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Introduction

Conformational transitions are critical to the function of proteins and nucleic
acids. These transitions span large ranges of length and time scales and in-
clude ligand binding [1], complex conformational rearrangements between na-
tive protein substates [2, 3], and folding [4, 5]. Understanding these processes is
challenging as they often involve various pathways via many intermediate con-
formations. A particular feature of biomolecular systems is metastability which
denotes their property of being localized in a certain region of phase space for
rather long period of times before rapidly moving to another region in which
the dynamics then, again, stays for a very long time [6, 7, 17]. Here ”long”
is meant with respect to the characteristic time scale of the system, e.g., the
typical duration of a molecular bond oscillation.

The purpose of this article is to survey and extend available methods by
which one can identify metastable states in biomolecular time series and estimate
transition probabilities between them. Both the identification of metastable
states and the analysis of the transitions rely on the mathematical concept of
the transfer operator that is associated with the Markovian dynamics and which,
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after a suitable coarse-graining, encodes the desired information (as it was first
shown in [23, 19]). We describe the transfer operator approach following a
three-step procedure. First of all, we introduce metastability as a hierarchical
concept in which the appropriate number of metastable states depends upon
the degree of spatial and temporal resolution that is to be achieved (Section 1).
Secondly, we will give precise mathematical statements about how to cluster a
time series optimally into metastable states; this involves the problem of how to
identify metastable sets at all. For moderate state space dimensions the trans-
fer operator can be computed explicitly by clever discretization and the number
of metastable states is determined by the number of distinguished eigenvalues
close to one (Perron cluster). The metastable subsets are then determined by
the corresponding eigenfunctions. In actual applications a discrete version of
the transfer operator is estimated from a molecular dynamics trajectory (Sec-
tion 2). In addition to the error due to discretization of state space, the transfer
operator carries a statistical uncertainty due to finite data which renders the
corresponding eigenvalues and eigenfunctions to be inaccurate. We propose a
Monte-Carlo method that allows for sampling the variance of the estimated
transfer operator thereby providing estimators for the statistical error of the
eigenvalues and -functions. Knowledge of the statistical error may moreover be
exploited to optimally launch further simulations as to reduce the uncertainties
in the observables of interest [8, 9, 10, 11]. If the problem’s dimension is high,
the transfer operator can no longer be directly computed, which leads over to
the third topic (Section 3): if not the full state space can be discretized, we can
employ Hidden Markov Models (HMM) that, to some extend, account for the
missing information due to neglected degrees of freedom. The HMM method
turns out to be extremely powerful in identifying metastable states and comput-
ing transition probabilities, as we combine it with dynamical output that comes
in form of stochastic differential equations (HMMSDE). The discretization of
the transfer operator based on incomplete information amounts to a very coarse
discretization; hence HMM assumes that the dynamics between the (hidden)
coarse-grained states is still Markovian, i.e., its transition probabilities depend
only on the current state but not on the system’s history.

Once metastable sets have been identified a typical problem consists in the
computation of the respective transition rates or transition pathways. To this
end we introduce the basic concepts of Transition Path Theory (TPT, Section
4). The objective of TPT is to analyse the ensemble of reactive trajectories
between metastable sets thereby allowing, e.g., for a calculation of transition
rates. We illustrate all basic theoretical statements throughout this article with
a small molecular example and conclude the discussion by studying the folding
dynamics of a biophysically relevant protein (Section 5).

1 Metastability

Throughout this article we study homogeneous Markov processes Xt = {Xt}t∈T

on a state space X ⊂ Rn, where T is either continuous or discrete. The dy-
namics of Xt is given by the stochastic transition function

p(t, x, A) = P[Xt+s ∈ A |Xs = x] , (1)
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for every t, s ∈ T, x ∈ X and A ⊂ X. We write X0 ∼ µ, if the Markov
process Xt is initially distributed according to the probability measure µ, i.e.,
P[X0 ∈ A] = µ(A) for all measurable subsets A ⊂ X. We denote by Pµ[·]
the probability measure that is induced by Xt, X0 ∼ µ on X. The transition
function satisfies the Chapman-Kolmogoroff equation [12]

p(t + s, x, A) =

∫

X

p(s, y, A) p(t, x, dy) ,

and we say that the process Xt admits an invariant probability measure µ, if

∫

X

p(t, x, A)µ(dx) = µ(A) .

In the following we shall always assume that the invariant measure of the process
exists and is unique. A Markov process is called reversible with respect to µ, if

∫

A

p(t, x, B)µ(dx) =

∫

B

p(t, x, A)µ(dx)

for every t ∈ T and A, B ⊂ X. If moreover p(t, x, ·) is absolutely continuous
with respect to Lebesgue measure, then we denote by p(t, x, y) the associated
flat-space transition density, i.e., we have

p(t, x, A) =

∫

A

p(t, x, y)dy .

1.1 Transition probabilities and Transfer Operators

Metastability of some subset of the state space is characterized by the property
that the dynamics is likely to remain inside this subset for a long period of time
before it eventually exits. In the literature, there are various related but yet
different definitions of metastability, e.g., [13, 14, 15, 16]); cf. also [17].

In this article we will focus on an ensemble-based concept as will be out-
lined below and is described in detail in, e.g., [17]. The objective is to find
an optimal decomposition of the state space into metastable subsets and the
”hopping dynamics” between these subsets. Specifically, a decomposition D =
{D1, . . . , Dm} of the state space X consists of a collection of subsets Dk ⊂ X

with the following properties: (1) positivity, i.e., µ(Dk) > 0 for every k, (2)
disjointness Dj ∩ Dk = ∅ for all j 6= k up to sets of measure zero, and (3) the
covering property ∪m

k=1Dk = X.
Given a Markov process Xt with X0 ∼ µ, we define the transition probability

p(t, Dj , Dk) from Dj ⊂ X to Dk ⊂ X within time t as the conditional probability

p(t, Dj , Dk) = Pµ[Xt ∈ Dk |X0 ∈ Dj ] =
Pµ[Xt ∈ Dk & X0 ∈ Dj]

Pµ[X0 ∈ Dj ]
(2)

which, assuming absolute continuity of p(t, ·, y) with respect to µ, equals

p(t, Dj , Dk) =
1

µ(Dj)

∫

Dj

p(t, x, Dk)µ(dx) . (3)
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In other words, the transition probability measures the dynamical fluctuations
within the stationary ensemble µ. Consequently, we may call a subset Dk ⊂ X

metastable on the time scale τ > 0, if

p(τ, Dk, Dc
k) ≈ 0 or, equivalently, p(τ, Dk, Dk) ≈ 1,

where Dc
k = X \ Dk denotes the complement of Dk in X.

Transfer Operator. We define the semigroup of Markov propagators or for-
ward transfer operators P t : Lr(µ) → Lr(µ) with t ∈ T and 1 ≤ r < ∞ by

∫

A

P tv(y)µ(dy) =

∫

X

v(x)p(t, x, A)µ(dx)

for any measurable A ⊂ X. If µ is invariant under the dynamics Xt, then it
is easy to see that the characteristic function 1X ∈ L1(µ) of the entire state
space is an invariant density of P t, i.e., we have P t1X = 1X. As following from
its definition, P t conserves norm, ‖P tv‖1 = ‖v‖1 and positivity, i.e., P tv ≥ 0
whenever v ≥ 0. Hence, P t is a Markov operator.

If we furthermore suppose that both µ and p(t, x, ·) are absolutely continuous
with respect to Lebesgue measure, the expression for the propagator P t becomes

P tu(y) =

∫

X

kt(y, x)u(x)µ(dx) , (4)

where µ(dx) =: µ(x)dx, and we have introduced the transition kernel

kt(y, x)µ(x) = p(t, x, y) (5)

that is defined for all x, y for which µ > 0. Obviously, the transition kernel
satisfies

∫

X

kt(y, x)µ(y)dy = 1 , ∀(x, t) ∈ X× T . (6)

For a reversible process the transition kernel is symmetric, i.e.,

kt(x, y) = kt(y, x).

Key idea of the transfer operator approach. The identification of a
metastable decomposition is based on the following scheme.

Given τ > 0, the number of metastable states is given by the number
of eigenvalues of the propagator P τ close to its maximum eigenvalue
one including itself and counting multiplicity. The metastable sets
can then be computed from the corresponding eigenfunctions.

This strategy that is outlined in more detail below was first proposed by
Dellnitz and Junge [18] for discrete dynamical systems with weak random per-
turbations. It has been successfully applied to molecular dynamics in various
contexts, e.g., [17, 19, 20]. The key idea requires that two conditions on the
spectrum of the transfer operator P τ hold true, namely,

(C1) The essential spectral radius of P τ is strictly less than one.
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(C2) The eigenvalue λ = 1 is simple and dominant, i.e., η ∈ σ(P τ ) with |η| = 1
implies that η = 1.

In this work, we confine our attention to two types of Markov process: (1)
overdamped Langevin processes (i.e., diffusion processes), and (2) constant-
temperature molecular dynamics (e.g., Nosé-Hoover heat baths). For either
case the dynamics is reversible and the transfer operator is self-adjoint. For
type (1) systems, conditions (C1)–(C2) are known to be met under relatively
weak growths conditions on the potential (see [17]). For systems of type (2),
it is unknown whether conditions (C1)–(C2) hold. Nonetheless we include this
class of systems here, for they are prevalently used and it is typically assumed
that they fulfil the requirements for all practical purposes (i.e., for sufficiently
high-dimensional molecules in solution).

We now come to define the metastability of a decomposition D as the sum
of the metastabilities of its subsets: Suppose, we fix τ > 0. Then, given an
arbitrary decomposition Dm = {A1, . . . , Am} of X into m distinct sets, we
define the metastability of Dm as

meta(Dm) =

m
∑

j=1

p(τ, Aj , Aj)/m.

Hence, for each m, the optimal metastable decomposition Dm can then be
defined as the decomposition that maximizes meta(·). The next result is due
to [21] and provides the rationale behind the key idea of the transfer operator
approach.

Theorem 1.1. Let P τ : L2(µ) → L2(µ) be a reversible propagator that satisfies
(C1) and (C2). Then P τ is self-adjoint, and its spectrum is of the form

σ(P τ ) ⊂ [a, b] ∪ {λm} ∪ . . . ∪ {λ2} ∪ {1} ,

where −1 < a ≤ b < λm ≤ . . . ≤ λ1 = 1. The metastability of an arbitrary
decomposition Dm = {A1, . . . , Am} of X is bounded from above by

p(τ, A1, A1) + . . . + p(τ, Am, Am) ≤ 1 + λ2 + . . . + λm ,

where the isolated eigenvalues λ1, . . . , λm are counted according to their multi-
plicity. Let further v1, . . . , vm be the corresponding normalized eigenfunctions,
and let Q denote the orthogonal projection of L2(µ) onto span{1A1 , . . . ,1Am

}.
The lower metastability bound of the decomposition D then is

1 + κ2λ2 + . . . + κmλm + c ≤ p(τ, A1, A1) + . . . + p(τ, Am, Am) ,

where κj = ‖Qvj‖2
L2(µ) and c = a (1 − κ2 + . . . + 1 − κn).

Theorem 1.1 establishes a relation between the state space decomposition
into metastable subsets and the Perron cluster of dominant eigenvalues close to
1. In particular it states that the metastability of an arbitrary decomposition
Dm cannot be larger than the sum of the first m eigenvalues of the transfer
operator. The lower metastability bound is close to the upper bound, when-
ever the dominant eigenfunctions are almost constant on the metastable subsets
A1, . . . , Am; in this case, as can be seen easily seen, we have κj ≈ 1 and c ≈ 0.
Moreover both lower and upper bound are sharp and asymptotically exact [21].
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1.2 Metastability Analysis is Hierarchical

The fundamental finding of Theorem 1.1 is that metastability analysis is a hi-
erarchical endeavour ; for instance, if we have found the optimal metastable
decomposition into, say, D2 using 2 metastable subsets, it might still be possi-
ble that one of the subsets can be decomposed further into metastable sets; this
would give rise to a decomposition D3 into three sets that would yield almost
the same metastability, meta(D3) ≈ meta(D2).

If the spectrum of the transfer operator has a pronounced gap after the m-th
dominant eigenvalue, then the results in, e.g., [22, 13] show that any decompo-
sition into more than m sets will have a significantly reduced metastability in
terms of the function meta(·). In the context of molecular dynamics applica-
tions, however, one should always be aware that particular aspects of interest
may make it desirable to explore the hierarchy of metastable decompositions
up to a certain level that is not necessarily optimal in the sense of maximizing
metastability.

2 Discretization

Let χ = {χ1, . . . , χn} ⊂ L2(µ) denote a set of non-negative functions that are
a partition of unity, i.e.,

∑n
k=1 χk = 1X. We define the Galerkin projection

Gn : L2(µ) → Sn onto the finite-dimensional space Sn = span{χ1, . . . , χn} as

Gnv =

n
∑

k=1

〈v, χk〉µ
〈χk, χk〉µ

χk.

If we apply the Galerkin projection to the infinite-dimensional eigenvalue prob-
lem P τv = λv we obtain an eigenvalue problem for the discretized propagator
P τ

n = GnP τGn acting on the finite-dimensional space Sn. The matrix represen-
tation of the finite-rank operator P τ

n is an n × n transition matrix T = (Tkl)
with entries

Tkl =
〈P τχk, χl〉µ
〈χk, χk〉µ

. (7)

The finite-rank operator P τ
n inherits basic properties of the transfer operator

P τ : Its matrix T is a stochastic matrix with invariant measure that is given by
the projection invariant measure µ of P τ to Sn. Moreover, T is reversible, if P τ

is self-adjoint, and, assuming the discretization is fine enough, it also exhibits
a Perron cluster of eigenvalues that approximates the corresponding Perron
cluster of P τ with eigenvectors that approximate the dominant eigenvectors
of the original transfer operator [17]. Hence the transition matrix T allows
for computing metastable sets by computing the dominant eigenvectors and
employing an aggregation technique that is known by the name of ”Perron
Cluster Cluster Analysis” (PCCA) and which is based on the identification
strategy described on page 4; we refer to [23, 24] for details.

The entries of T can be computed from realizations of the underlying Markov
process Xt. Letting Ex denote the expectation of Xt started at X0 = x, and
using that p(τ, x, Dl) = Ex(χl(Xτ )), where Dl = supp(χl), we have

Tkl =
1

〈χk, χk〉µ

∫

X

χk(x)Ex[χl(Xτ )] µ(dx).
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If x0, . . . , xN denote a time series obtained from a sufficiently long realization of
the Markov process with time step τ , then the entries of T can be approximated
by the relative transition frequencies

Tkl ≈ T
(N)
kl =

∑N
j=1 χk(xj) · χl(xj+1)
∑N

j=1 χk(xj)2
. (8)

The rightmost expression in the last equation is the Maximum-Likelihood
estimator of the spatially discretized transfer operator T ; see formula (9) below,
where also the sampling error of the transition matrix is discussed. The cal-
culation of the relative frequencies may become problematic, even though the
time series is very long. Let alone the dimension of state space, we often face

what is called the trapping problem. The rate of convergence of T
(N)
kl → Tkl

as N → ∞ depends on the smoothness of the partitioning functions χk as well
as on the mixing properties of the Markov process [25]. Especially mixing is
crucial as convergence is geometric with a rate constant λ1−λ2 = 1−λ2, where
λ2 denotes the second largest eigenvalue. If the system is metastable, we have
λ2 ≈ 1, hence convergence is extremely poor. For realistic biomolecular system
this will typically be the case, and, in fact, there is a huge amount of articles
in the literature that deals with the question of how to overcome the trapping
problem in molecular simulations. We will not take up the discussion about the
sampling problem that is beyond the scope of this article and refer the interested
reader to the relevant literature, e.g., [26, 27].

Henceforth we shall suppose that we have already a ”sufficiently long” time
series in the sense that it contains enough statistical information about some
— but not necessarily all — revelant metastable states of the system. We
denote this time series by {Xt}t=t0,...,tN

with Xti
∈ X ⊆ Rn being either the

atomic positions and/or momenta or some lower-dimensional observable, e.g.,
certain dihedral angles or base-pair parameters. Let us further assume that
{Xt0 , Xt1 , . . .} comes with a uniform time step τ = tk−1 − tk. Setting t0 = 0 we
thus have tk = kτ and T = tN = Nτ which, to simplify notation, will be often
written as t = 0, ..., N .

A remark is in order: it can be proved [17] that the finite-dimensional
Galerkin basis χ = {χ1, . . . , χn} yields a transition matrix (Tij) that converges
to the continuous operator as n → ∞ and diam(supp(χk)) → 0. That is, if
the partition defined by χ is sufficiently fine we can approximate the continu-
ous transfer operator by simply counting transitions between the sets on which
the χk are supported, provided the time series is sufficiently long. However
avoiding a combinatorial explosion of discretization ”boxes” as the dimension
of state space increases, we will often employ a very coarse partition, e.g., by
considering only parts of the variables that are assumed to be significant for
the conformation dynamics (in this case the χk are supported on non-compact
cylindrical sets). We shall suppose that the dynamics between the coarse sets
is Markovian, i.e., the transition probabilities to go from one set to another
depends only the current state but not on the process’ history; this will be,
for example, the case if the unresolved part of the dynamics is sufficiently fast
mixing. In general, the appropriate choice of the discretization boxes so as to
ensure the Markov property is non-trivial, and we refer to, e.g., the articles
[28, 29, 30] for a discussion of the subject.

Furthermore, as we will see in Sec. 2.3.5, that it may be of interest to use
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Galerkin subspaces that are not spanned by characteristic functions belonging
to some kind of discretization boxes but subspaces spanned by smooth functions
with overlapping support (so-called fuzzy Galerkin discretizations of the transfer
operator, cf. [58]).

2.1 Error Estimation

Let χ = {χ1, . . . , χn} be characteristic functions, i.e.: χk(x) ∈ {0, 1} ∀x, such
that the transitions between discrete states are unambiguously identifiable and
countable. We furthermore assume that jump process between discrete states
is Markovian.

Let then the frequency matrix C = (cij) count the number of observed
transitions between states, i.e., cij is the number of observed transitions from
state i at time t to state j at time t + τ , summed over all times t. In the limit
of an infinitely long trajectory, the elements of the true transition matrix are
given by the trivial estimator:

T̂ij(τ) =
cij

∑

k cik
=

cij

ci
, (9)

where ci :=
∑m

k=1 cik is the total number of observed transitions leaving
state i. For a trajectory of limited length, the underlying transition matrix
T (τ) cannot be uniquely determined. The probability that a particular T (τ)
would generate the observed trajectory is given by:

P[C|T ] =

m
∏

i,j=1

T
cij

ij

Conversely, the probability that the observed data was generated by a par-
ticular transition matrix T (τ) is

P[T |C] ∝ P[T ]P[C|T ] = P[T ]
∏

i,j∈S

T
cij

ij , (10)

where P[T ] is the prior probability of transition matrices before observing
any data. It turns out that T̂ (τ), as provided by (9), maximizes P[C|T ] and
therefore also P[T |C] on condition that the transition matrices are uniformly
distributed a priori. In the limit of infinite sampling, P[T |C] converges towards
a delta distribution with its peak at T̂ (τ). When sampling is finite, the uncer-
tainties of the entries of T̂ (τ) may be estimated by the element-wise standard
deviations of P[T |C].

In general, one is interested in computing a particular property, f(T (τ)),
from the transition matrix. The symbol f may represent any smooth function,
decomposition or algorithm, such as the eigenvalues- or eigenvectors. One is
then interested how the uncertainty of the transition matrix, induced by the
distribution P(T |C), carries over to uncertainties in the target function. In other
words, for a given observation C, what is the distribution of target functions,
P[f(T )|C] and its standard deviation?

Approaches to estimate the standard deviation based on first-order pertur-
bation theory and Dirichlet sampling have been proposed in [8]. While being
computationally efficient, these approaches do not allow for conserving of a num-
ber of physically meaningful constraints. In particular, only stochastic matrices
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should be considered (Tij ≥ 0 and
∑

j Tij = 1 ∀i, j), and for molecular transi-
tions that are in equilibrium (not driven by an external force), detailed balance
is expected to hold (πiTij = πjTij ∀i, j), where πi is the stationary probability
of state i. A general method to sample transition matrices according to these
constraints can be based on Markov Chain Monte Carlo (MCMC): Here, one
generates a series of matrices, T (k), k = 1...N , distributed according to P[T |C],
which can be used to compute a distribution of f(T ). MCMC iterates proposal
and acceptance steps. Given a current matrix T (k), a new matrix T ′ is proposed
based in some stochastic manner. There are many possible choices of proposal
steps. For correctness, it is only required that the probabilities for the forward
and backward proposal, P[T (k) → T ′] and P[T ′ → T (k)], can be evaluated, and
that any matrix of the distribution can be generated from any other matrix
within a finite series of proposal steps. Then, the proposed matrix is accepted
with probability:

paccept =
P[T ′ → T (k)]

P[T (k) → T ′]

P[T ′|C]

P[T (k)|C]
. (11)

Upon acceptance, the proposed matrix becomes a member of the sample,
T (k+1) := T ′, while upon rejection, the previous matrix is accounted for again:
T (k+1) := T (k). Efficient approaches to generate transition matrices according
to such a scheme are described in [57].

2.2 Illustrative Example and PCCA

In the following we present results for the analyis of the dynamical behaviour
of trialanine, a small peptide composed of three alanine amino acid residues.

For the molecular dynamics simulation of trialanine we have used the Gro-
mos96 vacuum force field [31] in which trialanine is represented by 21extended
atoms. The structural and dynamical properties of this molecule are mainly
determined by two central peptide backbone angles Φ and Ψ. In addition, at
very high temperatures, the otherwise planar peptide bond angle Ω may also
undergo some conformational transition (see Figure 1).

The time series of 50000 steps has been generated by means of Hybrid Monte
Carlo (HMC) at a temperature of 700 K [32]. The deterministic proposals for
HMC are generated by running a 500fs trajectory employing the Verlet inte-
gration scheme with a time step of 1fs, yielding an acceptance rate of about 93
percent.

Figure 1: The trialanine molecule shown in ball-and-stick representation. At
room temperature the overall structure of trialanine is sufficiently described
by the two torsion angles Φ and Ψ, whereas at higher temperature also the
dynamics of the peptide bond angle Ω becomes nontrivial.
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From the thus obtained time series we compute the observation sequences in
Φ, Ψ, and Ω. The space spanned by these three torsion angles is the compact
3-torus T3 = S1 ×S1 ×S1 and will be called the torsion space in the following.
The empirical distribution on torsion space is shown in Figure 2, where we have
shifted the periodic intervals so as to avoid cut-offs.

Figure 2: Observation time series from MD simulation of trialanine. Empirical distribution
on torsion space.

We find that the molecular dynamics torsion space does not explore the 3-
torus uniformly; rather we see five clearly pronounced clusters in left panel of
Figure 3. The different colours for the clusters have been assigned by clustering
the entire data set using the K-means algorithm, whereby each data point is as-
signed to exactly one cluster. As the K-means algorithm clusters data according
to geometric distance in torsion space, we call the resulting clusters geometric
clusters. Other algorithms for geometric clustering result in almost the same
cluster assignment in this case.

Figure 3: Left: Clustering of sampling distribution in torsion space into 5 geometric clus-
ters (see text). Right: Colouring of the original time series according to geometric cluster
assignment. Remark: In the subsequent the following numbering of these geometric clusters
is used: number 1 corresponds to the red cluster, number 2 to the blue one, 3 to green, 4 to
black, and 5 to yellow.

Uniform box discretization. The available time series is now used to dis-
cretize the transfer operator according to the procedure described on page 4.
We choose a uniform box discretization of torsion space into 303 boxes, i.e., each
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dimension is uniformly discretized into 30 boxes. This results in a transition
matrix with many null columns and rows, for not all boxes are visited by the
dynamics. By ignoring such boxes 1451 boxes remain, and we end up with a
reversible 1451×1451 transition matrix T . Figure 4 illustrates the sparsity pat-
tern of T ; the numerically computed first six eigenvalues are shown in Table 1.
Assuming that the data set contains indeed five metastable sets and clustering
according to the five first eigenfunctions, it turns out that the metastable sets
are almost identical with the geometric clusters obtained by K-means (see also
the discussion below Figure 6).

k 1 2 3 4 5
λk 1.0000 0.9993 0.9992 0.9937 0.9773

Table 1: Five dominant eigenvalues of the transition matrix as resulting from
direct discretization of the transfer operator by uniform discretization of torsion
space into 303 boxes. All following eigenvalues are considerably smaller.

Of course, we might as well try to identify, say, the first M = 3 dominant
metastable sets. To this end we carry out the robust version of the Perron-
Cluster Cluster Analysis (PCCA) described on page 4. A detailed description
of this particular variant, PCCA+, can be found in [24]. PCCA+ proceeds by
plotting the entries of the second eigenvector v2 to the dominant eigenvalue λ2

against the the entries of the third eigenvector, v3, corresponding to λ3: the
first eigenvector, v1, is constant and can be ignored. The entries of v2 and
v3 represent the values of the eigenvectors in the respective discretization box
in torsion space, i.e., each box is mapped to a point in v2-v3 plane. It has
been shown in [24] that the resulting points lie in the edges of a triangle as is
illustrated in the right panel of Figure 4 below. PCCA+ eventually identifies
the three dominant metastable sets as the aggregation of boxes belonging to the
same cluster in the triangle.
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Figure 4: Results of uniform discretization of the transfer operator. Left: Sparsity pattern of
the resulting dicretization matrix after uniform discretization of torsion space into 303 boxes.
Right: Plot of second versus third eigenvector; colouring according to the scheme introduced
in the caption of Figure 2. Obviously, all boxes from the black cluster get mapped to almost
the same point, while the outmost blue squares also represents thousands of images of boxes
from the blue cluster.

If each point in the right panel of Figure 4 is coloured according to the
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scheme that is described in the caption of Figure 2, it turns out that the first
two metastable sets found by PCCA+ are identical with the black and blue
geometrical clusters, respectively, while the the third metastable set is the ag-
gregation of the three remaining geometric clusters (see Figure 5).

Figure 5: Aggregation of distribution in torsion space into 3 metastable sets according to
PCCA+ based on uniform box discretization of the transfer operator.

Finally, we can aggregate the transition matrix into a 3× 3 matrix coupling
matrix between the three dominant metastable sets as resulting from PCCA+
after discretization of the torsion space transfer operator into 303 boxes:

TPCCA,discr =





0.9999 0.0001 0.0000
0.0024 0.9975 0.0001
0.0051 0.0022 0.9927



 .

Next, we let PCCA+ find M = 4 dominant metastable sets, in the course
of which the hierarchical aspect of metastability analysis should become clear.
The analysis is now based on the eigenvectors v2, v3 and v4, and we have to
consider the projections onto the v1-v2-v3 space as is shown in Figure 6. By
comparison with the right panel of Figure 4 this demonstrates that the first
three of the four dominant metastable sets are given by the black, blue, and
red geometric cluster, while the fourth is the aggregation of the yellow and the
green geometric cluster. That is, the four dominant metastable sets results from
decomposition of one of the three dominant metastable sets into two different
subsets.

Discretization based on geometric clustering. Several articles advocate
taking geometric clusters as discretization boxes for the transfer operator, e.g.,
[29]. Following this route yields the discretization matrix

T =













0.9328 0 0.0522 0 0.0149
0 0.9952 0 0.0048 0

0.0091 0 0.9486 0 0.0423
0 0.0000 0 0.9999 0.0001

0.0011 0 0.0143 0.0021 0.9825













,
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Figure 6: Results of uniform discretization of the transfer operator. Two different projections
of the v1, v2, v3-map. Left: onto the v1-v3 plane. Right: onto the v2-v3-plane.

k 1 2 3 4 5
λk 1.0000 0.9986 0.9952 0.9415 0.9173

Table 2: Complete set of eigenvalues as resulting from discretization of the
transfer operator by discretization of torsion space into 5 boxes resulting from
K-means clustering.

where the boxes are numbered according to numbering given in the caption of
Figure 3. Its eigenvalues are given in Table 2 below.

We observe that all 5 clusters are metastable sets (as expected). However,
we also observe significant deviation between the fourth and fifth of these eigen-
values and the respective eigenvalues resulting from uniform box discretization
(see Table 1). The deviations may be explained by the coarseness of the ge-
ometric clusters as discretization boxes, but it also raises the question of the
statistical reliability of the corresponding eigenvalues. Indeed, Figure 7 shows
the distribution of the eigenvalues that is obtained from the distribution of the
clusters’ transition matrices which indicates a large variance of fourth and fifth
eigenvalue (cf. Section 2.1).

In order to identify the three dominant metastable sets based on the K-means
discretization we again apply PCCA+ to the eigenvectors associated with the
three dominant eigenvalues. The result is visibly indistinguishable from the one
displayed in Figure 5. The similarity of the result to the result of the uniform
discretization demonstrates that in this particular case the geometric clusters
give the appropriate discretization boxes.

A warning. We have to keep in mind that the geometric clusters are based
on Euclidean distances, and hence do not incorporate kinetic information. Ac-
cordingly geometric clustering cannot distinguish between geometrically similar
configurations that are kinetically separated. This problem is expected to be-
come more severe as the dimensionality of the system increases, for situations
may easily occur in which a strong change in one important degree of freedom
leads into a new metastable set while a slight changes in many variables does
not lead into a new metastable set; nonetheless, these two changes may be sim-
ilar in terms of Euclidean distances. This results in general inappropriateness
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Figure 7: Distribution of eigenvalues as computed from the distribution of reversible tran-
sition matrices.

of geometric clusters for discretization of the transfer operator. In contrast to
”blind” geometric clustering, the adaptive refinement of geometric clusters in
such a way as to maximize the metastability between sets may be a useful ap-
proach for high-dimensional systems [29]. In typical cases the resulting cluster
discretization can contain quite large numbers of geometric clusters that resolve
rather fine details of the underlying distribution in state space (see Section 5).

2.3 Kernel Approximation

The discretization of the transfer operator becomes a tedious issue, or even im-
possible, if the dimension of state space is high. On the other hand, geometric
clustering methods may provide a loophole from the curse of dimensions, but
are in danger of ignoring the kinetic separation of geometrically close conforma-
tions. Consequently, we shall ask: is there a way to apply geometric clustering
without ignoring the kinetic separation of states? Fortunately, we can answer
this question in the affirmative, and we devote the next section to this problem.
We start with some preliminary considerations.

2.3.1 Ornstein-Uhlenbeck kernels

Consider an Ornstein-Uhlenbeck (OU) process

dXt = −F (Xt − x̄) + ΣdWt , X0 = x0 (12)

with W (t) denoting Brownian motion in X ⊆ Rn Σ ∈ Rn×n, and F ∈ Rn×n

being symmetric and positive definite. Its solution Xt is a time-homogeneous
Markov process with transition function that is absolutely continuous with re-
spect to Lebesgue measure on Rn. If we set B = ΣΣT , the flat-space transition
density at time t assumes the form

p(t, x0, x) = Z(t) exp

(

−
1

2
(x − ξ(t))T C(t)−1(x − ξ(t))

)

,
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where we have used the shorthands ξ = x̄ + exp(−tF )(x0 − x̄) and Z =
(2π)−n/2(detC)−1/2. The symmetric, positive definite matrix C can be shown
to be the unique solution of the Lyapunov equation

C(t)FT + FC(t) = B − exp(−tF )B exp(−tFT ) .

The corresponding invariant measure is absolutely continuous with respect to
Lebesgue measure. Its density reads

µ(x) = Z∞ exp

(

−
1

2
(x − x̄)T C−1

∞
(x − x̄)

)

,

with Z∞ = (2π)−n/2(detC∞)−1/2 and C∞ being the unique positive-definite
solution of the Lyapunov equation C∞FT + FC∞ = B. The associated (un-
weighthed, i.e., flat-space) Markov propagator P t : Lp → Lp then is

P tf(x) =

∫

p(t, x0, x)f(x0)dx0 .

The object of interest in this section is the sampling kernel

κt(x0, x) = p(t, x0, x)µ(x0) , (13)

that can be directly computed from numerical trajectories of the OU process as
we will show below. The µ-weighted version of the transition kernel, equation
(5), has been introduced in Section 1. In terms of the sampling kernel the
weighted transition kernel reads

kt(x, x0) =
1

µ(x)
p(t, x0, x) =

1

µ(x)
κt(x0, x)

1

µ(x0)
.

Using the expression for µ above, the sampling kernel can be expressed as

κt(x0, x) = Z(t)Z∞ exp

(

−
1

2
((x − x̄)T , (x0 − x̄)T )C(t)−1

(

x − x̄
x0 − x̄

))

(14)

with

C−1 =

(

C−1 C−1 exp(−tF )
exp(−tFT )C−1 exp(−tFT )C−1 exp(−tF ) + C−1

∞

)

.

The sampling kernel is in one-to-one correspondence with the parameters of
the OU process, and can therefore be used to estimate the unknown parameters
of a stochastic process. If the transition kernel is given in terms of its covariance
matrix C, the respective parameter matrices are given by

exp(−tF̂ ) =M−1
11 M12

Ĉ−1
∞

=M22 − MT
12M

−1
22 M12

B̂ =Ĉ∞F̂T + F̂ Ĉ∞ ,

(15)

where we used the notation

C−1 =

(

M11 M12

MT
12 M22

)

.
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2.3.2 Invariant Measure of Transition Kernels

Whenever the sampling kernel κt is known, the associated invariant measure is
obtained upon integration, viz.,

µ(x) =

∫

p(t, x0, x)µ(x0)dx0 =

∫

κt(x0, x)dx0 .

Here p(t, ·, ·) denotes the associated flat-space transition function. For Gaussian
transition kernels with stationary covariance matrix C we get

µ(x) ∝ exp

(

−
1

2
xT Ĉ−1

∞
x

)

, Ĉ∞ = M22 − MT
12M

−1
11 M12.

2.3.3 Gaussian approximation of sampling kernels

Let κt(x, y) denote the sampling kernel of some Markov process. Our algorith-
mic strategy will be to approximate κt by a superposition of Gaussian sampling
kernels: Let some not loo large integer M be given. We are interested in finding
the optimal approximation of κt by a superposition of M Gaussian sampling
kernels, i.e., we intend to solve the optimization problem

∥

∥

∥

∥

∥

κt(x, y) −
M
∑

k=1

αiκi,t(x, y)

∥

∥

∥

∥

∥

→ min
αi,κi,t

, (16)

where the αi are positive weights, {κi,t}i is a collection of Gaussian sampling
kernels and ‖ · ‖ is some appropriate norm. There are several algorithms for
solving this optimization problem even in higher dimensions, e.g., [33, 34], where
the appropriate algorithm clearly depends on the specific choice of ‖ · ‖.

Apart from the question of how to solve the optimization problem it is
important to notice that the kernel approximation requires to solve only a purely
static problem that, nevertheless, incorporates the complete dynamics via the
sampling kernel κt, thereby respecting the kinetics of the problem.

2.3.4 Additive kernels and metastability

In order to understand the properties of processes which sampling kernels are
superpositions of Gaussian kernels we first have to study additive kernels.

Let ki,t, i = 1, . . . , M , be collection of Markovian transition kernels with
absolutely continuous invariant probability measures µi on the joint state space
X. We consider the mixed kernel

µ(x)kt(x, y)µ(y) =

M
∑

i=1

αiµi(x)ki,t(x, y)µi(y) ,

that is a convex combination of the ki,t, i.e., the coefficients αi sum up to one.
By linearity it then follows that µ =

∑

i αiµi is the invariant measure of the
mixed kernel that is absolutely continuous with respect to Lebesgue measure.
We need the following definition.
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Definition 2.1. Suppose that µ > 0 almost everywhere. The (mixed) transition
kernel kt is called ǫ-metastable, if and only if

Oij =

∫

X

µi(x)µj(x)

µ(x)
dx ≤ ǫ.

for all i, j = 1, . . . , N with i 6= j.

Almost invariant densities of k. It is convenient to weight the µi against
the invariant measure µ of the mixed process. The weighted densities

Φi(x) =
µi(x)

µ(x)

are obviously in L1(µ). The condition for ǫ-metastability translates into

Oij = 〈Φi, Φj〉µ ≤ ǫ , (17)

where 〈·, ·〉µ denotes the inner product in L2(µ),

〈u, v〉µ =

∫

X

u(x)v(x)µ(x) dx .

The following statement can be proved.

Theorem 2.1. Let the mixed transition kernel kt =
∑M

i=1 ki,t be ǫ-metastable
with invariant measure µ > 0 (almost everywhere). Assuming that the probabil-
ity measures µi of the local kernels ki,t are absolutely continuous with respect to
Lebesgue measure µi, we have

‖kt ◦ Φi − Φi‖1,µ ≤ 2(1 − αi) ǫ.

for all i = 1, . . . , M , where

(kt ◦ Φi) (y) =

∫

X

kt(y, x)Φi(x)µ(x)dx .

Key observation: Too much metastability. When one considers additive
kernels that result from the optimal approximation of the sampling kernel of a
given process then one typically observes the following (cf. [35]): The almost
invariance of the Φi that is estimated via Theorem 2.1 is far more pronounced
than the metastability in the original process. A moment of reflection tells us
why: for unweighted norms the optimal Gaussian approximation of the sam-
pling kernel in the sense of (16) does not lead to an accurate approximation in
the improbable transition regions between the main centers of the metastable
sets. In fact, the localized Gaussian kernels decay exponentially fast in the
overlap regions, whereas the transition regions of the full transition kernel are
significantly larger, though, still small enough such that they do not contribute
to the total approximation error. Hence, the approximate kernel

∑

i αiκi is
much smaller in the transition regions than the original sampling kernel, thus
the frequency of transitions is much smaller and the metastability is much more
pronounced. In order to correct for this problem we have to add an appropriate
amount of transitions to our description.
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2.3.5 Assignment to metastable and transition states

In order to estimate the number of transitions correctly we count the transitions
in an available molecular dynamics time series X = {Xk}k=1,...,N+1. From this
we obtain the time series Z = {Zk}k=1,...,T with Zk = (Xk, Xk+1) that is
underlying the sampling kernel.

Let us suppose that we decompose the dynamics into M metastable sets.
Then each point in the time series X can be assigned to either state by means
of the almost invariant densities Φi, i = 1, . . . , M , i.e., we define the core sets

Mi = {Xk : 1 ≤ k ≤ N + 1, Φi(Xk) > θ‖Φi‖∞}, i = 1, . . . , M .

where θ > 0.5 is some appropriate user-selected threshold (e.g., θ = 0.95). These
core sets may thought of the regions surrounding the deepest energy minima of
the system, which were defined manually in Ref. [36] If the overlaps between
the local densities Φi are small enough, we may assume that Mi ∩Mj = ∅ for
i 6= j. All other data points Xk will be assigned to the transition set

M0 = {Xk : 1 ≤ k ≤ N + 1, Φi(Xk) ≤ θ‖Φi‖∞, i = 1, . . . , M} .

Transitions are events (k, Xk) with Xk ∈ Mj for any j = 0, . . . , M and Xk+1 6∈
Mj . Accordingly, we can classify transitions in terms of the time series Z. To
this end we define

Mij = {Zk = (Xk, Xk+1) : 1 ≤ k ≤ N, Xk ∈ Mi and Xk+1 ∈ Mj} .

If we let #A denote the number of elements in the set A, then

#Mi =
∑

j

#Mij , i = 0, . . . , M ,

counts the transitions to the coarse-grained sets M0, . . . ,MM within a single
time step. The corresponding optimal Maximum-Likelihood transition matrix
under the observation {Xk}k=0,...,T has the entries

p(i, j) =
#Mij

#Mi
. (18)

If the transition set M0 is further subdivided to optimize metastability this way
of deriving a transition matrix between metastable sets is quite similar to the
approach suggested in [36], where the trajectory was cut into pieces, each of
which connected two different core regions, counting a transition for each such
piece. This similarity become very close, if we use the Φi as Galerkin ansatz
functions for the discretization of the transfer operator.

2.3.6 Illustrative example revisited

We consider the trialanine example from the previous section, and define the
sampling sequence Z = {Zk}k=1,...,N with Zk = (Xk, Xk+1) from the original
time series X = {Xk}k=1,...,N+1. Next, we solve the discrete analogue of the
optimization problem (16): Find κ =

∑

i αiκi with stationary Gaussian kernels
κi that optimally approximate the empirical distribution generated by Z. One
possibility to do this is to maximize the likelihood of observing of Z given κ. This
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leads to the following Maximum-Likelihood problem: Let M be fixed, identify
κi by its mean z̄i and its covariance matrix Ci, aggregate z̄ = (z̄1, . . . , z̄M ) and
C = (C1, . . . , CM ), then maximize

P [Z|α, z̄, C] =
N
∏

j=1

M
∑

i=1

αiκi(Zj) (19)

over all admissible parameters α, z̄, C, where admissible means that the Ci are
symmetric and positive definite, and

∑

αi = 1. Herein, we use the HMMGauss
algorithm to compute the optimal parameters (α, z̄, C) for the trialanine data;
see the next section for details. Setting M = 5, the output of HMMGauss is
employed to, firstly, compute the functions Φi and the sets Mi for i, j = 1, . . . , 5
with the resulting Mij , and then, secondly, the transition set M0 following to
the procedure described in the last subsection. The result is illustrated in the
top panel of Figure 8.

Figure 8: Aggregation of the empirical distribution on torsion space via kernel approximation
based on HMMGauss (see text). Right: Aggregation into 6 sets: Mi, i = 1, . . . , 5, and the
transition set M0. The five metastable sets Mi, i = 1, . . . , 5 almost agrees with the geometric
clusters (colouring accordingly); points in M0 are shown as magenta crosses. Left: Further
aggregation into 3 metastable sets as resulting from PCCA+ (see text).

We observe that the five metastable sets Mi, i = 1, . . . , 5 are almost iden-
tical with the five geometric clusters. Additionally, the transition set M0 is
clearly visible between the green and the yellow set. Taking these six sets as
discretization boxes for the discretization of the transfer operator and apply-
ing PCCA+ with the aim of finding three dominant metastable sets yields the
PCCA+ triangle shown in Figure 9. The PCCA+ clustering again indicates
that, on a coarser level, three of the metastable sets (red, green, yellow) and the
transition set M0 form a single metastable set.

The resulting transition matrix of the three dominant metastable sets is

T =





0.9998 0.0001 0.0001
0.0030 0.9967 0.0004
0.0071 0.0024 0.9906



 ,

which agrees with the previously computed transition matrix within the achiev-
able statistical accuracy.
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Figure 9: Plot of second versus third eigenvector; colouring according to the assignment of
the respective box to the 6 clusters identified via kernel approximation.

2.4 Concluding Remarks

The previous steps of this section have demonstrated that we ought to use
algorithms for the Gaussian approximation of the sampling kernel which can
still be used for dimensional problems. The local Gaussian sampling kernels κi

with the corresponding weights αi give then rise to a coarse-graining of state
space into M metastable sets M0, . . . ,MM (core sets), including a transition set
M0, that can be used to discretize the transfer operator in order to identify the
dominant M̂ < M metastable sets. We will revisit this procedure in Section 5.

Another perspective on kernel approximation. The procedure results
in a specific reduced model for the original molecular dynamics problem. The
very flexibility of the approach is due to possible choices of the local kernels
as we shall illustrate briefly. To this end let κi,t denote the local sampling

kernel of the metastable set with index i ∈ {1, . . . , M̂}, and let pi(t, ·, ·) be the
(flat-space) transition function associated with κi,t; the local transition function
approximates the dynamical behaviour of the process while being in set Mi.
In addition, we have a jump process switching between the metastable sets
according to the transition matrix T . The state space Ŝ of the reduced model
is composed of M̂ copies of the original state space S, i.e.,

Ŝ = S × {1, . . . , M̂}.

The overall (flat-space) transition function p that is generated by the local
transition functions and the jump process thus has the form

p : [0,∞) × Ŝ × Ŝ → R+ , p(t, x, i, y, j) = pj(t, x, y)Tij . (20)

If, for instance, the local transition Gaussian functions pi are the transition
functions of an OU process, we can find matrices F (i), Σ(i) and vectors x̄(i),
such that pi is generated by

dXt = F (i)
(

Xt − x̄(i)
)

dt + Σ(i)dWt .
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In this case, the reduced model that generates the overall transition function
(20) has the form of switched stochastic differential equations,

dXt = F (q)
(

Xt − x̄(q)
)

dt + Σ(q)dWt

qt = Markov jump process with states 1, . . . , M̂ ,
(21)

where the jump process is governed by the transition matrix T .

3 Hidden Markov Models

In this section we further develop the considerations from the last paragraph
and answer the question of how the metastable states can be identified and
analysed, if the dimension of state space is too high as to admit a direct dis-
cretization of the transfer operator. As before we assume that we are given a
sufficiently long time series {Xt}t=t0,...,tN

of micro-states x ∈ X ⊆ Rn (i.e.,
atomic positions and/or momenta). The time series may also be given in terms
of certain distinguished observables f : Rn → Rm, y = f(x) that are nonlinear
functions of the microscopic states x ∈ Rn such as dihedral angles or base-pair
parameters.

The approach using Hidden Markov Models (HMM) can be summarized as
follows: By analysing a (possibly incomplete) time series we (1) construct a
finite-state Markov jump process that models the hopping between metastable
conformations; then, (2), we parametrize appropriate stochastic models that
approximates the dynamics within each conformation. The HMM method is
used to construct an unobserved (hidden) jump process thereby accounting for
lack of information due to incomplete observations. Over the last few years,
various algorithms in this direction have been developed combining HMM with
Maximum-Likelihood based parametrization of the local stochastic models; see,
e.g., [37, 38, 39]. We will review this framework now.

The idea of HMM. Roughly speaking, a HMM is a stochastic process with
both hidden and observable states; the hidden states of a HMM are described
by a Markov jump process, while the observable states are understood as their
output that, e.g., follows a certain probability distribution conditional on the
hidden state.

Suppose we consider a system admitting a metastable decomposition D =
{B1, . . . , Bm}. Then, at any time t, the system will be in one of the metastable
sets Bq ⊂ X with q = 1, . . . , m. Hence, for each t the integer value of the
metastable state, q, represents a jump process qt between the metastable states.
The task then is, given a series of observations {Xt}t=t0,...,tN

, to identify the
underlying (hidden) time series of metastable states, {qt}t=t0,...,tN

.
We assume that the observed data {Xt}t=t0,...,tN

comes with a uniform time
step τ = tk−1 − tk. Setting t0 = 0 we thus have tk = kτ and T = tN = Nτ .
In the generic case one assumes that the probability of observation Xk given
the hidden state qk and the previous observation Xk−1 can be modelled by a
certain family ρθ of observation distributions, i.e.,

P [Xk|Xk−1, qk] = ρθ(qt)(Xk|Xk−1) ,
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where θ denotes the parameters of this family of distributions (e.g., mean and
covariance matrix of a family of normal distributions), and the dependence of θ
on the hidden state qk indicates that each hidden state gives rise to a different
observation distribution. Provided that the hopping dynamics is Markovian, the
probability to go from one metastable (i.e., hidden) state q = i to another one,
q = j, within one time step τ is given by Tij = p(τ, Bi, Bj). That means, we may
regard the sequence {qt} as a, yet unknown, realization of an M -state Markov
chain with transition matrix T . Conversely, the observations Xt are considered
as a priori unknown random functions of the qt, where the random functions
are the local models in each of the conformations. Given a class of local models,
e.g., certain linear probability distributions, the Maximum-Likelihood approach
consist in finding the most likely sequence of hidden states q ∈ {1, . . . , M} given
a series of observations {Xt}.

As yet, HMM assumes that the number of metastable conformations, M ,
is known. However, as we will argue below, it is sufficient to start the data
analysis with a sufficiently large M and determine the optimal such M̂ ≤ M
afterwards, for instance, by clustering states according to the eigenvalues of the
transition matrix.

The likelihood. The hidden states q ∈ {1, . . . , M} typically correspond to
different observation distributions ρθj

, j = 1, . . . , M , where the values θj and
the M2 entries of the transition matrix T are a priori unknown. We summarize
all unknown parameters in one parameter vector

Θ = (θ1, . . . , θM , T ).

The likelihood of the parameters Θ is a probability density P[X, Q|θ] of the
possible observations X considered as a function of Θ and the hidden path
Q = {qk}k=0,...,N , i.e., L : (Θ, Q) 7→ P[X, Q|Θ]. We have

L(Θ, Q) = ν(X0|q0)
N
∏

k=1

Tqk−1,qk
ρθ(qk)(Xk|Xk−1) , (22)

where ν denotes the system’s initial distribution. In the HMM framework the
sequence of hidden path Q appears as an unknown parameter that has to be
determined. But as Q is hidden, finding it by maximizing the likelihood is not an
option; instead, we have to estimate simultaneously the hidden path Q as well
as the parameters Θ which is done employing the Expectation-Maximization
(EM) algorithm [40].

The idea is as follows: integrating over all possible hidden paths, we obtain

P [X |Θ] =
∑

Q

L(Θ, Q) , (23)

by which we can introduce the distribution of the hidden path conditional on
the observation, viz.,

P [Q|X, Θ] =
P [X, Q|Θ]

P [X |Θ]
. (24)

An EM algorithm iteratively improves an initial estimate Θ0 of the optimal
parameters by constructing iterates Θ1, Θ2, . . . by the following procedure:

Θn+1 = argmax
Θ

Q(Θ, Θn) (25)
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with Q being the expected value of the log-likelihood

E [logL(Θ, Q)|X, Θn] =
∑

Q

P [Q|X, Θn] logP [Q, X |Θ] ,

i.e., the expectation of the log-likelihood over the hidden path given the pa-
rameters Θn of the last step. In each step of the EM algorithm the following
two sub-steps have to be performed: computation of the expected log-likelihood
(the E-step) and maximization of Q (the M-step).

Under rather general, non-pathological conditions the EM-iteration con-
verges to a local optimum Θ∗ by successively increasing the likelihood. EM
is a partially non-Bayesian, Maximum-Likelihood method. Its final result gives
a point estimate for Θ together with a probability distribution over the hidden
path (see below). After convergence of the EM algorithm the optimal hidden
path is eventually determined by

Q∗ = argmax
Q

L(Θ∗, Q). (26)

The thus obtained path is called the Viterbi path, and its efficient computation
is possible by means of the Viterbi algorithm; for more details see [37]. While
Viterbi and EM algorithms are integral parts of each HMM procedure, differ-
ent choices for the family of observation distributions generate different HMM
models. We discuss two different cases.

HMMGauss: Stationary, normally distributed observation. The per-
haps easiest observation model is the family of normal distributions

ρθ(x) ∝ exp

(

−
1

2
(x − x̄(q))T C−1

(q) (x − x̄(q))

)

with the unknown parameters

θ = {(x̄(1), . . . , x̄(M), C(1), . . . , C(1)) : x̄(i) ∈ Rn, C(i) = CT
(i) > 0}.

In this case, the observation of current state Xk does not depend on the previous
state Xk−1, but only on the hidden state (via the dependence of the parameters)
as is indicated by the index (q).

HMMSDE: Dynamical SDE Output. As local output of the HMM, we
consider Ornstein-Uhlenbeck (OU) processes

dXt = F (q)
(

X − x̄(q)
)

dt + Σ(q)dWt ,

where, again, (q) indicates the dependence of the parameters on the hidden
state; see also equation (21) in the last section that was the result of the kernel
approximation procedure. From the formal solution

Xt+τ = x̄ + eτF (Xt − x̄) +

∫ τ

0

e(τ−s)F ΣdWs .

23



of the OU process on the time interval [t, t + τ ] we can compute the probability
density ρθ(Xk+1|Xk) of an observation of Xk+1 at time tk+1 = tk + τ given an
observation Xk at time tk, namely,

ρθ(Xk|Xk−1) =
exp

(

− 1
2 (Xk+1 − µk)

T
R(τ)−1 (Xk+1 − µk)

)

(2π)−d/2
√

detR(τ)
(27)

where

µk = x̄ + eτF (Xk − x̄) , R(τ) =

∫ τ

0

esF ΣΣT esF T

ds . (28)

It is easy to see that the conditional observation distribution equals the flat
transition function of the OU process, i.e., ρθ(Xk|Xk−1) = p(τ, Xk−1, Xk).

Algorithm. Realizations of the EM algorithm for both stationary Gaussian
and dynamical OU output are discussed in [37, 38, 39, 41]. In either case the
necessary computational effort for one step of the EM algorithm scales linearly
with the length of the observation sequence and quadratically with the number
of hidden states.

Each E-step together with the initial condition of the hidden state and the
transition matrix T yields occupation probabilities νk(q) at time tk. That is,
νk(q) denotes the probability to be in hidden state q ∈ {1, . . . , M} at time tk at
each step of the EM iteration based on the previous parameter values Θn. In the
M-step the next parameter estimates Θn+1 = argmaxQ(·, Θn) can be computed
based on these occupation probabilities. For HMMGauss and HMMSDE this
optimization can be carried out analytically as we shall show next.

M-step in HMMGauss. Denote the ν-weigthed mean and covariance of the
time series {X1, . . . , XT } in the state q by

x̄
(q)
N =

(

N−1
∑

k=1

νk+1(q)

)−1 N−1
∑

k=1

νk+1(q)Xk

cov
(q)
N (X) =

(

N−1
∑

k=1

νk+1(q)

)−1 N−1
∑

k=1

νk+1(q)
(

Xk − x̄
(q)
N

)(

Xk − x̄
(q)
N

)T

.

The optimal estimator for Θn+1 hence involves θq = (x̄
(q)
N , cov

(q)
N ) provided that

cov
(q)
N is positive definite.

M-step in HMMSDE. Let x̄
(q)
N , cov

(q)
N ) be defined as above and introduce

in addition the weighted one-step correlation

cor
(q)
N (X) =

(

cov
(q)
N (X)

N−1
∑

k=1

νk+1(q)

)−1

×
N−1
∑

k=1

νk+1(q)
(

Xk+1 − x̄
(q)
T

)(

Xk − x̄
(q)
N

)T

.
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The optimal estimators F̂ (q), and µ̂(q) for the parameters F (q), and µ(q) follow
from the next statement that is due to [38]

Theorem 3.1. Let cov
(q)
N be positive definite at each iteration step in the EM

algorithm. Then, at each step, the optimal estimators satisfy

exp(τF̂ (q)) = cor
(q)
N (29)

µ̂(q) = x̄
(q)
N +

(

Id − cor
(q)
N

)−1

∆
(q)
N . (30)

where

∆
(q)
N =

(

N−1
∑

k=1

νk+1(q)

)−1 N−1
∑

k=1

νk+1(q) (Xk+1 − Xk) .

Equation (30) requires that ‖cor
(q)
N ‖ < 1, which will be always the case, if all

eigenvalues of the estimated stiffness matrix F̂ (q) have strictly negative real part.
In addition, we obtain a linear matrix equation for the estimator of the noise

covariance Σ̂(q)Σ̂(q)T

,

e−τF̂ (q)

W (q) = Σ̂(q)Σ̂(q)T

eτF̂ (q)T

− e−τF̂ (q)

Σ̂(q)Σ̂(q)T

, (31)

where

W (q) = Ω(q)F̂ (q)T

+ F̂ (q)Ω(q),

Ω(q) =

(

N−1
∑

k=1

νk+1(q)

)−1 T−1
∑

k=1

νk+1(q)d̂
(q)
k d̂

(q)T

k

d̂
(q)
k =

(

Xk+1 − µ̂(q) − eτF̂ (q)
(

Xk − µ̂(q)
))

.

Again, the Lyapunov (31) has a unique and symmetric, positive definite solution,
if and only if the eigenvalues of F̂ (q) lie in the open left half complex plane.

Theorem 3.1 allows for carrying out the maximization in the EM algorithm
by basically computing weighted autocorrelation matrices which is numerically
cheap. However, a remark is in order: the computation of F̂ (q) from exp(τF̂ (q))
is not trivial at all, for the matrix logarithm is not unique. We refer to [38] for
a detailed discussion of possible difficulties and various algorithmic solutions.

Number of metastable states. All HMM techniques require to select the
unknown number of hidden states in advance. There is no general solution to
this problem, and often the best way to handle this problem is a mixture of
insight and preliminary analysis. However, we should recall that we can eas-
ily cluster hidden (metastable) states following the route taken in the transfer
operator approach to metastability. therefore we suggest to start the EM al-
gorithm with any sufficiently large number of hidden states M that should be
bigger than the expected number of metastable states. After termination of the
EM algorithm, we can take the resulting transition matrix and aggregate the M
hidden states into M̂ ≤ M metastable states using the PCCA method described
in Section 2. By construction the thus clustered hidden states are metastable
states of the dynamics.
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3.1 HMMSDE and VAR Processes

Let us revisit the problem of the estimating optimal parameters for the single n-
dimensional OU process (12). Theorem 3.1 makes an assertion about estimating
optimal parameters θ = (exp(τF ), x̄, Σ) from a given observation X1, . . . , XN .
The optimal parameters are found by maximizing the likelihood

L(θ|X) =
N−1
∏

k=1

ρθ(Xk+1|Xk),

with the one-step transition probability

ρθ(Xk+1|Xk) ∝ exp

(

−
1

2
(Xk+1 − µk)T R(τ)−1(Xk+1 − µk)

)

, (32)

with µk and R(τ) as given by (28). Unfortunately there is no known analytic
solution to the maximization problem of L with respect to the parameter set
(x̄, F, Σ); Theorem 3.1 yields the optimal parameters θ = (exp(τF ), x̄, Σ), and
the matrix logarithm is not surjective. Yet another drawback, from a statistical
viewpoint, is that L is not integrable over the unrestricted parameter space
which can be easily seen by setting F = 0 and integrating over x̄. This imposes
certain constraints on the admissible parameters, thereby complicating sampling
of the Maximum-Likelihood estimators. A possible loophole consist in rewriting
the transition probability (32) according to

Xk+1 ∼ N (x̄ + exp(τF )(Xk − x̄), R)

which can be equivalently expressed as

Xk+1 ∼ (Id − exp(τF ))x̄ + exp(τF )Xk + N (0, R), (33)

Equation (33) resembles an autoregressive model of order one, VAR(1). If we
define the shorthands

Φ :=
(

(Id − exp(τF ))x̄, exp(τF )
)

∈ Rn×(n+1)

ξ :=

(

1 . . . 1
X1 . . . XN−1

)

∈ R(n+1)×(N−1)

Y :=
(

X2, . . . , XN

)

∈ Rn×(N−1)

ǫ :=
(

N1(0, R), . . . ,NN−1(0, R)
)

∈ Rn×(N−1) (i.i.d.) ,

we can recast (33) in the form

Y = Φξ + ǫ .

The likelihood of the new parameter set θ̃ = (Φ, R) reads

L̃(θ̃|X) = (detR)
N−1

2 exp

(

−
1

2
tr((Y − Φξ)(Y − Φξ)T R−1)

)

. (34)

Maximum-likelihood estimators for Φ̂ and R̂ can be found in the relevant liter-
ature, e.g., [43, 44]. We have

Φ̂ = Y ξT (ξξT )−1 and R̂ =
1

N − 1
(Y − Φ̂ξ)(Y − Φ̂ξ)T .
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Using θ̃ and L̃ for the parameter estimation has the advantages that (1) the
distribution of the discrete observations is fully characterized by θ̃, (2) analyt-
ical Maximum-Likelihood estimators are available, and (3) the likelihood L̃ is
integrable over the unconstrained parameter space.

Moreover, the VAR(1) model has a straightforward extension to VAR(p)
models that allow for adding non-Markovian memory effects to the description.
Last but not least, we can do change-point detection for VAR processes so as to
detect changes in the time series parametrization on-the-fly; such parametriza-
tion changes can occur if, for instance, the system makes transition between
metastable sets. We refer the reader to [45] for a detailed treatment of this
subject in the framework of Bayesian statistics.

4 Transition Path Theory

Transition Path Theory (TPT) is concerned with transitions in Markov pro-
cesses. The basic idea is to single out two disjoint subset in the state-space of
the chain and ask what is the typical mechanism by which the dynamics tran-
sits from one of these states to the other. We may also ask at which rate these
transitions occur.

The first object which comes to mind to characterize these transitions is the
path of maximum likelihood by which they occur. However, this path can again
be not very informative if the two states one has singled out are not metastable
states. The main objective herein is to show that we can give a precise meaning
to the question of finding typical mechanisms and rate of transition in discrete
state spaces for continuous time processes which are neither metastable nor time-
reversible. In a nutshell, given two subsets in state-space, TPT analyzes the
statistical properties of the associated reactive trajectories, i.e., the trajectories
by which transition occur between these sets. TPT provides information such as
the probability distribution of these trajectories, their probability current and
flux, and their rate of occurrence.

The framework of transition path theory (TPT) has first been developed
in [46, 47, 48] in the context of diffusions. However, we will follow [49] and focus
on continuous-time Markov chains, but we note that the results to outlined can
be straightforwardly extended to the case of discrete-time Markov chains. In the
next section we will illustrate TPT with an example from molecular dynamics,
but the tools of TPT presented here can be used for data segmentation as well.
In this context, TPT provides an alternative to Laplacian eigenmaps [50, 51]
and diffusion maps [52, 53] which have become very popular recently in data
analysis.

Notation. We consider a Markov jump process on the countable state space S
with infinitesimal generator (or rate matrix) L = (lij)i,j∈S ,

{

lij ≥ 0 for all i, j ∈ S, i 6= j
∑

j∈S lij = 0 for all i ∈ S.
(35)

We assume that the thus defined process is irreducible and ergodic with respect
to the unique, strictly positive invariant distribution π = (πi)i∈S satisfying

0 = πT L. (36)
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We will denote by {Xt} a (right-continuous with left limits) trajectory of the
Markov jump process. We also denote by {X̃t} the time-reversed process which
has the same invariant distribution and an infinitesimal generator L̃ = (l̃ij)i,j∈S

given by

l̃ij =
πj

πi
lji. (37)

Finally, recall that if the infinitesimal generator satisfies the detailed balance
equation πilij = πj lji, the process is reversible and the direct and the time-
reversed process are statistically undistinguishable. We do not assume reversibil-
ity in the subsequent.

Reactive trajectories. Let A and B two nonempty, disjoint subsets of the
state space S. By ergodicity, any equilibrium path {Xt} oscillates infinitely
many times between set A and set B. If we view A as a reactant state and B as
a product state, each oscillation from A to B is a reaction event. To properly
define and characterize the reaction events, we proceed by cutting a long ergodic
trajectory {Xt} into pieces that each connect A and B. We shall then try to
describe various statistical properties of the statistical ensemble of these pieces.
For details on the pruning procedure, see [49].

Committors. The fundamental objects of TPT are the committor functions.
The discrete forward committor q+ = (q+

i )i∈S is defined as the probability that
the process starting in i ∈ S will reach first B rather than A. Analogously, we
define the discrete backward committor q− = (q−i )i∈S as the probability that
the process arriving in state i has been started in A rather than B. It has
been proved in [49] that the forward and backward committor satisfy a discrete
Dirichlet problem that is the exact finite-dimensional analogue of the respective
continuous problem [46], namely,











∑

j∈S lijq
+
j = 0, ∀i ∈ (A ∪ B)c

q+
i = 0, ∀i ∈ A

q+
i = 1, ∀i ∈ B

(38)

and










∑

j∈S l̃ijq
−

j = 0, ∀i ∈ (A ∪ B)c

q−i = 1, ∀i ∈ A

q−i = 0, ∀i ∈ B

(39)

Probability distribution of reactive trajectories. The first relevant ob-
ject for quantifying the statistical properties of the reactive trajectories is the
distribution of reactive trajectories mR = (mR

i )i∈S . The distribution mR gives
the equilibrium probability to observe a reactive trajectory at state i and time t.
According to [49] the probability distribution of reactive trajectories is given by

mR
i = πiq

+
i q−i , i ∈ S. (40)
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Probability current of reactive trajectories. Next we are interested in
the average current of reactive trajectories flowing from state i to state j per
unit of time. This probability current of reactive trajectories fAB = (fAB

ij )i,j∈S

satisfies fAB
ii = 0 for all i ∈ S and is given by [49]

fAB
ij =

{

πiq
−

i lijq
+
j , if i 6= j

0, otherwise
(41)

Transition rate and effective current. Further we may ask for the average
number of transitions from A to B per time unit or, equivalently, the average
number of reactive trajectories observed per unit of time (transition rate). That
is, let NT be the number of reactive trajectories in the interval [−T, T ] in time.
The transition rate kAB is defined as

kAB = lim
T→∞

NT

2T
. (42)

Due to [49] the transition rate is given by

kAB =
∑

i∈A,j∈S

fAB
ij =

∑

j∈S,k∈B

fAB
jk . (43)

Notice that the rate equals

kAB =
∑

i∈A,j∈S

f+
ij , (44)

where the effective current is defined as

f+
ij = max(fAB

ij − fAB
ji , 0). (45)

Reaction Pathways. A reaction pathway w = (i0, i1, . . . , in), ij ∈ S, j =
0, . . . , n from A to B is a simple pathway with the property

i0 ∈ A, in ∈ B, ij ∈ (A ∪ B)c j = 1, . . . , n − 1.

The crucial observation which leads to a characterization of bottlenecks of
reaction pathways is that the amount of reactive trajectories which can be con-
ducted by a reaction pathway per time unit is confined by the minimal effective
current of a transition involved along the reaction pathway: the min-current of
w is

c(w) = min
e=(i,j)∈w

{f+
ij }. (46)

Accordingly we shall characterize the ”best” reaction pathway as the one with
the maximal min-current, and, eventually, we can rank all reaction pathways ac-
cording to the respective weight c(w). Efficient graph algorithms for computing
the hierarchy of transition pathways can be found in [49].

29



0 0.5 1 1.5
Lagtime (ns)

0

10

20

30

40

50

Im
pl

ie
d 

tim
es

ca
le

s 
(n

s)

Figure 10: Slowest implied time scales of the MR121-GSGSW peptide dynamics.

5 Application to MD Simulations

The methods introduced in the Sections 2–4 are now illustrated with a biophys-
ically relevant molecular dynamics example, the synthetic hexapeptide MR121
- GSGSW [54]. This is a linear polymer the central part (GSGS) of which
contains a repeat of the Glycin and Serine amino acids that are found in the
loop regions of many proteins. In order to study the folding of the loop, two
additional chemical groups (MR121 and W/Tryptophan) were attached to the
peptide in the experiments reported in [54]. These two groups contain ring
systems which provide an experimentally detectable signal when forming im-
mediate contact. Here, we study a 1 microsecond molecular dynamics (MD)
simulation of this system which was performed in explicit water at the exper-
imental temperature 293 K with the GROMACS software package [31] using
the GROMOS96 force field [55]. During this simulation, the peptide frequently
folds and unfolds and visits various different conformations. We shall analyse
its conformational dynamics in the following.

To distinguish all relevant conformations of the system, the peptide coordi-
nates were fitted to the extended structure, and the state space was partitioned
into small regions using a K-means clustering with K=5000. In order to deter-
mine the lagtime at which transitions appear Markovian, the microscopic tran-
sition matrix T micro(τ) ∈ R5000×5000 was computed for different τ and the time
scales, t∗i , implied by the corresponding spectrum Λ(τ) = (λ1(τ), ..., λ5000(τ))
were examined:

t∗i = −
τ

log λi(τ)
. (47)

At lagtimes large enough for the dynamics to be Markovian, the implied
time scales are expected to be constant in τ [56]. As visible from Figure 10, this
is the case for about τ ≥ 1 ns.

In order to concentrate on the slow conformation dynamics, the Maximum-
Likelihood transition matrix at τ = 1ns is used with the PCCA algorithm [19, 24,
28] to cluster the 5000 microstates into 34 metastable states, providing a discrete
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Figure 11: Relaxation of the population out of 5 representative metastable
states. The predictions of the transition matrix model (bullets) agree, within the
error, well with the actual observations from the simulation trajectory (dashed
lines). The confidence intervals correspond to one standard deviation.

trajectory Xt ∈ {1, ..., 34}, t ∈ [0, 1µs]. The number 34 was arbitrarily chosen,
such that the implied time scale of the 34-th eigenvalue is twice the characteristic
time scale τ = 1ns of the transition matrix. Since approximately constant
time scales are not a sufficient condition for the dynamics to be Markovian, it
is checked whether the transition matrix can actually reproduce the observed
dynamics on long time scales. For this, the estimated Maximum-Likelihood
transition matrix, T (τ) with τ = 1ns, was used to compute the decrease of
population of state i as a function of time, i.e.,

pi(kτ) = [T k(τ)]ii. (48)

This is then compared with the corresponding probability that is directly
observed in the simulation trajectory,

P[Xt+kτ = i | Xt = i]. (49)

The result is shown in Figure 11 for 5 representative states. It is seen that the
predictions of the transition matrix model are similar to the actual observations
from the simulation trajectory.

Since only a limitied number of transitions between metastable states is ob-
served in the MD trajectory, the transition matrix is not uniquely determined
but carries some statistical uncertainty. Consequently, the decay curves in Fig-
ure 11 are uncertain as well. In order to assess this uncertainty, the distribution
of transition matrices (10) induced by the observed transition counts at τ = 1ns,
were sampled with a Monte Carlo algorithm [57]. For each matrix of the sam-
ple, the relaxation curves were computed using equation (48), and the resulting
standard deviations of the distribution give rise to the confidence intervals in
Figure 11. The deviations between the predictions from the transition matrix
and the observations from the MD trajectory are mostly within 1 standard
deviation (except for the green state, for which no long-time observations are

31



0 0.2 0.4 0.6 0.8

100 ns

Pr
ob

ab
ili

ty

0 0.2 0.4 0.6 0.8

250 ns

0 0.2 0.4 0.6 0.8

400 ns

0 0.2 0.4 0.6 0.8

800 ns

0 0.2 0.4 0.6 0.8

1000 ns

Figure 12: Distributions of the eigenvalue spectrum of T for different simulation
lengths.

available in the MD trajectory), thus reassuring the reliability of the transition
matrix model.

Next, the transition pathways between the conformational states of the sys-
tem were studied. For this purpose, the core sets of the 34 conformations were
identified as described in Section 2.3.5 and a transition matrix T TP (τ) with,
now, τ = 200 fs) was computed employing equation (18) and then further sub-
dividing the transition set in order to optimze metastability; the trajectory was
used both forwards and backwards in time, such that the transition matrix is
reversible and has a real spectrum. It was then verified that the long-time be-
haviour (∆t ≥ 1ns) of this transition matrix also agrees with the observations
from the MD trajectory. Since all eigenvalues of T TP are real and positive, its
generator L could in principle be computed by taking the matrix logarithm.
Since, additionally, the lagtime τ = 200 fs is very short as compared to the typi-
cal lifetimes of states, the transition matrix is metastable and all its eigenvalues
are close to 1, such that the generator is well approximated by

L =
1

τ
log T TP (τ) ≈

1

τ
(T TP (τ) − I) .

We study the slowest transition in the system by selecting the two confor-
mations, A and B, with the largest positive and negative element in the second
left eigenvector. As is shown in Figure 13, A and B correspond to structures
in which the loop is closed and the ring systems of the end-groups are in con-
tact. Hence A → B corresponds to an exchange of the stacking order of the
end-groups, and we can use TPT to study the set of transition pathways for
this process. Employing (38) we compute the discrete committor function q for
the transition A → B for all 34 states. Then, from q and L, the TPT effective
currents to the transition A → B are obtained according to (45). The resulting
flux network for A → B is complex, involving significant transition pathways
via most of the 32 intermediate states. The network of the 30% most populated
transition pathways is shown in Figure 13. It turns out that the most populated
pathway is in fact the direct transition, but other pathways are also significant,
including pathways via closed-loop intermediates and pathways via unfolded in-
termediates. Eventually, the total transition rate obtained by TPT is similar to
the experimentally-measured slowest rate of the system.

Finally, we emphasize that statistical errors due to lack of convergence is an
important issue regarding all MD simulations: By sampling the sampling error
of the estimated transition matrix, we have examined how the length of the
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Figure 13: The network of the 30% most populated transition pathways for
the slowest transition process in the MR121-GSGSW peptide. The thickness
of arrows is proportional to the net flux along each edge. The loop segment is
shown in yellow, the MR121 and W end-groups in red and blue, respectively.
The transition end-states A and B are shown on the left and right side.
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MD trajectory affects the uncertainties of any quantity computed from T . In
particular, we were interested in the spectrum of T for fixed lagtime of τ = 1ns,
i.e., its eigenvalues Λ = (λ1...λ34) and the implied time scales of the transition
processes, t∗i , that were computed according to equation (47). The time scales
t∗2, t

∗

3, ... thereby correspond to the time scales of the slowest and next-slowest
transition processes. However, since there is a whole distribution of transition
matrices T , the spectrum of eigenvalues for a given observed transition count C
is not unique, but rather a distribution of spectra. Certainly, the distribution
of the λi will get sharper as the number of observed transitions increases, thus
explaining that some eigenvalues λi are sharper than others. Figure 12 shows the
spectral distribution for several simulation lengths. For simulation times up to
100ns, the spectral distribution has no distinctive features. But as the simulation
length is increased, some of the larger eigenvalues become distinguishable. From
400ns on, the slowest transition process at λ2 ≈ 0.75 can be clearly distinguished
and continues to narrow as the simulation gets longer. At 1000ns, eventually, the
spectrum exhibits a lot of structure in the range λ ≥ 0.5. However, apart from
λ2 no peaks are clearly separated which indicates that even for our small peptide,
1µs simulation time is rather short if one wants to obtain good convergence of
the kinetics (e.g., rates).
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