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ABSTRACT. We investigate several approaches to resolution based automated theorem
proving in classical higher-order logic (based on Church’s simply typed λ-calculus) and
discuss their requirements with respect to Henkin completeness and full extensionality.
In particular we focus on Andrews’ higher-order resolution (Andrews 1971), Huet’s con-
strained resolution (Huet 1972), higher-order E-resolution, and extensional higher-order
resolution (Benzmüller and Kohlhase 1997). With the help of examples we illustrate the
parallels and differences of the extensionality treatment of these approaches and demon-
strate that extensional higher-order resolution is the sole approach that can completely
avoid additional extensionality axioms.

1. INTRODUCTION

It is a well known consequence of Gödel’s first incompleteness theorem
that there cannot be complete calculi for higher-order logic with respect to
standard semantics. However, Henkin (1950) showed that there are indeed
complete calculi if one gives up the intuitive requirement of full function
domains in standard semantics and considers Henkin’s general models in-
stead. For higher-order calculi therefore Henkin completeness constitutes
the most interesting notion of completeness.

A very challenging task for a calculus aiming at Henkin-completeness
is to provide a suitable extensionality treatment. Unfortunately the im-
portance of full extensionality in higher-order theorem proving, i.e., the
suitable combination of functional and Boolean extensionality, has widely
been overlooked so far. This might be due to the fact that (weak) func-
tional extensionality is already built-in in the pure simply typed λ-calculus
and that Boolean extensionality or the subtle interplay between Boolean
and functional extensionality does simply not occur in this context. How-
ever, the situation drastically changes as soon as one is interested in a
higher-order logic based on the simply typed λ-calculus, as now Boolean
extensionality is of importance too.

We therefore investigate the extensionality treatment of several resolu-
tion based approaches to Henkin complete higher-order theorem proving:
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Andrews’ higher-order resolution (Andrews 1971), Huet’s constrained
resolution (Huet 1972), higher-order E-resolution, and extensional higher-
order resolution (Benzmüller and Kohlhase 1998a). In order to ease the
comparison we present them in a uniform way. Even though we focus on
the resolution method in this paper the main results on the feasibility of
extensionality reasoning in higher-order theorem proving do nevertheless
apply to other theorem proving approaches as well.

For Andrews’ and Huet’s approach it is well known that generally infin-
itely many extensionality axioms are required in the search space in order
to reach Henkin completeness. With the help of rather simple examples
we will point out the shortcomings of this kind of extensionality treat-
ment; namely a fair amount of non-goal directed search which contrasts
the general idea of resolution based theorem proving.

Whereas the use of higher-order E-unification (cf. Snyder 1990; Nip-
kow and Qian 1991; Wolfram 1993; Qian and Wang 1996) instead of
simple syntactical higher-order unification partially improves the situation,
this idea nevertheless fails to provide a general solution and still requires
additional extensionality axioms to ensure Henkin completeness.

The first calculus that generally takes into account, that higher-order
theory unification with respect to theories including full extensionality is
as hard as Henkin complete higher-order theorem proving itself, is the
extensional higher-order resolution approach (Benzmüller and Kohlhase
1998a). This calculus very closely integrates higher-order unification and
resolution by allowing for mutual recursive calls (instead of hierarchical
calls solely from resolution to unification as in first-order). With its close
integration of unification and resolution this approach ensures Henkin
completeness without requiring additional extensionality axioms. With the
help of our examples we show that this aspect is not only of theoretical but
also of practical importance as proof problems requiring non-trivial exten-
sionality reasoning can be solved in the extensional higher-order resolution
approach in a more goal directed way.

As a theoretical result the paper presents Henkin completeness proofs
for the resolution approaches of Andrews and Huet which have been ex-
amined in literature so far only with respect to Andrews’ rather weak
semantical notion of V -complexes.

The paper is organised as follows: Syntax and semantics of higher-order
logic and a proof theoretic tool for analysing Henkin completeness are
sketched in Section 2. Various resolution based calculi are then introduced
in Sections 3 and their extensionality treatment is investigated with the
help of examples in Section 4. Related work is addressed in Section 5, and
Section 6 concludes the paper.



APPROACHES TO HIGHER-ORDER THEOREM PROVING 205

2. SYNTAX AND SEMANTICS OF HIGHER-ORDER LOGIC

2.1. Classical Type Theory

We consider a higher-order logic based on Church’s simply typed λ-
calculus (Church 1940) and choose BT := {ι, o} as base types, where ι

denotes the set of individuals and o the set of truth values. Functional
types are inductively defined over BT . A signature 	 contains for each
type an infinite set of variables and constants, and particularly it provides
the logical constants ¬o→o, ∨o→o→o, and 
(α→o)→o for every type α. As
all other logical operators can be defined (e.g., A ∧ B := ¬(¬A ∨ ¬B),
∀Xα P X := 
((α→o)→o)(λXα P X), and ∃Xα P X := ¬∀Xα ¬(P X)))
the given logical constants are sufficient to define a classical higher-order
logic.

The set of all 	-terms (closed 	-terms) of type α is denoted by wffα
(cwffα). Variables are printed as upper-case (e.g., Xα), constants as lower-
case letters (e.g., cα), and arbitrary terms appear as bold capital letters (e.g.,
Tα). If the type of a symbol is uniquely determined by the given context we
omit it. We abbreviate function applications by hα1→···→αn→β Un

αn
, which

stands for (· · · (hα1→···→αn→β U1
α1
) · · · Un

αn
). For α-, β-, η-, βη-conversion

and the definition of β-normal, βη-normal, long βη-normal, and head-
normal form we refer to Barendregt (1984) as well as for the definition of
free variables, closed formulas (also called sentences), and substitutions.
Substitutions are represented as [T1/X1, . . . ,Tn/Xn] where the Xi spe-
cify the variables to be replaced by the terms Ti . The application of a
substitution σ to a term (resp. literal or clause) C is printed Cσ .

Higher-order unification and sets of partial bindings GBh
γ are well

explained in Snyder and Gallier (1989).
A calculus R provides a set of rules {rn| 0 < n ≤ i} defined on clauses.

We write � �rn C (C ′ �rn C) iff clause C is the result of a one step
application of rule rn ∈ R to premise clauses C ′

i ∈ � (to C ′ respectively).
Multiple step derivations in calculus R are abbreviated by �1 �R �k (or
C1 �R Ck).

2.2. Clauses, Literals, and Unification Constraints

The approaches studied in this paper are presented using a uniform nota-
tion for clauses, literals, and unification constraints (the notation is due to
Kohlhase (1994)). Literals, e.g., [A]µ, consist of a literal atom A and a
polarity µ ∈ {T , F }. For all rules presented in this paper we assume that
the polarity specifiers µ, ν ∈ {T , F } refer to complementary polarities,
i.e., µ �= ν. In particular we distinguish between proper literals and pre-
literals. The (normalised) atom of a pre-literal has a logical constant at
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head position, whereas this must not be the case for proper literals. For
instance, [A ∨ B]T is a pre-literal and [po→o (A ∨ B)]T is a proper literal.
Furthermore a literal is called flexible if its atom contains a variable at head
position.

A unification problem between two terms T1 and T2 (between n terms
T1, . . . ,Tn) generated during the refutation process is called an unification
constraint and is represented as [T1 �=? T2] (resp. [�=? (T1, . . . ,Tn)]). A
unification constraint is called a flex-flex pair if both unification terms have
flexible heads, i.e., variables at head position.

Clauses consist of disjunctions of literals or unification constraints. The
unification constraints specify conditions under which the other literals are
valid. For instance the clause [pα→β→o T1

α T2
β]T ∨[T1

α �=? S1
α]∨[T2

β �=? S2
β]

can be informally read as: if T1 is unifiable with S1 and T2 with S2 then
(p T1 T2) holds. We implicitly treat the disjunction operator ∨ in clauses
as commutative and associative, i.e., we abstract from the particular or-
der of the literals. Additionally we presuppose commutativity of �=? and
implicitly identify any two α-equal constraints or literals. Furthermore we
assume that any two clauses have disjoint sets of free variables, i.e., for
each freshly generated clause we choose new free variables.

If a clause contains at least one pre-literal we call it a pre-clause, other-
wise a proper clause. A clause is called empty, denoted by �, if it consists
only of (possibly none) flex-flex pairs.

An important aspect of clause normalisation is Skolemisation. In
this paper we employ Miller’s sound adaptation of traditional first-order
Skolemisation (Miller 1983), which associates with each Skolem func-
tion the minimum number of arguments the Skolem function has to be
applied to. Higher-order Skolemisation becomes sound, if any Skolem
function f n only occurs in a Skolem term, i.e., a formula S ≡ f nAn,
where none of the Ai contains a bound variable. Thus the Skolem terms
only serve as descriptions of the existential witnesses and never ap-
pear as functions proper. Without this additional restriction the calculi
do not really become unsound, but one can prove an instance of the
axiom of choice. Andrews (1973) investigates the following instance:
∃E(ι→o)→o ∀Pi→o (∃Xι P X) ⇒ P (E P )), which we want to treat as an
optional axiom for the resolution calculi presented in this paper; for further
details we refer to Miller (1983).

2.3. Standard and Henkin Semantics

A standard model for HOL provides a fixed set Dι of individuals, and a set
Do := {�,⊥} of truth values. The domains for functional types are defined
inductively: Dα→β is the set of all functions f : Dα → Dβ . Henkin models
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only require that Dα→β has enough members that any well-formed formula
can be evaluated. Thus, the generalisation to Henkin models restricts the
set of valid formulas sufficiently, such that complete calculi are possible.
The following figure illustrates the sketched connection between standard-
and Henkin semantics.

In Henkin and standard semantics Leibniz equality (which is defined as
.=α := λXα λYα ∀Pα→o P X ⇒ P Y ) denotes the intuitive identity relation
and the (type parameterised) functional extensionality principles

∀Mα→β ∀Nα→β (∀X M X
.= N X) ⇒ (M

.= N)

as well as the Boolean extensionality principle

∀Po ∀Qo (P ⇔⇒ (P
.= Q)

are valid (cf. Benzmüller 1999a; Benzmüller and Kohlhase 1997). Satis-
fiability and validity (M |= F or M |= �) of a formula F or set of formulas
� in a model M are defined as usual.

We want to point out that the above statements on equality and exten-
sionality do not apply to general models as originally introduced by Henkin
(1950). Andrews (1972) showed that the sets Dα→o may be so sparse in
Henkin’s original notion of general models that Leibniz equality may de-
note a relation, which does not fulfil the functional extensionality principle.
Due to lack of space we cannot present this general model here but refer to
Andrews (1972) for further details. The solution suggested by Andrews is
to presuppose the presence of the intuitive identity relations in all domains
Dα→α→o, which ensures the existence of unit sets {a} ∈ Dα→o for all
elements a ∈ Dα . The existence of these unit sets in turn ensures that
Leibniz equality indeed denotes the intended (fully extensional) identity
relation.

In this paper, “Henkin semantics” means the corrected version of
Henkin’s original notion as given in Andrews (1972).
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2.4. Proving Completeness

The abstract consistency proof principle (also called unifying principle)
is a strong tool supporting the analysis of the connection between syntax
and semantics for higher-order calculi. This proof principle has originally
been introduced by Smullyan (1963) for first-order logic and has been
adapted to higher-order logic by Andrews (1971). However, Andrews’
adaptation allows completeness proofs only for the rather weak semantical
notion of V -complexes (in which the axioms of extensionality may fail, cf.
Benzmüller 1991; Benzmüller and Kohlhase 1997).

The following proof principle adapts Andrews abstract consistency
proof principle to Henkin semantics.

DEFINITION 1 (Acc for Henkin Models). Let 	 be a signature and ,	
a class of sets of 	-sentences. If the following conditions hold for all
A,B ∈ cwffo, F,G ∈ cwffα→β , and � ∈ ,	 , then we call ,	 an abstract
consistency class for Henkin models, abbreviated by Acc. (We want to
point out that we assume an implicit treatment of α-convertibility here,
whereas Andrews treats α-convertibility explicit in his notion of η-wffs;
cf. Andrews (1971, 3.1.2, 2.7.5).)

saturated � ∪ {A} ∈ ,	 or � ∪ {¬A} ∈ ,	 .

∇c If A is atomic, then A /∈ � or ¬A /∈ �.

∇¬ If ¬¬A ∈ �, then � ∪ {A} ∈ ,	 .

∇β If A ∈ � and B is the β-normal form of A, then � ∪ {B} ∈ ,	 .

∇η If A ∈ � and B is the η-long form of A, then � ∪ {B} ∈ ,	 .

∇∨ If A ∨ B ∈ �, then � ∪ {A} ∈ ,	 or � ∪ {B} ∈ ,	 .

∇∧ If ¬(A ∨ B) ∈ �, then � ∪ {¬A,¬B} ∈ ,	 .

∇∀ If 
αF ∈ �, then � ∪ {F W} ∈ ,	 for each W ∈ cwffα.

∇∃ If ¬
αF ∈ �, then �∪{¬(F w)} ∈ ,	 for any new constant w ∈ 	α .

∇b If ¬(A .=o B) ∈ �, then � ∪ {A,¬B} ∈ ,	 or � ∪ {¬A,B} ∈ ,	 .

∇q If ¬(F .=α→β G) ∈ �, then �∪{¬(F w
.=β G w)} ∈ ,	 for any new

constant w ∈ 	α .
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This definition extends Andrews notion of abstract consistency classes
for V -complexes by the new requirements saturated, ∇η, ∇b, and ∇q . Satur-
atedness turns the partial V -complexes into total structures and the latter
two conditions ensure that Leibniz equality indeed denotes a fully exten-
sional relation (which may not be the case in V -complexes, where Leibniz
equality simply not necessarily denotes the intended identity relation; cf.
Benzmüller 1991; Benzmüller and Kohlhase 1997).

The following model existence theorem is due to Andrews (1971).

THEOREM 2 (Henkin Model Existence (Andrews 1971)). Let � be a set
of closed 	-formulas, ,	 be an abstract consistency class for V -complexes
(i.e., ,	 fulfils ∇c, ∇¬, ∇β , ∇∨, ∇∧, ∇∀, ∇∃), and let � ∈ ,	 . There exists a
V -complex M, such that M |= �.

The following related theorem addressing Henkin semantics (and ad-
ditional ones addressing several notions in between Henkin semantics
and V -complexes) is presented in Benzmüller (1999a); Benzmüller and
Kohlhasse (1997).

THEOREM 3 (Henkin Model Existence (Benzmüller and Kohlhase
1998)). Let � be a set of closed 	-formulas, ,	 be an abstract consistency
class for Henkin models, and let � ∈ ,	 . There exists a Henkin model M,
such that M |= �.

The complicated task of proving Henkin completeness for a given (res-
olution) calculus R can now be reduced to showing that the set of all sets
� containing R-consistent closed formulas is an abstract consistency class
for Henkin models, i.e., to verify the (syntactically checkable) conditions
given in Definition 1.

3. HIGHER-ORDER RESOLUTION

In this section we introduce several higher-order resolution calculi. Ad-
ditional approaches not mentioned here are briefly sketched and related to
the presented ones in Section 5. The sketched approaches will be compared
with respect to their extensionality treatment in Section 4.

3.1. Andrews’ Higher-Order Resolution R

We transform Andrews’ higher-order resolution calculus (Andrews 1971)
in our uniform notation. In the remainder of this paper we refer to this
calculus with R. Extending Andrews (1971) we show that R is Henkin
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complete if one adds infinitely many extensionality axioms into the search
space.

λ-Conversion. Calculus R provides two explicit rules addressing α-
conversion and β-reduction (cf. Andrews 1971, 5.1.1) but does not provide
a rule for η-conversion. Consequently η-equality of two terms (e.g., fι→ι

.=
λXι f X) cannot be proven in this approach without employing the
functional extensionality axiom of appropriate type; cf. Section 4.1.

In our presentation we omit explicit rules for α- and β-convertibility
and instead treat them implicitly, i.e., we assume that the presented rules
operate on input and generate output in β-normal form and we automatic-
ally identify terms which differ only with respect to the names of bound
variables.

Clause Normalisation. R introduces only four rules belonging to clause
normalisation: negation elimination, conjunction elimination, existential
elimination, and universal elimination (cf. Andrews 1971, 5.1.4.–5.1.7.).
As our presentation of clauses in contrast to Andrews (1971) explicitly
mentions the polarities of clauses and brackets the literal atoms we have to
provide additional structural rules, e.g., the rule ∨T .

• Negation elimination:
C ∨ [¬A]T
C ∨ [A]F ¬T

C ∨ [¬A]F
C ∨ [A]T ¬F

• Conjunction1/disjunction elimination:

C ∨ [A ∨ B]T
C ∨ [A]T ∨ [B]T ∨T

C ∨ [A ∨ B]F
C ∨ [A]F ∨F

l

C ∨ [A ∨ B]F
C ∨ [B]F ∨F

r

• Existential2/universal elimination:

C ∨ [
αA]T
C ∨ [A Xα]T 
T

C ∨ [
αA]F
C ∨ [A sα]F 
F

Xα is a new free variable and sα is a new Skolem term

Additionally Andrews presents rules addressing commutativity and as-
sociativity of the ∨-operator connecting the clauses literals (cf. Andrews
1971, 5.1.2.). We have already mentioned the implicit treatment of these
aspects in Section 2.2.

In the remainder of this paper Cnf(A) denotes the set of clauses ob-
tained from formula A by clause normalisation. It is easy to verify that
clauses produced with Andrews’ original normalisation rules can also be
obtained with the rules presented here (and vice versa).
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Resolution and Factorisation. Instead of a resolution and a factorisation
rule – which work in connection with unification – Andrews presents a
simplification and a cut rule. The cut rule is only applicable to clauses with
two complementary literals which have identical atoms. Similarly Sim is
defined only for clauses with two identical literals. In order to generate
identical literal atoms during the refutation process these two rules have to
be combined with the substitution rule Sub presented below.

• Simplification:
[A]µ ∨ [A]µ ∨ C

[A]µ ∨ C Sim

• Cut: [A]µ ∨ C [A]ν ∨ D
C ∨ D Cut

Unification and Primitive Substitution. As higher-order unification was
still an open problem in 1971 calculus R employs the British Museum
Method instead, i.e., it provides a substitution rule that allows to blindly
instantiate free variables by arbitrary terms. As the instantiated terms
may contain logical constants, instantiation of variables in proper clauses
may lead to pre-clauses, which must be normalised again with the clause
normalisation rules.

• Substitution of arbitrary terms:
C

C[Tα/Xα]
Sub

Xα is a free variable occurring in C.

Extensionality Treatment. Calculus R does not provide rules addressing
the functional and/or Boolean extensionality principles. Instead R as-
sumes that the following extensionality axioms are (in form of respective
clauses) explicitly added to the search space. And since the functional
extensionality principle is parameterised over arbitrary functional types
infinitely many functional extensionality axioms are required3.

EXT
.=
α→β : ∀Fα→β ∀Gα→β (∀Xβ F X

.= G X) ⇒ F
.= G

EXT
.=
o : ∀Ao ∀Bo (A ⇔ B) ⇒ A

.=o
B

These are the crucial directions of the extensionality principles and the
backward directions are not needed. The extensionality clauses derived
from the extensionality axioms have the following form (note the many
free variables, especially at literal head position, that are introduced into
the search space – they heavily increase the amount of blind search in any
attempt to automate the calculus):
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E
α→β
1 : [p (F s)]T ∨ [Q F ]F ∨ [Q G]T

E
α→β
2 : [p (G s)]F ∨ [Q F ]F ∨ [Q G]T

Eo
1 : [A]F ∨ [B]F ∨ [P A]F ∨ [P B]T

Eo
2 : [A]T ∨ [B]T ∨ [P A]F ∨ [P B]T

pβ→o, sα are Skolem terms and P(α→β)→o, Q(α→β)→o are new free
variables.

Proof Search. Initially the proof problem is negated and normalised. The
main proof search then starts with the normalised clauses and applies
the cut and simplification rule in close connection with the substitution
rule. An intermediate application of the clause normalisation rules may be
needed to normalise temporarily generated pre-clauses. The extensionality
treatment in R simply assumes to add at the beginning of the refutation
process the above clauses obtained from the extensionality axioms.

When abstracting from the initial and intermediate normalisations the
proof search can be illustrated as follows:

Completeness Results. Andrews (1971) gives a completeness proof for
calculus R with respect to the semantical notion of V -complexes. As
the extensionality principles are not valid in this rather weak semantical
structures, the extensionality axioms are not needed in this completeness
proof.

THEOREM 4 (V -completeness of R). The calculus R is complete with
respect to the notion of V -complexes.

Proof. We sketch the proof idea: 4(i) First show that the set of non-
refutable sentences in R is an abstract consistency class for V -complexes.
4(ii) Then prove completeness of R with respect to V -complexes in
an indirect argument: assuming non-completeness of R leads to an
contradiction by 4(i) and Theorem 3. �

We now extend this result and prove Henkin completeness of calculus
R.

THEOREM 5 (Henkin completeness of R). The calculus R is com-
plete with respect to Henkin semantics provided that the infinitely many
extensionality axioms are given.

Proof. 5(i) The crucial aspect is to prove that the set of non-refutable
sentences in R enriched by the extensionality axioms is an abstract con-
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sistency class for Henkin models. 5(ii) An indirect argument analogous to
4(ii) employing 5(i) and Theorem 3 ensures completeness.

In order to show 5(i) we have to verify the additional abstract con-
sistency properties saturated, ∇η, ∇b, and ∇q as specified in Definition
1.

saturated We show that � ∪ {A} ��R � or � ∪ {¬A} ��R �. Assume
� ��R � but � ∪ {A} �R � and � ∪ {¬A} �R �. By Lemma 6
(cf. below) we get �{A ∨ ¬A} �ER �, and hence, since A ∨ ¬A is
a tautology, it must be the case that � �ER �, which contradicts our
assumption.

∇η Assuming A ∈ � and � ∪ {B} �R �, we get � �R � by Lemma 7
(cf. below). This ensures the assertion by contraposition.

∇b We first apply rule Sub and instantiate the variables A and B in the
Boolean extensionality axioms Eo

1 and Eo
2 with terms A and B. Now

assume that ¬(A .=o B) ∈ � and � ∪ {A,¬B} �R � and � ∪
{¬A,B} �R �. Employing the instantiated Boolean extensionality
axioms it is easy to see that � �R �, which ensures the assertion by
contraposition.

∇q Can be shown analogously to ∇b when appropriately instantiating the
functional extensionality axioms Eα→β

1 ,Eα→β

2 .

LEMMA 6. Let � be a set of sentences and A,B be sentences. If � ∪
{A} �R � and � ∪ {B} �R �, then � ∪ {A ∨ B} �R �.

Proof. We first verify that Cnf(� ∗ A ∨ B) = Cnf(�) ∪ (Cnf(A) �
Cnf(B)), where ,�3 = := {C∨D|C ∈ Cnf(A)},D ∈ Cnf(B)}. Then we
use that �∪(,1�,2) �R �, provided that �∪,1 �R � and �∪,2 �R �.
�

LEMMA 7. Let � be a set of sentences and let A,B be sentences in β-
normal form, such that A can be transformed into B by (i) a one step η-
expansion or (ii) a multiple step η-expansion. Then �∪ {B} �R � implies
� ∪ {A} �R �.

Proof. Case (ii) can be proven by induction on the number of η-
expansion steps employing (i) in the base case. To prove case (i) note that
A and B differ (apart from α-equality) only with respect to a single subterm
Tα→β . More precisely, A[(λX T X)/T] is equal to B. Normalising sentences
A (resp. B) may result in several clauses A1, . . . ,An (resp. B1, . . . ,Bn)
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with duplicated occurrences of subterm T (resp. λX T X). We appro-
priately instantiate the functional extensionality axioms Eα→β

1 ,Eα→β

2 and
derive the (Leibniz equation) clauses C1 : [Q f ]T ∨ [Q (λX f X)]F and
C2 : [Q′ f ]F ∨ [Q′ (λX f X)]T (the latter can be obtained from the
former by substituting λX ¬Q′ X for Q). Obviously, we can derive for
each 1 ≤ i ≤ n the clause Bi from its counterpart Ai with the help of C1

and C2 (formally we apply an induction on the occurrences of term T in
Ai). �

3.2. Huet’s Higher-Order Constrained Resolution CR

In this section we transform Huet’s constrained resolution approach (Huet
1972, 1973a) to our uniform notation. The calculus here is the unsor-
ted fragment of the variant of Huet’s approach as presented in Kohlhase
(1994). In the remainder of this paper we refer to this calculus as CR. We
extend (Huet 1972, 1973a) and show that CR is Henkin complete if we
add infinitely many extensionality axioms to the search space.

λ-Conversion. Like R calculus CR assumes that terms, literals, and
clauses are implicitly reduced to β-normal form. Furthermore we assume
that α-equality is treated implicitly, i.e., we identify all terms that differ
only with respect to the names of bound variables.

Clause Normalisation. Huet (1972) does not present clause normalisation
rules but assumes that they are given. Here we employ the rules ¬T , ¬F ,
∨T , ∨F

l , ∨F
r , 
T , and 
F as already defined for calculus R in Section 3.1.

Resolution and Factorisation. As first-order unification is decidable and
unitary it can be employed as a strong filter in first-order resolution
(Robinson 1965). Unfortunately higher-order unification is not decid-
able (cf. Lucchesi 1972; Huet 1973b; Goldfarb 1981) and thus it can
not be applied in the sense of a terminating side computation in higher-
order theorem proving. Huet therefore suggests in Huet (1972, 1973a) to
delay the unification process and to explicitly encode unification prob-
lems occurring during the refutation search as unification onstraints. In
his original approach Huet presented a hyper-resolution rule which sim-
ultaneously resolves on the resolution literals A1, . . .An (1 ≤ n) and
B1, . . .Bm (1 ≤ m) of two given clauses and adds the unification constraint
[�=? (A1, . . .An,B1, . . .Bm)] to the resolvent.

[A1]µ ∨ . . . ∨ [An]µ ∨ C[B1]µ ∨ . . . ∨ [Bm]µ ∨ D
C ∨ D ∨ [�=? (A1, . . .An,B1, . . .Bm)] Hres
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In order to ease the comparison with the two other approaches discussed
in this paper we instead employ a resolution rule Res and a factorisation
rule Fac. Like Hres both rules encode the unification problem to be solved
as a unification constraint.

• Constrained resolution:
[A]µ ∨ C [B]ν ∨ D
C ∨ D ∨ [A �=? B] Res

• Constrained factorisation:
[A]µ ∨ [B]µ ∨ C

[A]µ ∨ C ∨ [A �=? B]F Fac

One can easily prove by induction on n + m that each proof step
applying rule Hres can be replaced by a corresponding derivation employ-
ing Res and Fac. For a formal proof note that the unification constraint
[�=? (A1, . . .An,B1, . . .Bm)] is equivalent to [A1 �=? A2] ∨ [A2 �=?

A3] ∨ . . . ∨ [An−1 �=? An] ∨ [An �=? B1] ∨ [B1 �=? B2] ∨ [B2 �=?

B3] ∨ . . . ∨ [Bn−1 �=? Bn].
Unification and Splitting. Huet (1975) introduces higher-order unifica-
tion and higher-order pre-unification and shows that higher-order pre-
unification is sufficient to verify the soundness of a refutation in which
the occurring unification problems have been delayed until the end. The
higher-order pre-unification rules presented here are discussed in detail
in Benzmüller (1999a). They furthermore closely reflect the rules as
presented in Snyder and Gallier (1989).

• Elimination of trivial pairs: C ∨ [A �=? A]
C Triv

• Decomposition
C ∨ [Aα→β Cα �=? Bα→β Dα]

C ∨ [A �=? B] ∨ [C �=? D] Dec

• Elimination of λ-binders:
(weak functional extensionality)

C ∨ [Mα→β �=? Nα→β]
C ∨ [M sα �=? N sα] Func

sα is a new Skolem term.

• Imitation of rigid heads:
C ∨ [Fγ Un �=? h Vm] G ∈ GBh

γ

C ∨ [F �=? G] ∨ [F Un �=? h Vm] FlexRigid

GBh
γ is the set of partial bindings of type γ for head h as defined in

Snyder and Gallier (1989).

Huet points to the usefulness of eager unification to filter out clauses
with non-unifiable unification constraints or to back-propagate the solu-
tions of easily solvable constraints (e.g., in case of first-order unification
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problems occurring during the proof search). Many of the higher-order uni-
fication problems occurring in practice are decidable and have only finitely
many solutions. Hence, even though higher-order unification is generally
not decidable it is sensible in practice to apply the unification algorithm
with a particular resource4, such that only those unification problems
which may have further solutions beyond this bound need to be delayed.
In our presentation of calculus CR we explicitly address the aspect of
eager unification and substitution by rule Subst. This rule back-propagates
eagerly computed unifiers to the literal part of a clause.

• Eager unification and substitution:

C ∨ [X �=? A] X /∈ free(A)

C[A/X]
Subst

Rule Subst is applicable provided that [X �=? A] is solved with respect
to the other unification constraints in C, i.e., that there is no conflict
with other unification constraints.

The literal heads of our clauses may consist of set variables and it may
be necessary to instantiate them with terms introducing new logical con-
stant at head position in order to find a refutation. Unfortunately not all
appropriate instantiations can be computed with the calculus rules presen-
ted so far. To address this problem Huet’s approach provides the following
splitting rules:

1. Instantiate set variables:
[P A]T ∨ C

[Q]T ∨ [R]T ∨ C ∨ [P A �=? (Qo ∨ Ro)] ST
∨

[P A]µ ∨ C

[Q]ν ∨ C ∨ [P A �=? ¬Qo]
ST F¬

[P A]F ∨ C

[Q]F ∨ C ∨ [P A �=? (Qo ∨ Ro)] SF∨

[R]F ∨ C ∨ [P A �=? (Qo ∨ Ro)]
[P Aα→o]T ∨ C

[Mα→o Z]T ∨ C ∨ [P A �=? 
αM] ST



[P Aα→o]F ∨ C

[Mα→o s]F ∨ C ∨ [P A �=? 
αM] SF



ST

 and SF


 are infinitely branching as they are parameterised over
type α. Qo,Ro,Mα→o, Zα are new variables and sα is a new Skolem
constant.

A theorem which is not refutable in CR if the splitting rules are not
available is ∃Ao.A. After negation this statement normalises to clause C1 :
[A]F , such that none but the splitting rules are applicable. With the help of
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rule ST F
¬ and eager unification, however, we can derive C2 : [A′]T which

is then successfully resolvable against C1.

Extensionality Treatment. On the one hand η-convertibility is built-in in
higher-order unification, such that calculus CR already supports func-
tional extensionality reasoning to a certain extent. On the other hand CR
nevertheless fails to address full extensionality as it does not realise the re-
quired subtle interplay between the functional and Boolean extensionality
principles. For example, without employing additional Boolean and func-
tional extensionality axioms CR cannot prove the rather simple Examples
presented in Sections 4.2, 4.3, and 4.4.

Proof Search. Initially the proof problem is negated and normalised. The
main proof search then operates on the generated clauses by applying the
resolution, factorisation, and splitting rules. Despite the possibility of eager
unification CR generally foresees to delay the higher-order unification
process in order to overcome the undecidability problem. When deriv-
ing an empty clause CR then tests whether the accumulated unification
constraints justifying this particular refutation are solvable. Like R, the
extensionality treatment of CR requires the addition of infinitely many
extensionality axioms to the search space. The following figure graphically
illustrates the main ideas of the proof search in CR.

Completeness Results. Huet (1972, 1973a) analyses completeness of CR
only with respect to Andrews V -complexes, i.e., Huet verifies that the set
of non-refutable sentences in CR is an abstract consistency class for V -
complexes.

THEOREM 8 (V -completeness of CR). The calculus CR is complete with
respect to the notion of V -complexes.

We now extend this result and prove Henkin completeness of calculus
CR.

THEOREM 9 (Henkin completeness of CR). The calculus CR is complete
wrt. Henkin semantics provided that the infinitely many extensionality
axioms are given.
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Proof. Analogously to the proof of Theorem 5 we can reduce the prob-
lem to verifying that the set of non-refutable sentences in R enriched by
the extensionality axioms is an abstract consistency class for Henkin mod-
els. The assertion then follows in an indirect argument employing Theorem
3. In addition to the abstract consistency properties already examined in
Huet (1972, 1973a) for Theorem 8 we have to verify saturatedness, ∇η,
∇b, and ∇q as specified in Definition 1. The proofs of all four statements
are analogous to the corresponding parts in the proof of Theorem 5. For
saturatedness and ∇η we use analogues of Lemmas 6 and 7.

LEMMA 10. Let � be a set of sentences and A,B be sentences. If � ∪
{A} �CR � and � ∪ {B} �CR �, then � ∪ {A ∨ B} �CR �

Proof. Analogous to the proof of Lemma 6. �

LEMMA 11. Let � be a set of sentences and let A,B be sentences in
β-normal form, such that A can be transformed into B by (i) a one step η-
expansion or (ii) a multiple step η-expansion. Then �∪{B} �CR � implies
� ∪ {A} �CR �.

Proof. The proof is analogous to Lemma 7. The main difference is
with regard to the derivability of the clauses Bi from its counterparts Ai

with the help of C1 and C2 obtained from the (suitably instantiated) func-
tional extensionality axioms. It might be the case that the terms T occur
inside flexible literals of the clauses Ai . Resolving these flexible literals
against C1 and C2 results then in flex-flex pairs that cannot be solved
eagerly but have to be delayed. E.g., let Aj (1 ≤ j ≤ n) be of form
[R (p T)]ν ∨ D . Instead of Bj := [R (p (λX T X))]ν ∨ D we can derive
only B ′

j := [Q (λX T X)]ν ∨ D ∨ [Q T �=? R (p (λX T X))]. Hence,
we have to show (in a technically rather complicated inductive proof on the
length of the derivation) that each refutation employing B ′

j can be replaced
by a corresponding one employing Bj . �

3.3. Higher-Order E-Resolution CRE

Some more recent approaches to higher-order theorem proving employ
equational higher-order unification instead of syntactical higher-order uni-
fication in order to ease and shorten proofs on the resolution layer by
relocating particular computation or reasoning tasks to the unification
process. For instance, equational higher-order unification has been invest-
igated within the contexts of higher-order rewriting and narrowing (cf.
Nipkow and Prehofer 1998; Prehofer 1998), and within the context of
restricted higher-order E-resolution (Wolfram 1993).
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In this Section we will sketch a higher-order E-resolution approach
based on calculus CR. In contrast to the other investigated calculi the aim
thereby is not to provide a detailed description of the particular rules and
the functioning of the calculus, but to provide a sufficient basis for the in-
vestigation to what extent equational higher-order unification can improve
the extensionality reasoning in a higher-order theorem prover.

Generally unification of two (or several) terms S and T aims at comput-
ing sets of unifiers, i.e., substitutions σ , such that Sσ equals Tσ (Sσ = Tσ ).
Equational unification thereby extends syntactical unification in the sense
that it tries to equalise Sσ and Tσ modulo a fixed equational theory E

(written as Sσ =E Tσ ) instead of equalising them syntactically. A survey to
unification theory is given in Baader and Siekmann (1994), and Siekmann
(1989).

Within our higher-order context we assume that an equational theory E

is defined by a fixed set of equations between closed λ-terms. For instance,
equations expressing commutativity and associativity of the ∧-operator are
(λXo λYo X∧Y ) = (λXo λYo Y∧X) and (λXo λYo λZo (X∧Y )∧Z) =
(λXo λYo λZo X ∧ (Y ∧ Z)).

And within this particular theory E (to be more precise modulo the
congruence relation defined by this equations) the following two terms are
unifiable by [a/X]: (po→o (bo ∧ Xo) ∧ (Xo ∧ bo)) and (po→o ao ∧ (ao ∧
(bo ∧ bo))).

We want to point out that Huet’s unification approach as presented for
calculus CR is of course not a pure syntactical one as it already takes αβη-
equality into account. We nevertheless call Huet’s approach syntactical
higher-order unification in this paper in order to distinguish it from equa-
tional higher-order unification in the sense of this Subsection, where the
theory E may contain additional higher-order equations.

Several, often restricted, approaches to higher-order E-unification have
been discussed in literature. Wolfram (1993) a general higher-order E-
unification approach which employs higher-order rewriting techniques. An
approach restricted to first-order theories is given in Snyder (1990) and an-
other restricted one, where as much computation as possible is pushed to a
first-order E-unification procedure, is discussed in Qian and Wang (1996)
and Nipkow and Qian (1991). Dougherty and Johann (1992) presents a
restricted combinatory logic approach.

We now sketch our higher-order E-resolution approach CRE .

Clause Normalisation, Resolution and Factorisation, and Splitting. We
assume that calculus CRE coincides with calculus CR in all but the uni-
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fication part. Thus CR provides the clause normalisation, resolution and
factorisation, and splitting rules as introduced in Section 3.2.

Equational Unification. Instead of presenting a concrete set of rules for
higher-order E-unification we refer to the respective approaches given in
Snyder (1990), Nipkow and Qian (1991), Wolfram (1993), and Qian and
Wang (1996). For our investigation of CRE it will be of minor importance
which particular approach we choose and how general this approach is.

Whereas higher-order E-unification can indeed partially improve the
extensionality treatment in CRE , we will present simple theorems in
Section 4 which cannot be proven in CRE (or in any of the related
approaches mentioned above) without additional extensionality axioms.
These counterexamples do not depend on the concrete choice of an
equational theory E.

3.4. Extensional Higher-Order Resolution ER

We now present the extensional higher-order resolution approach as intro-
duced in Benzmüller and Kohlhase (1998a), Benzmüller (1991a). In the
remainder of this paper we refer to this calculus as ER. ER is Henkin
complete without requiring additional extensionality axioms.

λ-Conversion. In contrast to R and CR calculus ER assumes that all terms,
literals, and clauses are implicitly reduced to long βη-normal form.

Clause Normalisation, Resolution and Factorisation, and Unification and
Splitting. ER employs the normalisation rules ¬T ,¬F ,∨T ,∨F

l , ∨F
r ,


T ,

F , the resolution and factorisation rules Res, Fac, and the unification
rules Triv, Dec, Func, FlexRigid, Subst as already defined for calculus CR
in Section 3.2.

Additionally ER employs the infinitely branching unification rule
FlexFlex, which guesses instances in case of flex-flex pairs (cf. Conjecture
13 in Section 3.4).

• Guess
C ∨ [Fγn→α Un = Hδm→α Vm]F G ∈ GBh

γ n→α

C ∨ [F Un = H Vm]F ∨ [F = G]F FlexFlex

GBh

γ n→α
is the set of partial bindings of type γ for a constant h in the

given signature.

The splitting rules presented for CR in Section 3.2 are replaced in
ER by the more elegant primitive substitution rule as first introduced by
Andrews (1989).
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• Primitive substitution
[Qγ Uk]α ∨ C P ∈ GB{¬,∨}∪{
β |β∈T }

γ

[Qγ Uk]α ∨ C ∨ [Q = P]F Prim

GB{¬,∨}∪{
β |β∈T }
γ is the set of partial bindings of type o for a logical

constant in the signature.

Extensionality Treatment. Instead of adding infinitely many extensional-
ity axioms to the search space CR provides two new extensionality rules
which closely connect refutation search and eager unification. The idea
is to allow for recursive calls from higher-order unification to the over-
all refutation process. This turns the rather weak syntactical higher-order
unification approach considered so far into a most general approach for
dynamic higher-order theory unification.

• Unification and equivalence:
C ∨ [Mo �=? No]
C ∨ [Mo ⇔ No]F Equiv

• Unification and Leibniz equality:
C ∨ [Mα �=? Nα]

C ∨ [∀Pα→o P M ⇒ P N]F Leib

Proof Search. Initially the proof problem is negated and normalised. The
main proof search then closely interleaves the refutation process on res-
olution layer and unification, i.e., the main proof search rules Res, Fac,
and Prim and the unification rules are integrated at a common conceptual
level. The calls from unification to the overall refutation process with rules
Leib and Equiv introduce new clauses into the search space which can be
resolved against already given ones.

This close interplay between unification and refutation search com-
pensates the infinitely many extensionality axioms required in R and CR
by a more goal-directed approach to full extensionality reasoning.

The following picture graphically illustrates the main ideas of the proof
search in ER.

Completeness Results. Henkin completeness of the presented approach
with rule FlexFlex is analysed in detail in Benzmüller (1999a) and
Benzmüller and Kohlhase (1998a). Here we only mention the main result:

THEOREM 12 (Henkin completeness of ER). The calculus ER is com-
plete with respect to Henkin semantics.
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Benzmüller (1999a) presents but does not prove the following interest-
ing claims which are of major practical importance as they will lead to an
enormous reduction of the search spaces in ER.

CONJECTURE 13 (FlexFlex-rule is not needed). Rule FlexFlex can be
avoided in ER without affecting Henkin completeness.

CONJECTURE 14 (Base type restriction of rule Leib). Rule Leib can be
restricted to base types α in ER without affecting Henkin completeness.

4. EXAMPLES

In this section we compare the extensionality treatment provided by the
calculi R, CR, CRE , and ER with the help of simple examples. Des-
pite their simplicity the latter two of these examples are nevertheless
challenging with respect to their automisation in a higher-order theorem
prover.

4.1. η-Equality

EXAMPLE 15. fι→ι
.= λXι f X

Solution in R. In order to prove Example 15, which normalises after
negation and expansion of Leibniz equality to C1 : [q f ]F and C2 :
[q (λX f X)]T where q(ι→ι)→o is a new Skolem term, we first have to
appropriately instantiate the two functional extensionality clauses Eα→β

1

and Eα→β

2 with the help of rule Sub:

E ι→ι
1 : [p (f s)]T ∨ [Q f ]F ∨ [Q (λX f X)]T

E ι→ι
2 : [p (f s)]F ∨ [Q f ]F ∨ [Q (λX f X)]T

Employing cut and simplification we can derive

C3 : [Q f ]F ∨ [Q (λX f X)]T

which corresponds to the Leibniz equation between f and (λX f X).
With rule Sub we then substitute the term λMι→ι ¬(q M) for the predicate
variable Q, re-normalise the generated pre-clause, and obtain

C4 : [q f ]T ∨ [q (λX f X)]F
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By applying the cut rule to C4,C1, and C2 we then derive �.

Solution in CR, CRE , and ER. We first sketch the proof of Example 15
in CR. Initially we resolve on C1 : [q f ]F and C2 : [q (λX f X)]T and
thereby obtain the unification constraint C3 : �∨[f �=? (λX f X)]F . The
η-equality of the two unification terms is shown with the help of the uni-
fication rule Func which derives the trivial unification constraint C4 : � ∨
[f s �=? f s]F (where sι is new Skolem term). This unification constraint
can be subsequently eliminated with rule Triv. Our examples illustrates
higher-order unification already addresses weak functional extensionality
(η-equality).

An analogous refutation can clearly be employed in calculus CRE as
weak functional extensionality is built-in in higher-order E-unification as
well.

Example 15 is trivially solvable in ER due to the fact that we implicitly
assume all terms to be in long βη-normal form, i.e., the clauses to be
refuted are C1 : [q(λX fX)]F and C2 : [q(λX fX)]T . Clearly, when
considering long βη-normal forms instead of β-normal forms the problem
is trivially solvable in calculi R, CR, and CRE as well.

4.2. Set Descriptions

In higher-order logic sets can be elegantly encoded by characteristic func-
tions. An interesting problem then is to investigate whether two encodings
describe the same set. The following trivial example demonstrates the
importance of the extensionality principles for this purpose.

EXAMPLE 16. The set of all red balls equals the set of all balls that are
red: {X|red X ∧ ball X} = {X|ball X ∧ red X}. This problem can be
encoded as (λXι red X ∧ ball X) = (λXι ball X ∧ red X).

Negation, expansion of Leibniz equality, and clause normalisation leads
to the following clauses (where p(ι→o)→o is a new Skolem constant):

C1 : [p (λX red X ∧ ball X)]F C2 : [p (λX ball X ∧ red X)]T

Solution in R. As no rule is applicable to C1 and C2 Example 16 is not
refutable in R without employing extensionality axioms. The only way to
derive a contradiction is to employ suitable instances of the extensionality
clauses in a rather complicated derivation:

1. With rule Sub instantiate the Boolean extensionality axioms Eo
1 and Eo

2
with the terms (red Y ∧ ball Y ) and (ball Y ∧ red Y ) for variables A
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and B. By normalising and employing simplification exhaustively to
the resulting pre-clauses we obtain among others:

C3 : [red Y ]F ∨ [ball Y ]F ∨ [P F1]F ∨ [P G1]T
C4 : [red Y ]T ∨ [P F1]F ∨ [P G1]T
C5 : [ball Y ]T ∨ [P F1]F ∨ [P G1]T

where F1 stands for the term (red Y ∧ ball Y ) and G1 for (ball Y ∧
red Y ).
From C3–C5 we derive C6 : [P F1]F ∨ [P G1]T by cut and
simplification, where C6 corresponds to the clause normal form of
∀Y ((λX red X ∧ ball X) Y )

.= ((λX ball X ∧ red X) Y ).
2. With rule Sub we now instantiate the functional extensionality axioms

E ι→o
1 and E ι→o

2 with terms F2 := (λX red X ∧ ball X) for variable F

and G2 := (λX ball X ∧ red X) for variable G.

C7 : [q (red s ∧ ball s)]T ∨ [Q F2]F ∨ [Q G2]T
C8 : [q (ball s ∧ red s)]F ∨ [Q F2]F ∨ [Q G2]T

3. Applying substitution [(λZ q Z)/P, s/Y ] with rule Sub to clause C6

leads to:

C9 : [q (red s ∧ ball s)]F ∨ [q (ball s ∧ red s)]T

Applying cut and simplification we combine the results of the above
steps and derive from C7, C8, and C9

C10 : [Q (λX red X ∧ ball X)]F ∨ [Q (λX ball X ∧ red X)]T

which represent the Leibniz equation between (λX red X ∧ ball X)

and (λX ball X ∧ red X). With the help of C1 and C2 we can now
derive � after appropriately instantiating C10 with [p/Q].

Note that in Steps 1 and 2 we had to guess the right instantiations of the
extensionality axioms and to apply non-goal directed forward reasoning.

Solution in CR. The only rule that is applicable to C1 and C2 in calculus
CR is the resolution rule Res leading to the following unification constraint

C3 : � ∨ [p (λX red X ∧ ball X) �=? p (λX ball X ∧ red X)]
As this unification constraint is obviously not solvable by syntactical
higher-order unification we cannot find a refutation on this derivation path.

As in calculus R the only way to find a refutation is to guess appropri-
ate instances of the extensionality axioms and to derive from them clause
C10 representing the Leibniz equation between (λX red X ∧ ball X) and
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(λX ball X ∧ red X). A concrete derivation can be carried out analog-
ously to the above derivation in R. The only difference is that we employ
resolution and factorisation instead of cut and simplification. In contrast
to R we thereby gain additional guidance with respect to finding some
of the required instantiations when combining the resolution/factorisation
steps with eager unification attempts. But note that this only holds for the
instantiation of non-formulas, e.g., as given in Step 3. The key step in
the proof, namely the instantiation of the extensionality axioms in Step 1
with appropriate formulas as arguments, is not supported by unification.
Instead the splitting rules have to be employed in order to guess the right
instances. The problem with the splitting rules (or analogously the primit-
ive substitution rule) is that each application introduces new clauses with
flexible literals into the search space (in case of ST


 and SF

 even infinitely

many) such that the splitting rules become recursively applicable to the
new clauses as well.

Consequently, the extensionality treatment in CR is analogously to the
one in R rather hard to guide in practice. Overwhelming the search space
with extensionality clauses and applying forward reasoning to them fur-
thermore principally contrasts the intended character of resolution based
theorem proving.

Solution in CRE . Analogous to the unsuccessful initial attempt in CR we
first resolve between C1 and C2 and obtain

C3 : � ∨ [p (λX red X ∧ ball X) �=? p (λX ball X ∧ red X)]

Whereas syntactical unification as employed in CR clashes on this uni-
fication constraint, calculus CRE can solve this E-unification problem
provided that the employed E-unification algorithm covers associativity
of the ∧-operator (i.e., E |= (λXo λYo X ∧ Y ) = (λXo λYo Y ∧ X)).

Hence, depending on the peculiarity of unification theory E calculus
CRE can provide more goal directed solutions to particular examples and
avoid applications of the extensionality axioms. However, the examples
below will demonstrate that E-unification does not provide a general
solution.

Solution in ER. Calculus ER provides another goal directed solution
avoiding the extensionality axioms. Instead of employing equational uni-
fication calculus ER analyses the unifiability of the unification constraint
C3 with the help of a recursive call from within its unification algorithm
to its own overall refutation process. Clearly, this idea can be seen as a
very general form of equational unification, namely equational unification
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modulo the theory defined by the given clause context and full higher-order
logic.

Like above we initially resolve between C1 and C2 and obtain clause
C3. Then we transform C3 with the unification rules Dec and Func into

C4 : � ∨ [red s ∧ ball s �=? ball s ∧ red s]

and apply a recursive call to the overall refutation process with the
Boolean extensionality rule Equiv. After normalisation and elimination of
identical literals we thereby obtain the following trivially refutable set of
propositional clauses

C5 : [red s]F ∨ [ball s]F C6 : [red s]T C7 : [ball s]T

4.3. Reasoning with Classical Logic

The following theorem states that all unary logical operators Oo→o which
map the propositions a and b to � consequently also map a ∧ b to �.

EXAMPLE 17. ∀Oo→o (O ao) ∧ (O bo) ⇒ (O (ao ∧ bo)).

Negation and normalisation leads to (oo→o is a Skolem constant for O)

C1 : [o a]T C2 : [o b]T C3 : [o (a ∧ b)]F

Solution in R. Obviously there is no rule applicable to C1 – C3. As in
Section 4.2 we are forced to appropriately instantiate the extensionality
axioms. In particular we employ the following two instantiations of the
Boolean extensionality principle EXT

.=
o :

(a ⇔ (a ∧ b)) ⇔ (a
.=o

(a ∧ b))

and

(b ⇔ (a ∧ b)) ⇔ (b
.=o

(a ∧ b))

That means we guess the substitutions [a/A, (a∧b)/B], [b/A, (a∧b)/B]
and then instantiate the Boolean extensionality clauses Eo

1 and Eo
2 with rule

Sub. From the instantiated clauses we can now derive

C4 : [P a]F ∨ [P (a ∧ b)]T ∨ [Q b]F ∨ [Q (a ∧ b)]T
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which represents that (a
.= (a ∧ b)) ∨ (b

.= (a ∧ b)). By instantiating P

and Q with o and simplification we obtain:

C5 : [o a]F ∨ [o b]F ∨ [o (a ∧ b)]T

Resolving against C1, C2, and C3 leads to �.

Solution in CR and CRE . There are only two possible proof steps at
the very beginning: resolve between C1 and C3 and between C2 and C3.
Thereby we get

C4 : � ∨ [p a �=? p (a ∧ b)] C5 : � ∨ [p b �=? p (a ∧ b)]

Both unification constraints are neither solvable by syntactical higher-
order unification nor by higher-order E-unification.

Successful refutations in CR and CRE therefore require the application
of appropriately instantiated extensionality clauses as demonstrated within
the refutation in calculus R above. Note that higher-order (E-)unification
does not even provide any support for choosing the right instantiations of
the extensionality axioms.

Hence both calculi, CR as well as CRE , cannot be Henkin complete
without additional extensionality axioms.

Solution in ER. ER allows for a straightforward refutation of the clauses
C1 – C3. Like in CR and CRE the only possible steps at the beginning are
to resolve between C1 and C3 and between C2 and C3. Thereby we get

C4 : � ∨ [p a �=? p (a ∧ b)] C5 : � ∨ [p b �=? p (a ∧ b)]

Decomposing both the unification constraints in both clauses leads to

C6 : � ∨ [a �=? (a ∧ b)] C7 : � ∨ [b �=? (a ∧ b)]

When regarding both unification constraints isolated they are obviously
neither syntactically nor semantically solvable. When considering them
simultaneously, however, it is easy to see that at least one of both uni-
fication constraints must be solvable. Such a non-constructive reasoning
on the simultaneous solvability/non-solvability of unification constraints
is handled in ER by recursive calls from unification to the overall proof
search. In this sense ER intuitively first assumes that the unification
constraints are simultaneously not solvable and then tries to refute this
assumption. More concretely, the recursive calls with rule Equiv applied
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to C6 and C7 introduce after normalisation and factorisation the follow-
ing clauses into the search space (note the importance of the fact that the
generated clauses are analysed in a common context):

C5 : [a]F ∨ [b]F C6 : [a]T ∨ [b]T C7 : [a]T C8 : [b]T

Clauses C5–C8 can be refuted immediately, which contradicts the as-
sumption of the simultaneous semantical non-unifiability of the unification
constraints in C6 and C7. Hence, either C6 or C7 must already be the empty
clause, which justifies the proof.

4.4. Mappings from Booleans to Booleans

We already mentioned in Section 2.3 that in Henkin semantics the do-
main Do of all Booleans contains exactly the truth values ⊥ and �.
Consequently the domain of all mappings from Booleans to Booleans
contains exactly5 the denotations of the following four functions: λXo Xo,
λXo ¬Xo , λXo ⊥, and λXo �. This theorem can be formulated as follows
(where fo→o is a constant):

(f = λXo Xo) ∨ (f = λXo ¬Xo) ∨ (f = λXo ⊥) ∨ (f = λXo �)

By unfolding the definition of Leibniz equality, negating the theorem,
and applying clause normalisation we obtain the following clauses (where
p1, . . . , p4 are Skolem constants):

D1 : [p1 f ]T D2 : [p1 λXo Xo]F D3 : [p2 f ]T D4 : [p2 λXo ¬Xo]F

D5 : [p3 f ]T D6 : [p3 λXo ⊥]F D7 : [p4 f ]T D8 : [p4 λXo �]F

Solution in R, CR, and CRE . As the reader may easily check, none of the
applicable resolution steps leads to a unification constraint that is solvable
by higher-order unification or higher-order E-unification (independent
from theory E).

In order to find a refutation appropriate instances of the extensionality
principles are needed, just as illustrated in the previous example. Because
of lack of space we do not present the quite lengthy refutation here.

Solution in ER. In ER we can find the following goal directed refutation
of the clauses D1, . . . ,D8. We first resolve between the related clauses
D1 and D2, D3 and D4, D5 and D6, and D7 and D8, and immediately
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decompose the head symbols in the unification pairs. Thereby we obtain
the following four clauses consisting of exactly one unification constraint.

C1 : [p = λx x]F C2 : [p = λx ¬x]F C3 : [p = λx ⊥]F

C4 : [p = λx �]F

Whereas none of these unification constraints is solvable taken alone
(even not by E-unification), it is possible in calculus ER to refute the
assumption that these unification constraints are simultaneously not solv-
able. Like in the previous example the idea of the following derivation is to
show that always one of these unification constraints must be solvable even
though one cannot specify which one. The proof presented here has been
automatically generated by the prototypical higher-order theorem prover
LEO (Benzmüller and Kohlhase 1998b) (which implements calculus ER)
within 25 seconds on a Pentium II with 400MHz. Each line presented be-
low introduces a new clause (the line numbering thereby corresponds to the
clause numbering) by applying the specified calculus rules to previously
derived clauses. For instance, line 32 describes that clause C32 is derived
from clauses C17 and C16 by resolution with rule Res and immediate elim-
ination of trivial unification constraints with rule Triv. In the proof below
s1, . . . , s4 are new Skolem constants of Boolean type introduced by the
functional extensionality rule Func at the very beginning of the refutation.

5 : Func(C4) C5 : [(p s3) = �]F
6 : Func(C3) C6 : [(p s2) = ⊥]F
7 : Func(C2) C7 : [(p s4) = (¬ s4)]F
8 : Func(C1) C8 : [(p s1) = s1)]F

10 : Equiv+Cnf(C5) C10 : [(p s3)]F
13 : Equiv+Cnf(C6) C13 : [(p s2)]T
16 : Equiv+Cnf(C7) C16 : [s4]T ∨ [(p s4)]F
17 : Equiv+Cnf(C7) C17 : [(p s4)]T ∨ [s4]F
20 : Equiv+Cnf(C8) C20 : [(p s1)]F ∨ [s1]F
21 : Equiv+Cnf(C8) C21 : [s1]T ∨ [(p s1)]T
32 : Res+Triv(C17; C16) C32 : [(p s4)]T ∨ [(p s4)]F
36 : Res(C20;C17) C36 : [s4]F ∨ [s1]F ∨ [(p s1) = (p s4)]F
42 : Dec(C36) C42 : [s1]F ∨ [s4]F ∨ [s1 = s4]F
56 : Equiv+Cnf(C42) C56 : [s1]F ∨ [s4]F
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76 : Res(C32;C21) C76 : [s1]T ∨ [(p s4)]T ∨ [(p s4) = (p s1)]F
85 : Dec(C76) C85 : [(p s4)]T ∨ [s1]T ∨ [s4 = s1]F
134 : Equiv+Cnf(C85) C134 : [(p s4)]T ∨ [s1]T ∨ [s4]T
141 : Res+Triv(C56; C16) C141 : [(p s4)]F ∨ [s1]F
144 : Res+Triv(C56; C21) C144 : [(p s1)]T ∨ [s4]F
163 : Res+Triv(C141;C21) C163 : [(p s1)]T ∨ [(p s4)]F
211 : Res(C163;C13) C211 : [(p s1)]T ∨ [(p s4) = (p s2)]F
237 : Dec(C211) C237 : [(p s1)]T ∨ [s4 = s2]F
250 : Res+Triv(C134;C16) C250 : [s4]T ∨ [s1]T
255 : Res+Triv(C134;C17) C255 : [s1]T ∨ [(p s4)]T
387 : Res+Triv(C255;C20) C387 : [(p s4)]T ∨ [(p s1)]F
458 : Res(C387;C10) C458 : [(p s1)]F ∨ [(p s4) = (p s3)]F
459 : Res(C387;C13) C459 : [(p s4)]T ∨ [(p s1) = (p s2)]F
492 : Dec(C458) C492 : [(p s1)]F ∨ [s4 = s3]F
493 : Dec(C459) C493 : [(p s4)]T ∨ [s1 = s2]F
519 : Equiv+Cnf(C493) C519 : [(p s4)]T ∨ [s1]F ∨ [s2]F
523 : Equiv+Cnf(C492) C523 : [(p s1)]F ∨ [s4]F ∨ [s3]F
558 : Res+Triv(C519;C141) C558 : [s2]F ∨ [s1]F
592 : Res+Triv(C558;C21) C592 : [(p s1)]T ∨ [s2]F
610 : Res+Triv(C558;C250) C610 : [s4]T ∨ [s2]F
664 : Res(C592;C10) C664 : [s2]F ∨ [(p s1) = (p s3)]F
706 : Dec(C664) C706 : [s2]F ∨ [s1 = s3]F
783 : Res+Triv(C523;C144) C783 : [s3]F ∨ [s4]F
820 : Res+Triv(C783;C610) C820 : [s2]F ∨ [s3]F
824 : Res+Triv(C783;C16) C824 : [(p s4)]F ∨ [s3]F
912 : Res(C824;C13) C912 : [s3]F ∨ [(p s4) = (p s2)]F
952 : Dec(C912) C952 : [s3]F ∨ [s4 = s2]F
1078 : Equiv+Cnf(C952) C1078 : [s2]T ∨ [s4]T ∨ [s3]F
1144 : Res+Triv(C1078;C783) C1144 : [s2]T ∨ [s3]F
1218 : Res+Triv(C1144;C820) C1218 : [s3]F
1302 : Equiv+Cnf(C706) C1302 : [s3]T ∨ [s1]T ∨ [s2]F
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1363 : Res+Triv(C1302;C558) C1363 : [s3]T ∨ [s2]F
1377 : Res+Triv(C1363;C1218) C1377 : [s2]F
1454 : Equiv+Cnf(C237) C1454 : [(p s1)]T ∨ [s2]T ∨ [s4]T
1502 : Res+Triv(C1454;C144) C1502 : [s2]T ∨ [(p s1)]T
1521 : Res+Triv(C1502;C1377) C1521 : [(p s1)]T
1560 : Res(C1521;C10) C1560 : [(p s1) = (p s3)]F
1565 : Res+Triv(C1521;C20) C1565 : [s1]F
1576 : Dec(C1560) C1576 : [s1 = s3]F
1643 : Equiv+Cnf(C1576) C1643 : [s3]T ∨ [s1]T
1646 : Res+Triv(C1643;C1218) C1646 : [s1]T
1655 : Res+Triv(C1646;C1565) C1655 : �

4.5. Additional Examples and Case Studies

Benzmüller (1999a) discusses several additional examples that require full
extensionality reasoning – such as the following example on sets:

℘(∅) = {∅}
It furthermore reports on case studies with the higher-order theorem prover
LEO (Benzmüller and Kohlhase 1998) that demonstrate the feasibility of
calculus ER in practice.

5. RELATED WORK

Related to calculus CR is the higher-order resolution approach of Jensen
and Pietrzykowski (1972, 1976) which also employs a higher-order uni-
fication algorithm in order to guide the proof search. The undecidability
problem of higher-order unification is thereby tackled by dove-tailing the
generation of resolvents. Like CR this approach requires the extensionality
axioms in the search space to ensure Henkin completeness.

Kohlhase (1994) presents a sorted variant of Huet’s constrained resolu-
tion approach. Kohlhase (1995) discusses a higher-order tableaux calculus
that is quite closely related to calculus ER, as it already introduces addi-
tional calculus rules in order to improve its extensionality treatment. As
is illustrated in detail in Benzmüller (1999a) the presented extensionality
rules are unfortunately not sufficient to completely avoid additional exten-
sionality axioms. The first sufficient set of extensionality rules in this sense
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is presented in Benzmüller (1997), which introduces a variant of calculus
ER as presented here.

The theorem proving modulo approach described in Dowek et al. (1998)
is a way to remove computational arguments from proofs by reasoning
modulo a congruence on propositions that is handled via rewrite rules and
equations. In their paper the authors present a higher-order logic as a theory
modulo.

Equality is usually treated as a defined notion in approaches and
systems for automated higher-order theorem proving. This is probably
the main reason why the problem of mechanising primitive equality in
higher-order logic while preserving Henkin completeness has rarely been
addressed in literature so far. Approaches to integrate primitive equality in
a Henkin complete higher-order theorem proving approach are discussed
in Snyder and Lynch (1991), Benzmüller (1999a, b). Of course, the field
of higher-order term rewriting and narrowing (Prehofer 1998; Nipkow and
Prehofer 1998; Nipkow 1995) is very active. But calculi developed in this
context typically only address functional extensionality and do not focus
on the subtle interplay between functional and Boolean extensionality that
is required in a Henkin complete theorem proving approach.

The most powerful automated higher-order theorem prover currently
available is (to the best knowledge of the author) the TPS-system (Andrews
1996) which employs the mating method (Andrews 1976) as inference
mechanism. TPS employs a clever extensionality pre-processing mechan-
ism which transforms embedded equations in input formulas into more
appropriate ones in order to avoid later applications of the extensionality
axioms. However, this does not provide a general solution and many theor-
ems requiring non-trivial extensionality reasoning, such as Examples 3.4
and 4.4, cannot be proven this way.

6. CONCLUSION

In this paper we investigated four approaches to resolution based higher-
order theorem proving: Andrews’ higher-order resolution approach R,
Huet’s constrained resolution approach CR, higher-order E-resolution
CRE , and extensional higher-order resolution ER. Thereby we focused
on the extensionality treatment of these approaches and pointed to the
crucial role of full extensionality for ensuring Henkin completeness. The
investigated examples demonstrate that simply adding (infinitely many)
extensionality axioms to the search space – as suggested for R and CR
– increases the amount of blind search and is thus rather infeasible in
practice.
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Whereas higher-order E-unification and E-resolution indeed improves
the situation in particular contexts, it does still not provide a general
solution.

Calculus ER is the sole studied approach that can completely avoid
the extensionality axioms. It’s extensionality treatment is based on goal
directed extensionality rules which closely connect the overall refutation
search with unification by allowing for mutual recursive calls. This suitably
extends the higher-order E-unification and E-resolution idea, as it turns
the unification mechanism into a most general, dynamic theory unifica-
tion mechanism. Unification may now itself employ a Henkin complete
higher-order theorem prover as a subordinated reasoning system and the
considered theory (which is defined by the sum of all clauses in the actual
search space) dynamically changes. Due to the close connection of unific-
ation and refutation search it is even possible in ER to realise a kind of
non-constructive reasoning on E-unifiability, as was demonstrated in this
paper.
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NOTES

1. Conjunction elimination is provided by the rules ∨F
l and ∨F

r . We note that conjunction
is defined with the help of disjunction and negation; cf. Section 2.1.

2. Existential elimination is realised by the rule 
F . For this note that existential
quantification is defined with the help of universal quantification (and universal
quantification with the help of 
); cf. Section 2.1.

3. It is still an open problem whether it is possible to restrict the required instances of the
functional extensionality axioms in dependence of a given proof problem.

4. One may choose a bound on the allowed number of nested branchings in the search
tree with rule FlexRigid.

5. Since Do contains two elements, Do→o contains in each Henkin model at most four
elements. And because of the requirement, that the function domains in Henkin models
must be rich enough such that every term has a denotation, it follows that Do→o

contains exactly the pairwise distinct denotations of the four presented function terms.
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