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Abstract

The numerical simulation of multibody dynamics often involves constraints of various forms. First of all,
we present a structure preserving integrator for mechanical systems with holonomic (bilateral) and unilat-
eral contact constraints, the latter being in the form of a non-penetration condition. The scheme is based on
a discrete variant of Hamilton’s principle in which both the discrete trajectory and the unknown collision
time are varied (cf. [Fete 03]). As a consequence, the collision event enters the discrete equations of motion
as an unknown that has to be computed on-the-fly whenever a collision is imminent. The additional bilat-
eral constraints are efficiently dealt with employing a discrete null space reduction (including a projection
and a local reparametrisation step) which considerably reduces the number of unknowns and improves the
condition number during each time-step as compared to a standard treatment with Lagrange multipliers
(cf. [Leye 12]).

In previous works, discrete mechanics and optimal control for constrained systems (DMOCC) has been
introduced for the structure preserving simulation of optimal control problems for rigid multibody sys-
tems, whereby possible contacts or collisions between the bodies have been disregarded see [Leye 10]. In
the formulation presented here, both collision avoidance as well as explicitly planned collisions between
non-smooth bodies are included. To this end, a subdifferentiable global contact detection algorithm, the
supporting separating hyperplane linear program (SSHLP), based on the signed distance between support-
ing hyperplanes of two convex sets, is used in the simulation of optimal control problems.

1 Introduction

In the first part of this work (Sections 2 and 3) we present an variational algorithm that handles equality and
inequality constraints on the same footing, see [Leye 12]. Our approach closely follows the route described
in [Fete 03] where a seamless variational integrator for collision problems is introduced; by ‘seamless’
we mean that both the integration scheme for the free motion and the contact conditions at the points of
collision follow from a single variational principle. Here we extend the seamless variational scheme to the
case where, besides the non-penetration condition for a chain of beads, additional holonomic constraints
are present during the entire motion. Although our method is an ordinary time-stepping scheme, it shares
some of the spirit of event-driven methodology in that it combines an implicit integrator for the free motion
of the chain that allows for large time-steps with an exact treatment of the collision events. In particular, the
collision times are computed on-the-fly by solving a simple quadratic equation.

For smooth systems, variational integrators with constant time-step preserve various properties of the exact
dynamics such as symplecticity or momentum maps (e.g., linear or angular momentum) at the discrete
level [Wend 97, Mars 01]. The key idea is simple: rather than discretising the continuous-time equations
of motion, variational integrators directly discretise Hamilton’s principle by appropriate quadrature rules;
the numerical scheme then follows from the now discrete Euler-Lagrange equations. Variational integrators
have proven useful, e.g., in understanding the long-term stability of symplectic integrators using backward
error analysis [Hair 06]. Moreover, the (discrete) variational principle allows for easy generalisations so as
to treat, e.g., infinite-dimensional systems [Brid 06], systems with constraints [Jay 07], or contact problems
in continuum mechanics [Cira 05].

The standard molecular dynamics algorithm for systems with holonomic constraints, that is in fact a varia-
tional integrator, is the SHAKE/RATTLE algorithm [Ryck 77, Ande 83] which can be considered an aug-
mented version of the Verlet algorithm where the constraints are enforced by suitable Lagrange multipliers.
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As an alternative to Lagrange multipliers that may cause stability problems when the integration time-steps
are small (e.g., close to a collision point) the discrete null space method eliminates the constraint force and
the Lagrange multipliers by projecting the forces in the system onto the space of admissible momenta. It
does so by taking advantage of the d’Alembert principle that states that the constraint forces are always
acting perpendicular to the constraint manifold and therefore have no component in the tangential direction.
The discrete null space method has been introduced in conjunction with an energy-momentum conserving
time integration scheme in [Bets 05, Bets 06] and has been transferred to variational time-stepping schemes
in [Leye 08]. The new idea in this work is to use the discrete null space methodology also for the treatment
of the contact constraints while they are active.

When simulating the optimal control problems for three-dimensional multibody systems, the treatment of
contact always imposes a challenge. One simple solution is to formulate a smooth problem where the
bodies are allowed to overlap by a certain amount, which is penalised via a penalty potential. Of course, the
drawbacks of inadmissible configurations and inexact contact forces that go along with this approach are
obvious. However, for the forward dynamics simulation of many applications, the results might be accurate
enough, in particular when high penalty parameters in combination with small time steps are tolerable from
the computational effort’s point of view. If the bodies are not supposed to overlap, the discrete event of
contact has to be considered as part of the system’s dynamics, thus making the dynamics non-smooth.
See e.g. [Cira 05, Gloc 00, Lein 03, Pand 02, Pang 96] and many references on contact formulations in
different contexts therein. Non-smooth formulations require the specification of a contact force that (for
elastic collisions) reflects the momentum normal to a contact surface at a given time and configuration. In
the context of a structure preserving time integration method (being consistent in the evolution of energy
and momentum maps) that uses a predefined equidistant time grid, there is no other known procedure
except for resolving the collisions in the sense that each contact time (which is likely between the nodes),
configuration, and force are exactly computed, see [Fete 03, Leye 12].

The second part of this work (Sections 4 and 5) will show how the described alternatives for the treatment
of collisions can be included in the context of optimal control problems. In the smooth formulation with a
penalty potential, there arises some difficulty for the optimiser to distinguish between a contact and a control
force, since both might point into the same direction. For the non-smooth treatment, the optimal control
problem formulation gives more freedom than the forward dynamics problem, since periodic boundary
conditions or leaving the exact placement of time nodes (within certain bounds) to the optimiser gives the
freedom to assume that contact takes place at a certain time node without loss of generality, i.e. without
fixing its physical time. A further challenge is the detection of contact for non-smooth non-convex three-
dimensional bodies where a new strategy based on a supporting separating hyperplane linear programming
(SSHLP) approach is used, see [John 12]. One major advantage of this strategy is that the subgradient of the
SSHLP, supplying the direction of the contact force, can be readily evaluated. Reconfiguration manoeuvres
with collision avoidance and with planned collisions are considered as examples.

2 Hamilton’s principle for collision problems

Our formulation of the variational collision integrator follows the route taken in [Fete 03] and extends it
to the case of a system that, besides a non-penetration condition, is subject to holonomic constraints. For
a better understanding of the approach, it is instructive to look at the continuous formulation first. Let
Q ⊆ Rn denote the n-dimensional configuration space of our system where n equals three times the
number of particles. We suppose that the system is subject to m holonomic constraints g(q) = 0 with
g = (g1, . . . , gm)T being the vector of constraints with the requirement that G = ∇g has maximum rank
m on the admissible set of configurations, C = {q ∈ Q : g(q) = 0} ⊂ Q, and with detGGT ≥ a > 0
being bounded away from zero.1 The mc non-penetration conditions for the particles can be expressed in
terms of a vector of smooth unilateral constraints gc(q) ≥ 0 by which the set of admissible configurations
turns out to be

C+ = {q ∈ Q : g(q) = 0, gc(q) ≥ 0} ⊂ C .

Calling
TQ = {(q,v) : q ∈ Q , v ∈ TqQ}

1The latter requires that the function g has a certain regularity that we can safely assume for most cases of interest.
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the state space of the system consisting of the unconstrained positions and velocities, we define the La-
grangian (we use the natural identification of all tangent spaces TqQ with Rn)

L : TQ → R , L(q,v) =
1

2
v ·Mv − V (q)

with M ∈ Rn×n being the symmetric and positive definite mass matrix and V being a smooth potential
energy. Now let γ : [0, T ] → Q be a curve in Q that is everywhere twice continuously differentiable except
at an isolated impact point qι = γ(tι), tι ∈ (0, T ) where the curve γ hits the boundary ∂C+ of the
admissible set (i.e., where exactly one of the components of gc is zero). The classical action is then of the
form

S[γ, tι] =

� tι

0
L̂(γ(t), γ̇(t)) dt+

� T

tι

L̂(γ(t), γ̇(t)) dt (1)

where
L̂(q,v) = L(q,v)− g(q) · λ (2)

is the augmented Lagrangian involving the constraints g and the Lagrange multiplier λ ∈ Rm (cf. Lagrange
multiplier theorem e.g. in [Zeid 95]). Taking variations with respect to both γ and the unknown collision
time tι, we find

δS[γ, tι] =δ

�� tι

0
L̂(γ(t), γ̇(t)) dt+

� T

tι

L̂(γ(t), γ̇(t)) dt

�

=

� T

0

�
∂L̂

∂γ
− d

dt

∂L̂

∂γ̇

�
· δγ dt−

�
∂L̂

∂γ̇
· δγ + L̂δtι

�t+ι

t−ι

.

(3)

Requiring that the integral vanishes, yields Newton’s law

Mq̈ = −∇V (q)−G(q)Tλ , g(q) = 0 (4)

for the motion away from the collision. The remaining boundary terms provide the contact conditions at
the point of impact. To make this precise we call gc the scalar component of gc that is zero at the moment
of collision (cf. 3.2 for the treatment of multiple collisions at a time) and note that gc(γ(tι)) = 0 entails
δgc(γ(tι)) = 0, i.e.,

Gc(γ(tι)) · (δqι + γ̇(tι)δtι) = 0

where qι = γ(tι) denotes the impact point. The last equation is satisfied if either

δqι = −γ̇(tι)δtι

or
δqι ⊥ Gc(qι) for δtι = 0

which determines the admissible variations of the curve at the collision point. Taking joint variations of qι
and tι under the constraint δqι = −γ̇(tι)δtι implies

�
L̂− ∂L̂

∂γ̇
· γ̇

�t+ι

t−ι

= 0 (5)

which, using that

E =
∂L̂

∂γ̇
· γ̇ − L̂ ,

is equivalent to conservation of energy E. Conversely, if we vary qι orthogonal to the contact surface while
keeping tι fixed (i.e., δtι = 0), then

�
∂L̂

∂γ̇
· δγ

�t+ι

t−ι

= 0 for δγ(tι) ⊥ Gc(qι)
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implies
�
∂L̂

∂γ̇

�t+ι

t−ι

= G
T
c λc . (6)

Here λc ∈ R is an unknown Lagrange multiplier that must be determined by solving (5). Defining the
conjugate momentum p = ∂L/∂γ̇ in the usual way, equations (5) and (6) can be recast as

p(t+ι ) = p(t−ι ) +G
T
c (qι)λc , p(t+ι ) ·M−1p(t+ι ) = p(t−ι ) ·M−1p(t−ι ) (7)

But the last equation is simply the momentum reflection law for an elastic collision. That is, the change
in momentum occurs normal to the contact surface where the amount by which the momentum changes is
determined from the conservation of energy during the collision (note that the potential V is not needed to
determine the unknown multiplier λc). As a consequence of (7), both total linear and angular momentum
and the total energy are conserved during the collision.

We stress that the contact condition (7) follows seamlessly from the boundary terms arising in (3). In the
next section we will show, again following the approach described in [Fete 03], how the discrete variant of
(1) naturally gives rise to a fully variational collision integrator.

3 Variational collision integrator for constrained problems

Our derivation below follows closely the route taken in [Fete 03], but extends it to the case of systems subject
to holonomic constraints. The constraints are treated fully variationally using the discrete null space method
that has been introduced in [Leye 08]. The new idea here is to use the discrete null space methodology also
for the treatment of the contact forces while they are active.

3.1 Discrete variational principle and discrete null space reduction

Assume that the time nodes t0, t1, . . . , tι−1, tι+1, . . . , tN with a constant basic time-step h = tn+1 − tn

are given, however the collision time tι with tι−1 ≤ tι ≤ tι+1 is unknown. Let the discrete trajectory be
denoted by qd = {qn}Nn=0 with qn ≈ q(tn), and let λd = {λn}Nn=0 with λn ≈ λ(tn) approximate the
Lagrange multipliers. As usual in the context of discrete variational principles (e.g., see [Mars 01]), the
discrete Lagrangian is an approximation to the action integral of the continuous Lagrangian over one time
interval. In accordance with (2), this yields away from a collision

L̂d(qn, qn+1, tn, tn+1) ≈
� tn+1

tn

L(q,v)− g(q) · λ dt

In this work, a midpoint discrete Lagrangian

Ld(qn, qn+1, tn, tn+1) = (tn+1 − tn)L

�
qn + qn+1

2
,
qn+1 − qn
tn+1 − tn

�
(8)

is used in the following discrete augmented Lagrangian

L̂d(qn, qn+1, tn, tn+1) = Ld(qn, qn+1, tn, tn+1)−
tn+1 − tn

2
(g(qn) · λn + g(qn+1) · λn+1) .

For the clarity of exposition, the dependence of the discrete Lagrangian on given time nodes is not stated ex-
plicitly in the sequel and it is assumed that only one collision gc(qι) = 0 occurs at tι during the time interval
[tι−1, tι+1]; see Figure 1 for an illustration. The extension to multiple collisions is formally straightforward,
however more involved from the implementation point of view (see 3.2). An approximation to (1) is given
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Figure 1. Discrete trajectory in constraint manifold.

by the discrete action sum

Sd =
ι−2�

n=0

Ld(qn, qn+1)−
tn+1 − tn

2
(g(qn) · λn + g(qn+1) · λn+1)

+Ld(qι−1, qι, tι−1, tι)−
tι − tι−1

2
(g(qι−1) · λι−1 + g(qι) · λι + gc(qι) · λc)

+Ld(qι, qι+1, tι, tι+1)−
tι+1 − tι

2
(g(qι) · λι + g(qι+1) · λι+1 + gc(qι) · λc)

+
N−1�

n=ι+1

Ld(qn, qn+1)−
tn+1 − tn

2
(g(qn) · λn + g(qn+1) · λn+1) .

(9)

As before, the discrete variational principle for the constrained motion requires that δSd = 0 for all
admissible variations δq1, . . . , δqι, . . . , δqN−1, δλ1, . . . , δλN , δλc, δtι. This then yields discrete equations
of motion for the dynamics off the contact surface with additional boundary conditions at the collision
points. The equations for the collision-free motion are stated first:

Pre- and post-collision As long as no collision takes place, i.e., for n = 1, ..., ι−2 the discrete variational
principle yields the following system

D2Ld(qn−1, qn) +D1Ld(qn, qn+1)−
tn+1 − tn−1

2
GT (qn)λn = 0 (10a)

g(qn+1) = 0 (10b)

which is solved for q2, ..., qι−1,λ1, ...,λι−2. Here, DiLd denotes the derivative of the discrete Lagrangian
with respect to the i-th argument. Note that just as in the continuous case described in Section 2, there exists
a Lagrange multiplier theorem relating stationary points of the discrete action (9) to the finite dimensional
system (10), see [Mars 01]. Once the collision configuration qι and time tι and the first post-collision
configuration qι+1 have been determined (as will be described below), normal time-stepping continues for
n = ι + 1, ..., N − 1, i.e., (10) is solved for qι+2, ..., qN ,λι+1, ...,λN−1. Obviously, (10) is a two-step
method, thus special care must be given to the initialisation of the simulation. Assuming that no collision
takes place during the first time-step, the following equations determine q1 and λ0 from given initial data
(q(0), q̇(0)) ∈ TC. First, one sets q0 = q(0) and p−

0 = (∂L/∂q̇)(q(0), q̇(0)) and then solves

p−
0 +D1Ld(q0, q1)−

t1 − t0

2
GT (q0)λ0 = 0

g(q1) = 0

Collisions in the first time-step can be handled analogously to later collisions described below.

Discrete null space reduction Details on the reduction of the discrete variational equations of motion
with constraints via the discrete null space method with local reparametrisation can be found in [Leye 08].
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The main idea is the elimination of the constraint forces from the discrete system via the premultiplication
with an appropriate null space matrix P (·) : Rn−m → TC, i.e., the null space matrix fulfils rangeP (qn) =
kerG(qn). Secondly, a local reparametrisation of the constraint manifold qn+1 = Fd(un+1, qn) ∈ C in
terms of the discrete generalised coordinates un+1 ∈ Rn−m representing the system’s change during one
time-step ensures that the constraints are fulfilled and (10b) becomes superfluous. The reduced equations
read

P T (qn) [D2Ld(qn−1, qn) +D1Ld(qn,Fd(un+1, qn))] = 0 (11)

Away from the collision, they are solved for u2, ...,uι−1 and uι+2, ...,uN while in the very first step,

P T (q0)
�
p−
0 +D1Ld(q0,Fd(u1, q0))

�
= 0

is solved for u1. In contrast to an absolute parametrisation in generalised coordinates with respect to
the initial configuration q0 reading qn+1 = Fd(un+1, q0), locality of the discrete parametrisation avoids
singularities present, e.g., when dealing with large rotations. The described procedure reduces the (d+m)-
dimensional system (10) to the (d − m)-dimensional system (11). Depending on the particular problem
under consideration, this can reduce the computational costs substantially. Due to the elimination of the
Lagrange multipliers from the set of unknowns, the well known condition problem associated with discreti-
sations of index 3 DAEs is removed. While the condition number of the Jacobian matrix in the linearisation
of (10) is of the order h−3, the corresponding condition number in (11) is independent of the time-step
(see [Leye 08]). Note that after solving (11), the Lagrange multipliers can always be determined as a post-
processing step if one is interested in the constraint forces. This is particularly important when the contact
forces themselves are eliminated using the discrete null space reduction (cf. equation (15) below).

Collision Before integrating forward in a new time-step, the contact inequality condition is checked. If it
is violated, i.e., if gc(qι) < 0, then qι is discarded and the collision configuration qι and time tι as well as
λι−1 are determined by solving

D2Ld(qι−2, qι−1) +D1Ld(qι−1, qι, tι−1, tι)−
tι − tι−2

2
GT (qι−1)λι−1 = 0 (12a)

g(qι) = 0 (12b)
gc(qι) = 0 (12c)

which have been obtained from δSd = 0 in (9) for variations δqι−1, δλι, δλc. After that, taking admissible
variations δqι, δλι+1, δtι yields

D2Ld(qι−1, qι, tι−1, tι) +D1Ld(qι, qι+1, tι, tι+1)−
tι+1 − tι−1

2

�
GT (qι)λι +GT

c (qι)λc

�
= 0 (13a)

g(qι+1) = 0 (13b)
D4Ld(qι−1, qι, tι−1, tι) +D3Ld(qι, qι+1, tι, tι+1) = 0 (13c)

from which qι+1,λι,λc follow. Note that (13c) is resulting from the variation with respect to the time node
tι, thus it is a conservation condition for the discrete energy.

Discrete null space reduction Equivalent to (12), the reduced system yielding uι, tι reads

P T (qι−1) [D2Ld(qι−2, qι−1) +D1Ld(qι−1, qι, tι−1, tι)] = 0 (14a)
gc(qι) = 0 (14b)

and instead of solving (13), the unknown uι+1 can be obtained from

P T
c (qι)P

T (qι) [D2Ld(qι−1, qι, tι−1, tι) +D1Ld(qι, qι+1, tι, tι+1)] = 0 (15a)
D4Ld(qι−1, qι, tι−1, tι) +D3Ld(qι, qι+1, tι, tι+1) = 0 (15b)

As mentioned before, the Lagrange multipliers and in particular the contact forces GT
c (qι)λc can be com-

puted as a post-processing step.

6



3.2 Multiple collisions

If multiple collisions occur at the same time tι, i.e. gc(q) ≥ 0 ∈ Rmc is really vector valued with
mc ∈ R, then (

�mc

k=1 gck(qι))λc is used in the discrete action (9). Note that corresponding to the sin-
gle unknown collision time tι, the Lagrange multiplier λc is scalar. Variation with respect to λc yields
(
�mc

k=1 gck(qι)) = 0 in (12c) which, together with the positiveness of all components, is equivalent to
gck(qι) = 0 for k = 1, . . . ,mc. Accordingly,

��mc

k=1 G
T
ck(qι)

�
λc appears in (13a) and then, as for single

collisions, the discrete energy conservation condition for the complete system (13c) determines λc. The
discrete null space reduction works analogously to the single collision case.

If collisions follow each other in quick succession, the algorithm does not return to the regular grid imme-
diately but computes another collision time node within a basic time-step h.

3.3 Example: chain of four beads in a box

As an example, we consider a linear chain of four beads (of the same mass, length and radius) in a three-
dimensional box of size 8×10×14 (relative to the bead size with radius r = 0.1). Depending on the initial
conditions, planar or real three-dimensional, periodic or non-periodic motion takes place where multiple
collisions (between multiple beads or between multiple beads and multiple walls) occur. We consider an
example of non-integrable three-dimensional motion. The initial conditions

q0 = (− 3

2
√
2
,− 1

2
√
2
, 0,− 1

2
√
2
,

1

2
√
2
, 0,

1

2
√
2
,− 1

2
√
2
, 0,

3

2
√
2
,

1

2
√
2
, 0)

q̇0 = (− 1

10
,
1

10
,− 1

10
, 0, 0, 0, 0, 0, 0, 0, 0, 0)

lead to chaotic motion of the chain. Figure 3 illustrates different configurations, where beads in contact
with other beads are coloured in blue while the red beads are in contact with a wall of the box. Note that
the third row depicts a bead-bead collision happening a very short time before a bead-wall collision and the
fourths row shows a bead-wall collision followed immediately by a bead-bead collision. In particular, the
time between the described collisions is shorter than the basic time-step h = 0.1. Obviously, the algorithm
is capable to handle multiple collisions (at one time node) and collisions following each other rapidly in a
stable way exhibiting good energy behaviour (fluctuations are are of the order of magnitude 10−4, they do
not show any drift, see Figure 2).
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Figure 2. Chain of four beads, chaotic motion: evolution of energy during a simulation of 1000 colli-
sions, including various collisions following each other in quick succession.
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Figure 3. Chain of four beads, chaotic motion: different configurations including bead-bead and bead-
wall collisions following each other rapidly.

8



4 Optimal control with collision avoidance

In order to avoid collisions or even any contact between bodies (including grazing collisions, i.e. the mere
touching contact without a velocity component in the direction normal to the contact surface), the first step
is to detect contact or overlapping. This can be quite a challenge for three-dimensional non-smooth and
maybe non-convex bodies. Then, the second step is to enforce the avoidance of collisions in the simulation
of optimal control problems.

4.1 Contact detection for non-smooth bodies via SSHLP

To detect contact between convex bodies, a subdifferentiable global contact detection algorithm, the so
called supporting separating hyperplane (SSH) algorithm, developed in [John 12] is used. Based on theo-
rems from convex and affine geometry, this algorithm determines the signed distance between supporting
hyperplanes of two convex sets. In its first formulation, the algorithm yields a quadratically constrained
linear program. However, the problems’s structure is such that an equivalent linear program (LP) (with
explicit expressions of the subderivative supplying the contact force) can always be formulated.

For the positive integer n, let α �= 0 ∈ Rn and a ∈ R, then the affine and convex set

Hα,a = {x ∈ Rn| �α,x� − a = 0}

is called a hyperplane in Rn. Here, α is the normal vector to the plane while a = �α,a� for some point
a ∈ Rn belonging to the plane. The signed distance between a point y ∈ Rn and a hyperplane can be
computed as �α,y� − a. Clearly, a hyperplane has two distinct sides. For b ∈ Rn and b = �α, b�, the
signed distance between parallel hyperplanes with normal α reads d(Hα,a, Hα,b) = b− a.
Let K1,K2 ⊂ Rn be compact convex sets and let extK1, extK2 denote the sets of their extreme points
(corners for polyhedral sets) and bdK1, bdK2 their boundaries, respectively. A hyperplane Hα,a is said to
support the set K1 at x ∈ bdK1, when x ∈ Hα,a and K1 is entirely contained in one of the half-spaces
associated with distinct sides of Hα,a, i.e. for all y ∈ K1 either �α,y� − a ≤ 0 or �α,y� − a ≥ 0 holds.

K1

K2

d < 0

α

Hα,a1
Hα,a2

K1

K2

d > 0

α

Hα,a1

Hα,a2

K1

K2

max d > 0

α∗

Hα∗,a∗2Hα∗,a∗1

K1 K2

d < 0

α

Hα,a1

Hα,a2

K1 K2

d < 0

α

Hα,a1
Hα,a2

K1

K2

max d < 0

α∗

Hα∗,a∗1
Hα∗,a∗2

Figure 4. Strictly separable (first row) and non-separable (second row) polyhedral sets K1,K2 with
signed distance between different supporting hyperplanes and maximum signed distance (Figure from
[John 12]).

The maximum signed distance between parallel supporting hyperplanes of each set can be computed either
as a solution h(K1,K2) of the following quadratically constrained liner program (QCLP), or as the solution
g(K1,K2) of the following linearly constrained linear program (LCLP) for some unit vector β ∈ S

n−1.

9



QCLP

h(K1,K2) = max
α∈Rn

a1,a2∈R
a1 − a2

subject to �α,x� − a1 ≥ 0 ∀ x ∈ extK1

�α,y� − a2 ≤ 0 ∀ y ∈ extK2

�α,α� = 1

LCLP

g(K1,K2) = max
α∈Rn

a1,a2∈R
a1 − a2

subject to �α,x� − a1 ≥ 0 ∀ x ∈ extK1

�α,y� − a2 ≤ 0 ∀ y ∈ extK2

�β,α� = 1

Using of the following three results shown in [John 12]

i) Theorem 1. Two compact convex sets K1 and K2 are strictly separable, i.e. K1 ∩K2 = ∅ (properly

separable, i.e. K1 ∩ K2 = ∅ or K1 ∩ K2 ⊂ Hα,a1 ≡ Hα,a2 ) if and only if h > 0 (if and only if

h ≥ 0).

ii) Theorem 2, giving conditions under which an optimal solution of the QCLP is equivalent to an
optimal solution of the LCLP

iii) Remark 3 and remarks following the proof of Theorem 2 on the choice of β in praxis

we solve the LCLP to detect contact or overlapping between non-smooth convex bodies. If non-convex
bodies are present, they are subdivided into convex bodies for which then contact or overlapping is tested.

4.2 Discrete mechanics and optimal control for constrained systems with collision avoidance

The goal of an optimal control problem is to determine an optimal state trajectory with the corresponding
optimal control trajectory actuating the dynamical system such that an optimality criterion is reached. Thus,
an objective functional is minimised with respect to the state and control trajectory while the equations of
motion, initial and final conditions as well as path constraints have to be fulfilled. To simulate an opti-
mal control problem numerically via a direct method, the problem is transformed into a finite dimensional
constrained optimisation problem which can be solved e.g. by a standard SQP or interior point method.
Thereby, the particular form of the discrete equations of motion (which serve as constraints for the optimi-
sation) plays a crucial role for the resulting approximate solution. As described in the previous sections, in
this discrete mechanics approach, they are derived via a discrete variational principle, leading to structure
preservation (symplecticity, consistency in momentum maps in the presence of symmetry and good energy
behaviour) along the discrete trajectories, see [Mars 01, Leye 08, Leye 10].

Let the degrees of freedom are actuated by the discrete control sequence τd = {τn}N−1
n=0 , approximating the

control trajectory τ (t) : [t0, tN ] → Rn−m by a constant τn ∈ Rn−m in each time interval [tn, tn+1]. Using
τ+
n−1 = h

2τn−1 and τ−
n = h

2τn, redundant n-dimensional control forces BT (qn)·(τ+
n−1+τ−

n ) can be com-
puted using the configuration dependent input transformation matrix BT (qn) ∈ Rn×(n−m). In the presence
of non conservative actuation forces and constraints, a discrete constrained Lagrange-d’Alembert principle
yields the variational integrator – in this case the constrained forced discrete Euler-Lagrange equations.
Altogether, discrete mechanics and optimal control for constrained systems (DMOCC) yields the following
finite dimensional constrained optimisation problem for the simulation of the optimal control problem with
boundary values (q(t0), q̇(t0)) = (q0

, q̇0) and (q(tN ), q̇(tN )) = (qN
, q̇N ). Note that Jd, Cd are discrete

approximations to the objective and cost functionals, respectively, while sd,hd, rd are discrete versions of
the initial, final and path contraints.

Let the contact constraint function be denoted by gc : Q → R and assume that it is computed as the
solution of the LCLP. Then collision avoidance requires to augment DMOCC by the inequality constraint
gc(qn) > 0 for n = 1, . . . , N − 1.
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DMOCC with collision avoidance
minimise discrete objective function

min
ud,τd

Jd(ud, τd) = min
ud,τd

N−1�

n=0

Cd(un,un+1, τn)

subject to the constraints for n = 1, . . . , N − 1

discrete equations of motion
P T (qn) ·

�
D1Ld(qn,F (un+1, qn)) +D2Ld(qn−1, qn) +BT (qn) ·

�
τ+
n−1 + τ−

n

��
= 0

collision avoidance gc(qn) > 0

initial value constraints sd(u0,u1, τ0, q0
, q̇0) = 0

path constraints hd(un,un+1, τn) ≤ 0

final point constraints rd(uN−1,uN , τN−1, qN
, q̇N ) = 0

The constrained optimisation problem is solved in Matlab using the fmincon function (SQP algorithm with
active set strategy or interior point method).

4.3 Example: puzzle assembly with collision avoidance

The considered puzzle consists of three non-smooth non-convex rigid bodies that are initially at rest in
fully specified initial configurations. All bodies are fully actuated and supposed to reconfigure such that
at the final time tN = 0.29 (where h = 0.01 and N = 29), they are in a prescribed relative placement
and orientation to each other. In other words, the puzzle manoeuvre ends at rest in a fully assembled
configuration whose absolute placement and orientation in space is left free. During the manoeuvre, contact
is detected using the SSHLP described in Section 4.1 and collisions are avoided. The initial guess for the
optimisation is determined via an inverse dynamics problem, i.e. collision free reconfiguration trajectories
have been guessed for the three bodies and the corresponding actuation has been determined solving the
discrete equations of motion (see DMOCC with collision avoidance in Section 4.2) for the discrete control
sequence τd. The goal of the optimisation is to minimise the control effort, i.e. Cd = htτT

n ·τn while bounds
on the optimisation variables ud, τd ensure that a local minimum with relatively small displacements is
found. The control effort is reduced from a value of Jd = 89 at the initial guess to Jd = 0.0630 for the
optimised solution. See Figure 5 for snapshots of different configurations during the puzzle’s assembly.

5 Optimal control problems with contact

In many optimal control tasks like e.g. docking manoeuvres or walking and jumping motion, contact can not
be avoided or is even necessary. However, in most cases, it is not known in advance when or where contact
takes place. In particular, one can optimise the contact time and configuration with respect to specified
goals.

5.1 Smooth penalty formulation

A penalty potential is an easy way to treat contact without loosing the generality of the problem formula-
tion while retaining its smoothness, i.e. in DMOCC with collision avoidance described in Section 4.2, the
collision avoidance inequality condition is left away. In case that the bodies overlap, i.e. gc(qn) < 0, an
n-dimensional penalty force f c

n = ∇(µ2 g
2
c (qn)) with the positive penalty parameter µ ∈ R is included in

the discrete equations of motion in DMOCC, which then read

P T (qn) ·
�
D1Ld(qn,F (un+1, qn)) +D2Ld(qn−1, qn) +BT (qn) ·

�
τ+
n−1 + τ−

n

�
+ f c

n

�
= 0

Note that an explicit expression for the subderivative of the SSHLP can be readily evaluated such that ∇gc

can always be computed.
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Figure 5. Puzzle assembly with collision avoidance: snapshots of different configurations.

5.2 Non-smooth contact formulation

Suppose that a mechanical system is to be optimally controlled from an initial to a final state in such a
way that precisely one collision takes place during the manoeuvre at a time node, say at tι ∈ [t0, tN ] with
gc(qι) = 0. If the physical contact time was prescribed, the problem formulation would loose its generality.
To retain generality, we let the contact time be determined as an optimisation variable. One way to realise
this is to introduce positive scaling factors σ1,σ2 ∈ R for the time step before and after the contact time,
see Figure 6. To ensure that time steps do not degenerate, the scaling factors can be bounded in the path
constraints. Furthermore, the total manoeuvre time tN = (ισ1 + (N − ι)σ2)ht can either be left free, or
bounded or fixed by a scalar valued function w(σ1,σ2, tN ) ≤ 0 as desired.

Figure 6. Time grid with differently scaled time step σ1ht and σ2ht before and after the contact time
node tι.

The most crucial point in treating the contact is to determine the correct change in momentum due to the
collision. Lets first assume that the collision is perfectly elastic and frictionless, i.e. the kinetic energy
(and therewith the total energy) does not change when computed immediately before and after the impact.
When a point mass hits a surface, its linear momentum component in the direction of the surface normal
at the contact point is reversed while the tangential component remains unchanged. However, the present
situation is more complex since we deal with systems of rigid bodies having translational and rotational
degrees of freedom on the one hand, and on the other hand, their kinematics is described using a constrained
formulation reflecting their rigidity and possible interconnections by joints. These configuration constraints
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give rise to hidden constraints on velocity and on momentum level. Using the following discrete reduced
Legendre transforms

Pp−
n =P T (qn) ·

�
−D1Ld(qn,F (un+1, qn))−BT (qn) · τ−

n

�

Pp+
n =P T (qn) ·

�
D2Ld(qn−1, qn) +BT (qn) · τ+

n−1

�

the discrete equations of motion in DMOCC can be interpreted as Pp+
n −P p−

n = 0 which is a balance
of discrete momenta at tn, where the discrete momenta have been computed from the past (Pp+

n ) and
the following time interval (Pp−

n ), respectively, and both are mapped by the null space matrix into the
appropriate reduced cotangent space (being consistent with the constraints on momentum level). When
a contact configuration has been reached, i.e. gc(qι) = 0, the component of Pp+

ι in the direction of the
surface normal has to be reflected. Note that in the reduced formulation, this surface normal is given by�
P∇gc(qι)

�T
= P T (qι) · (∇gc(qι))

T . Thus, using the reduced mass matrix PM(qι) = P T (qι) · M ·
P (qι) the component of Pp+

ι in the direction of the surface tangent, denoted by
�
Pp+

ι

�
�, fulfills

��
P∇gc(qι)

�T
,
�
Pp+

ι

�
�

�

(PM(qι))
−1

= 0 (16)

where �a, b�A = aT ·A ·b is a norm for the vectors a, b and the square matrix A of appropriate dimension.
Inserting the momentum decomposition into the tangential and the normal direction Pp+

ι =
�
Pp+

ι

�
� +

�
Pp+

ι

�
⊥ into Equation (16), the normal momentum component can be found explicitly via

�
Pp+

ι

�
⊥ =

��
P∇gc(qι)

�T
,
P p+

ι

�

(PM(qι))
−1

�
(P∇gc(qι))

T
, (P∇gc(qι))

T
�

(PM(qι))
−1

�
P∇gc(qι)

�T

Finally, for frictionless collisions with a coefficient of restitution e ∈ [0, 1], where e = 1 represents a
perfectly elastic and e = 0 a perfectly plastic collision, the post collision momentum can be computed
according to the following momentum reflection in normal direction at the contact surface

Pp+
ι,post =

P p+
ι,pre − (1 + e)

�
Pp+

ι,pre

�
⊥

With these preliminaries, the DMOCC with contact problem can be formulated as folows.

DMOCC with contact
minimise discrete objective function

min
ud,τd,σ1,σ2

Jd(ud, τd,σ1,σ2) = min
ud,τd

N−1�

n=0

Cd(un,un+1, τn,σ1,σ2)

subject to constraints for n = 1, . . . , N − 1

discrete equations of motion Pp+
n −P p−

n = 0

contact gc(qι) = 0

momentum reflection Pp+
ι,pre − (1 + e)

�
Pp+

ι,pre

�
⊥ = Pp+

ι,post

initial value constraints sd(u0,u1, τ0, q0
, q̇0) = 0

path constraints hd(un,un+1, τn,σ1,σ2) ≤ 0

final point constraints rd(uN−1,uN , τN−1, qN
, q̇N ) = 0

total time condition w(σ1,σ2, tN ) ≤ 0

In particular, collision avoidance can be required at all other time nodes in the path constraints vector. If
multiple, say Nc ∈ N, collisions are planned at the time node numbers ι1, . . . , ιNc , then multiple contact
conditions gc(qι1) = 0, . . . , gc(qιNc

) = 0 with the corresponding momentum reflection conditions are
constraining the optimisation in DMOCC with contact. Furthermore, Nc + 1 scaling factors are present in
the total time condition w(σ1, . . . ,σNc+1, tN ) ≤ 0.
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ι 4 9 14
σ1 2.1795 0.9653 0.6186
σ2 0.8185 1.0149 1.3337
tι 0.2180 0.2172 0.2165
Jd 1.0244 · 10−6 1.0194 · 10−6 1.0005 · 10−6

Table 1. Cube hitting a wall: values of scaling factors, contact time and control effort for different
contact node numbers ι.

5.3 Example: cube hitting the wall

In the first example, a cube starts in a prescribed initial state with a translational velocity towards a close
by wall. In the prescribed final state, the final velocity is reversed and bounds on the actuation are set
such that the final state can not be reached without a collision of the cube with the wall. Here, N = 30
time nodes and a time step of ht = 0.025 are used and the control effort is minimised. The final time
is prescribed as tN = 0.75. This example serves as numerical evidence that the resulting optimal state
and control trajectories and the resulting optimal contact time are independent of the chosen contact node
number. Table 1 and Figure 7 shows that for ι ∈ {4, 9, 14} qualitatively the same contact time, control
effort and evolution of actuating force and torque are obtained (of course the scaling factors yielding this
contact time are different).
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Figure 7. Cube hitting a wall: evolution of actuating force and torque for different contact node
numbers ι. The contact time is marked in green.

5.4 Example: two cubes with two planned collisions

The following problem considers two cubes with fully specified initial configurations. The green cube is
initially at rest. It is not actuated, thus its final state is not prescribed. The blue cube has an initial velocity
and is required to be steered into a prescribed final rest position that overlaps with the green cube’s initial
configuration. Thus, the blue cube must push the green cube out of the way, wherefore two collisions are
planned at the time node numbers ι1 = 20, ι2 = 39 and collisions are avoided at all other time nodes.
Altogether, N = 50 time nodes and ht = 0.01 are used, while the final time is prescribed as tN = 0.5, thus
the total time condition w(σ1,σ2,σ3, tN ) = (σ1ι1 + σ2(ι2 − ι1) + σ3(N − ι2))ht − tN = 0 is used in
DMOCC with contact described in Section 5.2. As a result of the control problem minimising the control
effort to Jd = 2.8573 · 10−5, collisions happen at tι1 = 0.1975, tι2 = 0.3900, thus σ1 = 0.98725,σ2 =
1.0132,σ3 = 1.0004. The initial guess for the optimisation is obtained via a forward dynamics simulation
(treating contact according to the decomposition contact response formulation given in [Cira 05], which has
been extended for the case of oriented bodies and constrained dynamics) yielding also a guess for possible
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contact times. The left hand side plot in Figure 8 shows the evolution of the actuating force and torque for
the blue cube. The corresponding net torque evolution as well as the evolution of angular momentum for
the complete system are shown in the right hand side plot, where the lowest plot shows the consistency of
the angular momentum evolution, i.e. the change in angular momentum exactly represents the actuation (up
to the numerical tolerance) giving numerical evidence of the structure preservation properties of the discrete
equations of motion. Snapshots of different configurations are depicted in Figure 9.
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Figure 8. Two cubes with two planned collisions: evolution of actuating force and torque on blue cube
(left) and evolution of angular momentum, net torque and consistency of angular momentum for the
complete system (right).

6 Conclusion

Starting from a discrete version of Hamilton’s principle, we have derived a structure preserving integrator
for mechanical systems including holonomic (bilateral) constraints as well as unilateral contact (inequal-
ity) constraints. The basic idea of the discrete variational principle for systems involving collisions is
to treat both the discrete-time trajectory and unknown collision time as unknowns; the resulting discrete
Euler-Lagrange equations plus boundary conditions then lead to a time-stepping algorithm that includes the
contact force and the constraint forces corresponding to the holonomic constraints. As we have shown all
reaction forces can be eliminated from the discrete equations of motion using a discrete null space reduction
(involving a projection and a local reparametrisation step) which considerably reduces the number of un-
knowns as compared to the standard treatment with Lagrange multipliers. As a consequence, the condition
number during iteration stays low. This fact, together with the possibility to determine the contact time by
solving an algebraic equation rather than searching it via bisection strategies, leads to much lower compu-
tational costs while, at the same time, it increases the accuracy to which the contact time is determined.

With the supporting separating hyperplane linear programming (SSHLP) approach, a very efficient method
for detecting contact between non-smooth bodies has been described briefly. The resulting signed distance
between the bodies is first of all used as an inequality constraint in optimal control simulations with collision
avoidance. Secondly, optimal control manouevres with planned contacts and collisions are considered.
Here it is an advantage that the subgradient of the SSHLP, supplying the direction of the contact force,
can be readily evaluated. For the simulation of contact manoeuvres, the time grid is variable, such that the
contact time can be determined as part of the optimisation while the contact node number can be fixed, what
fascilitates the implementation substantially. The presented formulation and results constitute first steps of
ongoing work and many theoretical aspects and more complex examples will be considered in the future.
Furthermore, a comparison of the SSHLP’s efficiency with standard contact detection methods is required.
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Figure 9. Two cubes with two planned collisions: snapshots of different configurations.
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