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Model reduction is a major issue for control, optimization and simulation of
large-scale systems. We present a formal procedure for model reduction of per-
turbed linear second-order differential equations. Second-order equations appear
in a variety of physical contexts, e.g., in molecular dynamics or structural mechan-
ics to mention just a few. Common spatial decomposition methods such as Proper
Orthogonal Decomposition, Principal Component Analysis or the Karhunen-Loève
expansion aim at identifying a subspace of “high-energy” modes onto which the
dynamics is projected (Galerkin projection). These modes, however, may not be
relevant for the dynamics. Moreover these methods tacitly assume that all de-
grees of freedom can actually be observed or measured. An alternative procedure
is known by the name of Balanced Truncation which is a method of model re-
duction for stable input-output systems. Unlike the aforementioned approaches
Balanced Truncation accounts for incomplete observability. It consists in finding
a coordinate transformation such that modes which are least sensitive to the ex-
ternal perturbation (controllability) also give the least output (observability) and
therefore can be neglected. Accordingly, a dimension-reduced model is obtained
by restricting the dynamics to the subspace of the best controllable and observable
modes. A great advantage of the method is that it gives computable a priori error
bounds; a drawback is that it typically fails to preserve the problem’s physical
structure and suffers from lack of stability [1, 2].

Here we adopt the framework of port-Hamiltonian systems which covers the
class of relevant problems and that allows for a generalization of Balanced Trun-
cation to second-order problems, while preserving stability and the underlying
Hamiltonian structure. The restriction to the controllable/observable subspace is
done by imposing a holonomic constraint using techniques from singular pertur-
bation theory for deterministic or stochastic differential equations.

Given a quadratic Hamiltonian H : Rn ×Rn → R, we consider the system

ẋ(t) = (J −D)∇H(x(t)) + Bu(t)

y(t) = C∇H(x(t)) ,
(1)

where J = −JT is the invertible skew-symmetric structure matrix, D = DT � 0,
and y ∈ Rl denotes a linear observable. The function u(·) ∈ Rm may be either
deterministic or random. As can be readily checked, the second-order equation

Mẍ1(t) + Rẋ1(t) + Lx1(t) = B2u(t)

y(t) = C1x1(t) + C2ẋ1(t)

is an instance of the port-Hamiltonian system (1).
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1. Deterministic systems

We shall make precise what it means that a state x ∈ Rn×Rn is controllable or
observable. Let us assume that (1) is stable, i.e., all eigenvalues of A = (J−D)∇2H
are lying in the open left complex half-plane. Let us first confine ourselves to the
case u ∈ L2(R) and consider the controllability function

Lc(x) = min
u∈L2

∫ 0

−∞
|u(t)|2 dt , x(−∞) = 0, x(0) = x

that measures the minimum energy that is needed to steer the system from
x(−∞) = 0 to x(0) = x. In turn, the observability function

Lo(x) =
∫ ∞

0

|y(t)|2 dt , x(0) = x, u ≡ 0

measures the control-free energy of the output as the system evolves from x(0) = x
to x(∞) = 0 (asymptotic stability). It is easy to see that

Lc(x) = xT Q−1x , Lo(x) = xT Px ,

where the controllability Gramian Q and the observability P are the unique sym-
metric solutions of the Lyapunov equations

AQ + QAT = −BBT , AT P + PA = −WT W

with the shorthands A = (J − D)∇2H and W = C∇2H. Moore [3] has shown
that if Q,P � 0 (complete controllability/observability) there exists a coordinate
transformation x 7→ Tx, such that the two Gramians become equal and diagonal,

T−1QT−T = TT PT = diag(σ1, . . . , σ2n) .

The σi are called the Hankel singular values of the system; they are positive
and independent of the choice of coordinates. In the balanced representation all
states that are least controllable also give the lowest output (small Hankel singular
values), and it seems reasonable to truncate these states. The usual approach of
projecting the system onto, say, the first d < 2n column of T does not preserve the
port-Hamiltonian structure as the balancing transformation mixes positions and
generalized momenta. From a physical viewpoint it makes sense to consider the
limit of vanishing small singular values, thereby forcing the system to the chosen
subspace. To this end we scale the Hankel singular values according to

(σ1, . . . , σd, σd+1, . . . , σ2n) 7→ (σ1, . . . , σd, δσd+1, . . . , δσ2n)(2)
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with δ > 0 which implies that the balancing transformation T = Tδ becomes
δ-dependent as well. Upon introducing balanced coordinates ξ = T−1

δ x, the port-
Hamiltonian system (1) becomes the singularly perturbed system of equations

ξ̇δ
1 = (J̃11 − D̃11)

∂H̃δ

∂ξ1
+

1√
δ
(J̃12 − D̃12)

∂H̃δ

∂ξ2
+ B̃1u

ξ̇δ
2 =

1√
δ
(J̃21 − D̃21)

∂H̃δ

∂ξ1
+

1
δ
(J̃22 − D̃22)

∂H̃δ

∂ξ2
+

1√
δ
B̃2u

yδ = C̃1
∂H̃δ

∂ξ1
+

1√
δ
C̃2

∂H̃δ

∂ξ2
,

(3)

where J̃ − D̃ = T−1
1 (J − D)T−T

1 , B̃ = T−1
1 B, C̃ = CT−T

1 , and the partition
of ξ = (ξ1, ξ2) ∈ Rd × R2n−d is according to the separation of singular values.
The balanced Hamiltonian is given by H̃δ(ξ) = H(Tδξ). We have proved in [4]
borrowing arguments from geometric singular perturbation theory that the system
collapses to the controllable/observable subspace as δ → 0. The limit system

ξ̇1(t) = (J̃11 − D̃11)∇H̄(ξ1(t)) + B̃1u(t)

ȳ(t) = C̃1∇H̄(ξ1(t))
(4)

turns out to be a stable port-Hamiltonian system with the effective energy

H̄(ξ1) =
1
2
ξT
1 Ẽ1ξ1 , Ẽ1 = Ẽ11 − Ẽ12Ẽ

−1
22 ẼT

12 ,(5)

where Ẽ = ∇2H̃δ=1 in the last equation. As following from standard singular
perturbation results [5] for linear control systems (4) satisfies the error bound

sup
ω
‖G(iω)− Ḡ(iω)‖ < 4(σd+1, . . . , σ2n) .

Here G and Ḡ are the matrix-valued transfer functions associated with (1) and (4)
and ‖ · ‖ denotes spectral norm.

2. Partially observed Langevin equation

In equation (1), we replace the smooth control variable by Gaussian white noise,
and consider the family of stable hypoelliptic Langevin equations

Ẋε
t = (J −D)∇H(Xε

t ) +
√

εBẆt

Y ε
t = C∇H(Xε

t ) ,
(6)

where Wt is standard Brownian motion in Rn, and the parameter ε > 0 controls
the temperature in the system. If 2D = BBT the system admits the ergodic
invariant measure dµε ∝ exp(−H/ε).

There is no control variable any longer, but we may ask to what extend a state
can be excited by the noise. To this end we define the rate function

Lr(x) = inf
W∈H1

∫ T

0

|Ẇ (t)|2 dt , Xε
0 = 0, Xε

T = x
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and declare that Lr(x) = ∞ if no such realization W ∈ H1([0, T ]) exists. The
typical white noise realizations are only Hölder continuous with exponent α = 1/2,
hence not absolutely continuous. At low temperature, however, Large Deviations
Theory [6] asserts that the realizations of W concentrate around (measure-zero)
paths that are smooth. As we have shown in [7] the rate function is given by

Lr(x) = xT Σ−1
T x , ΣT = E(Xε

T ⊗Xε
T ) .

For T →∞, the rate Gramian (i.e., the covariance matrix) can again be computed
as the unique positive definite solution of the Lyapunov equation

AΣ + ΣAT = −εBB .

Keeping the previous notion of observability (i.e., Lo(x) for ε = 0), we can balance
the system such that states that are most sensitive to the noise also give the
highest output. Scaling the Hankel singular values according to (2) yields again
a singularly perturbed system of the form (3). Unlike in the deterministic case,
sending δ to zero does not result in contraction to the most excitable/observable
subspace but rather in fast random oscillations around this subspace. In the limit
δ → 0 the fast modes become Gaussian random variables with mean −Ẽ−1

22 ẼT
12ξ1

and covariance εẼ−1
22 and the Langevin process Y ε

t = C∇H(Xε
t ) converges in

probability to the solutions of the low-dimensional Langevin equation (cf. [8])

Żε
t = (J̃11 − D̃11)∇H̄(Zε

t ) +
√

εB̃1Ẇt

Ȳ ε
t = C̃1∇H̄(Zε

t )
(7)

with 2D̃11 = B̃1B̃
T
1 and H̄ as given in (5). The reduced system admits an ergodic

invariant measure dρε ∝ exp(−H̄/ε). Moreover H̄ is independent of ε and has the
meaning of the thermodynamical free energy

H̄(z) = −ε lnPε(z) , Pε(z) =
∫

δ(ξ1 − z)dµε .
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[4] C. Hartmann, V.-M. Vulcanov, and Ch. Schütte.Balanced truncation of second-order sys-

tems: structure-preservation and stability, J. Opt. Control (2007), submitted.
[5] Y. Liu and B.D.O. Anderson. Singular perturbation approximation of balanced systems.

Int. J. Control 50 (1989), 1379–1405.
[6] D.W. Stroock and S.R.S. Varadhan.On the support of diffusion processes with applications

to the strong maximum principle. Berkeley Symp. Math. Statist. Prob. 3 (1972) 333–359.
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