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1. Introduction
A group 𝜋 is said to be finitely generated if it is spanned
by finitely many letters, that is, if it is the quotient 𝐹 →
𝜋 of a free group 𝐹 on finitely many letters. It is said to
be finitely presented if the kernel of such a quotient is itself
finitely generated. This does not depend on the choice of
generation chosen. For example the trivial group 𝜋 = {1}
is surely finitely presented as the quotient of the free group
in 1 generator by itself (!). The following finitely presented
group shall play a role in the note:

Example 1. The group Γ0 is generated by two elements
(𝑎, 𝑏) with one relation 𝑏2 = 𝑎2𝑏𝑎−2.
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There are groups which are finitely generated but not
finitely presented, see the interesting MathOverflow ele-
mentary discussion on the topic (https://tinyurl.com
/3cavr69a).

The finitely presented groups appear naturally in
many branches of mathematics. The fundamental group
𝜋1(𝑀,𝑚) of a topological space 𝑀 based at a point 𝑚 is
defined to be the group of homotopy classes of loops cen-
tered at 𝑚. A group is finitely presented if and only if it is
the fundamental group 𝜋1(𝑀,𝑚) of a connected finite 𝐶𝑊 -
complex 𝑀 based at a point 𝑚. This is essentially by def-
inition of a 𝐶𝑊 (𝐶 =closure-finite, 𝑊 =weak) complex
which is a topological space defined by an increasing se-
quence of topological subspaces, each one obtained by glu-
ing cells of growing dimension to the previous one. So
the 1-cells glued to the 0-cell 𝑚 yield the loops on which
we take the free group 𝐹, and the relations come from the
finitely many 2-cells glued to the loops.

If 𝑋 is a smooth connected quasi-projective complex va-
riety, its complex points 𝑋(ℂ) form a topological manifold
which has the homotopy type of a connected finite 𝐶𝑊 -
complex 𝑀.

The difference between 𝑋 and its complex points 𝑋(ℂ)
is subtle, and crucial for the note. If 𝑋 is projective for
example, when we say 𝑋 we mean the set of defining ho-
mogeneous polynomials in finitely many variables with
coefficients in ℂ. This collection of polynomials is called a
scheme. On the other hand, only finitely many of those
polynomials are necessary to describe them all (this is
the Noetherian property of the ring of polynomials over a
field), so in fact there is a ring 𝑅 of finite type over ℤwhich
contains all the coefficients of those finitely many polyno-
mials. We write 𝑋ℂ to rememberℂ, 𝑋𝑅 to remember 𝑅. We
can then take any maximal ideal 𝔪 in 𝑅. The residue field
𝑅/𝔪 is finite, say 𝔽𝑞, and has characteristic 𝑝 > 0. Then
we write 𝑋𝔽𝑞 for the scheme defined by this collection of
polynomials where the coefficients are taken modulo 𝔪.
Fixing an algebraic closure 𝔽𝑞 ⊂ 𝔽̄𝑝, and thinking of the
polynomials as having coefficients in 𝔽̄𝑞 we write 𝑋𝔽̄𝑝 etc.

When we say 𝑋(ℂ), we mean the complex solutions of
the defining polynomials. (Of course there is the similar
notion 𝑋𝑅(𝑅), 𝑋𝔽𝑞(𝔽𝑞), 𝑋𝔽̄𝑝(𝔽̄𝑝) = 𝑋𝔽𝑞(𝔽̄𝑝), etc.)

The notion of a quasi-projective complex variety 𝑋 is
easily understood on its complex points 𝑋(ℂ). They have
to be of the shape ̄𝑋(ℂ) ⧵ 𝑌(ℂ) where both ̄𝑋 and 𝑌(⊂ ̄𝑋)
are projective varieties.

We do not know how to characterize the fundamental
groups 𝜋1(𝑋(ℂ), 𝑥), where 𝑥 ∈ 𝑋(ℂ), among all possible
𝜋1(𝑀,𝑚). In this small text, we use the following termi-
nology:

Definition 1. A finitely presented group 𝜋 is said to come
from geometry if it is isomorphic to 𝜋1(𝑋(ℂ), 𝑥)where 𝑋 is

a smooth connected quasi-projective complex variety and
𝑥 ∈ 𝑋(ℂ).

The aim of this note is to describe a few obstructions for
a finitely presented group to come from geometry.

2. Classical Obstructions: Topology and
Hodge Theory

A classical example comes from the uniformization theory
of complex curves: any free group on 𝑛 letters, where 𝑛 is a
natural number, is the fundamental group of the comple-
ment of (𝑛 + 1)-points on the Riemann sphere ℙ1. This is
because we understand exactly 𝜋1(𝑋(ℂ), 𝑥) if 𝑋 has dimen-
sion 1, that is if 𝑋(ℂ) is a Riemann surface. The simplest
possible example is the Riemann sphere 𝑋 = ℙ1. Then
𝜋1(𝑋(ℂ), 𝑥) = {1} as any loop centered at 𝑥 can be retracted
to a point, see Figure 1.

Figure 1. Any loop is retracted on ℙ1(ℂ).

The same holds true on 𝑋 = 𝔸1 = ℙ1 ⧵ {∞}. The first
interesting example is 𝑋 = ℙ1⧵{0,∞}. Then 𝑋(ℂ) = ℂ⧵{0},
and 𝜋1(𝑋(ℂ), 1) = ℤ ⋅ 𝛾 where 𝛾 ∶ [0 1] → ℂ ⧵ {0}, 𝑡 ↦
exp(2𝜋√−1𝑡) is the circle turning around the origin {0}, see
Figure 2.

Figure 2. A nontrivial loop 𝛾 on ℙ1(ℂ) ⧵ {0,∞}.

More generally, if a smooth compactification ̄𝑋 of 𝑋 has
genus 𝑔, topologically ̄𝑋(ℂ) is a donut with 𝑔 holes. Then
𝜋1( ̄𝑋(ℂ), 𝑥) is spanned by 2𝑔 elements (𝑎𝑖, 𝑏𝑖), 𝑖 = 1, … , 𝑔
with one relation∏𝑔

𝑖=1[𝑎𝑖, 𝑏𝑖] = 1. If ( ̄𝑋 ⧵𝑋)(ℂ) consists of
(𝑛+1) points, 𝜋1(𝑋(ℂ), 𝑥) is spanned by 2𝑔+𝑛+1 elements
(𝑎𝑖, 𝑏𝑖), 𝑖 = 1, … , 𝑔, 𝑐𝑗 , 𝑗 = 1, … , 𝑛 + 1 with one relation

∏𝑔
𝑖=1[𝑎𝑖, 𝑏𝑖]∏

𝑛+1
𝑗=1 𝑐𝑗 = 1. The literature is full of beautiful

colored pictures visualizing this classical computation.
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Beyond Riemann surfaces, that is, for 𝑋 of dimension
≥ 2, our understanding is very limited.

The 2 in the 2𝑔 in the previous example is more gen-
eral: by the fundamental structure theorem on finitely
generated ℤ-modules, the maximal abelian quotient
𝜋1(𝑋(ℂ), 𝑥)ab, that is, the abelianization of 𝜋1(𝑋(ℂ), 𝑥), is
isomorphic to a direct sum of ℤ⊕𝑏 for some natural num-
ber 𝑏 and of a finite abelian group 𝑇.

Any abelian finitely presented group ℤ𝑏 ⊕ 𝑇 comes from ge-
ometry: Serre’s classical construction [Ser58] realizes any
finite group as the fundamental group of the quotient 𝑍
of a complete intersection of large degree in the projective
space of large dimension, while the fundamental group of
(ℙ1 ⧵ {0,∞})(ℂ) is equal to ℤ, see Figure 2. As the funda-
mental group of a product variety is the product of the fun-
damental groups of the factors (Künneth formula), we can
take 𝑋 = (ℙ1 ⧵ {0,∞})𝑏 × 𝑍 and there is no obstruction for
ℤ𝑏 × 𝑇 to be the abelianization of the fundamental group
of a smooth connected quasi-projective complex variety. If
we require 𝑋 to be projective, then Hodge theory, more pre-
cisely, Hodge duality implies that 𝑏 is even. This is the only

obstruction as we can then take 𝑋 = 𝐸
𝑏
2 ×𝑍 instead, where

𝐸 is any elliptic curve, so 𝐸(ℂ) is a donut with one hole, so
𝜋1(𝑋(ℂ), 𝑥) = ℤ2, see Figure 3.

Figure 3. Riemann surface of genus 𝑔 = 1.

In the same vein, but much deeper is the fact that
the pronilpotent completion of 𝜋1(𝑋(ℂ), 𝑥) (also called
Malčev completion) is endowed with a mixed Hodge struc-
ture. While so far we commented the topological struc-
ture of 𝑋(ℂ), Hodge theory studies in addition the anal-
ysis stemming from the complex structure, and the more re-
fined properties, packaged in the notion of Kähler geom-
etry and harmonic theory, which come from the property
that 𝑋 is defined algebraically by complex polynomials. A
modern way (due to Beilinson) to think of it is to identify
the Malčev completion with the cohomology of an (infi-
nite) simplicial complex scheme and to apply the classical

Hodge theory on its truncations. We do not elaborate fur-
ther.

3. Profinite Completion: The Étale
Fundamental Group

Thus the difficulty lies in the kernel of the group to its
abelianization. To study it, we first introduce the classical
notion:

Definition 2. A complex local system 𝕃𝜌 is a complex linear
representation

𝜌 ∶ 𝜋1(𝑋(ℂ), 𝑥) → GL𝑟(ℂ),
considered modulo conjugacy by GL𝑟(ℂ). The local system
𝕃𝜌 is said to be irreducible if its underlying representation
𝜌 (thus defined modulo conjugacy) is irreducible.

Why modulo conjugacy? A path 𝛾𝑥𝑦 from 𝑥 to 𝑦 de-
fines an isomorphism 𝛾−1𝑦𝑥 𝜋1(𝑋(ℂ), 𝑦)𝛾𝑦𝑥 = 𝜋1(𝑋(ℂ), 𝑥).
This isomorphism is not unique, any other path from 𝑥
to 𝑦 differs from this one by left multiplication by a loop
𝛾𝑥 ∈ 𝜋1(𝑋(ℂ), 𝑥) centered at 𝑥, which thus conjugates the
isomorphism by 𝛾𝑥. Thus not fixing the base point forces us
to consider representations modulo conjugacy.

As 𝜋1(𝑋(ℂ), 𝑥) is finitely presented, thus in particu-

lar finitely generated, 𝜌 factors through 𝜋1(𝑋(ℂ), 𝑥)
𝜌𝐴−−→

GL𝑟(𝐴)where 𝐴 ⊂ ℂ is a ring of finite type. Any such 𝐴 can
be embedded into the ring of ℓ-adic integers ℤℓ for some
prime number ℓ, say 𝜄 ∶ 𝐴 ⊂ ℤℓ. (For example if 𝐴 = ℤ,
𝜄 has to be the natural pro-ℓ-completion for any choice of
ℓ. If 𝐴 = ℤ[𝑇] we take in ℤℓ a transcendental element over
ℚ and send 𝑇 to it, etc. The main point is that the field of
fractions ℚℓ of ℤℓ, that is the field of ℓ-adic numbers, has
infinite transcendence degree over ℚ). Thus the datum of
𝜌 is equivalent to the one of 𝜄 ∘ 𝜌𝐴 whose range GL𝑟(ℤℓ) is
profinite. In particular, 𝜄 ∘ 𝜌𝐴 factors through the profinite
completion

𝔭𝔯𝔬𝔣 ∶ 𝜋1(𝑋(ℂ), 𝑥) → 𝜋1(𝑋(ℂ), 𝑥) ̂

and induces

̂𝜌 ∶ 𝜋1(𝑋(ℂ), 𝑥) ̂→ GL𝑟(ℤℓ),
a representation which is continuous for the profinite topol-
ogy on both sides. Recall that the profinite completion
𝔭𝔯𝔬𝔣 ∶ 𝜋 → 𝜋 ̂of an abstract group 𝜋 is the projective limit
over all finite quotients 𝜋 → 𝐻. It inherits the profinite
topology compatible with the group structure for which
a basis of open neighborhoods of 1 is defined to be the
inverse image of 1 ∈ 𝐻 by one of those projections.

However, Toledo in [Tol93] constructed a smooth con-
nected complex projective variety 𝑋 with the property that
𝔭𝔯𝔬𝔣 is not injective. It answered a problem posed by Serre.
It is an important fact which in particular implies that the
study of complex local systems ignores Ker(𝔭𝔯𝔬𝔣). This leads
us in two different directions.
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The invariants 𝑏 and 𝑇 of the abelianization are seen on
the complex abelian algebraic group

Hom(𝜋1(𝑋(ℂ), 𝑥), GL1(ℂ)) ≅ (ℂ×)𝑏 × Hom(𝑇, ℂ×).
Here the notation ℂ× means the set ℂ ⧵ {0} endowed with
the (abelian) multiplicative group structure.

More generally the finite generation of 𝜋1(𝑋(ℂ), 𝑥)
enables one to define a “moduli” (parameter) space
𝑀irr

𝐵 (𝑋, 𝑟) of all its irreducible local systems 𝕃𝜌 in a given
rank 𝑟. It is called the Betti moduli space of 𝑋 of irreducible
local systems in rank 𝑟 or the character variety of 𝜋1(𝑋(ℂ), 𝑥)
of irreducible local systems in rank 𝑟. It is a complex quasi-
projective scheme of finite type. Its study is the content of
Simpson’s non-abelian Hodge theory developed in [Sim92].
It is an analytical theory relying on harmonic theory, as is
classical Hodge theory.

The second direction relies on the profinite completion
homomorphism 𝔭𝔯𝔬𝔣. By the Riemann existence theo-
rem, a finite topological covering is the complexification
of a finite étale cover. Thus 𝜋1(𝑋(ℂ), 𝑥) ̂ is identified with
the étale fundamental group 𝜋1(𝑋ℂ, 𝑥) of the scheme 𝑋ℂ de-
fined over ℂ, based at the complex point 𝑥, as defined by
Grothendieck in [Gro71]:

This profinite group is defined by its representations in
finite sets. A representation of 𝜋1(𝑋ℂ, 𝑥) in finite sets is
“the same” (in the categorial sense) as a pointed (above 𝑥)
finite étale cover of 𝑋 .

We denote by

𝜌ℂ,ℓ ∶ 𝜋1(𝑋ℂ, 𝑥)
𝜌−→ GL𝑟(ℤℓ) ↪ GL𝑟(ℚ̄ℓ)

the composite morphism. Here ℚ̄ℓ is an algebraic closure
of ℚℓ.

The notion of a complex local system (Definition 2)
generalizes naturally:

Definition 3. An ℓ-adic local system 𝕃𝜌ℓ on the variety 𝑋ℂ
is a continuous linear representation

𝜌ℓ ∶ 𝜋1(𝑋ℂ, 𝑥) → GL𝑟(ℚ̄ℓ),
considered modulo conjugacy by GL𝑟(ℚ̄ℓ). The local system
𝕃𝜌ℓ is said to be irreducible if its underlying representation
𝜌ℓ (thus defined modulo conjugacy) is irreducible.

As the kernel of the projection GL𝑟(ℤℓ) → GL𝑟(𝔽ℓ) is
a pro-ℓ-group (that is all its finite quotients 𝐻 have order
of power of ℓ), Grothendieck’s specialization theory in loc.
cit. implies that the specialization homomorphism

𝑠𝑝ℂ,𝔽̄𝑝 ∶ 𝜋1(𝑋ℂ, 𝑥) → 𝜋𝑡1(𝑋𝔽̄𝑝 , 𝑥)
induces an isomorphism on the image of 𝜌ℂ,ℓ for 𝑝 larger
than the order of GL𝑟(𝔽ℓ). Here 𝑋𝔽̄𝑝 is a reduction of
𝑋ℂ as explained in the introduction, and is good, that is
smooth, as well as the stratification of the boundary di-
visor if 𝑋 is not projective. The upper script 𝑡 refers to

the tame quotient of 𝜋1(𝑋𝔽̄𝑝 , 𝑥) in case 𝑋 was not projec-
tive. We do not detail with precision the tameness con-
cept, for which we refer to [KS10]. This roughly works
as follows. Representations in finite sets of the étale fun-
damental group 𝜋1(𝑋𝔽̄𝑝 , 𝑥) which factor through the tame
quotient 𝜋𝑡1(𝑋𝔽̄𝑝 , 𝑥) have base change properties “as if” 𝑋𝔽̄𝑝
were proper. We can contract the fundamental group of 𝑋
over a 𝑝-adic ring 𝑅 with residue field 𝔽̄𝑝 to the one over
𝔽̄𝑝 in the way we do topologically in order to identify the
topological fundamental group of a tubular neighborhood
of a compact manifold to the one of the compact mani-
fold. The natural identification of 𝜋1(𝑋ℂ, 𝑥)with 𝜋1(𝑋𝐾 , 𝑥)
where 𝐾 is an algebraic closure of the field of fractions of
𝑅 (this is called base change property) enables us to de-
fine 𝑠𝑝ℂ,𝔽̄𝑝 . Grothendieck computes that 𝑠𝑝ℂ,𝔽̄𝑝 induces
an isomorphism on all finite quotients of 𝜋1(𝑋ℂ, 𝑥) and
𝜋𝑡1(𝑋𝔽̄𝑝 , 𝑥) of order prime to 𝑝.

The factorization defines the irreducible ℓ-adic local sys-
tem 𝕃𝔽̄𝑝,ℓ on 𝑋𝔽̄𝑝 from which 𝕃ℂ,ℓ comes. This leads us to
study 𝕃𝔽̄𝑝,ℓ in order to derive arithmetic properties of the ini-
tial 𝕃𝜌. We can remark that again we know extremely little
on the kernel of 𝑠𝑝ℂ,𝔽̄𝑝 and that the study of complex local
systems ignores them as well, for a chosen 𝜄 ∶ 𝐴 → ℤℓ and
𝑝 large as before.

On the other hand, 𝑋ℂ is defined over a field of finite
type over ℚ, thus with a huge Galois group, and 𝑋𝔽̄𝑝 is
defined over a finite field 𝔽𝑞 of characteristic 𝑝 > 0, with
a very small Galois group isomorphic to ℤ̂, the profinite
completion of ℤ, topologically spanned by the Frobenius
𝜑 of 𝔽𝑞. Nonetheless, we shall see that this small Galois
group yields nontrivial information.

Our goal now is twofold. First we shall illustrate how
to go back and forth between the Hodge theory side and
the arithmetic side on a particular example. This by far
does not cover the whole deepness of the theory, but we
hope that it gives some taste on how it functions. Then
we shall mention on the way and at the end more general
theorems to the effect that deep arithmetic properties stem-
ming from the Langlands program, notably the “integral-
ity” illustrated on this particular example, enable one to
find a new obstruction for the finitely presented group to
come from geometry.

4. An Example to Study
Let 𝑋 be a smooth connected quasi-projective complex va-
riety. If 𝑋 is not projective, we fix a smooth projective com-
pactification 𝑋 ↪ ̄𝑋 so that the divisor at infinity 𝐷 =
̄𝑋 ⧵ 𝑋 = ∪𝑀𝑖=1𝐷𝑖 is a strict normal crossings divisor (so its

irreducible components 𝐷𝑖 are smooth and meet transver-
sally). For each 𝑖 we fix 𝑟 roots of unity 𝜇𝑖𝑗 , 𝑗 = 1, … , 𝑟,
possibly with multiplicity. They uniquely determine a
conjugacy class 𝑇𝑖 of a semi-simple matrix of finite order.
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The normal subgroup spanned by the conjugacy classes
of small loops 𝛾𝑖 around the components 𝐷𝑖 is identified
with the kernel of the surjection𝜋1(𝑋(ℂ), 𝑥) → 𝜋1( ̄𝑋(ℂ), 𝑥).
We fix an extra natural number 𝛿 > 0.

We make the following assumption
Assumption (⋆)𝑟: For a given rank 𝑟 ≥ 2, there are at

most finitely many irreducible rank 𝑟 complex local sys-
tems 𝕃𝜌 on 𝑋 such that the determinant of 𝕃𝜌 has order
dividing 𝛿, and, if 𝑋 is not projective, such that the semi-
simplification of 𝜌(𝛾𝑖) falls in 𝑇𝑖.

It is simple to describe (⋆)𝑟: in the Betti moduli space
𝑀𝑖𝑟𝑟

𝐵 (𝑋, 𝑟) we have the subscheme 𝑀𝑖𝑟𝑟
𝐵 (𝑋, 𝑟, 𝛿, 𝑇𝑖) defined

by the conditions {𝛿, 𝑇𝑖}. The condition (⋆)𝑟 means pre-
cisely that 𝑀𝑖𝑟𝑟

𝐵 (𝑋, 𝑟, 𝛿, 𝑇𝑖) is 0-dimensional. Equivalently
𝑀𝑖𝑟𝑟

𝐵 (𝑋, 𝑟, 𝛿, 𝑇𝑖)(ℂ) consists of finitely many points, or is
empty.

Note the condition on 𝛿 depends only on 𝜋1(𝑋(ℂ), 𝑥)
so could be expressed on the character variety, not however
the condition on 𝑇𝑖. For this we have to know which 𝛾𝑖 in
𝜋1(𝑋(ℂ), 𝑥) come from the boundary divisor, so we need
the geometry.

If 𝑟 = 1, we drop the condition on the determinant, and
assume for simplicity that 𝑋 is projective. So the assump-
tion becomes that there are finitely many irreducible rank
1 complex local systems 𝕃𝜌 on 𝑋 . This then forces 𝑏 to be
0, so 𝜋1(𝑋(ℂ), 𝑥)ab to be finite.

Consequently, those finitely many 𝕃𝜌 of rank 1 have
finite monodromy (i.e., 𝜌(𝜋1(𝑋(ℂ), 𝑥)ab) is finite). This
implies that the 𝕃𝜌 come from geometry, that is there is a
smooth projective morphism 𝑔 ∶ 𝑌 → 𝑈 ⊂ 𝑋 where 𝑈
is a Zariski dense open in 𝑋 (in our case 𝑈 = 𝑋), such
that 𝕃𝜌 restricted to 𝑈 is a subquotient of the local system
𝑅𝑖𝑔∗ℂ coming from the representation of 𝜋1(𝑈(ℂ), 𝑥) in
𝐺𝐿(𝐻𝑖(𝑔−1(𝑥), ℂ))) for some 𝑖 (in our case 𝑔 is finite étale
and 𝑖 = 0).

A different way of thinking of finiteness is using Kro-
necker’s analytic criterion [Esn23]: the set of the rank 1
local systems is invariant under the action of the automor-
phisms of ℂ acting on GL1(ℂ) = ℂ×. Finiteness of the
monodromy is then equivalent to the monodromy being
unitary (i.e., lying in 𝑆1 ⊂ GL1(ℂ) = ℂ×) and being integral
(i.e., lying in GL1(ℤ̄) ⊂ GL1(ℂ)). We now discuss the gen-
eralization of these two properties: unitarity and integrality.

We first observe that (⋆)𝑟 implies that the irreducible
rank 𝑟 complex local systems are rigid if we preserve the
{𝛿, 𝑇𝑖} conditions. As the terminology says, it means that
we can not “deform” nontrivially the local system 𝕃𝜌. Pre-
cisely it says that a formal deformation

𝜌𝑡 ∶ 𝜋1(𝑋(ℂ), 𝑥) → GL𝑟(ℂ[[𝑡]])

of 𝜌 = 𝜌𝑡=0 with the same {𝛿, 𝜇𝑖𝑗} conditions does not
move 𝕃𝜌, that is there is a 𝑔 ∈ GL𝑟(ℂ((𝑡))) such that in

GL𝑟(ℂ((𝑡))) the relation

𝜌𝑡 = 𝑔𝜌𝑡=0𝑔−1

holds.
A classical example where (⋆)𝑟 is fulfilled is provided

by Shimura varieties of real rank ≥ 2. Margulis super-
rigidity [Mar91] implies that all complex local systems are
semisimple and all irreducible ones are rigid. While by
super-rigidity they all are integral (i.e., the image of the rep-
resentations lie in GL𝑟(ℤ̄) up to conjugacy), we do not know
whether they come from geometry.

Another example is provided by connected smooth pro-
jective complex varieties 𝑋 with the property that all sym-
metric differential forms, except the functions, are trivial.
In this case, non-abelian Hodge theory implies (⋆)𝑟 is ful-
filled. Indeed, the Betti moduli space of semisimple rank
𝑟 complex local systems is affine, while the moduli space
of semistable Higgs bundles with vanishing Chern classes
(whichwe discuss below) admits a projectivemorphism to
the so-called Hitchin base. The latter consists of one point
under our assumption. As by a deep theorem of Simp-
son [Sim92], both spaces are real analytically isomorphic,
they are both affine and compact, thus are 0-dimensional.
It is proven in [BKT13], using Hodge theory, the period
domain and birational geometry, that all the 𝕃𝜌 have then
finite monodromy. This yields a positive answer to a con-
jecture I had formulated. As the proof uses Hodge theory,
it is analytic. As of today, there is no arithmetic proof of
the theorem.

5. Non-abelian Hodge Theory
Wefirst assume that𝑋 is projective. We discuss a littlemore
the notion of Higgs bundles mentioned above. Simpson
in [Sim92] constructs the moduli space 𝑀s

𝐷𝑜𝑙(𝑋, 𝑟, 𝛿) of
stable Higgs bundles (𝑉, 𝜃) with vanishing Chern classes,
where 𝑉 is a vector bundle of rank 𝑟, 𝜃 ∶ 𝑉 → Ω1

𝑋 ⊗ 𝑉
is a 𝒪𝑋 -linear operator fulfilling the integrality condition
𝜃 ∧ 𝜃 = 0, such that det(𝑉, 𝜃) has finite order dividing 𝛿.
(The integrality notion here is for the Higgs field 𝜃, and
is not related to the integrality of a linear representation
mentioned in Section 4). The stability condition is defined
on the pairs (𝑉, 𝜃), that is one tests it on Higgs subbun-
dles. The finite order of det(𝑉, 𝜃) implies that the under-
lying Higgs field of det(𝑉, 𝜃) is equal to 0, so det(𝑉, 𝜃) =
(det(𝑉), 0). The moduli space 𝑀s

𝐷𝑜𝑙(𝑋, 𝑟, 𝛿) is a complex
scheme of finite type. It has several features.

There is a real analytic isomorphism 𝑀irr
𝐵 (𝑋, 𝑟, 𝛿) ≅−→

𝑀s
𝐷𝑜𝑙(𝑋, 𝑟, 𝛿). So (⋆)𝑟 implies that𝑀s

𝐷𝑜𝑙(𝑋, 𝑟, 𝛿) consists of
finitely many points.

Simpson defines on Higgs bundles the algebraic ℂ×-
action which assigns (𝑉, 𝑡𝜃) to (𝑉, 𝜃) for 𝑡 ∈ ℂ×. It pre-
serves stability near 1 ∈ ℂ× and semistability in general.
Thus under the assumption (⋆)𝑟, the ℂ× -action stabilizes
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𝑀s
𝐷𝑜𝑙(𝑋, 𝑟, 𝛿) pointwise. Simpson proves in loc. cit. that

ℂ×-fixed points correspond to polarized complex varia-
tions of Hodge structure (PCVHS). Mochizuki in [Moc06]
generalized this part of Simpson’s theory to the smooth
quasi-projective case so the conclusion remains valid in
general.

We summarize this section: The assumption (⋆)𝑟 implies
that the irreducible 𝕃𝜌 of rank 𝑟, with determinant of order
diving 𝛿 and semisimplification of 𝜌(𝛾𝑖) falling in 𝑇𝑖, underlie
a PCVHS. This property is the analog of the unitary property in
rank 𝑟 = 1.

We cannot expect more as already on Shimura varieties
of real rank ≥ 2, not all local systems are unitary. If they
all were, as they are integral, they would have finite mon-
odromy. This is not the case.

6. Arithmeticity
Again we fix 𝑟. Once we obtain the finitely many local sys-
tems 𝕃𝔽̄𝑝,ℓ on 𝑋𝔽̄𝑝 by specialization as in Section 3, also tak-
ing 𝑝 large enough so it is prime to the orders of 𝛿 (and the
𝜇𝑖𝑗 in case 𝑋 is not projective), we consider Grothendieck’s
homotopy exact sequence

1 → 𝜋1(𝑋𝔽̄𝑝 , 𝑥) → 𝜋1(𝑋𝔽𝑞 , 𝑥) → ℤ̂ ⋅ 𝜑 → 1

[Gro71]. Here the finite field 𝔽𝑞 ⊂ 𝔽̄𝑝 is chosen so 𝑋𝔽̄𝑝 is
defined over 𝔽𝑞 and 𝜑 is the Frobenius endomorphism of
𝔽̄𝑝 sending 𝜆 to 𝜆𝑞.

Let us first discuss the meaning of the sequence in terms
of finite étale covers. The surjectivity on the right says that
if 𝔽𝑞 ⊂ 𝔽𝑞′ is a finite field extension, then the induced
finite étale cover 𝑋𝔽𝑞′ → 𝑋𝔽𝑞 has no section. The injectivity
on the left says that any finite étale cover of 𝑋𝔽̄𝑝 can be
dominating by one induced by a finite étale cover of 𝑋𝔽𝑞 .
The exactness in the middle says that if a finite étale cover
of 𝑋𝔽𝑞 acquires a section on 𝑋𝔽̄𝑝 , then the induced cover of
𝑋𝔽̄𝑝 is completely split.

The kernel of 𝜋1(𝑋𝔽̄𝑝 , 𝑥) to its tame quotient 𝜋𝑡1(𝑋𝔽̄𝑝 , 𝑥)
is normal in 𝜋1(𝑋𝔽𝑞 , 𝑥). Thus a lift of 𝜑 to 𝜋1(𝑋𝔽𝑞 , 𝑥), which
is well defined up to conjugation by 𝜋1(𝑋𝔽̄𝑝 , 𝑥), acts by con-
jugation on 𝜋𝑡1(𝑋𝔽̄𝑝 , 𝑥), therefore on ℓ-adic local systems
on 𝑋𝔽̄𝑝 and respects tameness.

This action preserves 𝑟, irreducibility, 𝛿 and the 𝑇𝑖. Thus
𝜑 acts as a bijection on the finite set {𝕃𝔽̄𝑝,ℓ}. We conclude
that replacing 𝑞 by some nontrivial finite power 𝑞𝑡, all 𝕃𝔽̄𝑝,ℓ
descend to ℓ-adic local systems 𝕃𝔽𝑞𝑡 ,ℓ on 𝑋𝔽𝑞𝑡 . We say that
the 𝕃𝔽̄𝑝,ℓ are arithmetic. (This argument is adapted from
[EG18]).

We summarize this section: The assumption (⋆)𝑟 implies
that the local systems 𝕃𝔽̄𝑝,ℓ are arithmetic.

More generally, without the assumption (⋆)𝑟 being ful-
filled, Simpson proves in [Sim92] in all generality that the

𝕃ℂ,ℓ coming from irreducible rigid local systems are arithmetic,
that is they descend to ℓ-adic local systems on 𝑋𝐹 where 𝐹
is a field of finite type over ℚ.

7. ℓ-adic Companions and Integrality
Quoted from [Esn23], with adapted notation:

“Given a field automorphism 𝜏 of ℂ, we can postcom-
pose the underlying monodromy representation of a com-
plex local system 𝕃𝜌 by 𝜏 to define a conjugate complex lo-
cal system 𝕃𝜏𝜌. Given a field automorphism 𝜎 of ℚ̄ℓ, which
then can only be continuous if it is the identity on ℚℓ, or
more generally given a field isomorphism 𝜎 between ℚ̄ℓ
and ℚ̄ℓ′ for some prime number ℓ′, the postcomposition
of a continuous nonfinite monodromy representation is no
longer continuous (unless ℓ = ℓ′ and 𝜎 is the identity on
ℚℓ), so we cannot define a conjugate 𝕃𝜍ℂ,ℓ of an ℓ-adic local
system by this simple postcomposition procedure.”

However, when 𝑋ℂ is replaced by 𝑋𝔽̄𝑝 , Deligne conjec-
tured in Weil II [Del80] that we can. Let us first state the
conjecture.

By the Čebotarev density theorem, an irreducible ℓ-adic
sheaf 𝕃ℓ defined by an irreducible continuous representa-
tion 𝜌ℓ ∶ 𝜋1(𝑋𝔽𝑞 , 𝑥) → GL𝑟(ℚ̄ℓ) considered modulo conju-
gacy by GL𝑟(ℚ̄ℓ), is determined uniquely by the characteris-
tic polynomials

𝑃(𝕃𝜌, 𝑦, 𝑇) = det(𝑇 − 𝜌ℓ(𝐹𝑟𝑜𝑏𝑦))
for all closed point 𝑦 of 𝑋𝔽𝑞 , where 𝐹𝑟𝑜𝑏𝑦 is the arithmetic
Frobenius at 𝑦. This expression just means that the closed
point 𝑦 has a residue field 𝜅(𝑦) ⊂ 𝔽̄𝑝 which is a finite exten-
sion of 𝔽𝑞, say of degree 𝑚𝑦. Then 𝑦 is a rational point of
𝑋𝜅(𝑦), thus the conjugacy class of 𝜑𝑚𝑦 is well defined as a
subgroup in 𝜋1(𝑋𝔽𝑞 , 𝑥).

The first part of the conjecture predicts that if the deter-
minant of 𝜌 has finite order, then

𝑃(𝕃ℓ, 𝑦, 𝑇) ∈ ℚ̄[𝑇] ⊂ ℚ̄ℓ[𝑇].
In particular, its 𝜎-conjugate

𝑃(𝑦, 𝑇)𝜍 ∈ ℚ̄[𝑇] ⊂ ℚ̄ℓ′[𝑇]
is defined.

The second part of the conjecture predicts the existence
of an irreducible ℓ′-adic local system 𝕃𝜍ℓ with the property
that

𝑃(𝕃𝜍ℓ , 𝑦, 𝑇) = 𝑃(𝕃, 𝑦, 𝑇)𝜍.
Again Čebotarev density theorem implies unicity up to iso-
morphism once we know the existence.

The two parts have been proven on smooth curves 𝑋𝔽𝑞
by Drinfeld in rank 𝑟 = 2 [Dri80] and L. Lafforgue in any
rank [Laf02] as a corollary of the Langlands conjecture over
functions fields. It thus uses automorphic forms. Drin-
feld’s Shtukas also imply that all 𝕃ℓ on 𝑋𝔽̄𝑞 come from ge-
ometry. The existence of companions has been extended
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to smooth quasi-projective 𝑋𝔽̄𝑞 of any dimension by Drin-
feld by arithmetic-geometric methods [Dri12], reducing to
curves. The reduction method goes back initially to Götz
Wiesend.

Deligne’s initial conjecture is for normal varieties. To go
from smooth to normal varieties is still an open problem.

So coming back to (⋆)𝑟, we see that under this assump-
tion, and abusing notation replacing 𝑞𝑡 by 𝑞, it holds that
for any ℓ′ ≠ ℓ, ℓ′ ≠ 𝑝, we have as many 𝕃𝜍𝔽𝑞,ℓ|𝑋𝔽̄𝑝 as 𝕃𝔽̄𝑝,ℓ.
(The companion formation preserves the irreducibility on
𝑋𝔽̄𝑝 , the 𝑇𝑖, and 𝛿 as we had taken 𝑝 prime to all those
orders, so in particular it also preserves the tameness).

We now use this fact to prove that the assumption (⋆)𝑟 im-
plies that all irreducible rank 𝑟 local systems with the conditions
(𝛿, 𝜇𝑖𝑗) are integral.

The initial irreducible complex 𝕃𝜌 being rigid, they are
defined over𝒪𝐾[𝑁−1]where 𝐾 is a number field and𝑁 is a
positive natural number. Precomposing the 𝕃𝜍𝔽𝑞,ℓ|𝑋𝔽̄𝑝 with

𝑠𝑝ℂ,𝔽̄𝑝 and then by 𝔭𝔯𝔬𝔣 yields as many irreducible local
systems as the 𝕃𝜌 with the conditions given by 𝛿 and 𝜇𝑖𝑗.
They all are integral at the place above ℓ′ determined by

𝐾 ⊂ ℚ̄ ⊂ ℚ̄ℓ
𝜍−→ ℚ̄ℓ′ .

This construction is performed for all ℓ′ ≠ ℓ, ℓ′ ≠ 𝑝, all
isomorphisms 𝜎 between ℚ̄ℓ and ℚ̄ℓ′ , with 𝑝 large enough
(larger than 𝑁, 𝛿, the order of the 𝜇𝑖𝑗, and such that 𝑠𝑝ℂ,𝔽̄𝑝
is well defined and surjective). This finishes the proof of
the integrality under the assumption (⋆)𝑟.

This proof is taken from [EG18]. It is shown in loc. cit.
that the argument applies for cohomologically rigid local
systems (a notion we do not detail here) without the as-
sumption (⋆)𝑟. The assumption (⋆)𝑟 does not imply co-
homological rigidity, and cohomological rigidity does not
imply (⋆)𝑟.

8. The (⋆)𝑟 Condition for an Abstract Finitely
Presented Group

In [dJE23] we report on the example 1 constructed by
Becker–Breuillard–Varljú. We quote from loc. cit. adapt-
ing the notation:

For 𝑟 = 2 and 𝛿 = 1, that is for SL2 representations, the
authors compute that Γ0 has exactly two irreducible com-
plex representations modulo conjugacy. The first one 𝕃1 is
defined by

𝜌1(𝑎) =
1
√2

( 1 1
−1 1) , 𝜌1(𝑏) = (𝑗 0

0 𝑗2) ,

where 𝑗 is a primitive 3-rd root of unity. It is defined over
ℚ(𝑗). The local system 𝕃2 is Galois conjugate to 𝕃1. The

authors compute

𝜌1(𝑎𝑏) =
𝑗
√2

( 1 𝑗
−1 𝑗) .

As Trace(𝜌1(𝑎𝑏)) = − 1
√2

, 𝕃1 is not integral at ℓ = 2, so 𝕃2
is not integral at ℓ = 2 either. Furthermore, 𝜌1(𝑎) does not
preserve the eigenvectors of 𝜌1(𝑏), so 𝕃1 and thus 𝕃2 are
irreducible with dense monodromy in SL2(ℂ). They also
compute that those representations are cohomologically
rigid.”

So we see that Γ0 can not be isomorphic to 𝜋1(𝑋(ℂ), 𝑥)
for a connected smooth projective complex variety 𝑋 . We
conclude that the integrality property in Section 7 is an ob-
struction for a finitely presented group to come from projective
geometry.

Jakob Stix remarks that Γab0 is isomorphic to ℤ, which
has rank 1, so Γ0 obeys the Hodge theoretic obstruction
mentioned in Section 2 as well.

The rest of the note is devoted to indicating how to ex-
tend the obstruction based on integrality to all connected
quasi-projective varieties. This is the content of [dJE23].

9. de Jong’s Conjecture
If 𝑋𝔽̄𝑝 is a connected normal quasi-projective variety, and
ℓ ≠ 𝑝 is a prime number, de Jong conjectured in [dJ01]
that an irreducible representation

𝜋1(𝑋𝔽̄𝑝 , 𝑥) → GL𝑟(𝔽ℓ((𝑡)))

which is arithmetic is in fact constant in 𝑡, thus in particular
has finite monodromy. Here 𝔽ℓ((𝑡)) is the Laurent power
series field over the finite field 𝔽ℓ and 𝔽ℓ((𝑡)) is an algebraic
closure.

He shows that assuming the conjecture, irreducible represen-
tations 𝜋1(𝑋𝔽̄𝑝 , 𝑥) → GL𝑟(𝔽̄ℓ) always lift to arithmetic ℓ-adic
local systems if 𝑋𝔽̄𝑝 is a smooth connected curve.

Drinfeld in [Dri01] applied this argument to produce
over a connected normal complex quasi-projective variety
𝑋ℂ ℓ-adic local systems with the property that via 𝑠𝑝ℂ,𝔽̄𝑝
for 𝑝 large they are arithmetic over 𝑋𝔽̄𝑝 .

de Jong’s conjecture has been proved by Böckle–Khare
in specific cases and Gaitsgory [Gai07] in general for ℓ ≥ 3.
The latter proof uses the geometric Langlands program.

10. Weak Integrality for Groups
Let Γ be a finitely presented group, together with natu-
ral numbers 𝑟 ≥ 1, 𝛿 ≥ 1. We define in [dJE23] the
following notion: Γ has the weak integrality property with
respect to (𝑟, 𝛿) if, assuming there is an irreducible repre-
sentation 𝜌 ∶ Γ → GL𝑟(ℂ) with determinant of order 𝛿,
then for any prime number ℓ, there is a representation
𝜌ℓ ∶ Γ → GL𝑟(ℤ̄ℓ) which is irreducible over ℚ̄ℓ and of
determinant of order 𝛿.
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The main theorem of loc. cit. is that if 𝑋 is a connected
smooth quasi-projective complex variety, then Γ = 𝜋1(𝑋(ℂ), 𝑥)
does have the weak integrality property with respect to any (𝑟, 𝛿).

Using now the example by Becker–Breuillard–Varjú pre-
sented in Section 8, we see that their Γ0 does not come from
geometry at all, whether the desired 𝑋 is assumed to be pro-
jective or quasi-projective.

Sowe conclude that the weak integrality property for Γwith
respect to all (𝑟, 𝛿) is an obstruction for Γ to come from geome-
try. This new kind of obstruction does not rest on analytic
methods, but on arithmetic properties, more specifically
the arithmetic Langlands program for the existence of compan-
ions and the geometric Langlands program for de Jong’s conjec-
ture, as we briefly discuss in the next and last section.

11. Weak Arithmeticity and Density
The main theorem of loc. cit. is proven by combining

(1) the method discussed in Section 7 to show integrality
once we have ℓ-adic local systems on 𝑋𝔽̄𝑝 which are
arithmetic;

(2) and the use de Jong’s conjecture discussed in Section 9,
roughly as Drinfeld did in [Dri01], to produce many
such arithmetic ℓ-adic local systems on 𝑋𝔽̄𝑝 .

By Grothendieck’s classical “quasi-unipotent monodromy
at infinity” theorem [ST68], arithmetic tame ℓ-adic local
systems on 𝑋𝔽̄𝑝 have quasi-unipotent monodromies at in-
finity. So their pull-back to 𝑋(ℂ) via 𝑠𝑝ℂ,𝔽̄𝑝 and 𝔭𝔯𝔬𝔣 do as
well.

In order to apply the method described in Section 7 in-
volving the existence of ℓ-companions ultimately yielding
integrality, we need quasi-unipotent monodromies at in-
finity. Themethod developed in [dJ01] shows that those in
𝑀irr

𝐵 (𝑋, 𝑟, torsion) are Zariski dense, where “torsion” refers
to the determinant of 𝕃𝜌 being torsion. This is precisely
this fact which enables one to “forget” the quasi-unipotent
conditions at infinity and to develop the argument.
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