Lemma 6.1 that the
NNG of 𝑃 contains all edges from 𝐸𝑃 and thus one color is sufficient.

Induction step 𝑘 − 1 → 𝑘. Let 𝑒𝑖 = {𝑝𝑖, 𝑝𝑖+1} ∈ ℳ(𝐸𝑃) be a largest local maximum,
i.e., ‖𝑒𝑖‖ ≥ ‖𝑒‖ for all 𝑒 ∈ ℳ(𝐸𝑃). We partition 𝑃 into two sets 𝐿 = {𝑝 ∈ 𝑃 | 𝑝 ≤ 𝑝𝑖}
and 𝑅 = {𝑝 ∈ 𝑃 | 𝑝 ≥ 𝑝𝑖+1}. Let 𝐸𝐿 ⊊ 𝐸𝑃 and 𝐸𝑅 ⊊ 𝐸𝑃 be those edges from 𝐸𝑃 that
have both endpoints in 𝐿 and 𝑅, respectively. Then we know that 𝐸𝑃 = 𝐸𝐿 ∪⋅ 𝐸𝑅 ∪⋅ {𝑒𝑖}.
Because 𝑒𝑖 is a largest local maximum we know that for any local maximum 𝑒 in 𝐿 the
restricted regions of 𝑒 do not contain any points from 𝑅: Any restricted region is at
most as wide as 𝑒𝑖 itself and it starts to the left of 𝑝𝑖. By symmetry no restricted region
of a local maximum in 𝑅 contains any points from 𝐿. As a result, we can combine any
valid color assignment for 𝐿 with any valid color assignment for 𝑅 to obtain 𝐸𝑃 ∖ {𝑒𝑖}.

Let 𝑘𝐿 and 𝑘𝑅 be the number of local maxima in 𝐸𝐿 and 𝐸𝑅, respectively. We know
that 𝑘 = 𝑘𝐿 + 𝑘𝑅 + 1 and thus 𝑘𝐿 < 𝑘 and 𝑘𝑅 < 𝑘 which means that we can apply the
induction hypothesis to 𝐿 and 𝑅. Hence, we know that there is a valid BCA 𝜎𝐿 for
𝐿 with at most ̂𝑐𝐿 = 1 + ⌊log(𝑘𝐿 + 1)⌋ colors and a valid BCA 𝜎𝑅 for 𝑅 with at most
̂𝑐𝑅 = 1 + ⌊log(𝑘𝑅 + 1)⌋ colors. Assume, without loss of generality, that ̂𝑐𝐿 ≤ ̂𝑐𝑅.
If ̂𝑐𝐿 < ̂𝑐𝑅 then there is a color 𝑐 used to color points in 𝑅 that is not used for any

point in 𝐿. As observed before, just combining 𝜎𝐿 and 𝜎𝑅 to 𝜎 would result in a valid
BCA for 𝐸𝑃∖{𝑒𝑖}, i.e., 𝒩(𝑃, 𝜎) = 𝐸𝑃∖{𝑒𝑖}. In order to also include 𝑒𝑖 we rename the
colors in 𝜎𝑅 such that the leftmost block (with respect to 𝑅) is given color 𝑐 which also
means that 𝜎𝑅(𝑝𝑖+1) = {𝑐}. We construct 𝜎 by using 𝜎𝐿 for all points in 𝐿 and 𝜎𝑅 for
all points in 𝑅. We then make a small change to 𝜎 by additionally assigning 𝑐 to 𝑝𝑖. See
Figure 7.1a for an example of this situation. Since no other point in 𝐿 has this color,
𝑝𝑖 ∘→

𝑐
𝜎 𝑝𝑖+1. On the other hand 𝑝𝑖+1 ∘→𝑐𝜎 𝑝𝑖+2 since 𝑒𝑖 is a local maximum. No other

point in 𝑅 will connect to 𝑝𝑖 in color 𝑐 since 𝑝𝑖+1 is closer. We then have obtained a valid

128

7.1 A Logarithmic Bound for Inputs Without Small Gaps

𝑒𝑖𝐿, with 2 colors 𝑅, with 3 colors

(a) 𝐿 needs fewer colors than 𝑅. We thus assign a color not used for 𝐿 to the left endpoint of 𝑒𝑖.

𝑒𝑖𝐿, with 3 colors 𝑅, with 3 colors

(b) 𝐿 and 𝑅 need the same number of colors. We thus assign a new color to the endpoints of 𝑒𝑖.

Figure 7.1: The two possible situations from the induction step in the proof of
Lemma 7.1.

BCA which uses ̂𝑐 = ̂𝑐𝑅 colors. By induction ̂𝑐𝑅 = 1+ ⌊log(𝑘𝑅 + 1)⌋ ≤ 1+ ⌊log(𝑘 + 1)⌋
which proves the upper bound for ̂𝑐.

If ̂𝑐𝐿 = ̂𝑐𝑅, then ̃𝑐 = ̂𝑐𝑅 + 1 is the smallest color not used by either 𝜎𝐿 or 𝜎𝑅. We
then, again, construct 𝜎 by using 𝜎𝐿 for all points in 𝐿 and 𝜎𝑅 for all points in 𝑅. As an
addition we give the new color ̃𝑐 to both 𝑝𝑖 and 𝑝𝑖+1. See Figure 7.1b for an example of
this situation. No other point has color ̃𝑐 and thus 𝑝𝑖 ∘→̃

𝑐
𝜎 𝑝𝑖+1 and 𝑝𝑖+1 ∘→̃𝑐𝜎 𝑝𝑖. The other

colors do not interfere with each other which means that 𝜎 is a valid color assignment
with ̂𝑐 = ̂𝑐𝑅 + 1 colors. It is not a BCA since both endpoints of 𝑒𝑖 have two colors.
However, using Lemma 6.5 we can transform 𝜎 into a BCA.

We now need to take a closer look at ̂𝑐𝐿 and ̂𝑐𝑅 to show that ̂𝑐 ≤ 1+ ⌊log(𝑘 + 1)⌋. In
order for ̂𝑐𝐿 = ̂𝑐𝑅 to hold it must be that 𝑘𝐿 = 2 ̂𝑐𝐿−1 + 𝑠𝐿 − 1 and 𝑘𝑅 = 2 ̂𝑐𝐿−1 + 𝑠𝑅 − 1
with 0 ≤ 𝑠𝐿, 𝑠𝑅 < 2 ̂𝑐𝐿−1. We then have that

1 + ⌊log(𝑘 + 1)⌋ = 1 + ⌊log(𝑘𝐿 + 𝑘𝑅 + 1 + 1)⌋

= 1 + ⌊log(2 ̂𝑐𝐿−1 + 𝑠𝐿 + 2 ̂𝑐𝐿−1 + 𝑠𝑅)⌋

= 1 + ⌊log(2 ̂𝑐𝐿 + 𝑠𝐿 + 𝑠𝑅)⌋

= 1 + ̂𝑐𝐿,

where the last step is valid since 0 ≤ 𝑠𝐿 + 𝑠𝑅 < 2 ̂𝑐𝐿 . Then, since ̂𝑐 = ̂𝑐𝐿 + 1 we know
that ̂𝑐 ≤ ̂𝑐𝐿 + 1 ≤ 1 + ⌊log(𝑘 + 1)⌋, as claimed.

It now only remains to show that 1 + ⌊log(𝑘 + 1)⌋ ≤ ⌊log𝑛⌋. For this, observe
that 1 + ⌊log(𝑘 + 1)⌋ = ⌊log(2𝑘 + 2)⌋ which means that we only need to show that
2𝑘 +2 ≤ 𝑛. From Observation 6.3 we know that 2𝑚+2 ≤ 𝑛 where 𝑚 is the number of
special edges. Since 𝑘 ≤ 𝑚, or in this case 𝑘 = 𝑚, the result follows immediately.

129

Chapter 7 Different Bounds on the Number of Colors

The proof can actually be applied to input edge sets with gaps, as long as they are
all big gaps. For the induction base we know that we can color a point set with only
big gaps (and no local maxima) with just one color, as the NNG automatically excludes
the local maxima in 𝐸𝑃 (compare Lemma 6.1). In the induction step we only use that
all special edges are local maxima but not that there are no gaps in the input edge set.
Thus, we can conclude the following

Corollary 7.1. Let 𝐸 ⊆ 𝐸𝑃 be an input edge set with 𝑘 local maxima and no small gaps
for an input point set 𝑃 ⊆ ℝ with 𝑛 points. Then there exists a valid BCA 𝜎 ∶ 𝑃 → ℂ ̂𝑐
with ̂𝑐 ≤ 1 + ⌊log(𝑘 + 1)⌋ ≤ ⌊log𝑛⌋.

7.1.2 The Matching Lower Bound

We now want to find a construction for a point set that is guaranteed to need at least a
logarithmic number of colors for any valid BCA. To this end, the question we can ask
ourselves is: How can we force a local maximum to need to use an additional color, and
how can we do this with the lowest number of special edges possible? The answer is a
construction where we add a local maximum such that both its left and right restricted
region overlaps as many other local maxima as possible. If both restricted regions
contain the same number of colors we will need to add a new color for the new local
maximum. This what we did in the proof of Lemma 7.1 where ̂𝑐𝐿 = ̂𝑐𝑅. The following
recursively constructed point set is exactly what we need.

Definition 7.1. For every number 𝑎 ∈ ℕ+ we define a point set P(𝑎) recursively as

P(1) = {0, 1},
P(𝑎) = P(𝑎 − 1)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐿(𝑎)
∪{𝑝 + 1 + 2maxP(𝑎 − 1) | 𝑝 ∈ P(𝑎 − 1)}⏟⏟⏟

𝑅(𝑎)

.

See Figure 7.2 for a depiction of the point set and its recursive structure for P(3).
There we also have an indicator to see that the distance between the two parts 𝐿(𝑎)
and 𝑅(𝑎) is one unit larger than the width of each individual part. To make P(𝑎) be a
possible input for the 1D-CNNG problem, it must be an input point set. This can, of
course, be achieved by a slight random perturbation of all points, but we can easily
show that this is not necessary:

Lemma 7.2. For every number 𝑎 ∈ ℕ+ the point set P(𝑎) is an input point set.

↪

Proof. We need to show that no point has two other points at the same distance. We
do this by induction on 𝑎.

Induction base 𝑎 = 1. Here we have only two points and the claim trivially holds.

130

7.1 A Logarithmic Bound for Inputs Without Small Gaps

P(1)

⏟⏟⏟⏟⏟⏟⏟
𝐿(2)=P(1)

P(2) ⏟⏟⏟⏟⏟⏟⏟
𝑅(2)=P(1)

P(3) ⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐿(3)=P(2)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑅(3)=P(2)

Figure 7.2: The progressive construction of the lower bound P(3).

Induction step 𝑎 − 1 → 𝑎. We know by induction that 𝐿(𝑎) and 𝑅(𝑎) are input point
sets. Thus, we only need to show that combining the two sets does not violate the
property. We show that no point in 𝐿(𝑎) has a point in 𝑅(𝑎) that is at the same distance
as another point from 𝐿(𝑎). Due to symmetry the argument then extends to 𝑅(𝑎) as
well. Look at the rightmost point in 𝐿(𝑎) which is at position 𝑝𝑙 = maxP(𝑎 − 1). On
the other hand, the leftmost point in 𝑅(𝑎) is at position 𝑝𝑟 = 2maxP(𝑎 − 1)+1. Then
dist(𝑝𝑙, 𝑝𝑟) = maxP(𝑎 − 1) + 1 and the point to the left of 𝑝𝑙 with same distance as 𝑝𝑟
is point −1. Since the leftmost point in 𝐿(𝑎) and thus P(𝑎) is 0 we see that no such
point exists. For all other points 𝑝 ∈ 𝐿(𝑎) and 𝑞 ∈ 𝑅(𝑎) the distance between them is
larger than maxP(𝑎 − 1) + 1 and thus the point to the left of 𝑝 with same distance as
𝑝 is even further to the left than −1.

We can now show that the 1D-CNNG problem with P(𝑎) as its input we cannot
find a valid color assignment with fewer than 𝑎 colors. Have a look at Figure 7.3
to see an example color assignment and its BCA for P(3). In the upper of the two
color assignments you can see the structure that both restricted regions of the local
maximum contain all endpoints of all shorter local maxima to their left and right. This
ultimately forces the use of a new color for each additional level of the construction,
which we prove in

Lemma 7.3. For every number 𝑎 ∈ ℕ+ we need at least 𝑎 colors for any valid color
assignment that solves the 1D-CNNG problem for the point set P(𝑎).

↪

Proof. We show the claim by induction over 𝑎 and remember that we want to obtain
the input edge set 𝐸P(𝑎).

Induction base 𝑎 = 1. Here we have P(1) = {0, 1} and thus 𝐸P(1) = {{0, 1}}. To
obtain an edge we always need at least one color.

Induction step 𝑎 − 1 → 𝑎. We use the induction assumption to know that every valid
color assignment for P(𝑎 − 1) needs at least 𝑎 − 1 colors. Let 𝑝𝑙 = maxP(𝑎 − 1) =

131

Chapter 7 Different Bounds on the Number of Colors

P(1) P(1)P(2) P(3)

Figure 7.3: Top: A possible color assignment for P(3) where for every recursion step
a new color is introduced to connect the local maximum in the middle.
Bottom: The result of converting the color assignment to a BCA. We see that
the marked point is inside two overlapping restricted regions of different
colors which requires the third color here.

max 𝐿(𝑎) be the rightmost point of 𝐿(𝑎) and let 𝑝𝑟 = 2𝑝𝑙 + 1 = min𝑅(𝑎) be the
leftmost point of 𝑅(𝑎). Then 𝑒 = {𝑝𝑙, 𝑝𝑟} is the local maximum in the middle of P(𝑎).
Due to the construction we have that 𝐿(𝑎) ⊆ ⃖⃗𝑅𝐸(𝑒) and 𝑅(𝑎) ⊆ ⃗⃗𝑅𝐸(𝑒). Then there are
points with 𝑎 − 1 colors in both of 𝑒’s restricted regions. Thus, giving one of 𝑝𝑙 and 𝑝𝑟
two colors means that in order to connect to the other endpoint of 𝑒 we must introduce
a new color. As a result, we need at least 𝑎 colors in any valid color assignment.

We can easily see that P(𝑎) has 2𝑎 points, since for 𝑎 = 1 we have two points and
in each recursive step we double the number of points. At the same time, looking at
the construction, we see that out of the 2𝑎 − 1 edges in 𝐸P(𝑎) every other edge is a
local maximum which results in 2𝑎−1 − 1 local maxima. This can also be seen easily by
induction where for 𝑎 = 1 we have only one edge and thus no local maximum. In each
recursion step we double the number of local maxima of the next smaller input and
add one in the middle, resulting in 2(2(𝑎−1)−1 − 1)+ 1 = 2𝑎−1 −1 local maxima. This
means that for every power of two we already have a point set that needs a logarithmic
number of colors. We will now see that for numbers that are not powers of two we can
just remove some points from the point set constructed for the next larger power of
two.

Lemma 7.4. For every 𝑛 ∈ ℕ with 𝑛 ≥ 2 there is an input point set 𝑃 ⊆ ℝ with 𝑛 points
and 𝑘 = ⌊𝑛/2⌋ − 1 local maxima in 𝐸𝑃 such that there is no valid color assignment with
fewer than 1 + ⌊log(𝑘 + 1)⌋ = ⌊log𝑛⌋ colors for 𝐸𝑃.

↪

Proof. Let 𝑎 = ⌊log𝑛⌋ = 1 + ⌊log(𝑘 + 1)⌋. Then we know from Lemma 7.3 that P(𝑎)
is a point set which needs 𝑎 colors for the 1D-CNNG problem. Additionally, we saw
that P(𝑎) contains 𝑘 ′ = 2𝑎−1 − 1 local maxima and 𝑛′ = 2𝑎 = 2𝑘 ′ + 2 points. Then

132

7.2 A Linear Bound for Inputs With Small Gaps

P(𝑎) is missing 𝑘 − 𝑘 ′ local maxima and 𝑛 − 𝑛′ points which equals 2(𝑘 − 𝑘 ′) if 𝑛 is
even and 2(𝑘 − 𝑘 ′) + 1 otherwise.

The easiest solution is to just take P(𝑎 + 1) which consists of two copies of P(𝑎) and
remove points from the right until the correct number of local maxima and points is
reached. Thus, 𝑃 = {𝑝 ∈ P(𝑎 + 1) | 𝑝 ≤ 𝑝𝑛} where 𝑝𝑛 is the 𝑛th point in P(𝑎 + 1)
from the left. Then 𝑃 fulfills all the desired properties, firstly that it has 𝑛 points. Since,
as observed before, every other edge in 𝐸P(𝑎+1) is a local maximum the same holds
true for 𝐸𝑃. Thus, 𝐸𝑃 contains 𝑘 = ⌊𝑛/2⌋ − 1 local maxima. Additionally, 𝑃 is an input
point set since P(𝑎 + 1) is an input point set and removing points from an input point
set obviously does not destroy that property. Furthermore, 𝑃 contains P(𝑎) with the
other points all to the side of it. Every special edge 𝑒 from 𝐸P(𝑎) is also a special edge
in 𝐸𝑃. All endpoints of other special edges that are contained in 𝑒’s restricted regions
with respect to 𝐸P(𝑎) are also contained by them with respect to 𝐸𝑃. Thus, the number
of colors needed to color 𝑃 is at least as large as the number of colors needed to color
P(𝑎) which is 𝑎, exactly as claimed.

We want to briefly look at the size of the coordinates in 𝑃, to see that they are not too
large to represent 𝑃 with a polynomial number of bits. For this we look at the rightmost
point of P(𝑎) which we call 𝑟(𝑎). Then 𝑟(1) = 1 and 𝑟(𝑎) = 3𝑟(𝑎 − 1) + 1 which can
be described as 𝑟(𝑎) = ∑𝑎−1

𝑖=0 3𝑖 = 3𝑎−1
2 < 3𝑎. Then we know that the rightmost point

in 𝑃 is smaller than 𝑟(𝑎 + 1) < 3𝑎+1 = 3⌊log𝑛⌋+1 ≤ 31+log𝑛 ≈ 17.11𝑛. As a result, every
point in 𝑃 can be represented by 𝑂(log𝑛) bits and thus 𝑃 has size 𝑂(𝑛 log𝑛).

This lower bound is a lower bound for the 1D-CNNG problem which then automati-
cally is a lower bound for the 1D-CNNG-Gaps problem. In summary, we have now seen
that 1 + ⌊log(𝑘 + 1)⌋ ≤ ⌊log𝑛⌋ is a tight bound for the number of colors needed to
solve the 1D-CNNG problem and the more general 1D-CNNG-Gaps problem without
small gaps. In the next section we will then see what happens if we allow small gaps
in the input edge set.

7.2 A Linear Bound for Inputs With Small Gaps

We now turn our focus towards the general 1D-CNNG-Gaps problem where we also
allow small gaps. Even though we have seen with Corollary 7.1 that we can apply
the result of the logarithmic upper bound to a restricted subset of 1D-CNNG-Gaps
instances, we want to obtain bounds for all possible inputs.

7.2.1 The Upper Bound

The first obvious linear upper bound on the number of colors needed for a valid color
assignment is that we can always find a color assignment with one color for each edge
in the input edge set.

133

Chapter 7 Different Bounds on the Number of Colors

Lemma 7.5. Given an input edge set 𝐸 ⊆ 𝐸𝑃 for an input point set 𝑃 ⊆ ℝ with 𝑛 ≥ 2
points, there exists a valid color assignment 𝜎 ∶ 𝑃 → ℂ ̂𝑐 for 𝐸 such that ̂𝑐 = |𝐸| ≤ 𝑛 − 1.

Proof. We assign each edge 𝑒𝑖 ∈ 𝐸 its own color 𝑐𝑖 and both endpoints are given this
color in 𝜎. This means that a point that has two incident edges obtains the two colors
of both edges, i.e., 𝜎(𝑝𝑖) = {𝑐𝑖−1, 𝑐𝑖}. Since for every edge 𝑒𝑖 = {𝑝𝑖, 𝑝𝑖+1} ∈ 𝐸 we have
𝑝𝑖 ∘→

𝑐𝑖 𝑝𝑖+1 and 𝑝𝑖+1 ∘→𝑐𝑖 𝑝𝑖, it follows directly that 𝜎 is valid.

We can easily see that it is unreasonable to use one color for each edge: We know
that for every valid color assignment we can find a valid BCA, and we know that a BCA
needs at most as many colors as there are blocks in the input edge set. As a result, we
can improve out upper bound slightly:

Lemma 7.6. Given an input edge set 𝐸 ⊆ 𝐸𝑃 with 𝑚 special edges for an input point
set 𝑃 ⊆ ℝ with 𝑛 ≥ 2 points, there exists a valid BCA 𝜎𝑃 ∶ 𝑃 → ℂ ̂𝑐 for 𝐸 such that
̂𝑐 ≤ 𝑚 + 1 ≤ ⌊𝑛/2⌋.

Proof. We take the color assignment obtained in Lemma 7.5 and convert it into a
BCA 𝜎 ∶ 𝑃 → ℂ ̂𝑐 using Lemma 6.5. Then, we have at most as many colors ̂𝑐 as we
have blocks in 𝐸 which means that ̂𝑐 ≤ 𝑚 + 1. From Observation 6.3 we know that
𝑚 ≤ ⌊𝑛/2⌋ − 1 which concludes the proof.

Even though an upper bound of 𝑚 + 1 or ⌊𝑛/2⌋ seems to be disappointing at first,
we will see in the next section that there is a linear lower bound matching our upper
bound.

7.2.2 The Matching Lower Bound

We now present a construction for arbitrarily large input edge sets that will need
𝑚 = ⌊𝑛/2⌋ colors in any valid color assignment where𝑚 is the number of special edges.
The construction is recursively defined and for each recursion step we add two points
with an edge between them, effectively creating one small gap and one edge.

Definition 7.2. For every number 𝑎 ∈ ℕ+ we define a point set Q(𝑎) and a correspond-
ing edge set E(𝑎) ⊆ 𝐸Q(𝑎) recursively as follows:

Q(1) = {0.5, 2},
E(1) = {{0.5, 2}},

Q(𝑎) = Q(𝑎 − 1) ∪ {𝑝 + 1, 2𝑝 + 1}, and
E(𝑎) = E(𝑎 − 1) ∪ {{𝑝 + 1, 2𝑝 + 1}}

with 𝑝 = maxQ(𝑎 − 1).

134

7.2 A Linear Bound for Inputs With Small Gaps

Q(1),E(1)
0.5 2

Q(2),E(2)
0.5 2 3 5

Q(3),E(3)
0.5 2 3 5 6 11

Figure 7.4: The progressive construction of Q(3) and E(3). The gray indicator already
shows that the left restricted region of the rightmost small gap contains all
points to its left except 0.5.

See Figure 7.4 for a depiction of the construction up to 𝑎 = 3. We first make some
observations about those sets to see that they are an input point set and an input edge
set. We also observe that their positions can be easily defined non-recursively.

Lemma 7.7. For every 𝑎 ∈ ℕ+ we have that Q(𝑎) contains 2𝑎 points and 𝑎 − 1 small
gaps. Furthermore,

Q(𝑎) = {0.5, 2} ∪ ⋃
2≤𝑖≤𝑎

{3 ⋅ 2𝑖−2, 3 ⋅ 2𝑖−1 − 1}.

In addition, Q(𝑎) is an input point set and E(𝑎) is an input edge set.

↪

Proof. The first claim is obvious since each recursion step adds 2 points to Q(𝑎) and for
𝑎 = 1 we have 2 points. For the second claim we observe that E(1) does not contain
any gaps. However, in every recursion step we add two points and just one edge which
means that we add one gap. This gap has length 1 while the edges on both sides have
length at least 1.5, making it a small gap.

For the third claim we observe that the rightmost point 𝑟(𝑎) in Q(𝑎) is defined as
𝑟(1) = 2 and 𝑟(𝑎) = 2𝑟(𝑎 − 1) + 1 which can be written in closed form as 𝑟(𝑎) =
2𝑎 + 2𝑎−1 − 1 = 3 ⋅ 2𝑎−1 − 1. In addition, we call the left of the two points added to
Q(𝑎) in the recursion 𝑙(𝑎) and see that 𝑙(𝑎) = 𝑟(𝑎 −1)+1 = 3 ⋅2𝑎−2−1+1 = 3 ⋅2𝑎−2.
In each step 𝑖 of the recursion we add 𝑙(𝑖) = 3 ⋅ 2𝑖−2 and 𝑟(𝑖) = 3 ⋅ 2𝑖−1 − 1, just as
claimed.
To ensure that Q(𝑎) is an input point set we need to check that no point has two

points with equal distance, one to the left, one to the right. This is obviously true for
𝑎 = 1. The added point 𝑟(𝑎) does not have any point to its right, so the condition is
trivially fulfilled. For 𝑙(𝑎) we know that the only point to its right has distance 𝑟(𝑎 −1)
which means that there must not be a point at position 𝑙(𝑎) − 𝑟(𝑎 − 1) = 1 which
there isn’t. We also need to check that no other point 𝑝 ∈ Q(𝑎 − 1) has a point 𝑝′ to
its left such that the distance from 𝑝 to 𝑝′ is the same as the distance from 𝑝 to 𝑙(𝑎) or

135

Chapter 7 Different Bounds on the Number of Colors

(a) On the left we see the all restricted regions while on the right we only see the interesting
left restricted regions.

(b) We only show the left restricted regions here.

Figure 7.5: The only way to color Q(𝑖) to obtain E(𝑖) for 𝑖 = 3 in (a) and for 𝑖 = 4 in
(b). The marked points are those inside the most overlapping restricted
regions of different colors. These points are thus witnesses for the need of
three or four colors.

to 𝑟(𝑎). We first check 𝑟(𝑎 − 1): The distance between 𝑟(𝑎 − 1) and 𝑙(𝑎) is 1 and by
construction the distance between 𝑟(𝑎 −1) and 𝑙(𝑎 −1) is 𝑟(𝑎 −2) ≥ 2 and thus there
is no point at 𝑟(𝑎 −1)−1. The distance between 𝑟(𝑎 −1) and 𝑟(𝑎) is 𝑟(𝑎 −1)+1 and
there is no point at −1. We now check 𝑙(𝑎 −1) and can easily see that 𝑙(𝑎) = 2𝑙(𝑎 −1)
from the already shown second claim. Thus, there must not be point at position 0
which there isn’t. Now, the distance between 𝑙(𝑎 − 1) and 𝑟(𝑎) is even larger and
thus 𝑙(𝑎 − 1) − (𝑟(𝑎) − 𝑙(𝑎 − 1)) < 0, but there are no negative points in Q(𝑎) for any
𝑎 ∈ ℕ+. Similarly, the distance between any point 𝑝 ∈ Q(𝑎 − 2) and 𝑙(𝑎) or even 𝑟(𝑎)
is much larger than 𝑝 and thus the position at which no point is allowed is negative.
This shows that Q(𝑎) is indeed an input point set.

It is obvious that E(𝑎) is an input point set as every pair of points added in each
recursion step has an edge added between those two points; thus every point has
exactly one incident edge.

Using these previous results we can now show that this input point and input edge set
is one that cannot be colored with fewer than a linear number of colors. See Figure 7.5
for the structurally only way to color Q(𝑖) to obtain E(𝑖) for 𝑖 ∈ {3, 4}.

Lemma 7.8. For every natural number 𝑛 ∈ ℕ with 𝑛 ≥ 2 there is an input point set
𝑃 ⊆ ℝ with 𝑛 points and a corresponding input edge set 𝐸 ⊆ 𝐸𝑃 with𝑚 = ⌊𝑛/2⌋−1 special
edges such that 𝑚 + 1 = ⌊𝑛/2⌋ is the optimal number of colors for the 1D-CNNG-Gaps
problem.

↪

Proof. Let 𝑎 = ⌊𝑛/2⌋. If 𝑛 is even, let 𝑃 = Q(𝑎) and 𝐸 = E(𝑎) be the input point and
input edge set. If 𝑛 is odd, let 𝑃 = {0.1} ∪ Q(𝑎) and 𝐸 = {{0.1, 0.5}} ∪ E(𝑎). To see

136

7.3 A Mixed Bound Depending on Small Gaps and Local Maxima

that 𝑃 is still an input point set in the latter case, we observe that all points except 0.1
and 0.5 have integer coordinates; thus the distance from any point to 0.1 is non-integer
and to any other point (except 0.5) is integer. For 0.1 and 0.5 we can easily see that
there is no other point at 0.9. As a result, it is clear that 𝐸 is also still an input edges
set since the additional point has an incident edge to its immediate neighbor.

Now 𝑃 contains exactly 𝑚 = 𝑎 − 1 small gaps according to Lemma 7.7. We show
by induction that 𝑃 cannot be colored with fewer than 𝑎 points. For 𝑎 = 1 (that is
𝑛 ∈ {2, 3}) we clearly need at least one color. For larger 𝑎 (that is 𝑛 ∈ {2𝑎, 2𝑎 + 1})
we use the induction assumption to know that we need 𝑎 − 1 colors to color Q(𝑎 − 1)
to obtain E(𝑎 − 1). The two additional points in Q(𝑎), call them 𝑙(𝑎) and 𝑟(𝑎) again
as in Lemma 7.7, need to have the same color. However, they cannot have the same
color as any point inside the left restricted region of the small gap between 𝑟(𝑎 − 1)
and 𝑙(𝑎), given by ⃖⃗𝑅𝐸({𝑟(𝑎 − 1), 𝑙(𝑎)}), as otherwise 𝑙(𝑎) would not connect to 𝑟(𝑎).
We can see from its definition that

⃖⃗𝑅𝐸({𝑟(𝑎 − 1), 𝑙(𝑎)}) = 𝑅(𝑙(𝑎), 𝑟(𝑎))
= [2𝑙(𝑎) − 𝑟(𝑎), 𝑙(𝑎))

= [2 ⋅ 3 ⋅ 2𝑎−2 − (3 ⋅ 2𝑎−1 − 1), 𝑙(𝑎))

= [3 ⋅ 2𝑎−1 − 3 ⋅ 2𝑎−1 + 1, 𝑙(𝑎))

= [1, 𝑙(𝑎)).

Since all points in 𝑃 except 0.5 (and 0.1 if 𝑛 is odd) are larger than 1 they are all
included in ⃖⃗𝑅𝐸({𝑟(𝑎 − 1), 𝑙(𝑎)}). This includes all endpoints of all small gaps in 𝑃. As
a result, all 𝑎 − 1 colors needed to color Q(𝑎 − 1) to obtain E(𝑎 − 1) are contained in
⃖⃗𝑅𝐸({𝑟(𝑎 − 1), 𝑙(𝑎)}). Thus, we need an additional 𝑎th color for 𝑙(𝑎) and 𝑟(𝑎).
As in the proof for Lemma 7.4 we want to look at how many bits we need to represent

𝑃 and 𝐸. It is clear that 𝐸 can be represented as a set of integers of total size |𝐸| log𝑛.
The rightmost point 𝑟(𝑎) in 𝑃 has coordinate 3 ⋅ 2⌊𝑛/2⌋−1 − 1 which means that we
need log(3 ⋅ 2⌊𝑛/2⌋−1 − 1) ≤ log3 + ⌊𝑛/2⌋ − 1 bits to represent it. As a result, we can
conclude that 𝑃 and 𝐸 can be represented with 𝑂(𝑛2) bits.

In summary, we have now seen that 𝑚 + 1 ≤ ⌊𝑛/2⌋ is a tight bound for the number
of colors needed to solve the 1D-CNNG-Gaps problem.

7.3 A Mixed Bound Depending on Small Gaps and Local
Maxima

Looking at the upper bound in Lemma 7.6 we see that for the 1D-CNNG-Gaps problem
we need at most a linear number of colors, relative to the number of special edges.
Restricting the special edges to local maxima, as seen in Lemma 7.1 and Corollary 7.1

137

Chapter 7 Different Bounds on the Number of Colors

we only have a logarithmic growth with respect to the number of local maxima. We
have also seen that the linear lower bound from Section 7.2.2 uses a construction that
solely relies on small gaps instead of local maxima. This leads us to believe that we
should be able to introduce bounds that combine the previous results. They should be
logarithmic in the number of local maxima while being linear in the number of small
gaps.

7.3.1 The Upper Bound

Taking the mentioned ideas we can find an upper bound that perfectly combines the
previous upper bound results, as we can see in

Lemma 7.9. Let 𝐸 ⊆ 𝐸𝑃 be an input edge set for an input point set 𝑃 and let 𝐸 have 𝑘
local maxima, ℓ small gaps, and thus 𝑚 = 𝑘 + ℓ special edges. Then there exists a valid
BCA with ̂𝑐 colors such that ̂𝑐 ≤ 1 + ⌊log(𝑘 + 1)⌋ + ℓ.

↪

Proof. We show this by induction on both 𝑘 and ℓ by first showing two base cases for
𝑘 = 0 and ℓ = 0 and then showing two induction steps, one for 𝑘 − 1 → 𝑘 and one for
ℓ − 1 → ℓ.

Induction base 𝑘 = 0 or ℓ = 0. For 𝑘 = 0 the claim is that there exists a valid BCA for
𝑃 with ̂𝑐 ≤ 1 + ⌊log1⌋ + ℓ = 1 + ℓ colors. We have already shown in Lemma 7.6 that
we need at most 𝑚 + 1 colors for any input edge set where 𝑚 is the number of special
edges. In this case 𝑚 = ℓ and the claim follows directly.

For ℓ = 0 the claim is that there exist a valid BCA for 𝑃with ̂𝑐 ≤ 1+⌊log(𝑘 + 1)⌋+ℓ =
1+ ⌊log(𝑘 + 1)⌋ colors. We remember Corollary 7.1 which shows that if we don’t have
any small gaps but 𝑘 local maxima then we can find a valid BCA with 1 + ⌊log(𝑘 + 1)⌋
colors, which concludes the induction base.

Induction step 𝑘 − 1 → 𝑘 or ℓ − 1 → ℓ. For the induction step let 𝑢 ∈ 𝒮𝐸 be a
special edge such that the length of its longest restricted region is maximized. Let
𝑢 = 𝑒𝑖 = {𝑝𝑖, 𝑝𝑖+1}. We then partition 𝑃 into two sets 𝐿 = {𝑝 ∈ 𝑃 | 𝑝 ≤ 𝑝𝑖} and
𝑅 = {𝑝 ∈ 𝑃 | 𝑝 ≥ 𝑝𝑖+1} and let 𝐸𝐿 and 𝐸𝑅 be the input edge sets restricted to points
in 𝐿 and 𝑅, respectively. Let 𝑘𝐿 and ℓ𝐿 be the number of local maxima and small gaps
in 𝐿 and 𝑘𝑅 and ℓ𝑅 the same in 𝑅. Since 𝑢 is either a local maximum or small gap we
know that either 𝑘𝐿, 𝑘𝑅 < 𝑘 or ℓ𝐿, ℓ𝑅 < ℓ. This means that we can apply the induction
hypothesis to 𝐿 and 𝑅 to see that there exist valid BCAs 𝜎𝐿 and 𝜎𝑅 for 𝐿 and 𝑅 with
̂𝑐𝐿 ≤ 1 + ⌊log(𝑘𝐿 + 1)⌋ + ℓ𝐿 and ̂𝑐𝑅 ≤ 1 + ⌊log(𝑘𝑅 + 1)⌋ + ℓ𝑅 colors, respectively.

Induction step ℓ − 1 → ℓ if 𝑢 is a small gap. Here we have that 𝑘𝐿 + 𝑘𝑅 = 𝑘 and
ℓ𝐿+ℓ𝑅+1 = ℓ. Assume, without loss of generality, that the larger of the two restricted
regions of 𝑢 is the left restricted region ⃖⃗𝑅𝐸(𝑢). This means that 𝑒𝑖+1, the edge to the
right of 𝑢, is responsible for the size of ⃖⃗𝑅𝐸(𝑢).

138

7.3 A Mixed Bound Depending on Small Gaps and Local Maxima

↪

It then follows that in 𝑅 there is no special edge that has 𝑝𝑖+1 in its left restricted
region: For this to happen the length of this restricted region would need to be greater
than ‖𝑒𝑖+1‖. However, by assumption, no restricted region is larger than ‖𝑒𝑖+1‖. The
result implies that there is no special edge in 𝑅 that has a point from 𝐿 in their left
restricted region. With the same argument we can also see that no special edge in 𝐿
has a point 𝑝𝑖+2 in its right restricted region. Thus, the only point from 𝑅 they may
have in their right restricted regions is 𝑝𝑖+1.
We now have a look at the valid BCAs 𝜎𝐿 and 𝜎𝑅. If we were to combine them we

would have two problems: First, some endpoints of special edges in 𝐿 with the same
color as 𝑝𝑖+1 may connect to 𝑝𝑖+1. In the other direction, 𝑝𝑖+1 may not connect to 𝑝𝑖+2
with its given color if some point in its left restricted region in 𝐿 is given the same color
as 𝑝𝑖+1. The solution to both problems is that we give a new color to the block to the
right of 𝑢. Thus, 𝑝𝑖+1 must connect to 𝑝𝑖+2 and no point in 𝐿 will connect to 𝑝𝑖+1.
As a result, we will need ̂𝑐 = max(̂𝑐𝐿, ̂𝑐𝑅) + 1 colors. It remains to show that this

adheres to our claim. For this we look at the worst case, the largest ̂𝑐 that can be
achieved. Since the bound on the color numbers is monotone in both 𝑘 and ℓ we
can easily see that max(̂𝑐𝐿, ̂𝑐𝑅) is maximized if one of the color numbers is as low as
possible. Let this one be ̂𝑐𝐿 without loss of generality. We thus set 𝑘𝐿 = ℓ𝐿 = 0 which
implies 𝑘𝑅 = 𝑘 and ℓ𝑅 = ℓ − 1. Then ̂𝑐𝑅 ≤ 1 + ⌊log(𝑘 + 1)⌋ + ℓ − 1 by induction. As a
result we have that ̂𝑐 = ̂𝑐𝑅 + 1 ≤ 1 + ⌊log(𝑘 + 1)⌋ + ℓ, exactly as claimed.

Induction step 𝑘 − 1 → 𝑘 if 𝑢 is a local maximum. Here we have that 𝑘𝐿 + 𝑘𝑅 + 1 = 𝑘
and ℓ𝐿 + ℓ𝑅 = ℓ. Since no restricted region of any other special edge is larger than
‖𝑒𝑖‖ we directly see that no special edge in 𝐿 can contain any point from 𝑃 or vice
versa. Thus, we can already look at how to construct 𝜎 from 𝜎𝐿 and 𝜎𝑅. We will now
distinguish whether ̂𝑐𝐿 and ̂𝑐𝑅 are the same or different.

If ̂𝑐𝐿 > ̂𝑐𝑅, we know that there is a color 𝑐 in 𝜎𝐿 that is not used by 𝜎𝑅. Rename the
colors in 𝜎𝐿 such that it assigns 𝑐 to the rightmost block in 𝐿, the points directly to the
left of 𝑢. Then choose 𝑝𝑖+1, the right endpoint of 𝑢, for two colors. Since no special
edge in 𝐿 has a point from 𝑅 in a restricted region, no point will connect to any of the
points in 𝑅 independent of their color. The point 𝑝𝑖+1 will connect with the color given
by 𝜎𝑅 to 𝑝𝑖+2 because this is closer than any other point. And it will connect with 𝑐 to
𝑝𝑖 since no other point in 𝑅 has this color. Thus, the number of colors needed is ̂𝑐 = ̂𝑐𝐿
and we only need to show that this can be bounded as claimed. We know by induction
that ̂𝑐𝐿 ≤ 1 + ⌊log(𝑘𝐿 + 1)⌋ + ℓ𝐿 and since 𝑘𝐿 < 𝑘 and ℓ𝐿 ≤ ℓ we can immediately see
that ̂𝑐 ≤ 1 + ⌊log(𝑘 + 1)⌋ + ℓ.

If ̂𝑐𝐿 < ̂𝑐𝑅 we can, of course, apply the symmetric arguments which will also show
that the bound holds.

If, on the other hand, ̂𝑐𝐿 = ̂𝑐𝑅 we just combine 𝜎𝐿 and 𝜎𝑅 to form 𝜎 and add a new
color to 𝑝𝑖 and 𝑝𝑖+1, the same way we did in the proof of Lemma 7.1. Since the special
edges in 𝐿 and 𝑅 don’t have any points from the other set in their restricted regions,

139

Chapter 7 Different Bounds on the Number of Colors

there is no problem in combining 𝜎𝐿 and 𝜎𝑅. The new color for 𝑢 also prevents any
problem with points connecting to 𝑝𝑖 and 𝑝𝑖+1 or vice versa. Then, the number of colors
needed is ̂𝑐 = ̂𝑐𝐿 + 1 = ̂𝑐𝑅 + 1. Even though 𝜎 is not a BCA, we can apply Lemma 6.5
to convert it into a BCA. We now have a closer look at ̂𝑐𝐿 and ̂𝑐𝑅. For this let

𝑎𝐿 = ⌊log(𝑘𝐿 + 1)⌋ and thus 𝑘𝐿 = 2𝑎𝐿 + 𝑠𝐿 − 1 with 0 ≤ 𝑠𝐿 ≤ 2𝑎𝐿 ,
𝑎𝑅 = ⌊log(𝑘𝑅 + 1)⌋ and thus 𝑘𝑅 = 2𝑎𝑅 + 𝑠𝑅 − 1 with 0 ≤ 𝑠𝑅 ≤ 2𝑎𝑅 , and

𝑘 = 2𝑎𝐿 + 𝑠𝐿 + 2𝑎𝑅 + 𝑠𝑅 − 1.

To prove that ̂𝑐 ≤ 1 + ⌊log(𝑘 + 1)⌋ + ℓ we look at whether 𝑎𝐿 and 𝑎𝑅 are the same or
different:

If 𝑎𝐿 = 𝑎𝑅 we can see that

⌊log(𝑘 + 1)⌋ = ⌊log(2𝑎𝐿 + 𝑠𝐿 + 2𝑎𝑅 + 𝑠𝑅)⌋

= ⌊log(2𝑎𝐿+1 + 𝑠𝐿 + 𝑠𝑅)⌋

= 𝑎𝐿 + 1, since 0 ≤ 𝑠𝐿 + 𝑠𝑅 < 2𝑎𝐿+1,

which then immediately means that

̂𝑐 = ̂𝑐𝐿 + 1 ≤ 1 + 𝑎𝐿 + ℓ𝐿 + 1
≤ 1 + 𝑎𝐿 + ℓ + 1
= 1 + ⌊log(𝑘 + 1)⌋ + ℓ

which is exactly what we want to prove.
If 𝑎𝐿 > 𝑎𝑅 then we also want to find out what ⌊log(𝑘 + 1)⌋ is. However, we only know

that 0 ≤ 𝑎𝑅 < 𝑎𝐿, but this is sufficient to find a lower bound for ⌊log(𝑘 + 1)⌋. Since
we have a monotone function in all four variables we can just use 𝑠𝐿 = 𝑠𝑅 = 𝑎𝑅 = 0 for
which then

⌊log(𝑘 + 1)⌋ = ⌊log(2𝑎𝐿 + 𝑠𝐿 + 2𝑎𝑅 + 𝑠𝑅)⌋
≥ ⌊log(2𝑎𝐿 + 0 + 0 + 0)⌋
= 𝑎𝐿.

Since 𝑎𝐿 > 𝑎𝑅 but also 𝑎𝐿 + ℓ𝐿 = 𝑎𝑅 + ℓ𝑅 it must follow that ℓ𝐿 < ℓ𝑅 ≤ ℓ and thus

̂𝑐 = ̂𝑐𝐿 + 1 ≤ 1 + 𝑎𝐿 + ℓ𝐿 + 1
≤ 1 + 𝑎𝐿 + ℓ
≤ 1 + ⌊log(𝑘 + 1)⌋ + ℓ

which we wanted to show. For 𝑎𝑅 > 𝑎𝐿 the same holds due to the symmetry of all
arguments.

140

7.3 A Mixed Bound Depending on Small Gaps and Local Maxima

As already noted in the induction base, we can see that the upper bound that we have
just shown is the combination of the two upper bounds shown before in Lemmas 7.1
and 7.6. If we don’t have any small gaps and thus ℓ = 0 we obtain the situation where
only a logarithmic number of colors is needed. On the other hand, if we only have
small gaps, that is ℓ = 𝑚, we have the situation that in the worst case every additional
small gap needs an additional color and we obtain the linear upper bound.

7.3.2 Running Time of the Construction

We can use the arguments used in the proof for Lemma 7.9 as an algorithm to find a
(generally not optimal) solution for a given input. In the worst case, in each step of the
recursion, the special edge with the largest restricted region has all other special edges
on one side. Then we have 𝑚 recursive steps with at most 𝑛, 𝑛 − 2, …, 𝑛 − 2𝑚 + 2
points. The most amount of time we need to spend in each step is if the special edge
is a local maximum. In this situation we then need to check whether the number of
colors to the left and to the right is the same and possibly rename the colors on one
side. This then takes at most 𝑛 − 2𝑖 time in the 𝑖th step. As a result, the total time to
construct a color assignment as seen in the proof for Lemma 7.9 is 𝑂(𝑛𝑚).

7.3.3 The Matching Lower Bound

Similarly to the previous section we can combine the constructions for the logarithmic
and linear lower bounds. The resulting input point set and input edge set will then
need exactly as many colors as shown by the upper bound in Lemma 7.9. See Figure 7.6
for an example construction for 𝑘 = 1 and ℓ = 2 as well as 𝑘 = 2 and ℓ = 1.

Lemma 7.10. For all 𝑘, ℓ ∈ ℕ there exists an input edge set 𝐸 ⊆ 𝐸𝑃 with 𝑘 local maxima
and ℓ small gaps for an input point set 𝑃 ⊆ ℝ with 𝑛 = 2(𝑘 + ℓ + 1) points such that
every valid color assignment needs 1 + ⌊log(𝑘 + 1)⌋ + ℓ colors.

↪

Proof. If ℓ = 0 we refer to Lemma 7.4 and if 𝑘 = 0 we refer to Lemma 7.8 to see that
the claim already holds.

If ℓ, 𝑘 > 0 we first look at the proof of Lemma 7.4 and take the point set constructed
there for 𝑛 = 2𝑘 + 2 with 𝑘 local maxima and call it 𝑃. We know then that we already
need 1+ ⌊log(𝑘 + 1)⌋ colors for any valid color assignment that results in 𝐸 = 𝐸𝑃. The
next step is to extend 𝑃 and 𝐸 with 2ℓ points and ℓ small gaps such that every added
gap adds the necessity for an additional color. Here we take the idea from the proof of
Lemma 7.8.

What we do is add a small gap to the right side of 𝑃 such that its left restricted region
spans 𝑃 completely. Assume that the rightmost point of 𝑃 is at position 𝑝. Since the
smallest possible distance from 𝑝 to its next point to the left is 1, we can just add a new
point at position 𝑝 + 0.5 to 𝑃. This way we can ensure that 𝑃 continues to be an input

141

Chapter 7 Different Bounds on the Number of Colors

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑘=1

⏟⏟⏟
ℓ=2

(a) With 𝑘 = 1 and ℓ = 2 we need 1 + ⌊log(𝑘 + 1)⌋ = 2 colors for the left part and then
additional ℓ = 2 colors for the right part.

⏟⏟⏟
𝑘=2

⏟⏟⏟
ℓ=1

(b) With 𝑘 = 2 and ℓ = 1 we still need 1 + ⌊log(𝑘 + 1)⌋ = 2 colors for the left part and ℓ = 1
additional color for the right part.

Figure 7.6: Two different lower bound constructions with different values for 𝑘 and ℓ
and one possible valid color assignment for each. In both figures we can
see the marked points as those overlapped by the maximum number of
restricted regions with different colors. For (a) it is three regions showing
that four colors are needed, while for (b) it is two regions showing that
three colors are needed.

point set. The next point is then added at position 2𝑝 + 1.5 which means that for all
points to the left of it, an equidistant point to the left would have negative coordinates.
Since we know that no points with negative coordinates are in 𝑃, this ensures that 𝑃
continues to be an input point set. We also add the edge {𝑝 + 0.5, 2𝑝 + 1.5} to 𝐸. We
can repeat this process until we have added 2ℓ points and with it ℓ small gaps. With
the same arguments as in the proof of Lemma 7.8 we see that each small gap needs a
new color.

As a result, 𝑃 has 𝑛 = 2𝑘 + 2 + ℓ points and 𝐸 contains 𝑘 local maxima and ℓ small
gaps. The number of colors we need is 1 + ⌊log(𝑘 + 1)⌋ + ℓ.

7.4 Conclusion

In this chapter we have looked at the optimal number of colors for the 1D-CNNG and
the 1D-CNNG-Gaps problem. We can combine the results from the different sections
into the following all-encompassing

↪

Theorem 7.1. Let 𝑃 ⊆ ℝ be an input point set with 𝑛 points and 𝐸 ⊆ 𝐸𝑃 an input edge
set with 𝑚 special edges from which 𝑘 are local maxima and ℓ are small gaps. Then
1 + ⌊log(𝑘 + 1)⌋ + ℓ ≤ 𝑚 + 1 colors are always sufficient and sometimes necessary to

142

7.4 Conclusion

solve the 1D-CNNG-Gaps problem for 𝐸. Relative to 𝑛 we know that ⌊𝑛/2⌋ colors are
always sufficient and sometimes necessary.

Looking at the 1D-CNNG problem, it can be solved for 𝑃 with at most 1+ ⌊log(𝑘 + 1)⌋
colors and some inputs need this many colors. Relative to 𝑛 we know that ⌊log𝑛⌋ colors
are always sufficient and sometimes necessary.

We have also seen in Section 7.3.2 that we can find an actual BCA for any given input
in 𝑂(𝑛𝑚) time. However, the only guarantees for the number of colors in this BCA is,
that it has at most 1+⌊log(𝑘 + 1)⌋+ℓ colors. We have no optimality or approximation
guarantee.

143

Chapter8
A Dynamic Program for a Fixed Color

Number

So far we have shown how to solve the 1D-CNNG-Gaps problem in linear time for up
to two colors in Chapter 6 and also how many colors are needed in the worst case in
Chapter 7. In this chapter we describe an algorithm using a dynamic programming
approach that solves the problem for an arbitrary large number of colors.

We can reuse many of the ideas that we developed in Chapter 6, especially the
observations regarding BCAs in Section 6.3. We already know that for any color
assignment with ̂𝑐 colors there is also a BCA with the same number of colors, as shown
in Lemma 6.5. Thus, we will limit the dynamic program to finding BCAs.

In this chapter we will first look at the size of the solution space in which we must
search for a possible solution. We will see that this size is exponential in the number
of special edges, meaning that a naive algorithm will need at least this amount of time
to find a solution. We will then use some observations to design a dynamic program
that is only exponential in the number of allowed colors. Looking at the results from
the previous chapter we will see that this is still exponential in the number of special
edges for arbitrary input. For inputs without gaps this will improve the running time
to being exponential in the logarithm of the number of points.

8.1 A Quick Look at the Naive Approach

Before we dive into the dynamic program, we first want to think about the running
time of a naive algorithm that enumerates all possible BCAs. Assume that we are given
an input point set with 𝑛 points and an input edge set that has 𝑚 special edges out of
which 𝑘 are local maxima. Furthermore, assume that we are given ̂𝑐 colors to use. To
find a BCA with ̂𝑐 colors there are basically two things to consider: The first is that
for each local maximum we need to choose whether the left or the right endpoint gets
two colors. These are 2𝑘 possible combinations.

The second thing to consider is which color is assigned to which block. We have
made similar observations at the beginning of Section 6.4 with the constraint that we
had only two colors and thus by the change of color the actual color was forced. In our

145

Chapter 8 A Dynamic Program for a Fixed Color Number

situation we have more colors and can thus choose which one to pick for each of the
𝑚+1 blocks. We can fix the first two blocks to two specific and distinct colors, and we
know that we cannot repeat the second color in the third block. Thus, the third block
can be given any of the remaining ̂𝑐 − 1 colors. The same is true for every next block
afterwards. This results in (̂𝑐 − 1)𝑚−1 different combinations of colors. In total there
are then 2𝑘(̂𝑐 − 1)𝑚−1 different BCAs with the first two blocks fixed to two specific
colors.

If we were to implement this naive approach, one way could be to enumerate all
possible BCAs. For each such BCA we would then need to compute its CNNM or check
whether any of the conditions regarding the restricted regions are violated. Testing
whether a specific BCA is valid can be done in time 𝑂(𝑚2) by checking all pairs of
special edges whether they and their colors make the BCA invalid. Then, the overall
running time for a naive approach would be

𝑂(𝑚22𝑘 ̂𝑐𝑚−1). (Naive)

We know from Observation 6.3 that both 𝑘 and 𝑚 can be bounded by ⌊𝑛/2⌋ − 1 to
express the above bound in terms of 𝑛, giving

𝑂(𝑛22
𝑛
2 ̂𝑐

𝑛
2−2) = 𝑂(𝑛2(2 ̂𝑐)

𝑛
2−2).

Using the upper bounds on the color numbers from Theorem 7.1 we can then also
upper bound ̂𝑐 and obtain

𝑂(𝑛2(2 log𝑛)
𝑛
2−2) and 𝑂(𝑛

𝑛
2)

as running times for the 1D-CNNG problem and the 1D-CNNG-Gaps problem, respec-
tively.

8.1.1 Incremental construction

Instead of enumerating all BCAs, a different way would be to incrementally build BCAs
from the left to the right. We could start by giving color 1 to the first block. If 𝑢1
is a local maximum we would then have two possibilities to choose 𝑢1’s left or right
endpoint as the one with two colors. We then assign color 2 to the second block. For
the third block we then have exactly ̂𝑐 − 1 different choices and also two choices for
the endpoint of 𝑢2 if it is a local maximum. If we branch our program off for every
possible choice, we would create an exponential number of calculation branches, the
same number as possible BCAs. We can improve this approach by throwing away an
unfinished color assignment once we see that it is missing an edge or has duplicate or
multiple edges. However, this would not improve the worst-case running time of the
algorithm.

146

8.2 The Idea of and Prerequisites for the Dynamic Program

8.2 The Idea of and Prerequisites for the Dynamic Program

The main problem of the naive incremental approach in Section 8.1.1 is that we keep
all the information about which blocks are colored in which color and which local
maximum chose the left or the right endpoint as the one for two colors. However, as we
will now show, we will only need to keep track of the closest special edge in each color.
In the idea described in Section 8.1.1 we construct many BCAs in parallel, but they are
all constructed from left to right. We can make this more formal with the following

Definition 8.1. ⊳ partial basic
color assignment
(partial BCA)

⊳ partially valid

⊳ extension
⊳ completion

Let 𝑃 = {𝑝1,… , 𝑝𝑛} ⊆ ℝ be an input point set, 𝐸 ⊆ 𝐸𝑃 an input
edge set, and 𝒮𝐸 = {𝑢1,… , 𝑢𝑚} be the set of special edges in 𝐸. Let now 𝑢𝑖 =
{𝑝𝑎, 𝑝𝑎+1} ∈ 𝒮𝐸 be a special edge. Then 𝑃𝑖 = {𝑝 ∈ 𝑃 | 𝑝 ≤ 𝑝𝑎} is the input point set
restricted to those points to the left of 𝑢𝑖 including its left endpoint 𝑝𝑎. Furthermore,
𝐸𝑖 = 𝐸 ∩ 𝐸𝑃𝑖

= {{𝑝, 𝑞} ∈ 𝐸 | 𝑝 ∈ 𝑃𝑖 ∧ 𝑞 ∈ 𝑃𝑖} is the input edge set restricted to edges
between the points in 𝑃𝑖.

Now, let 𝜎𝑖 ∶ 𝑃 → ℂ ̂𝑐 ∪ {∅} be a function such that 𝜎𝑖(𝑝) ≠ ∅ for all 𝑝 ∈ 𝑃𝑖 and
𝜎𝑖(𝑝) = ∅ for all 𝑝 ∉ 𝑃𝑖. We call 𝜎𝑖 a 𝑢𝑖-partial basic color assignment (partial BCA) if
it is a BCA for 𝐸𝑖, and we say that 𝜎𝑖 is partially valid for 𝐸 (or just partially valid if 𝐸 is
clear from context) if 𝜎𝑖 is valid for 𝐸𝑖.

A 𝑢𝑗-partial BCA 𝜎𝑗 for some 𝑗 > 𝑖 is called an extension of 𝜎𝑖 if 𝜎𝑖(𝑝) = 𝜎𝑗(𝑝)
for all 𝑝 < 𝑝𝑎 and 𝜎𝑖(𝑝𝑎) ⊆ 𝜎𝑗(𝑝𝑎). Similarly, we call a BCA 𝜎 a completion of 𝜎𝑖 if
𝜎𝑖(𝑝) = 𝜎(𝑝) for all 𝑝 < 𝑝𝑎 and 𝜎𝑖(𝑝𝑎) ⊆ 𝜎(𝑝𝑎).

Thus, a 𝑢𝑖-partial BCA is a function where all points to the left of special edge 𝑢𝑖,
including its left endpoint, are assigned colors and all points to the right of 𝑢𝑖 (including
its right endpoint) have no colors assigned. In addition, if we discard all points that
have no colors assigned, the partial BCA must be a BCA for the remaining edges of the
remaining points.

If we take a BCA and successively remove the color given to the rightmost block
from the points in the rightmost block we obtain a special sequence of partial BCAs as
defined by

Definition 8.2. ⊳ partial sequenceLet 𝐸 ⊆ 𝐸𝑃 be an input edge set, 𝒮𝐸 = {𝑢1,… , 𝑢𝑚} be the set of
special edges and 𝜎 ∶ 𝑃 → ℂ ̂𝑐 a BCA for 𝐸. For every 𝑢𝑖 = {𝑝𝑎𝑖

, 𝑝𝑎𝑖+1
} ∈ 𝒮𝐸 let 𝑐𝑖 be

the color assigned to the block to its left (the one that contains 𝑝𝑎𝑖
). We then define a

function 𝜎𝑖 ∶ 𝑃 → ℂ ̂𝑐 ∪ {∅} for 𝑢𝑖 as follows:

𝜎𝑖(𝑝) =
⎧⎪⎪
⎨
⎪⎪
⎩

𝜎(𝑝) if 𝑝 < 𝑝𝑎𝑖
,

{𝑐𝑖} if 𝑝 = 𝑝𝑎𝑖
, and

∅ otherwise (𝑝 ≥ 𝑝𝑎𝑖+1
).

We call the sequence 𝜎1,… , 𝜎𝑚 the partial sequence for 𝜎.

147

Chapter 8 A Dynamic Program for a Fixed Color Number

𝑢1 𝑢2 𝑢3

𝜎

(a)

𝑢1 𝑢2 𝑢3

𝜎1

(b)

𝑢1 𝑢2 𝑢3

𝜎2

(c)

𝑢1 𝑢2 𝑢3

𝜎3

(d)

Figure 8.1: A valid BCA 𝜎𝑖 in (a) and its partial sequence 𝜎1, 𝜎2, 𝜎3 in (b–d). The un-
colored points are grayed out to observe that the partial BCAs are partially
valid.

See Figure 8.1 for an example BCA with its partial sequence. For every 𝑢𝑖 ∈ 𝒮𝐸 we
can see that all colors assigned by 𝜎𝑖 are either exactly the colors assigned by 𝜎 or a
subset of those colors. In addition, the rightmost point that has a color assigned by 𝜎𝑖
is the left endpoint of 𝑢𝑖 and it has only one color assigned. Thus, the next observation
follows immediately:

Observation 8.1. Let 𝜎1,… , 𝜎𝑚 be the partial sequence for a BCA 𝜎 with𝑚 special edges.
Then 𝜎𝑖 is a 𝑢𝑖-partial BCA for all 1 ≤ 𝑖 ≤ 𝑚. Additionally, for two values 1 ≤ 𝑖 < 𝑗 ≤ 𝑚
it holds that 𝜎𝑗 is an extension of 𝜎𝑖. Furthermore, 𝜎 is a completion of every 𝜎𝑖 in the
sequence.

What will be important for the dynamic program is the following: If there is a valid
BCA for a given input edge set then all partial BCAs in the partial sequence are partially
valid. See Figure 8.1 again for an example partial sequence where we can see that the
partial BCAs are all partially valid.

Lemma 8.1. Let 𝐸 ⊆ 𝐸𝑃 be an input edge set for an input point set 𝑃 ⊆ ℝ, and
𝒮𝐸 = {𝑢1,… , 𝑢𝑚} be the special edges. Let furthermore 𝜎 ∶ 𝑃 → ℂ ̂𝑐 be a valid BCA.
Then all partial BCAs 𝜎𝑖 in the partial sequence for 𝜎 are partially valid.

↪

Proof. For every 𝑢𝑖 = {𝑝𝑎, 𝑝𝑎+1} ∈ 𝒮𝐸 we show that 𝜎𝑖 is partially valid. Let 𝑃𝑖 =
{𝑝 ∈ 𝑃 | 𝑝 ≤ 𝑝𝑎} be the input point set restricted to points that have a color in 𝜎𝑖 and
𝐸𝑖 = 𝐸 ∩ 𝐸𝑃𝑖

be the input edge set of the edges between the points in 𝑃𝑖. We can now
easily see that 𝜎𝑖 is valid for 𝐸𝑖: For all special edges 𝑢𝑗 ∈ 𝒮𝐸𝑖

in 𝐸𝑖 we know that no
point with the wrong color is in any of the relevant restricted regions for 𝑢𝑗. Since the
colors given to the endpoints of 𝑢𝑗 are the same in 𝜎𝑖 and 𝜎 we need to check the same
restricted regions for the same colors. The colors assigned by 𝜎𝑖 are subsets of those

148

8.2 The Idea of and Prerequisites for the Dynamic Program

assigned by 𝜎 for all points in 𝑃𝑖 and thus there can be no point with a wrong color in
any of the relevant restricted regions for 𝑢𝑗 regarding 𝜎𝑖. Then 𝜎𝑖 is valid for 𝐸𝑖 and
thus 𝜎𝑖 is partially valid for 𝐸.

As mentioned already before, the main problem of the naive approach of constructing
all possible BCAs is that we keep track of every choice of color and endpoint with two
colors so far. We will now see that we do not need all this information to extend a
partially valid 𝑢𝑖-partial BCA to a partially valid 𝑢𝑖+1-partial BCA.

Lemma 8.2. Let 𝐸 ⊆ 𝐸𝑃 be an input edge set for an input point set 𝑃 ⊆ ℝ, and
𝒮𝐸 = {𝑢1,… , 𝑢𝑚} be the special edges. For some 𝑢𝑖 ∈ 𝒮𝐸, let 𝜎𝑖 ∶ 𝑃 → ℂ ̂𝑐 be a partially
valid 𝑢𝑖-partial BCA. Furthermore, let 𝑐𝑙 be the color shared by the rightmost block that
has colors assigned by 𝜎𝑖 which is block 𝐵𝑖−1, and let 𝑐𝑟 ∈ 𝐶 ̂𝑐 ∖ {𝑐𝑙} be some other color.

If 𝑖 < 𝑚, let 𝜎𝑖+1 ∶ 𝑃 → ℂ ̂𝑐 be an extension of 𝜎𝑖 such that 𝑐𝑟 is the color shared by
the rightmost block that has colors assigned by 𝜎𝑖+1 which is 𝐵𝑖. We can then determine
whether 𝜎𝑖+1 is partially valid by knowing two things from 𝜎𝑖:

1. The rightmost special edge 𝑢𝑗 which has 𝑐𝑟 as the color for its left block 𝐵𝑗−1, and

2. if 𝑢𝑗 is a local maximum, which of the endpoints of 𝑢𝑗 has two colors.

If 𝑖 = 𝑚, let 𝜎 ∶ 𝑃 → ℂ ̂𝑐 be a completion of 𝜎𝑖 such that 𝑐𝑟 is the color shared by the
rightmost block for 𝐸 which is 𝐵𝑚. We can then determine whether 𝜎 is valid with the
same information from 𝜎𝑖 as above.

↪

Proof. We start by looking at the case 𝑖 < 𝑚, and we first note that if 𝑢𝑖 is a small gap
then there is only one possible extension 𝜎𝑖+1 while there are two possible extensions if
𝑢𝑖 is a local maximum. In order to check whether 𝜎𝑖+1 is partially valid we need to check
whether it is valid for 𝐸𝑖+1 = {{𝑝, 𝑞} ∈ 𝐸 | 𝑝 ≤ 𝑝𝑎 ∧ 𝑞 ≤ 𝑝𝑎} with 𝑢𝑖+1 = {𝑝𝑎, 𝑝𝑎+1}.
Since we know that 𝜎𝑖 is partially valid, we only need to look at the difference between
𝜎𝑖 and 𝜎𝑖+1, namely 𝐵𝑖 and the endpoints of 𝑢𝑖. From Lemma 6.7 we know that we
only need to check whether any restricted regions contain a point with the wrong color.

In the statement of the lemma we say that 𝑢𝑗 is the rightmost special edge that has
color 𝑐𝑟 in the block to its left in 𝜎𝑖. It is, of course, not always the case that this special
edge actually exists. If no point is assigned 𝑐𝑟 by 𝜎𝑖 then 𝑢𝑗 does not exist. For now,
however, we assume that 𝑢𝑗 exists and talk later about the case in which it does not.

If we look at 𝑢𝑖 we see that its right restricted region can only contain points that
have color 𝑐𝑟 and thus no point with color 𝑐𝑙. However, its left restricted region may
contain a point with color 𝑐𝑟 which would make 𝜎𝑖 not valid if 𝑢𝑖 is a small gap or its
left endpoint has two colors. To check this, it is sufficient to know the rightmost point 𝑝
with color 𝑐𝑟. This can be obtained from the two pieces of information that we claimed
we needed. Then 𝑝 is either 𝑢𝑗 ’s left endpoint if 𝑢𝑗 is a small gap or the endpoint with

149

Chapter 8 A Dynamic Program for a Fixed Color Number

two colors if 𝑢𝑗 is a local maximum. We can then conclude that 𝜎𝑖+1 is not valid if
𝑝 ∈ ⃖⃗𝑅𝐸(𝑢𝑖) unless 𝑢𝑖 is a local maximum with two colors for its right endpoint.

Finally, we also need to check whether the new points with color 𝑐𝑟 are inside any of
the right restricted regions of special edges to the left of 𝑢𝑖. However, we only need
to look at those special edges whose left color is 𝑐𝑟 and which do not have its left
endpoint with two colors. We know that 𝑢𝑗 has 𝑐𝑟 to its left and if it does not have its
left endpoint with two colors we check whether the leftmost point of 𝑢𝑖 with color 𝑐𝑟 is
inside ⃗⃗𝑅𝐸(𝑢𝑗). If this is the case then 𝜎𝑖+1 is not valid.
We do not need to check any other special edges that are to the left of 𝑢𝑗 since we

know that 𝜎𝑖 is partially valid. Assume that there is a special edge to the left of 𝑢𝑗 for
which we need to check that no point in its right restricted region contains color 𝑐𝑟.
If this right restricted region contained an endpoint of 𝑢𝑖 it would also contain both
endpoints of 𝑢𝑗 and at least one of them has color 𝑐𝑟. Thus, already 𝜎𝑖 would not be
valid.

So far we have assumed that a special edge 𝑢𝑗 exists. If 𝑢𝑗 does not exist, we know
that no point is given color 𝑐𝑟 by 𝜎𝑖. This means that we do not need to perform any
checks and we always know that 𝜎𝑖+1 is valid for 𝐸𝑖+1 and thus partially valid for 𝐸.
We can see that we have not used the fact that 𝜎𝑖+1 is a partial BCA or that there

exists a special edge 𝑢𝑖+1 anywhere except when we defined 𝐸𝑖+1. If we replace 𝐸𝑖+1
with 𝐸 we can use all the same arguments and conclude that for the case in which
𝑖 = 𝑚 we can check whether 𝜎 is valid for 𝐸 with the information provided.

We can now see that it is sufficient to know about the rightmost special edge with
color 𝑐 to its left for all colors 𝑐 ∈ 𝐶 ̂𝑐 to obtain a partially valid extension or a valid
completion of a given partial BCA. That is, we only need one piece of information
instead of arbitrarily many for each color. With this knowledge we can finally start
to define our dynamic program. The idea is now that with the limited information
passed to our decision-making, this information will be repeated in other parts of
the calculation for different partially valid partial BCAs. Thus, by computing the
information once and reusing it afterwards the running time of the upcoming dynamic
program should be lower than the running time we saw for the naive approach.

8.3 Defining the Dynamic Program

For the remainder of this chapter assume now that we are given an input edge set
𝐸 ⊆ 𝐸𝑃 for an input point set 𝑃 ⊆ ℝ with 𝑛 points, and a number of colors ̂𝑐. Let
ℳ𝐸, 𝒢

−
𝐸 , and 𝒮𝐸 = {𝑢1,… , 𝑢𝑚} be the local maxima, small gaps, and special edges,

respectively.
Overall, the principle underlying the dynamic program will be as follows: We start

with one or two 𝑢2-partial BCAs 𝜎2 (depending on whether 𝑢1 is a local maximum or
small gap) with the colors of the first two blocks already fixed to the first two colors. For

150

8.3 Defining the Dynamic Program

each 𝜎2 we then try all possible partially valid 𝑢3-partial BCAs 𝜎3 that are extensions
of the 𝜎2. For each of those we try all possible partially valid 𝑢4-partial BCAs 𝜎4 that
are extensions of the respective 𝜎3, and so on. In the end we will find all possible valid
BCAs that are completions of the partially valid 𝑢𝑚-partial BCAs.

In each step of the process we need to be given the special edge 𝑢𝑖 which should
be colored, i.e., the special edge for which we already have the 𝑢𝑖-partial BCA 𝜎𝑖. We
must also know which color we should use for the extension. And finally, as observed
before for each color we need to be given the rightmost endpoint to the left of 𝑢𝑖 that
has this color assigned to at least one of its endpoints in 𝜎𝑖. We also need to know on
which side 𝑢𝑖 has two colors if it is a local maximum.

8.3.1 Specification

To summarize this more clearly, the following information will be passed to each call
of the dynamic program:

1. The special edge 𝑢𝑖 ∈ 𝒮𝐸 which should be colored now together with the block
𝐵𝑖 to its right. In other words, 𝑢𝑖 is the special edge for which we already have a
𝑢𝑖-partial BCA.

2. A color ⃗⃗𝑐 ∈ 𝐶 ̂𝑐 telling us with which color the points to the right of 𝑢𝑖, i.e., those
in 𝐵𝑖, should be colored.

3. For every color 𝑐 ∈ 𝐶 ̂𝑐 we pass two additional values:

a) The rightmost special edge 𝑠𝑐 = 𝑢𝑗 ∈ 𝒮𝐸 to the left of (and including) 𝑢𝑖
such that the shared color in 𝐵𝑗−1 is 𝑐. This will be 𝑢𝑖 for the color that is
directly to the left of 𝑢𝑖. If no block so far has been given color 𝑐, we provide
the placeholder ⊥. For convenience, we define 𝒮𝐸,⊥ = 𝒮𝐸 ∪ {⊥} as the set
of special edges including ⊥.

b) A binary value 𝑏𝑐 ∈ {𝐿, 𝑅} telling us which endpoint of 𝑠𝑐 is the rightmost
one to have color 𝑐. Thus, it is 𝐿 if 𝑠𝑐 is a small gap or if 𝑠𝑐 has two colors at
its left endpoint and 𝑅 if 𝑠𝑐 has two colors at its right endpoint. In the case
that 𝑠𝑐 = ⊥ we set 𝑏𝑐 = 𝐿.

As a result, the signature of the dynamic program is defined as

𝑆 ∶ 𝒮𝐸 × 𝐶 ×𝒮 ̂𝑐
𝐸,⊥ × {𝐿, 𝑅} ̂𝑐 → {0, 1},

and a call to
𝑆(𝑢𝑖, ⃗⃗𝑐, s = (𝑠1,… , 𝑠 ̂𝑐),b = (𝑏1,… , 𝑏 ̂𝑐))

should then tell us whether there is a valid a BCA that is a completion for the 𝑢𝑖-partial
BCA for which we only now the information passed as s and b with the following
constraints:

151

Chapter 8 A Dynamic Program for a Fixed Color Number

𝑢1 𝑢2 𝑢3 𝑢4 𝑢5 𝑢6𝐵0 𝐵1 𝐵2 𝐵3 𝐵4 𝐵5 𝐵6

𝑅𝐿 𝐿

𝜎5 𝜎6

𝑐1
𝑐2

𝑐3

Figure 8.2: An abstract representation of a 𝑢5-partial BCA 𝜎5 (the innermost dashed
part) that should be extended to a 𝑢6-partial BCA 𝜎6 (the outer dashed
part). Here we only represent the special edges and the blocks without
the points in the blocks. For 𝜎5 we can see that 𝐵0 and 𝐵3 are both given
𝑐1, 𝐵2 and 𝐵4 are given 𝑐3, and 𝐵1 is given 𝑐2. We marked 𝑢2, 𝑢4, and
𝑢5 because those are the rightmost special edges with their respective
color to the left. We also specified whether its left or right endpoint is the
rightmost point with the color to its left. Assuming we have four colors
in total, this situation is equivalent to calling the dynamic program as
𝑆(𝑢5, 𝑐2, (𝑢4, 𝑢2, 𝑢5, ⊥), (𝑅, 𝐿, 𝐿, 𝐿)).

1. The shared color in block 𝐵𝑖 to the right of 𝑢𝑖 is ⃗⃗𝑐.

2. We can extract the color ⃖⃗𝑐 to the left of 𝑢𝑖 from the fact that for exactly one color
⃖⃗𝑐 we will have that 𝑠⃖⃗𝑐 = 𝑢𝑖. If 𝑢𝑖 is a local maximum we then give two colors to
its left or right endpoint depending on the value in 𝑏⃖⃗𝑐.

3. For all colors 𝑐 ∈ 𝐶 ̂𝑐 such that 𝑠𝑐 is a small gap or 𝑏𝑐 = 𝑅 we ensure that no point
inside ⃗⃗𝑅𝐸(𝑠𝑐) is given color 𝑐.

See Figure 8.2 for an example 𝑢5-partial BCA which should be extended to a 𝑢6-
partial BCA using color 𝑐2. The figure represents a situation in which the dynamic
program is called as 𝑆(𝑢5, 𝑐2, (𝑢4, 𝑢2, 𝑢5, ⊥), (𝑅, 𝐿, 𝐿, 𝐿)). This implies that we allow
the dynamic program to use up to four colors. We can see that the information that
colors 𝑐1 and 𝑐3 are used for blocks 𝐵0 and 𝐵2, respectively, is not passed to the dynamic
program. For all colors that are used (all but 𝑐4) we have the rightmost special edge
with an endpoint in this color and whether the right endpoint has this color or not.

We now of course want to know how the dynamic program works exactly, i.e., what
actions are performed when 𝑆(𝑢𝑖, ⃗⃗𝑐, s,b) is called. However, before doing so, we first
look at some useful functions that will help us describe it more succinctly.

8.3.2 Useful Helper Functions

We have specified that for every color 𝑐 ∈ 𝐶 ̂𝑐 we are given the rightmost special edge 𝑠𝑐
such that 𝑐 is given to its left block. This means that at least one of its endpoints has
color 𝑐, but it may be both. For this we are given 𝑏𝑐 which tells us whether it is only

152

8.3 Defining the Dynamic Program

the left endpoint 𝑏𝑐 = 𝐿 or both 𝑏𝑐 = 𝑅. As observed in Lemma 8.2, in order to check
whether a partial BCA is partially valid, in some cases we need to check whether the
rightmost point with color ⃗⃗𝑐 is inside ⃖⃗𝑅𝐸(𝑢𝑖). In order to easily access this point we
change 𝐿 and 𝑅 from being simple placeholders for the left and right endpoint into
functions that, when applied to a special edge, return this endpoint. If applied to a ⊥
value, they should just return ⊥ again. That is, we define 𝐿, 𝑅 ∶ 𝒮𝐸,⊥ → 𝑃 ∪ {⊥} as

𝐿(𝑢𝑗) = {
⊥ if 𝑢𝑗 = ⊥,
𝑝𝑏 if 𝑢𝑗 = {𝑝𝑏, 𝑝𝑏+1},

𝑅(𝑢𝑗) = {
⊥ if 𝑢𝑗 = ⊥,
𝑝𝑏+1 if 𝑢𝑗 = {𝑝𝑏, 𝑝𝑏+1}.

Now, whenever we want to check whether the rightmost point with a specific color
𝑐 ∈ 𝐶 ̂𝑐 is in the left restricted region of 𝑢𝑖 we can just check 𝑏𝑐(𝑠𝑐) ∈ ⃖⃗𝑅𝐸(𝑢𝑖). If 𝑠𝑐 is a
special edge, 𝑏𝑐 will return the correct endpoint. Very conveniently, if 𝑠𝑐 = ⊥ then 𝑏𝑐
returns ⊥ and the check will always return false, which is exactly what we want.

Another check that needs to be made is whether the leftmost endpoint of 𝑢𝑖 that is
given color ⃗⃗𝑐 is inside the right restricted region of 𝑠⃗⃗𝑐. However, we only need to make
this check if 𝑠⃗⃗𝑐 is a small gap or a local maximum with two colors at its right endpoint.
To simplify the checks we overload the function ⃗⃗𝑅𝐸 as ⃗⃗𝑅𝐸 ∶ 𝒮𝐸,⊥ ×{𝐿, 𝑅} → 𝕀∪∅. This
means that we pass both a special edge or ⊥ and the binary indicator for the left or
right endpoint. The result can either be a restricted region or the empty set which will
be returned whenever we do not need to check the special edges right restricted region.
We define our overloaded version as

⃗⃗𝑅𝐸(𝑠, 𝑏) = {
⃗⃗𝑅𝐸(𝑠) if 𝑠 ∈ 𝒢−

𝐸 or 𝑠 ∈ ℳ𝐸 ∧ 𝑏 = 𝑅,
∅ if 𝑠 = ⊥ or 𝑠 ∈ ℳ𝐸 ∧ 𝑏 = 𝐿.

We can now just check 𝑝 ∈ ⃗⃗𝑅𝐸(𝑠𝑐, 𝑏𝑐) for some point 𝑝 ∈ 𝑃 and some color 𝑐 ∈ 𝐶 ̂𝑐 and
due to ⃗⃗𝑅𝐸 returning the empty set whenever no right restricted region needs to be
checked, we have exactly the desired behavior.

In every step of the dynamic program we will need to check both the potential right
restricted region of a previous special edge and the potential left restricted region of
the current special edge. As mentioned before, we want to be able to describe the
dynamic program as succinctly as possible. We therefore move this check into its own
verification function 𝑉 ∶ 𝒮𝐸 × {𝐿, 𝑅} ×𝒮𝐸,⊥ × {𝐿, 𝑅} → {0, 1} which is defined as

let 𝑢𝑖 = {𝑝𝑎, 𝑝𝑎+1} in

𝑉(𝑢𝑖, 𝑏𝑖, 𝑠, 𝑏) =
⎧⎪
⎨
⎪
⎩

𝑝𝑎+1 ∉ ⃗⃗𝑅𝐸(𝑠, 𝑏) ∧ 𝑏(𝑠) ∉ ⃖⃗𝑅𝐸(𝑢𝑖) if 𝑢𝑖 ∈ 𝒢−
𝐸 ,

𝑝𝑎 ∉ ⃗⃗𝑅𝐸(𝑠, 𝑏) ∧ 𝑏(𝑠) ∉ ⃖⃗𝑅𝐸(𝑢𝑖) if 𝑢𝑖 ∈ ℳ𝐸 ∧ 𝑏𝑖 = 𝐿, and
𝑝𝑎+1 ∉ ⃗⃗𝑅𝐸(𝑠, 𝑏) if 𝑢𝑖 ∈ ℳ𝐸 ∧ 𝑏𝑖 = 𝑅.

153

Chapter 8 A Dynamic Program for a Fixed Color Number

𝑠
𝑏 = 𝑅

𝑢𝑖

⃖⃗𝑅𝐸(𝑢𝑖)⃗⃗𝑅𝐸(𝑠, 𝑏)

𝑏(𝑠)
𝐿 = 𝑏𝑖

𝑝𝑎+1

(a) Since 𝑢𝑖 is a small gap and 𝑏 = 𝑅 we need to check whether 𝑢𝑖’s right endpoint is inside
the right restricted region of 𝑠. We also need to check whether 𝑢𝑖’s left restricted region
contains the right endpoint of 𝑠 (because 𝑏 = 𝑅).

⃖⃗𝑅𝐸(𝑢𝑖)
𝐿 = 𝑏𝑖

𝑠 𝑢𝑖

𝐿 = 𝑏

⃗⃗𝑅𝐸(𝑠, 𝑏) = ∅

𝑏(𝑠) 𝑝𝑎

(b) Since 𝑏 = 𝐿 and 𝑠 is a local maximum we do not need to check whether the right restricted
region of 𝑠 contains any point. This is made easy by ⃗⃗𝑅𝐸(𝑠, 𝑏) evaluating to ∅. However,
since 𝑏𝑖 = 𝐿 we need to check whether 𝑢𝑖 ’s left restricted region contains the left endpoint
of 𝑠 (because 𝑏 = 𝐿).

𝑏 = 𝑅

⃗⃗𝑅𝐸(𝑠, 𝑏)
𝑏𝑖 = 𝑅

𝑠 𝑢𝑖𝑏(𝑠) 𝑝𝑎+1

(c) Since 𝑏𝑖 = 𝑅, we do not need to check 𝑢𝑖 ’s left restricted region. However, since 𝑏 = 𝑅 and 𝑠
is a local maximum we need to check whether the right restricted region of 𝑠 contains the
right endpoint 𝑝𝑎+1 of 𝑢𝑖 (since 𝑏 = 𝑅).

Figure 8.3: The three different situations in the verification function: (a) when 𝑢𝑖 is
a small gap, (b) when it is a local maximum and its left endpoint should
have two colors, and (c) when it is a local maximum and its right endpoint
should have two colors. We have highlighted the endpoints for which we
may need to check whether they are contained in the restricted regions of
the other special edge.

The function is passed the special edge 𝑢𝑖 for which we want to check whether we
can color the points to its right in a specific color ⃗⃗𝑐. We are also passed 𝑏𝑖 which, in
case 𝑢𝑖 is a local maximum, tells us which of 𝑢𝑖 ’s endpoints is chosen to have two colors.
Additionally, we are given a rightmost special edge 𝑠 and its binary indicator 𝑏. For
the latter two values we will pass 𝑠⃗⃗𝑐 and 𝑏⃗⃗𝑐 in the dynamic program. We now break
down what the function does. For each of the three parts of the function we refer to
Figure 8.3 for example situations.

If 𝑢𝑖 is a small gap (first line), we know that its right endpoint is the only one with
the new color ⃗⃗𝑐. Thus, we check whether this endpoint is inside the right restricted
region of the passed special edge 𝑠. Additionally, we need to check whether 𝑢𝑖’s left
restricted region contains the rightmost point of 𝑠 with color ⃗⃗𝑐. This point is obtained

154

8.3 Defining the Dynamic Program

by using 𝑏 as a function on 𝑠 as described before. Note that, due to the definition of the
helper functions, whenever 𝑠 = ⊥ both statements are trivially true. See Figure 8.3a
for an example with 𝑏 = 𝑅, i.e., where we need to check whether the right restricted
region of 𝑠 contains the right endpoint of the small gap and whether the left restricted
region of 𝑢𝑖 contains 𝑏(𝑠).

If 𝑢𝑖 is a local maximum and its left endpoint should have two colors we know
that this left endpoint will have color ⃗⃗𝑐 and thus check whether it is insides the right
restricted region of 𝑠. Additionally, we also need to check whether the rightmost point
of 𝑠 with color ⃗⃗𝑐 is inside 𝑢𝑖’s left restricted region. See Figure 8.3b for an example.
Here we have depicted a situation where 𝑏 = 𝐿 and thus ⃗⃗𝑅𝐸(𝑠, 𝑏) = ∅.

Finally, if 𝑢𝑖 is a local maximum and its right endpoint should have two colors we
know that for 𝑢𝑖 we only need to check its right restricted region. Thus, the only check
we perform here is to see whether 𝑢𝑖’s right endpoint is inside the right restricted
region of 𝑠. In Figure 8.3c we see an example situation.

Note that in the previous description we have used ⃗⃗𝑐 in the description, even though
it is not passed to 𝑉. However, as described before, 𝑉 will only be called with specific
parameters for which we can make those assumptions. The color is also only used to
help our understanding of 𝑉’s functionality, it is unimportant for its definition.

8.3.3 Definition

We are now finally ready to define 𝑆, the actual function for the dynamic program.
As 𝑆 will be recursively defined, we start with the base case, which is the situation
when 𝑢𝑖 = 𝑢𝑚, i.e., we are passed the rightmost special edge. In this case we know
that we have already found a partially valid 𝑢𝑚-partial BCA 𝜎𝑚. The only question
is then whether giving the passed color ⃗⃗𝑐 to the rightmost block will lead to a valid
completion 𝜎 of 𝜎𝑚 or not. Thus, no further recursive calls are needed and the only
task is to check whether the new points with color ⃗⃗𝑐 introduce any problems. However,
we have already defined a helper function 𝑉 to perform this specific check. We can
thus define the base case as

𝑆(𝑢𝑚, ⃗⃗𝑐, s,b) = 𝑉(𝑢𝑚, 𝑏⃖⃗𝑐, 𝑠⃗⃗𝑐, 𝑏⃗⃗𝑐). (DP.B)

We remember that we can extract ⃖⃗𝑐, the color shared in block 𝐵𝑚−1, by finding the
special edge in s for which 𝑠⃖⃗𝑐 = 𝑢𝑚.

In the recursive case we will (again) first need to check whether assigning ⃗⃗𝑐 to the
points to the right of 𝑢𝑖 is actually even possible; we can just reuse 𝑉 to do it. Then, we
try out all possible ways to color the points to the right of 𝑢𝑖+1. Here we come across a
slight inconvenience: Depending on whether 𝑢𝑖+1 is a small gap or a local maximum
we need to try out one possibility per color or two (one for each endpoint). We thus
define the recursive case in two steps, first for the case that 𝑢𝑖+1 is a small gap:

𝑆(𝑢𝑖, ⃗⃗𝑐, s,b) = 𝑉(𝑢𝑖, 𝑏⃖⃗𝑐, 𝑠⃗⃗𝑐, 𝑏⃗⃗𝑐) ∧ ⋁
𝑐∈𝐶 ̂𝑐∖{⃗⃗𝑐}

𝑆(𝑢𝑖+1, 𝑐, s[⃗⃗𝑐 ← 𝑢𝑖+1],b[⃗⃗𝑐 ← 𝐿]). (DP.G)

155

Chapter 8 A Dynamic Program for a Fixed Color Number

Here s[⃗⃗𝑐 ← 𝑢𝑖+1] is the same tuple as s with the only difference at index ⃗⃗𝑐 where we
change the value to 𝑢𝑖+1. The same notation for b naturally has the same effect. Thus,
in the recursive call it will be that 𝑠⃗⃗𝑐 = 𝑢𝑖+1 and 𝑏⃗⃗𝑐 = 𝐿.

According to the definition, 𝑆 first uses 𝑉 to verify whether we can actually give
color ⃗⃗𝑐 to block 𝐵𝑖. Then, for all colors 𝑐 that are not ⃗⃗𝑐 we check recursively whether
we can give color 𝑐 to block 𝐵𝑖+1. We need to pass the information that 𝐵𝑖 is now given
color ⃗⃗𝑐 and that the rightmost point with this color is the left endpoint of 𝑢𝑖+1 because
it is a small gap.

For the second case in which 𝑢𝑖+1 is a local maximum we will have basically the
same definition with the small difference that we make two recursive calls per color:

𝑆(𝑢𝑖, ⃗⃗𝑐, s,b) = 𝑉(𝑢𝑖, 𝑏⃖⃗𝑐, 𝑠⃗⃗𝑐, 𝑏⃗⃗𝑐) ∧ ⋁
𝑐∈𝐶 ̂𝑐∖{⃗⃗𝑐}

[𝑆(𝑢𝑖+1, 𝑐, s[⃗⃗𝑐 ← 𝑢𝑖+1],b[⃗⃗𝑐 ← 𝐿]) ∨

𝑆(𝑢𝑖+1, 𝑐, s[⃗⃗𝑐 ← 𝑢𝑖+1],b[⃗⃗𝑐 ← 𝑅])] (DP.M)

By passing once 𝑏⃗⃗𝑐 = 𝐿 and once 𝑏⃗⃗𝑐 = 𝑅 to the recursive calls we independently check
whether it is possible to have two colors at the left or at the right endpoint of 𝑢𝑖+1.

We have now given a formal definition of the dynamic program via the base case
and two disjoint recursive cases. It remains to see how the dynamic program will be
called from the outside to obtain the overall solution.

8.3.4 Calling the Dynamic Program

Now that we know how the dynamic program is defined we need to see what the initial
values are with which it is called. In the very beginning of Section 8.3 we mentioned
that we can fix the two colors for the first two blocks. This is true because if there
is a valid BCA then the two colors it assigns to the first two blocks must be different.
Renaming those two colors in the BCA we would then obtain a BCA that had the exact
same two colors for the first block that we fix.

When fixing the first two colors, there is the question about what to do with the
first special edge 𝑢1 between the first two blocks. If 𝑢1 is a small gap there is only one
possibility to color it, but if 𝑢1 is a local maximum we again have two choices. We can
thus define a binary value

𝑆∗ =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

𝑆(𝑢1, 2, ⊥
̂𝑐[1 ← 𝑢1], 𝐿

̂𝑐) if 𝑢1 ∈ 𝒢−
𝐸

𝑆(𝑢1, 2, ⊥
̂𝑐[1 ← 𝑢1], 𝐿

̂𝑐) ∨

𝑆(𝑢1, 2, ⊥
̂𝑐[1 ← 𝑢1], 𝐿

̂𝑐[1 ← 𝑅]) if 𝑢1 ∈ ℳ𝐸

(DP.S)

which is supposed to be 1 if and only if there exists a valid BCA for 𝐸. Here ⊥ ̂𝑐 is a
tuple with ̂𝑐 entries of the same value ⊥; the same is true for 𝐿 ̂𝑐. The definition then
asks whether there is a valid BCA when giving color 2 to the second block while the

156

8.4 Correctness and Running Time

only information we have is that the points to the left of 𝑢1 are given color 1. If 𝑢1 is a
small gap, we know that it is 𝑢1 ’s left endpoint that is the rightmost point with color 1.
If, however, 𝑢1 is a local maximum we have the situation that we give two colors to its
left endpoint in which case, same as for small gaps, its left endpoint is the rightmost
with color 1. We also have to check the other opportunity that we give two colors to
its right endpoint in which case we need to pass the information that its right endpoint
is the rightmost one with color 1.

8.3.5 Extracting a Color Assignment

If 𝑆∗ = 1 it means that there is a computation path starting at Eq. (DP.S) with a call
to 𝑆(𝑢1,…) and ending in Eq. (DP.B) with a call to 𝑆(𝑢𝑚,…). This computation path
then has exactly one call to 𝑆(𝑢𝑖,…) for each special edge 𝑢𝑖. Every such call tells
us at least which color is given to the points to the left of 𝑢𝑖 (extracted from s) and
which color is given to the points on the right of 𝑢𝑖 (parameter ⃗⃗𝑐). From b we can also
extract which endpoint of 𝑢𝑖 has two colors if it is a local maximum. This information
is enough to extract the BCA for one computation path.

How this computation path is obtained depends on the evaluation strategy. If we
are only interested to find one BCA it would be sensible to compute the solution by
evaluating 𝑆∗ in a top-down fashion, employing memoization to prevent duplicate
calculations. This way we can stop once we reach the first call to 𝑆(𝑢𝑚,…) that gives us
a positive result and directly calculate the BCA while going back through the recursive
calls. As a result, extracting the BCA would not take any additional time.

If we are interested in obtaining all possible BCAs, we could employ the same
strategy with the difference that in each recursion step we maintain the corresponding
partial BCA. Then, whenever we obtain a positive result from a call to 𝑆(𝑢𝑚,…) we
can already report the associated BCA. A (partial) BCA can be seen as a list containing
the color of a block alternating with which endpoint of a local maximum has two colors.
Thus, maintaining the corresponding BCA only takes a constant amount of time since
we only need to append two values to the list in each recursion step and remove them
afterwards. Then, the only additional time we need when obtaining all BCAs is the
time to report them which is 𝑂(𝑚𝑁) in total where 𝑁 is the number of BCAs.

8.4 Correctness and Running Time

We now only have to show that the program actually returns the correct result and see
what its running time is.

8.4.1 Correctness

To show correctness for the dynamic program we first show that when 𝑆∗ is evaluated
we find all partially valid partial BCAs:

157

Chapter 8 A Dynamic Program for a Fixed Color Number

Lemma 8.3. Let 𝐸 ⊆ 𝐸𝑃 be an input edge set for an input point set 𝑃 ⊆ ℝ, and let ̂𝑐 be a
number of colors. Let ℳ𝐸, 𝒢

−
𝐸 , and 𝒮𝐸 = {𝑢1,… , 𝑢𝑚} be the local maxima, small gaps,

and special edges, respectively. Evaluating 𝑆∗ will then find all partially valid 𝑢𝑖-partial
BCAs (with the colors for the first two blocks fixed) for all 𝑢𝑖 ∈ 𝒮𝐸 and try out all of their
possible extensions (and completions for 𝑢𝑖 = 𝑢𝑚).

Proof. We show this by induction on the index 𝑖 of the special edge 𝑢𝑖.

Induction base 𝑖 = 1. By definition a 𝑢1-partial BCA is a color assignment that assigns
a color only to the first block. Since a single block does not contain any small gaps or
local maxima it can be colored by one color and thus all 𝑢1-partial BCA are partially
valid. We, however, only try out one 𝑢1-partial BCA, namely the one which assigns
color 1 to the points in the first block. For this we then try all possible extensions: If
𝑢1 is a small gap there is only one 𝑢2-partial BCA extension where the color of the
second block is fixed to 2 and if 𝑢1 is a local maximum there are two such 𝑢2-partial
BCA extensions. Those extensions are exactly the ones we try out in Eq. (DP.S).

Induction step 𝑖 → 𝑖 + 1. When 𝑆 is called for 𝑢𝑖 the first thing we do is call the
verification function 𝑉 which checks whether we can apply the given color to the block
𝐵𝑖. If the result is positive, we know, according to Lemma 8.2, that this represents a
partially valid 𝑢𝑖+1-partial BCA if 𝑖 < 𝑚 and a valid BCA if 𝑖 = 𝑚.

If 𝑖 < 𝑚 we then make recursive calls for 𝑢𝑖+1 for all possible colors to give to
𝐵𝑖+1, see Eq. (DP.G). In addition, if 𝑢𝑖+1 is a local maximum we try both ways to give
two colors to an endpoint of 𝑢𝑖+1, see Eq. (DP.M). These are all possible 𝑢𝑖+2-partial
BCA extensions of the partially valid 𝑢𝑖+1-partial BCA. In case 𝑢𝑖+1 = 𝑢𝑚 it is not the
𝑢𝑖+2-partial BCA extensions that we try but BCA completions.

If 𝑖 = 𝑚 we are in the base case Eq. (DP.B) of the dynamic program and are finished
after calling 𝑉.

We can now use the previous result and Lemma 8.1 to show that the dynamic
program will actually return the correct result.

Lemma 8.4. Let 𝐸 ⊆ 𝐸𝑃 be an input edge set for an input point set 𝑃 ⊆ ℝ, and let ̂𝑐 be a
number of colors. Then 𝑆∗ = 1 if and only if there is a valid BCA for 𝐸.

↪

Proof. Let ℳ𝐸, 𝒢
−
𝐸 , and 𝒮𝐸 = {𝑢1,… , 𝑢𝑚} be the local maxima, small gaps, and

special edges, respectively. We first show that if a valid BCA exists, that then 𝑆∗ = 1.
Let 𝜎 be a valid BCA such that, without loss of generality, the colors of the first and
second block are 1 and 2. Let 𝜎1,… , 𝜎𝑚 be the partial sequence for 𝜎. From Lemma 8.1
we know that for all 𝑢𝑖 ∈ 𝒮𝐸 the 𝑢𝑖-partial BCA 𝜎𝑖 is partially valid. According to
Lemma 8.3 the dynamic program tries out all possible extensions and completions.
This means that there is a calculation path in the dynamic program such that starting

158

8.4 Correctness and Running Time

at 𝜎1 we first find 𝜎2, then 𝜎3, and so on. For all those partial BCAs we determine that
they are partially valid and thus continue the recursion. Finally, we have found the
partially valid 𝑢𝑚-partial BCA 𝜎𝑚 and try out all possible completions upon which me
encounter 𝜎. This will make this base case of the recursion return 1 which then makes
𝑆∗ = 1.
Assume now that no valid BCA exists for the input, i.e., every BCA 𝜎 for 𝐸 is not

valid. Let 𝜎1,… , 𝜎𝑚 be the partial sequence for any such 𝜎. If 𝜎𝑗 is not partially valid
for some 1 ≤ 𝑗 ≤ 𝑚 it follows that all 𝜎𝑘 with 𝑘 > 𝑗 are not partially valid, as well: 𝜎𝑗
is not partially valid because there is a point with wrong color in a restricted region of
a special edge. Both the point and the special edge will have the same colors assigned
in 𝜎𝑘 as in 𝜎𝑗, and thus cannot be partially valid.

For the partial sequence there must be either a value 1 ≤ 𝑗 < 𝑚 such that 𝜎𝑗 is
partially valid and 𝜎𝑗+1 is not, or 𝜎𝑚 is partially valid. This follows from the fact that 𝜎1
is always (trivially) partially valid. Then in 𝜎𝑗+1 or 𝜎 either of the following happens:
One of the newly colored endpoints is in a right restricted region from a special edge
to the left or the left restricted region of 𝑢𝑗 or 𝑢𝑚 contains a point with the wrong color.
In the dynamic program we would find the last partially valid partial BCA 𝜎𝑗 or 𝜎𝑚
and identify that it is partially valid. Then we would try out all extensions for 𝜎𝑗 or
completions for 𝜎𝑚. For this we test whether the newly colored points are in the wrong
right restricted region or whether the left restricted region of 𝑢𝑗 or 𝑢𝑚 contains a wrong
point. Thus, the verification function 𝑉 returns 0, and we return 0 for this computation
branch. As a result, we do not return 0 for any of the computation branches, which in
turn results in 𝑆∗ = 0.

8.4.2 Running Time

For the running time we need to look at all the time needed by 𝑆 and all the helper
functions that are used. We can easily see that 𝑉, the only helper function called by 𝑆,
performs at most two checks whether a point is inside a restricted region. Both the
involved points and the involved restricted regions are calculated in constant time. We
thus see, that the verification checks with 𝑉 are done in 𝑂(1) time.

Assume that the results of all calls in the form 𝑆(𝑢𝑖+1,…) are accessible in constant
time when calculating the result of a call in the form 𝑆(𝑢𝑖,…). Then, the most amount
of time is spent when we are in the recursive situation of Eq. (DP.M) where we need to
logically combine 2(̂𝑐 − 1) + 1 = 2 ̂𝑐 − 1 values. In addition, we also need to extract
color ⃖⃗𝑐 from the information in s which also takes at most 𝑂(̂𝑐) time. This means that
one call to 𝑆 takes 𝑂(̂𝑐) time.

Let us now look at the number of possible parameter combinations with which 𝑆
may be called.

1. For the first parameter 𝑢𝑖 we have 𝑚 different possible values. We can look at it
in more detail and see, for example, that for 𝑢1 we only have up to two different

159

Chapter 8 A Dynamic Program for a Fixed Color Number

calls, bringing this value down to 𝑚 − 1. This will, however, not matter for the
asymptotic analysis.

2. The second parameter ⃗⃗𝑐 can take ̂𝑐 different values.

3. For the third parameter s we first observe that one of the ̂𝑐 colors must have 𝑢𝑖 as
its special edge. As a result, there are only ̂𝑐 − 1 other entries in s and they are
either an edge different from 𝑢𝑖 (since no block can have more than one color)
or ⊥. Thus, the number of possible arguments for the third parameter is ̂𝑐𝑚 ̂𝑐−1.
Here ̂𝑐 represents the choice of color with 𝑢𝑖 as special edge and 𝑚 ̂𝑐−1 is an upper
bound for distributing the other edges across the remaining colors and ⊥.

4. Finally, the fourth parameter has at most 2 ̂𝑐 possible values.

We can see, however, that if there are fewer local maxima than colors, i.e., 𝑘 < ̂𝑐,
we can have at most 2𝑘 possible choices for the fourth parameter. Since the
third parameter then already defines which color has a small gap and which a
local maximum we do not need to take the (̂𝑐

𝑘)𝑘! possible distributions of local
maxima onto positions into account. Thus, we can say that we have 2min(̂𝑐,𝑘)

possible choices for the fourth parameter.

This gives an overall upper bound on the number of different calls to 𝑆 of

𝑚 ⋅ ̂𝑐 ⋅ ̂𝑐𝑚 ̂𝑐−1 ⋅ 2min(̂𝑐,𝑘) ∈ 𝑂(̂𝑐22min(̂𝑐,𝑘)𝑚 ̂𝑐).

Together with the running time of 𝑂(̂𝑐) per call we have an overall running time for
the dynamic program of

𝑂(̂𝑐32min(̂𝑐,𝑘)𝑚 ̂𝑐).

We will now briefly compare this running time with the one of the naive approach in
Eq. (Naive). For our convenience we restate the running time of the naive approach
which was

𝑂(𝑚22𝑘 ̂𝑐𝑚−1).

Our main observation from comparing the two running times is that the dynamic
program was able to bring the dependence on the number of special edges from the
exponent into the base. On the other hand, the number of colors has gone from the
base into the exponent. In our more detailed comparison in Section 8.5 we will see
that for some situations the naive approach will be better than our dynamic program.

If we want to see how the running time looks with respect to the number of points in
the input point set we can apply two bounds: We use the upper bound of𝑚 ≤ ⌊𝑛/2⌋−1
from Observation 6.3 and the fact that 𝑘 ≤ 𝑚 and thus obtain a running time of

𝑂(̂𝑐32min(̂𝑐,⌊𝑛/2⌋−1)(
𝑛
2
)

̂𝑐
).

160

8.4 Correctness and Running Time

8.4.3 Conclusion

Using the correctness shown in Lemma 8.4 and the running time from the previous
section we can bring it all together into one

Theorem 8.1. Let 𝑃 ⊆ ℝ be an input point set with 𝑛 points and 𝐸 ⊆ 𝐸𝑃 an input edge
set with 𝑚 special edges from which 𝑘 are local maxima and ℓ are small gaps. Given a
color number ̂𝑐, we can find a valid BCA for 𝐸 or return that none exists in time

𝑂(̂𝑐32min(̂𝑐,𝑘)𝑚 ̂𝑐) ⊆ 𝑂(̂𝑐32min(̂𝑐,⌊𝑛/2⌋)(
𝑛
2
)

̂𝑐
).

Let 𝑐∗ be the optimal color number for the given input. We can then find 𝑐∗ and thus a
valid BCA for 𝐸 with 𝑐∗ colors in the same time as just mentioned with ̂𝑐 = 𝑐∗.

Bounding the optimal color number 𝑐∗ first in terms of the local maxima 𝑘 and small
gaps ℓ and then in terms of the number of points 𝑛 we obtain the following results: For
the 1D-CNNG-Gaps we can find the optimal color number and a valid BCA in time

𝑂((1 + ⌊log(𝑘 + 1)⌋ + ℓ)32min(1+⌊log(𝑘+1)⌋+ℓ,𝑘)(𝑘 + ℓ)1+⌊log(𝑘+1)⌋+ℓ) ⊆ 𝑂(𝑛⌊𝑛/2⌋+3).

For the 1D-CNNG problem the bounds improve to

𝑂((1 + ⌊log(𝑘 + 1)⌋)3(2𝑘)1+⌊log(𝑘+1)⌋) ⊆ 𝑂(log3 𝑛 ⋅ 𝑛log𝑛) ⊆ 𝑂(log3 𝑛 ⋅ 2log2 𝑛).

↪

Proof. We refer to Section 8.4.1 for the correctness of the algorithm. There and more
specifically in Lemma 8.4 we show that 𝑆∗ = 1 if and only if a BCA for the input exists.
For the running time of

𝑂(̂𝑐32min(̂𝑐,𝑘)𝑚 ̂𝑐) ⊆ 𝑂(̂𝑐32min(̂𝑐,⌊𝑛/2⌋)(
𝑛
2
)

̂𝑐
)

we already gave the arguments in Section 8.4.2.
To find 𝑐∗, the smallest ̂𝑐 for which we can find a valid BCA, we just start with ̂𝑐 = 1

and increase it by 1 every time the dynamic program does not find a solution. We then
have a running time of

𝑂(
𝑐∗

∑
̂𝑐=1

̂𝑐32min(̂𝑐,𝑘)𝑚 ̂𝑐) = 𝑂((𝑐∗)32min(𝑐∗,𝑘)𝑚𝑐∗ + (𝑐∗ − 1)32min(𝑐∗−1,𝑘)𝑚𝑐∗−1 +⋯+𝑚)

= 𝑂((𝑐∗)32min(𝑐∗,𝑘)𝑚𝑐∗),

because asymptotically the running time for ̂𝑐 = 𝑐∗ dominates the running time for all
previous runs with ̂𝑐 < 𝑐∗.

Using Theorem 7.1 we remember that for the 1D-CNNG-Gaps problem the optimal
color number 𝑐∗ is upper bounded by 1+⌊log(𝑘 + 1)⌋+ℓ, giving the first upper bound.
Since we can further upper bound 𝑐∗ by ⌊𝑛/2⌋ and also 𝑘 and 𝑘 + ℓ by ⌊𝑛/2⌋ − 1 we

161

Chapter 8 A Dynamic Program for a Fixed Color Number

obtain

(1 + ⌊log(𝑘 + 1)⌋ + ℓ)32min(1+⌊log(𝑘+1)⌋+ℓ,𝑘)(𝑘 + ℓ)1+⌊log(𝑘+1)⌋+ℓ

≤ (⌊
𝑛
2
⌋)

3
2min(⌊𝑛/2⌋,⌊𝑛/2⌋−1)(⌊

𝑛
2
⌋ − 1)

⌊𝑛/2⌋

≤ 𝑛32⌊𝑛/2⌋(
𝑛
2
)

⌊𝑛/2⌋

= 𝑛⌊𝑛/2⌋+3.

For the 1D-CNNG problem we know that ℓ = 0, thus 𝑚 = 𝑘 and the bound on 𝑐∗ is
improved to 1 + ⌊log(𝑘 + 1)⌋. We thus have

(1 + ⌊log(𝑘 + 1)⌋)32min(1+⌊log(𝑘+1)⌋,𝑘)𝑘1+⌊log(𝑘+1)⌋

= (1 + ⌊log(𝑘 + 1)⌋)321+⌊log(𝑘+1)⌋𝑘1+⌊log(𝑘+1)⌋ for all 𝑘 ≥ 2

= (1 + ⌊log(𝑘 + 1)⌋)3(2𝑘)1+⌊log(𝑘+1)⌋

giving us the first bound for the 1D-CNNG problem. With 𝑘 ≤ ⌊𝑛/2⌋ − 1 we can then
simplify to

(1 + ⌊log(𝑘 + 1)⌋)3(2𝑘)1+⌊log(𝑘+1)⌋

≤ ⌊log𝑛⌋3(2 ⋅
𝑛
2
)
⌊log𝑛⌋

≤ log3 𝑛 ⋅ 𝑛log𝑛

= log3 𝑛 ⋅ 2log2 𝑛.

8.5 Comparing the Dynamic Program and the Naive
Approach

We will now compare the obtained running times for the dynamic program with the
times observed before for the naive approach in Section 8.1. To do this we give names
to the running times, starting with

𝑇𝑛(𝑘, 𝑙) = (𝑘 + ℓ)22𝑘(1 + ⌊log(𝑘 + 1)⌋ + ℓ)𝑘+ℓ−1

for the naive approach and

𝑇𝑑(𝑘, 𝑙) = (1 + ⌊log(𝑘 + 1)⌋ + ℓ)32min(1+⌊log(𝑘+1)⌋+ℓ,𝑘)(𝑘 + ℓ)1+⌊log(𝑘+1)⌋+ℓ

for the dynamic program. We ignore constant factors since we will only compare the
asymptotic behavior of both functions.

162

8.5 Comparing the Dynamic Program and the Naive Approach

8.5.1 Running Times Without Small Gaps

For the 1D-CNNG problem, or more generally the 1D-CNNG-Gaps problem without
small gaps, we see that we were able to significantly improve the running time. If ℓ = 0
and thus 𝑚 = 𝑘 we can see that for the running time of the naive approach we have

𝑇𝑛(𝑘, 0) = 𝑘22𝑘(1 + ⌊log(𝑘 + 1)⌋)𝑘−1

≥ 2𝑘𝑘2 log𝑘−1 𝑘 (8.1)

while for the dynamic program (for 𝑘 ≥ 2) the running time is

𝑇𝑑(𝑘, 0) = (1 + ⌊log(𝑘 + 1)⌋)321+⌊log(𝑘+1)⌋𝑘1+⌊log(𝑘+1)⌋

≤ (1 + log2𝑘)321+log2𝑘𝑘1+log2𝑘

= (2 + log 𝑘)322+log 𝑘𝑘2+log 𝑘

= 22(2 + log 𝑘)3𝑘3𝑘log 𝑘.
Assuming that 𝑘 ≥ 4 we know that 2 ≤ log 𝑘 and we can simplify to

≤ 22(2 log 𝑘)3𝑘3𝑘log 𝑘

= 25𝑘log 𝑘𝑘3 log3 𝑘. (8.2)

Comparing Eqs. (8.1) and (8.2) will show us now that 𝑇𝑑(𝑘, 0) ll 𝑇𝑛(𝑘, 0):

(8.2) < (8.1)
⇔ 25𝑘log 𝑘𝑘3 log3 𝑘 < 2𝑘𝑘2 log𝑘−1 𝑘

⇔ 25𝑘log 𝑘𝑘 < 2𝑘 log𝑘−4 𝑘
⇔ 5 + log2 𝑘 + log 𝑘 < 𝑘 + (𝑘 − 4) log 𝑘

⇔ 5 + log2 𝑘 + 5 log 𝑘 < 𝑘 + 𝑘 log 𝑘.

The latter inequality is true for all 𝑘 ≥ 7 and the dominating term log2 𝑘 on the left-
hand side grows much slower than the dominating term 𝑘 log 𝑘 on the right-hand side.
As a result, we can see that for inputs without small gaps the dynamic program will
outperform the naive approach by far.

8.5.2 Running Times Without Local Maxima

If, on the other hand, 𝑘 = 0 and thus ℓ = 𝑚, the running time for the naive approach
simplifies to 𝑇𝑛(0, ℓ) = ℓ2(1 + ℓ)ℓ−1 which can be upper and lower bounded as

ℓℓ+1 < 𝑇𝑛(0, ℓ) = ℓ2(1 + ℓ)ℓ−1 < (1 + ℓ)ℓ+1

and the running time for the dynamic program is simply 𝑇𝑑(0, ℓ) = (1 + ℓ)3ℓ1+ℓ

which can also be bounded on both sides as

ℓℓ+4 < 𝑇𝑑(0, ℓ) = (1 + ℓ)3ℓ1+ℓ < (1 + ℓ)ℓ+4.

It is thus easy to see that the naive approach is asymptotically faster by a factor of ℓ3.

163

Chapter 8 A Dynamic Program for a Fixed Color Number

8.5.3 Running Times in Between

If one algorithm is faster for 𝑘 = 0 and the other is faster for ℓ = 0, then for all 𝑚 ∈ ℕ
there must be values for 𝑘 and ℓ such that both algorithms have (roughly) the same
running time. However, due to the complexity of the running times we are unable to
set 𝑇𝑛(𝑘, 𝑙) = 𝑇𝑑(𝑘, 𝑙) and solve for 𝑘 or 𝑙.

Slightly fewer small gaps than local maxima. One part that complicates the running
time of the dynamic program is min(1 + ⌊log(𝑘 + 1)⌋ + ℓ, 𝑘). Our approach is thus
to look at the situation in which both parts in the minimum are equal. We thus set
1 + ⌊log(𝑘 + 1)⌋ + ℓ = 𝑘 and obtain

𝑇𝑛(𝑘, 𝑙) = (𝑘 + ℓ)22𝑘𝑘𝑘+ℓ−1 = (2𝑘 − ⌊log(𝑘 + 1)⌋ − 1)22𝑘𝑘2𝑘−⌊log(𝑘+1)⌋−2

and
𝑇𝑑(𝑘, 𝑙) = 𝑘32𝑘(𝑘 + ℓ)𝑘 = 𝑘32𝑘(2𝑘 − ⌊log(𝑘 + 1)⌋ − 1)𝑘.

We claim that then 𝑇𝑑(𝑘, 𝑙) < 𝑇𝑛(𝑘, 𝑙) for sufficiently large 𝑘:

𝑇𝑑(𝑘, 𝑙) < 𝑇𝑛(𝑘, 𝑙)

⇔ 𝑘32𝑘(2𝑘 − ⌊log(𝑘 + 1)⌋ − 1)𝑘 < (2𝑘 − ⌊log(𝑘 + 1)⌋ − 1)22𝑘𝑘2𝑘−⌊log(𝑘+1)⌋−2

⇔ (2𝑘 − ⌊log(𝑘 + 1)⌋ − 1)𝑘−2 < 𝑘2𝑘−⌊log(𝑘+1)⌋−5. (8.3)

We can use 2𝑘 − ⌊log(𝑘 + 1)⌋ − 1 < 2𝑘 as an upper bound for the base on the left
side while for the right side we see that ⌊log(𝑘 + 1)⌋ ≤ 1 + log 𝑘. The latter thus gives
a new lower bound for the right side of the inequality. As a result, if the following
inequality holds, then Eq. (8.3) holds as well.

⇐ (2𝑘)𝑘−2 < 𝑘2𝑘−log 𝑘−6

⇔ (𝑘 − 2) log(2𝑘) < (2𝑘 − log 𝑘 − 6) log 𝑘
⇔ 𝑘 log 𝑘 + 𝑘 − 2 log 𝑘 − 2 < 2𝑘 log 𝑘 − log2 𝑘 − 6 log 𝑘

⇔ 𝑘 + 4 log 𝑘 + log2 𝑘 < 𝑘 log 𝑘 + 2

which we can see is a true statement for large enough 𝑘, more precisely for 𝑘 ≥ 10. In
Figure 8.4 we have also plotted the logarithms of the two sides from Eq. (8.3) before
applying the bounds. There we can see that the inequality already holds for 𝑘 ≥ 6.

Same number of small gaps and local maxima. We now see what happens with
the running times if 𝑘 = ℓ, that is, we have running times of

𝑇𝑛(𝑘, 𝑙) = (2𝑘)22𝑘(1 + ⌊log(𝑘 + 1)⌋ + 𝑘)2𝑘−1

for the naive approach and

𝑇𝑑(𝑘, 𝑙) = (1 + ⌊log(𝑘 + 1)⌋ + 𝑘)32min(1+⌊log(𝑘+1)⌋+𝑘,𝑘)(2𝑘)1+⌊log(𝑘+1)⌋+𝑘

= (1 + ⌊log(𝑘 + 1)⌋ + 𝑘)32𝑘(2𝑘)1+⌊log(𝑘+1)⌋+𝑘

164

8.5 Comparing the Dynamic Program and the Naive Approach

2 4 6 8 10 12 14

20

40

60

80

log(𝑘2𝑘−⌊log(𝑘+1)⌋−5) ∼ log𝑇𝑛

log((2𝑘 − ⌊log(𝑘 + 1)⌋ − 1)𝑘−2) ∼ log𝑇𝑑

0

Figure 8.4: A plot of the logarithm of (2𝑘 − ⌊log(𝑘 + 1)⌋ − 1)𝑘−2 which is proportional
to 𝑇𝑑 and of 𝑘2𝑘−⌊log(𝑘+1)⌋−5 which is proportional to 𝑇𝑛.

for our dynamic program. We now show that for this situation the dynamic program is
still better:

(1 + ⌊log(𝑘 + 1)⌋ + 𝑘)32𝑘(2𝑘)1+⌊log(𝑘+1)⌋+𝑘 < (2𝑘)22𝑘(1 + ⌊log(𝑘 + 1)⌋ + 𝑘)2𝑘−1

⇔ (2𝑘)⌊log(𝑘+1)⌋−1+𝑘 < (1 + ⌊log(𝑘 + 1)⌋ + 𝑘)2𝑘−4.

Here we can use the upper bound ⌊log(𝑘 + 1)⌋ ≤ log2𝑘 = 1 + log 𝑘 on the exponent
on the left side while on the right side we can use 𝑘 < 1+⌊log(𝑘 + 1)⌋+𝑘 on the base:

⇐ (2𝑘)log 𝑘+𝑘 < 𝑘2𝑘−4

⇔ (log 𝑘 + 𝑘) log2𝑘 < (2𝑘 − 4) log 𝑘
⇔ (log 𝑘 + 𝑘)(1 + log 𝑘) < 2𝑘 log 𝑘 − 4 log 𝑘

⇔ log 𝑘 + 𝑘 + log2 𝑘 + 𝑘 log 𝑘 < 2𝑘 log 𝑘 − 4 log 𝑘
⇔ 𝑘 + log2 𝑘 + 5 log 𝑘 < 𝑘 log 𝑘.

The latter inequality is true for all 𝑘 ≥ 12 which confirms our claim that for 𝑘 = ℓ the
running time of the dynamic program is still asymptotically better than the one of the
naive approach.

A linear or even greater number of small gaps compared to local maxima. We
now see what happens with the running times if ℓ = 𝑐𝑘 for some 1 < 𝑐, that is, we
have running times of

𝑇𝑛(𝑘, 𝑙) = ((1 + 𝑐)𝑘)22𝑘(1 + ⌊log(𝑘 + 1)⌋ + 𝑐𝑘)(1+𝑐)𝑘−1

165

Chapter 8 A Dynamic Program for a Fixed Color Number

for the naive approach and

𝑇𝑑(𝑘, 𝑙) = (1 + ⌊log(𝑘 + 1)⌋ + 𝑐𝑘)32min(1+⌊log(𝑘+1)⌋+𝑐𝑘,𝑘)((1 + 𝑐)𝑘)1+⌊log(𝑘+1)⌋+𝑐𝑘

= (1 + ⌊log(𝑘 + 1)⌋ + 𝑐𝑘)32𝑘((1 + 𝑐)𝑘)1+⌊log(𝑘+1)⌋+𝑐𝑘

for our dynamic program. For this situation we claim that the dynamic program is still
better:

(1 + ⌊log(𝑘 + 1)⌋ + 𝑐𝑘)32𝑘((1 + 𝑐)𝑘)1+⌊log(𝑘+1)⌋+𝑐𝑘

< ((1 + 𝑐)𝑘)22𝑘(1 + ⌊log(𝑘 + 1)⌋ + 𝑐𝑘)(1+𝑐)𝑘−1

⇔ ((1 + 𝑐)𝑘)⌊log(𝑘+1)⌋+𝑐𝑘−1 < (1 + ⌊log(𝑘 + 1)⌋ + 𝑐𝑘)(1+𝑐)𝑘−4.

We can now use the upper bound of ⌊log(𝑘 + 1)⌋ − 1 ≤ log 𝑘 on the left-hand side and
the lower bound of log 𝑘 ≤ 1+ ⌊log(𝑘 + 1)⌋ on the right-hand side. With 𝑎 = log 𝑐 the
previous inequality holds if the following inequality holds:

⇐ ((1 + 𝑐)𝑘)log 𝑘+𝑐𝑘 < (𝑐𝑘 + log 𝑘)(1+𝑐)𝑘−4

⇔ (log 𝑘 + 𝑐𝑘) log((1 + 𝑐)𝑘) < ((1 + 𝑐)𝑘 − 4) log(𝑐𝑘 + log 𝑘)
⇔ (log 𝑘 + 2𝑎𝑘) log((1 + 2𝑎)𝑘) < ((1 + 2𝑎)𝑘 − 4) log(2𝑎𝑘 + log 𝑘)

⇐ (log 𝑘 + 2𝑎𝑘) log(2𝑎+1𝑘) < ((1 + 2𝑎)𝑘 − 4) log(2𝑎𝑘)

⇔ (log 𝑘 + 2𝑎𝑘)(𝑎 + 1 + log 𝑘) < (𝑘 + 2𝑎𝑘 − 4)(𝑎 + log 𝑘)
⇔ 𝑎 log 𝑘 + log 𝑘 + log2 𝑘 + 𝑎2𝑎𝑘 + 2𝑎𝑘 + 2𝑎𝑘 log 𝑘

< 𝑘𝑎 + 𝑘 log 𝑘 + 𝑎2𝑎𝑘 + 2𝑎𝑘 log 𝑘 − 4𝑎 − 4 log 𝑘
⇔ 𝑎 log 𝑘 + log 𝑘 + log2 𝑘 + 2𝑎𝑘 < 𝑘𝑎 + 𝑘 log 𝑘 − 4𝑎 − 4 log 𝑘

⇔ 2𝑎𝑘 + log2 𝑘 + 4𝑎 < 𝑎𝑘 + (𝑘 − 𝑎 − 5) log 𝑘

We can see that for any constant 𝑎 (and thus constant 𝑐) the term on the right-hand
grows asymptotically faster than the left-hand side, since the dominating term 𝑘 log 𝑘
grows faster than the dominating term 𝑘. We can see that if we set 𝑎 = log log 𝑘 (which
means that 𝑐 = log 𝑘) then the inequality turns into

𝑘 log 𝑘 + log2 𝑘 + 4 log log 𝑘 < 𝑘 log log 𝑘 + (𝑘 − 5) log 𝑘 − log 𝑘 ⋅ log log 𝑘

for which we can see that the dominating term on both sides is 𝑘 log 𝑘 and that it holds
for all 𝑘 > 30. This means that for ℓ ∈ 𝑜(𝑘 log 𝑘) we can guarantee that the running
time of the dynamic program is asymptotically faster than the naive approach. Since
we have introduced some inequalities to bound both the left and the right side this is
probably not the best bound, but it is the best bound we could achieve.

166

Chapter9
Conclusion and Open Problems

In this thesis we presented algorithms and hardness results for weak unit disk contact
representations as well as results for the one-dimensional colored nearest neighbor
graph problem with and without gaps.

9.1 Weak Unit Disk Contact Representations

We have relaxed the notion of UDCRs to weak UDCRs and analyzed their complexity
in two different settings. In the first setting the order of the neighbor disks around a
disk can be chosen freely when constructing the representation. Here we were able to
show a linear algorithm to find a weak UDCR for caterpillars. This included showing
that every caterpillar with a weak UDCR also has a grid-restricted weak UDCR. As an
upper bound we then showed that it is NP-hard for trees to decide whether they have
a weak UDCR. One immediate open question in this setting, is

Open Problem 9.1. Does the claim in [Bho+21b, Lemma 5] hold? Even further, do
lobsters with a weak UDCR always have a grid-restricted weak UDCR?

Answering these question positively would show that the algorithm by Bhore et al.
[Bho+21b] finds a grid-restricted, 𝑥-monotone weak UDCR for all lobsters that have a
weak UDCR. In their work they also present the following open question which they
conjecture to have a positive answer:

Open Problem 9.2 (cf. [Bho+21b, Section 6]). Can the algorithm presented by Bhore
et al. [Bho+21b, Section 5] be extended to find a weak UDCR on the triangular grid in
polynomial time for all trees with bounded distance to a backbone?

If this conjecture were true this would close the gap between the graph classes
for which we have an algorithm and those for which we don’t. As shown after the
NP-hardness proof the problem is in ∃ℝ. If we are only interested in grid-restricted
weak UDCRs the problem is also in NP. It is thus natural to pose the following

167

Chapter 9 Conclusion and Open Problems

Open Problem 9.3. Is the problem of deciding whether a given tree has a weak UDCR in
NP? Is the problem ∃ℝ-complete? Is the problem ∃ℝ-complete for more complex graph
classes?

The second setting we analyzed, consists of weak embedded UDCRs which consists of
those weak UDCRs where the order of the neighbor disks is fixed and cannot be chosen
freely. Here we presented a linear time algorithm for the restricted class of caterpillars
with weak embedded UDCRs on the triangular grid with strictly 𝑥-monotone backbone
disks. Similar to the previous setting one immediate open question is

Open Problem 9.4. Do strictly 𝑥-monotone caterpillars with a weak embedded UDCR
also always have a grid-restricted, strictly 𝑥-monotone weak embedded UDCR?

A positive answer to this open problem would show us that our algorithm from Algo-
rithm 4.1 works for any strictly 𝑥-monotone caterpillars and not just grid-representable
ones. In general, the question is whether there are other (less restrictive) classes for
which we can find a polynomial time algorithm:

Open Problem 9.5. For which other classes of caterpillars with which restrictions on
their weak embedded UDCRs can we find polynomial time algorithms?

We were also able to show that in this setting it is already NP-hard to decide whether
caterpillars have a weak embedded UDCR. In addition, the problem is in ∃ℝ in general
and in NP if we are only interested in grid-restricted weak embedded UDCRs. Similar
to Open Problem 9.3 we thus natural to pose the following

Open Problem 9.6. Is the problem of deciding whether a given caterpillar has a weak
embedded UDCR in NP? Is the problem ∃ℝ-complete? Is the problem ∃ℝ-complete for
more complex graph classes?

It may also be insightful to look into the embeddings of the given graphs. It is possible
that for certain graph classes some properties of embeddings make the problem hard
and other properties may make it easy to find a weak embedded UDCR.

9.2 Colored Nearest Neighbor Graphs

We managed to gain structural insight into the one-dimensional colored nearest neigh-
bor graph problem with and without gaps. Our first result was that with just one color
we are able to color all input edge sets that exclude exactly the local maxima of the
neighbor edges. We then continued with two allowed colors for which we saw that
a linear time algorithm is able to solve the problem. For this we observed that it is
sufficient to focus our efforts onto a small subset of all possible color assignments,
namely the basic color assignments. These observations are independent of the number

168

9.2 Colored Nearest Neighbor Graphs

of colors, however, the linear time algorithm cannot be easily extended to more than
two colors. The reason is that for two colors we can use the fact that any problems that
may arise, are due to two neighboring special edges. For more colors, any two special
edges may be the reason for a conflict. As a first step to solve for more than two colors
we studied the number of colors necessary in the worst case. It turned out that the
number depends linearly on the number of small gaps as well as logarithmically on the
number of local maxima. We finally presented a dynamic programming algorithm that
solves the problem with an exponential dependency on the number of colors necessary.

In Section 6.3.3 we have observed that the 1D-CNNG-Gaps problem and the 1D-
CNNG problem are both in NP. Looking at the running times of the dynamic program
for both problems we can make further observations. Since the running time for the
1D-CNNG problem is 𝑂(log3 𝑛 ⋅ 2log2 𝑛) which is quasi-polynomial, it is unlikely that
the problem is NP-hard. If no polynomial time algorithm can be found, the problem
may be NP-intermediate. We state this as

Open Problem 9.7. Is there a polynomial time algorithm for the 1D-CNNG problem? Is
the problem NP-intermediate?

The running time of the dynamic program for the 1D-CNNG-Gaps problem, on the
other hand, is truly exponential. This means that it would not be surprising if it turned
out to be NP-complete. We pose this as

Open Problem 9.8. Is there a polynomial time algorithm for the 1D-CNNG-Gaps prob-
lem? Is the problem NP-complete?

We can use Open Problem 9.7 as a stepping stone for this open problem. Additionally,
we may try to find easier algorithms for restricted versions of the 1D-CNNG-Gaps
problem:

Open Problem 9.9. Is there a polynomial time algorithm for 1. the 1D-CNNG-Gaps
problem without any small gaps, or 2. the 1D-CNNG-Gaps problem without any local
maxima? What is the complexity of those restricted problems?

169

Bibliography

[Ala+14] Md. Jawaherul Alam, David Eppstein, Michael T. Goodrich, Stephen G.
Kobourov, and Sergey Pupyrev. “Balanced Circle Packings for Planar
Graphs”. In: Graph Drawing. GD 2014. Ed. by Christian Duncan and An-
tonios Symvonis. Vol. 8871. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2014, pp. 125–136. doi: 10.1007/978-3-662-45803-
7_11 (cit. on p. 2).

[Ber+08] Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars.
Computational Geometry. Springer, 2008. isbn: 978-3-540-77973-5 (cit.
on p. 77).

[BC87] Sandeep N. Bhatt and Stavros S. Cosmadakis. “The Complexity of Min-
imizing Wire Lengths in VLSI Layouts”. In: Information Processing Let-
ters 25.4 (1987), pp. 263–267. issn: 0020-0190. doi: 10.1016/0020-
0190(87)90173-6 (cit. on p. 23).

[Bho+21a] Sujoy Bhore, Maarten Löffler, Soeren Nickel, and Martin Nöllenburg. Unit
Disk Representations of Embedded Trees, Outerplanar and Multi-Legged
Graphs. 2021. doi: 10.48550/arXiv.2103.08416. arXiv: 2103.08416
[cs]. Pre-published (cit. on p. 2).

[Bho+21b] Sujoy Bhore, Maarten Löffler, Soeren Nickel, and Martin Nöllenburg.
“Unit Disk Representations of Embedded Trees, Outerplanar and Multi-
legged Graphs”. In: Graph Drawing and Network Visualization. GD 2021.
Ed. by Helen C. Purchase and Ignaz Rutter. Lecture Notes in Computer
Science. Cham: Springer International Publishing, 2021, pp. 304–317.
isbn: 978-3-030-92931-2. doi: 10.1007/978-3-030-92931-2_22
(cit. on pp. 2, 3, 15, 167).

[Bow+15] Clinton Bowen, Stephane Durocher, Maarten Löffler, Anika Rounds, An-
dré Schulz, and Csaba D. Tóth. “Realization of Simply Connected Polyg-
onal Linkages and Recognition of Unit Disk Contact Trees”. In: Graph
Drawing and Network Visualization (GD’15). Ed. by Emilio Di Giacomo
and Anna Lubiw. Vol. 9411. LNCS. Springer International Publishing,
2015, pp. 447–459. doi: 10.1007/978-3-319-27261-0_37 (cit. on
pp. 2, 9, 12, 69).

171

https://doi.org/10.1007/978-3-662-45803-7_11
https://doi.org/10.1007/978-3-662-45803-7_11
https://doi.org/10.1016/0020-0190(87)90173-6
https://doi.org/10.1016/0020-0190(87)90173-6
https://doi.org/10.48550/arXiv.2103.08416
https://arxiv.org/abs/2103.08416
https://arxiv.org/abs/2103.08416
https://doi.org/10.1007/978-3-030-92931-2_22
https://doi.org/10.1007/978-3-319-27261-0_37

Bibliography

[BM04] John Boyer and Wendy Myrvold. “On the Cutting Edge: Simplified O(n)
Planarity by Edge Addition”. In: Journal of Graph Algorithms and Appli-
cations 8.3 (2004), pp. 241–273. issn: 1526-1719. doi: 10.7155/jgaa.
00091 (cit. on p. 2).

[BK98] Heinz Breu and David G. Kirkpatrick. “Unit Disk Graph Recognition Is
NP-hard”. In: Computational Geometry: Theory and Applications 9.1–2
(1998), pp. 3–24. doi: 10.1016/s0925-7721(97)00014-x (cit. on pp. 2,
9).

[CCN19] Man-Kwun Chiu, Jonas Cleve, and Martin Nöllenburg. “Recognizing
Embedded Caterpillars with Weak Unit Disk Contact Representations
Is NP-hard”. In: Proceedings of the 35th European Workshop on Compu-
tational Geometry (EuroCG). Utrecht, Netherlands, 2019. url: https:
//web.archive.org/web/20220517212501/http://www.eurocg2019.
uu.nl/papers/47.pdf (cit. on pp. 6, 45).

[Cle20] Jonas Cleve. “Weak Unit Disk Contact Representations for Graphs with-
out Embedding”. In: Proceedings of the 36th European Workshop on
Computational Geometry (EuroCG). Würzburg, Germany, 2020. url:
https://web.archive.org/web/20230324122426/https://www1.
pub.informatik.uni-wuerzburg.de/eurocg2020/data/uploads/
papers/eurocg20_paper_28.pdf (cit. on pp. 2, 6, 15, 22).

[Cle+22] Jonas Cleve, Nicolas Grelier, Kristin Knorr, Maarten Löffler, Wolfgang
Mulzer, and Daniel Perz. “Nearest-Neighbor Decompositions of Draw-
ings”. In: 18th Scandinavian Symposium and Workshops on Algorithm
Theory (SWAT 2022). Ed. by Artur Czumaj and Qin Xin. Vol. 227. Leibniz
International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany:
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022, 21:1–21:16.
isbn: 978-3-95977-236-5. doi: 10.4230/LIPIcs.SWAT.2022.21 (cit. on
pp. 4, 81).

[EW96] Peter Eades and Sue Whitesides. “The Logic Engine and the Realization
Problem for Nearest Neighbor Graphs”. In: Theoretical Computer Sci-
ence 169.1 (1996), pp. 23–37. issn: 0304-3975. doi: 10.1016/S0304-
3975(97)84223-5 (cit. on pp. 23–26, 43).

[FMR06] Hubert de Fraysseix, Patrice Ossona de Mendez, and Pierre Rosenstiehl.
“Trémaux Trees and Planarity”. In: International Journal of Foundations
of Computer Science 17.05 (2006), pp. 1017–1029. issn: 0129-0541.
doi: 10.1142/S0129054106004248 (cit. on p. 2).

[HT74] John Hopcroft and Robert Tarjan. “Efficient Planarity Testing”. In: Journal
of the ACM 21.4 (1974), pp. 549–568. issn: 0004-5411, 1557-735X. doi:
10.1145/321850.321852 (cit. on p. 2).

172

https://doi.org/10.7155/jgaa.00091
https://doi.org/10.7155/jgaa.00091
https://doi.org/10.1016/s0925-7721(97)00014-x
https://web.archive.org/web/20220517212501/http://www.eurocg2019.uu.nl/papers/47.pdf
https://web.archive.org/web/20220517212501/http://www.eurocg2019.uu.nl/papers/47.pdf
https://web.archive.org/web/20220517212501/http://www.eurocg2019.uu.nl/papers/47.pdf
https://web.archive.org/web/20230324122426/https://www1.pub.informatik.uni-wuerzburg.de/eurocg2020/data/uploads/papers/eurocg20_paper_28.pdf
https://web.archive.org/web/20230324122426/https://www1.pub.informatik.uni-wuerzburg.de/eurocg2020/data/uploads/papers/eurocg20_paper_28.pdf
https://web.archive.org/web/20230324122426/https://www1.pub.informatik.uni-wuerzburg.de/eurocg2020/data/uploads/papers/eurocg20_paper_28.pdf
https://doi.org/10.4230/LIPIcs.SWAT.2022.21
https://doi.org/10.1016/S0304-3975(97)84223-5
https://doi.org/10.1016/S0304-3975(97)84223-5
https://doi.org/10.1142/S0129054106004248
https://doi.org/10.1145/321850.321852

[Kap14] Tim van Kapel. “Connect the Closest Dot Puzzles”. M.Sc. thesis. Utrecht
University, 2014. url: https://studenttheses.uu.nl/handle/20.
500.12932/17601 (cit. on pp. 4, 81).

[KNP15] Boris Klemz, Martin Nöllenburg, and Roman Prutkin. “Recognizing
Weighted Disk Contact Graphs”. In: Graph Drawing and Network Visual-
ization (GD’15). Ed. by Emilio Di Giacomo and Anna Lubiw. Vol. 9411.
LNCS. Springer International Publishing, 2015, pp. 433–446. doi: 10.
1007/978-3-319-27261-0_36 (cit. on pp. 2, 9).

[KNP22] Boris Klemz, Martin Nöllenburg, and Roman Prutkin. “Recognizing
Weighted and Seeded Disk Graphs”. In: Journal of Computational Geome-
try 13.1 (1 2022), pp. 327–376. issn: 1920-180X. doi: 10.20382/jocg.
v13i1a13 (cit. on pp. 2, 9, 11).

[KR92] Donald E. Knuth and Arvind Raghunathan. “The Problem of Compatible
Representatives”. In: SIAM Journal on Discrete Mathematics 5.3 (1992),
pp. 422–427. issn: 1095-7146. doi: 10.1137/0405033 (cit. on p. 55).

[Koe36] Paul Koebe. “Kontaktprobleme der konformen Abbildung”. In: Berichte
über die Verhandlungen der Sächsischen Akademie der Wissenschaften zu
Leipzig, Mathematisch-Physikalische Klasse 88 (1936), pp. 141–164 (cit.
on p. 1).

[Lic82] David Lichtenstein. “Planar Formulae and Their Uses”. In: SIAM Journal
on Computing 11.2 (1982), pp. 329–343. issn: 1095-7111. doi: 10.
1137/0211025 (cit. on p. 55).

[Löf+14] Maarten Löffler, Mira Kaiser, Tim van Kapel, Gerwin Klappe, Marc van
Kreveld, and Frank Staals. “The Connect-The-Dots Family of Puzzles:
Design and Automatic Generation”. In: ACM Transactions on Graphics 33.4
(2014), 72:1–72:10. issn: 0730-0301. doi: 10.1145/2601097.2601224
(cit. on p. 4).

[MM17] Joseph S. B. Mitchell and Wolfgang Mulzer. “Proximity Algorithms”. In:
Handbook of Discrete and Computational Geometry. Ed. by Jacob E. Good-
man, Joseph O’Rourke, and Csaba D. Tóth. 3rd ed. Discrete Mathematics
and Its Applications. New York: Chapman and Hall/CRC, 2017, pp. 849–
874. isbn: 978-1-315-11960-1. doi: 10.1201/9781315119601 (cit. on
p. 4).

[Nöl24] Martin Nöllenburg. Personal Communication. 2024 (cit. on p. 15).

[PY92] Michael S. Paterson and F. Frances Yao. “On Nearest-Neighbor Graphs”.
In: Automata, Languages and Programming. Ed. by W. Kuich. Lecture
Notes in Computer Science. Berlin, Heidelberg: Springer, 1992, pp. 416–
426. isbn: 978-3-540-47278-0. doi: 10.1007/3-540-55719-9_93
(cit. on p. 4).

173

https://studenttheses.uu.nl/handle/20.500.12932/17601
https://studenttheses.uu.nl/handle/20.500.12932/17601
https://doi.org/10.1007/978-3-319-27261-0_36
https://doi.org/10.1007/978-3-319-27261-0_36
https://doi.org/10.20382/jocg.v13i1a13
https://doi.org/10.20382/jocg.v13i1a13
https://doi.org/10.1137/0405033
https://doi.org/10.1137/0211025
https://doi.org/10.1137/0211025
https://doi.org/10.1145/2601097.2601224
https://doi.org/10.1201/9781315119601
https://doi.org/10.1007/3-540-55719-9_93

Bibliography

[PS93] F.P. Preparata and M. Shamos. Computational Geometry: An Introduc-
tion. Monographs in Computer Science. Springer New York, 1993. isbn:
978-0-387-96131-6. url: https://books.google.de/books?id=
gFtvRdUY09UC (cit. on p. 77).

[Sch78] Thomas J. Schaefer. “The Complexity of Satisfiability Problems”. In:
Proceedings of the Tenth Annual ACM Symposium on Theory of Computing
- STOC ’78. The Tenth Annual ACM Symposium. San Diego, California,
United States: ACM Press, 1978, pp. 216–226. doi: 10.1145/800133.
804350 (cit. on p. 22).

[She15] Sherm. “The Great Dot Mystery”. In: Newark Evening Star and Newark
Advertiser. Junior Evening Star (Dec. 3, 1915). issn: 2766-5615. url:
https://chroniclingamerica.loc.gov/lccn/sn91064011/1915-12-
03/ed-1/seq-21/ (cit. on pp. 81, 82).

[Syr01] Apostolos Syropoulos. “Mathematics of Multisets”. In: Multiset Process-
ing. Ed. by Cristian S. Calude, Gheorghe Păun, Grzegorz Rozenberg,
and Arto Salomaa. Red. by Gerhard Goos, Juris Hartmanis, and Jan
Van Leeuwen. Vol. 2235. Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2001, pp. 347–358. isbn: 978-
3-540-45523-3. doi: 10.1007/3-540-45523-X_17 (cit. on pp. 81–
83).

[Ter24] Soeren Terziadis. “Algorithms for Schematic Representations”. PhD thesis.
Technische Universität Wien, 2024. doi: 10.34726/hss.2024.120711
(cit. on p. 15).

[Tip16] Simon Tippenhauer. “On Planar 3-SAT and Its Variants”. M.Sc. thesis.
Berlin: Freie Universität Berlin, 2016. url: http://www.mi.fu-berlin.
de/inf/groups/ag-ti/theses/download/Tippenhauer16.pdf (cit.
on p. 55).

[Wik23] Wikipedia. Connect the Dots. In: Wikipedia. Wikimedia Foundation, Inc.,
2023. url: https : / / en . wikipedia . org / w / index . php ? title =
Connect_the_dots&oldid=1181114464 (cit. on p. 81).

174

https://books.google.de/books?id=gFtvRdUY09UC
https://books.google.de/books?id=gFtvRdUY09UC
https://doi.org/10.1145/800133.804350
https://doi.org/10.1145/800133.804350
https://chroniclingamerica.loc.gov/lccn/sn91064011/1915-12-03/ed-1/seq-21/
https://chroniclingamerica.loc.gov/lccn/sn91064011/1915-12-03/ed-1/seq-21/
https://doi.org/10.1007/3-540-45523-X_17
https://doi.org/10.34726/hss.2024.120711
http://www.mi.fu-berlin.de/inf/groups/ag-ti/theses/download/Tippenhauer16.pdf
http://www.mi.fu-berlin.de/inf/groups/ag-ti/theses/download/Tippenhauer16.pdf
https://en.wikipedia.org/w/index.php?title=Connect_the_dots&oldid=1181114464
https://en.wikipedia.org/w/index.php?title=Connect_the_dots&oldid=1181114464

Appendix A: Supplementary Material

1 3
5

2

4
6

(a)
1

2
3

4 5 6

7

(b)

1

2 3 4
5 6
7

(c)

1
2

3

4 5

6

(d)

1

2
3

4

(e)

1

3
24

5
6

7

(f)

1

5
37 26
4

(g)

3

1

4
2

(h)

Figure A.1: A breakdown of Figure 4.20b into the parts between outside connectors.

175

A Supplementary Material

1 from itertools import chain, combinations, pairwise, permutations, product
2
3 def rename(sigma, colors):
4 return frozenset(c for i, c in enumerate(colors, start=1) if i in sigma)
5
6 def print_combinations(number_of_colors=2, use_all=False):
7 colors = tuple(range(1, number_of_colors+1)) # (1, 2, ..., number_of_colors)
8 point = list(map(frozenset, chain(combinations(colors, 1), combinations(colors, 2))))
9

10 seen = set()
11 for sigma in product(point, repeat=4):
12 if sigma in seen:
13 continue # ignore assignments that were already seen
14
15 # add sigma and its color renamed and mirrored versions to seen color assignments
16 for s in (sigma, tuple(reversed(sigma))):
17 for new_colors in permutations(colors):
18 seen.add(tuple(map(lambda sig: rename(sig, new_colors), s)))
19
20 if any(sum(map(lambda s: c in s, sigma)) == 1 for c in colors):
21 continue # (1) A color c is given to exactly one of the four points.
22
23 ignore = False
24 for p1, p2 in pairwise(sigma):
25 if not p1 & p2:
26 ignore = True
27 if ignore:
28 continue # (2) Two adjacent points do not have a common color.
29
30 if sigma[0] - sigma[1] or sigma[3] - sigma[2]:
31 continue # (3) An outer point has more colors than their adjacent inner point.
32
33 if number_of_colors == 2 and sum(map(len, sigma)) == 8:
34 continue # (4) Each point is given both colors (if number of colors is 2).
35
36 if use_all and any(not any(c in s for s in sigma) for c in colors):
37 continue # (*) Does not use all colors.
38
39 print(tuple(map(set, sigma)))
40
41 print_combinations(2)
42 # Results:
43 # ({1}, {1}, {1}, {1}) -> left
44 # ({1}, {1}, {1, 2}, {2}) -> middle, top
45 # ({1}, {1}, {1, 2}, {1, 2}) -> right, bottom
46 # ({1}, {1, 2}, {1, 2}, {1}) -> middle, bottom
47 # ({1}, {1, 2}, {1, 2}, {2}) -> right, top
48 # ({1}, {1, 2}, {1, 2}, {1, 2}) -> right, middle
49
50 print_combinations(3, True)
51 # Results:
52 # ({1}, {1, 2}, {2, 3}, {3}) -> left
53 # ({1}, {1, 2}, {2, 3}, {2, 3}) -> middle
54 # ({1, 2}, {1, 2}, {1, 3}, {1, 3}) -> right

Listing A.1: Code to enumerate all combinations of color assignments for a local max-
imum with two (results of print_combinations(2) seen in Figure 6.2)
and three colors (results of print_combinations(3, True) seen in Fig-
ure 6.3).

176

Zusammenfassung

Schwache Kontaktdarstellungen von Einheitskreisscheiben. Eine schwache Kon-
taktdarstellung von Einheitskreisscheiben (sKvE) eines Graphen ist eine Menge von
sich im Inneren nicht schneidenden Einheitskreisscheiben in der Ebene bei der jede
Kreisscheibe einem Knoten des Graphen zugeordnet ist. Dabei müssen sich je zwei
Kreisscheiben berühren, also im Rand schneiden, wenn die zugehörigen Knoten mit
einer Kante verbunden sind. Die Kreisscheiben von nicht per Kante verbundenen Kno-
ten dürfen sich trotzdem berühren. Wir betrachten zwei Varianten des Problems: Bei
Graphen ohne Einbettung ist die Platzierung der benachbarten Kreisscheiben egal.
Das Problem ist NP-schwer für Bäume und in linearer Zeit lösbar für Raupengraphen
(Bäume, die zu Pfaden werden, wenn alle Blätter entfernt werden). Bei Graphen mit
einer festen Einbettung ist die Reihenfolge der Platzierung der benachbarten Kreisschei-
ben vorgegeben. Hier zeigen wir, dass das Problem bereits NP-schwer für allgemeine
Raupengraphen ist. Beschränken wir uns auf sKvE, die auf einem regelmäßigen Drei-
ecksgitter platziert werden können und bei denen die Kreisscheiben der inneren Knoten
streng 𝑥-monoton sind, so ist das Problem hier ebenfalls in linearer Zeit lösbar.

Gefärbte Nächste-Nachbarn-Graphen. Hier ist eine Menge eindimensionaler Punkte
und eine Liste von Strecken zwischen benachbarten Punkten gegeben, sodass jeder
Punkt mindestens eine anliegende Strecke hat. Jedem Punkt soll eine nichtleere Menge
von Farben zugewiesen werden. Für jede Farbe erzeugen wir eine Kante zwischen
diesem Punkt und dem nächstgelegenen mit derselben Farbe. Eine gültige Farbzu-
ordnung erzeugt für jede Strecke genau eine Kante zwischen denselben Endpunkten;
zwei Kanten mit verschiedenen Farben zwischen den gleichen Punkten sind verboten.
Wählen wir für die Endpunkte jeder Strecke eine eigene Farbe, so ist dies immer eine
gültige Lösung. Daher ist die Frage, wie wenig Farben im besten Fall benötigt werden.
Für ein und zwei Farben können wir in linearer Zeit eine gültige Farbzuordnung finden,
falls sie existiert. Zwei Unterstrukturen sind entscheidend für die Anzahl der benötigten
Farben: Lokale Maxima, also Strecken die länger sind als beide benachbarten Strecken,
und schmale Lücken, also fehlende Strecken, bei denen mindestens eine benachbarte
Strecke länger ist. Die Anzahl der Farben wächst im schlimmsten Fall logarithmisch
in der Anzahl der lokalen Maxima und linear in der Anzahl der kleinen Lücken. Wir
beschreiben schließlich ein dynamisches Programm, das bei einer Eingabe und einer
Anzahl von Farben eine gültige Farbzuordnung mit dieser Anzahl von Farben findet oder
zurückgibt, dass keine gültige Farbzuordnung existiert. Die Laufzeit dieses Algorithmus
ist exponentiell in der Anzahl der Farben.

177

	Title
	Abstract
	Selbstständigkeitserklärung
	Acknowledgements
	Contents
	Frequently Used Mathematical Notation
	Introduction
	Weak unit disk contact representations
	Colored nearest neighbor graphs
	Publications

	Weak unit disk contact representations
	Preliminaries
	Contact Representations and Contact Graphs
	Important Graph Classes
	Rigid Structures Using Tight Disk Packings
	Triangular Grids

	Graphs Without Embedding
	A Linear Time Algorithm for Caterpillars
	Preliminary observation
	The Linear Time Algorithm
	Correctness of the Linear Time Algorithm
	Incorrectness of the Previous Proof

	NP-hardness for Trees
	Not-All-Equal 3SAT and the Logic Engine Construction
	Rigid Hexagons as Basic Building Blocks
	Combining Hexagons Into Line Segments
	A Branching and Flipping Gadget
	Putting Everything Together

	Graphs With a Fixed Embedding
	A Linear Time Algorithm for Grid-Representable, Strictly x-Monotone Caterpillars
	Preliminary Observations
	The Linear Time Algorithm
	Running Time and Correctness

	NP-hardness for General Caterpillars
	Planar 3SAT
	Rigid Caterpillars and Caterpillars With Two Representations
	Variable Gadgets
	Clause Gadgets
	Putting Everything Together

	Colored nearest neighbor graphs
	Introduction and Preliminaries
	Multisets and Multigraphs
	Defining Colored Nearest Neighbor Graphs
	Nearest Neighbor Graphs
	Colored Nearest Neighbor Graphs
	General Position

	One-Dimensional Colored Nearest Neighbor Graphs
	Problem Statements
	Useful Definitions and Observations

	Linear Time Algorithms for One and Two Colors
	Solving One Color
	Coloring Local Maxima and Gaps
	Restrictions on Other Points
	Coloring Local Maxima
	Coloring Gaps
	Restricted Regions for Input Edges and Gaps

	Simplifying the Color Assignments
	Reducing the Number of Points With Two Colors
	Few Color Changes at Gaps
	Basic Color Assignments

	Two Colors
	Only Adjacent Color Changes Are Important
	The Realization Graph
	The Algorithm

	Different Bounds on the Number of Colors
	A Logarithmic Bound for Inputs Without Small Gaps
	The Upper Bound
	The Matching Lower Bound

	A Linear Bound for Inputs With Small Gaps
	The Upper Bound
	The Matching Lower Bound

	A Mixed Bound Depending on Small Gaps and Local Maxima
	The Upper Bound
	Running Time of the Construction
	The Matching Lower Bound

	Conclusion

	A Dynamic Program for a Fixed Color Number
	A Quick Look at the Naive Approach
	Incremental construction

	The Idea of and Prerequisites for the Dynamic Program
	Defining the Dynamic Program
	Specification
	Useful Helper Functions
	Definition
	Calling the Dynamic Program
	Extracting a Color Assignment

	Correctness and Running Time
	Correctness
	Running Time
	Conclusion

	Comparing the Dynamic Program and the Naive Approach
	Running Times Without Small Gaps
	Running Times Without Local Maxima
	Running Times in Between

	Conclusion and Open Problems
	Weak unit disk contact representations
	Colored Nearest Neighbor Graphs

	Bibliography
	Supplementary Material
	Zusammenfassung

