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Recall the statement. Let U ⊂ X be smooth in X a normal pro-
jective variety of dimension d over a characteristic p > 0 algebraically
closed field k such that

codimX(X \ U) ≥ 2.

Let i : C ↪→ X be a reduced closed subscheme which is set theoretically
the intersection of (d− 1) ample divisors. By the Bertini theorem, for
each given degree of the ample divisors, there is an open dense of the
Hilbert schemes of such complete intersections with the property

C ⊂ U = X \Xsing(1)

whereXsing is the singular locus. We denote by Strat(U), resp. Strat(C)
the (tannakian) category of stratified bundles on U , resp. C.

Theorem 0.1. Assuming (1), the restriction functor

i∗ : Strat(U) → Strat(C)

is fully faithful.

We now justify Theorem 0.1.

Proof. Theorem 0.1 precisely says that for all Wi ∈ Strat(U), i = 1, 2
the restriction functor

HomU(W1,W2)
i∗−→ HomC(i

∗W1, i
∗W2)

is an isomorphism. This is equivalent to

H0
strat(U,W )

i∗−→ H0
strat(C, i

∗W )

being an isomorphism for any W ∈ Strat(U), which in turn is equiva-
lent to the same statement with W ∈ Picstrat(U), the full subcategory
of Strat(U) of rank 1 objects.

Lemma 0.2. π1(C) → π1(U) is surjective.

Proof. Let f : V → U be a finite étale connected cover. The normaliza-
tion Y of U in k(V ) yields a finite morphism Y → X extending f (and
ramified along X \ U). The pullback D of C in Y is set theoretically
the intersection of ample divisors in a normal projective variety so is
connected.
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The surjective restriction Cl(X) → Pic(U)(k) from the class group
of X to the group of k-line bundles on U is an isomorphism as there
are no Weil divisor supported in X \U . By [Kin13, Proof of 3.16] (see
also [BGS11, Proposition 3.2]) there is an exact sequence

0 → AX(k) → Cl(X) → NS(X) → 0

where AX is an abelian variety and NS(X) an abelian group of finite
type. Its restricts via i∗ to

0 → AC(k) → Pic(C)(k) → NS(C) → 0

where AC = Pic0(C)red is a connected commutative algebraic group
variety over k. As H0(U,O×) = H0(C,O×) = k× by [Kin13, Cor.3.7]
it holds

Picstrat(U) = limpPic(U)(k), Picstrat(C) = limpPic(C)(k)

where p indicates the inverse system over the multiplication by p, and
is endowed with the projection

τ : Picstrat(U) → Pic(U)(k)

on the first component. Moreover, the torsion in Picstrat(U) maps to
the torsion in limpNS which is precisely the finite group NS[p′]. So
for L ∈ Picstrat(U) there is N ∈ N≥1 prime to p with NL ∈ AX(k).
On the other hand AX(k)[p

′], which lies in Picstrat(U)[p′], is dense in
AX(k) and by Lemma 0.2 Picstrat(U)[p′] ⊂ Picstrat(C)[p′]. Thus

Ker
(
AX(k) ⊂ AC(k)

)
⊂ AX(k)[p] ⊂ Pic(U)(k)[p]

and is finite. However

τ(Picstrat(U)) ∩ Pic(U)(k)[p] = 0.

So if i∗L = 0 then NL = 0. But then again by Lemma 0.2 i∗L is
torsion of precisely the same order as L. This shows

i∗ : Picstrat(U) → Picstrat(C)

is injective and finishes the proof.
□

References

[Kin13] Kindler, L.: Evidence for a generalization of Gieseker’s conjecture on
stratified bundles in positive characteristic, Doc. Math. 18 (2013), 1215–
1242.

[BGS11] Boissière, S., Gabber, O., Serman, O.: Sur le produit de variétés lo-
calement factorielles ou Q-factorielles, https://arxiv.org/pdf/1104.
1861.

https://arxiv.org/pdf/1104.1861
https://arxiv.org/pdf/1104.1861

	References

