
Proof Development with Ωmega

Jörg Siekmann, Christoph Benzmüller, Vladimir Brezhnev,
Lassaad Cheikhrouhou, Armin Fiedler, Andreas Franke, Helmut Horacek,
Michael Kohlhase�, Andreas Meier, Erica Melis, Markus Moschner,

Immanuel Normann, Martin Pollet, Volker Sorge��, Carsten Ullrich,
Claus-Peter Wirth, and Jürgen Zimmer

omega@ags.uni-sb.de
FR 6.2 Informatik, Universität des Saarlandes, 66041 Saarbrücken, Germany

The Ωmega proof development system [2] is the core of several related and well
integrated research projects of the Ωmega research group.

Ωmega is a mathematical assistant tool that supports proof development
in mathematical domains at a user-friendly level of abstraction. It is a mod-
ular system with a central data structure and several complementary subsys-
tems. Ωmega has many characteristics in common with systems like NuPrL [1],
CoQ [23], Hol [13], and PVS [9]. However, it differs from these systems with
respect to its focus on proof planning and in that respect it is similar to the
systems at Edinburgh [6,20]. We present an overview of the architecture of the
Ωmega system and sketch some of its novel features. Special features of Ωmega

include (1) facilities to access a considerable number of different reasoning sys-
tems and to integrate their results into a single proof structure, (2) support for
interactive proof development through some non-standard inspection facilities
and guidance in the search for a proof, and (3) methods to develop proofs at a
knowledge-based level.

1 System Overview

The Ωmega system (cf. Fig. 1) is a representative of the new paradigm of proof
planning and combines interactive and automated proof construction in mathe-
matical domains. Ωmega’s inference mechanism is an interactive theorem prover
based on a higher-order natural deduction (ND) variant of a sorted version of
Church’s simply typed λ-calculus [8]. The user can interactively construct proofs
directly at the calculus level or at the more abstract level of tactics and methods.
Proof construction can be supported by already proven assertions and lemmata
and by calls to external systems to simplify or solve subproblems (see Sec. 2).

At the core of Ωmega is the proof plan data structure PDS [7] in which
proofs and proof plans are represented at various levels of granularity and ab-
straction. The proof plans are classified with respect to a taxonomy of mathemat-
ical theories, which are currently being replaced by the mathematical data base
� now at Carnegie Mellon University, Pittsburgh, PA, USA

�� now at University of Birmingham, Birmingham, UK

A. Voronkov (Ed.): CADE-18, LNAI 2392, pp. 144–149, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



Proof Development with Ωmega 145

−AntsΩ Multi

Proof−Checker

PDS
TRAMP
SAPPER

Proof Transformation

...

MBaseMath−DB

MEGAΩ

P.rex

LΩUI

EXTERNAL
REASONERS

OMEGA CORE SYSTEMUSER
INTERFACE

LEO
TPS

CoSIE

SATCHMO

MAPLE
GAP

OTTER
SPASS
Waldmeister

MATHEMATICAL DATABASES

HO ATPs

CSa

MGs

CASs

FO ATPs

...

SEM

Fig. 1. The architecture of the Ωmega proof assistant. Thin lines denote internal in-
terfaces, thick lines denote communication via MathWeb-SB. The thick dashed line
indicates that MBase is soon to be integrated via MathWeb-SB. It will replace the
current mathematical database (thin dotted line).

MBase [12]. The user of Ωmega, or the proof planner Multi [17], or the sugges-
tion mechanism Ω-Ants [3] modify the PDS during proof development. They
can invoke external reasoning systems whose results are included in the PDS
after appropriate transformation. After expansion of these high level proofs to
the underlying ND calculus, the PDS can be checked by Ωmega’s proof checker.
User interaction is supported by the graphical user interface LΩUI [21] and the
proof explainer P.rex [10].

Fig. 1 illustrates the architecture of Ωmega: the previously monolithic system
was split up and separated into several independent modules. These modules are
connected via the mathematical software bus MathWeb-SB [11]. An important
benefit is that MathWeb modules can be distributed over the Internet and are
then accessible by other distant research groups as well.

2 External Systems

Proof problems require many different skills for their solution and it is therefore
desirable to have access to several systems with complementary capabilities, to
orchestrate their use, and to integrate their results. Ωmega interfaces heteroge-
neous external systems such as computer algebra systems (CASs), higher- and
first-order automated theorem proving systems (ATPs), constraint solvers (CSs),
and model generators (MGs). Their use is twofold: they may provide a solution
to a subproblem, or they may give hints for the control of the proof search.



146 J. Siekmann et al.

The output of an incorporated reasoning system is translated and inserted as a
sub-proof into the PDS, which maintains the proof plan. This is beneficial for
interfacing systems that operate at different levels of abstraction, as well as for
a human oriented display and inspection of a partial proof. When integrating
partial results, it is important to check the correctness of each contribution. In
Ωmega, this is accomplished by transforming the solution into a subproof, which
is then refined to a logic-level proof to be examined by Ωmega’s proof checker.

The integrated external systems in Ωmega are currently the following:

CASs provide symbolic computation, which can be used in two ways: to com-
pute hints to guide the proof search (e.g., witnesses for existentially quan-
tified variables); and to perform complex algebraic computation such as to
normalize or simplify terms. In the latter case the symbolic computation is
directly translated into proof steps in Ωmega. CASs are integrated via the
transformation module Sapper [22]. Currently, Ωmega uses the systems
Maple and GAP.

ATPs are employed to solve subgoals. Currently, Ωmega uses the first-order
ATPs Bliksem, EQP, Otter, ProTeIn, Spass, WaldMeister, and the
higher-order systems TPS and LEO. The first-order ATPs are connected
via Tramp [15], a proof transformation system that transforms resolution-
style proofs into assertion level ND proofs to be integrated into Ωmega’s
PDS. TPS already provides ND proofs, which can be further processed and
checked with little transformational effort.

MGs guide the proof search. A model generator provides witnesses for existen-
tially quantified variables or counter-models that show that some subgoal is
not a theorem. Currently, Ωmega uses the MGs Satchmo and SEM.

CSs construct mathematical objects with theory-specific properties, such as
witnesses for existentially quantified variables. Moreover, a constraint solver
can help to reduce the proof search by checking for inconsistencies of con-
straints. Currently, Ωmega employs CoSIE [19], a constraint solver for in-
equalities and equations over the field of real numbers.

3 Support for Proof Development

Ωmega supports the user while inspecting the state of a proof, and provides
some guidance in the search.

Ωmega’s graphical user interface LΩUI displays information on the current
proof state in multiple (cross-linked) modalities: a graphical map of the proof
tree, a linearized presentation of the proof nodes with their formulae and jus-
tifications, and a term browser. When inspecting portions of a proof by these
facilities, the user can switch between alternative levels of abstraction, for exam-
ple, by expanding a node in the graphical map of the proof tree, which causes
appropriate changes in the other presentation modes. Moreover, a natural lan-
guage explanation of the proof is provided by the system P.rex [10], which is
interactive and adaptive. The system explains a proof step at the most abstract



Proof Development with Ωmega 147

level (which that user is assumed to know) and it reacts flexibly to questions
and requests. While the explanation is in progress, the user can interrupt P.rex
anytime, if the current explanation is not satisfactory. P.rex analyzes the user’s
interaction and enters into a clarification dialog when needed to identify the rea-
son why the explanation was not satisfactory and re-plans a better explanation,
for example, by switching to another level of abstraction.

Another feature of Ωmega is the guidance mechanism provided by the sug-
gestion module Ω-Ants [3]. This module finds a set of possible actions that
may be helpful in finding a proof and orders them in a preference list. These
actions are an application of particular calculus rules, tactics, or proof methods
as well as external reasoners or facts from the knowledge base. Ω-Ants is based
on a hierarchical blackboard upon which data about the current proof state is
collected. It is computed by concurrent computational threads, which communi-
cate with the blackboard. This data is then processed by a multi-agent system,
which compiles a list of possible actions. This provides not only a very flexible
and robust mechanism but also the user does not have to wait until all possible
next proof steps have been computed, but intermediate results are shown as they
come up. The computation is anytime in the sense that the more time is spent
on the computation the better and more complete is the result. A proof step can
be executed interactively at any time either from the list of suggested actions or
freely chosen by the user. Ω-Ants can also be used in an automated mode. In
this case the actions are ranked heuristically and the best rated action is auto-
matically executed with a possibility to backtrack. These actions may perform
proof steps at the natural deduction and tactic level as well as the automatic
application of the various integrated external systems.

4 Proof Planning

Ωmega’s main focus is on knowledge-based proof planning [5,18], where proofs
are not conceived in terms of low level calculus rules but at a higher level of
abstraction that highlights the main ideas and deemphasizes minor logical or
mathematical manipulations on formulae. This viewpoint is realized in the sys-
tem by proof tactics and abstract proof methods. In contrast to, for instance,
the LCF philosophy, our tactics and methods are not necessarily always correct
as they have heuristic elements incorporated that account for their strength, so
that an informed use of these methods is unlikely to run into failures too often.
Since an abstract proof plan may be incorrect for a specific case, its correctness
has to be tested by refining it into a logical ND-proof in Ωmega’s core calculus.
This can then be verified by Ωmega’s proof checker.

Tactics are annotated with partial specifications and then used as methods
for the proof planner Multi. Explicitly represented control knowledge helps to
find high level proof plans. Traditional proof planning is enhanced in Multi by
using mathematical knowledge to prune the search. Methods are combined to
form strategies, which then perform different proof techniques.



148 J. Siekmann et al.

5 Case Studies

The novelties of the Ωmega system have been tested in several case studies.
They particularly illustrate the useful interplay of the various components, such
as proof planning supported by heterogeneous external reasoning systems.

A typical example for a class of problems that can not be solved by tradi-
tional automated theorem provers is the class of ε–δ–proofs [18]. This class was
originally proposed by W. Beldsoe [4] and it comprises theorems such as LIM+
and LIM* where LIM+ states that the limit of the sum of two functions equals
the sum of their limits and LIM* makes a similar statement for multiplication.
The difficulty of this domain arises from the need for arithmetic computation
and suitable instantiation of meta-variables (such as a δ depending on an ε).
Crucial for the success of Ωmega’s proof planning is the integration of suitable
experts for these tasks: the arithmetic computations are done with the computer
algebra system Maple, and an appropriate instantiation for δ is computed by
the constraint solver CoSIE .

Another class of problems we tackled with proof planning is concerned with
residue class problems [16]. In this domain we show theorems as e.g. the fact that
the residue class structure (ZZ5, +̄) is associative, has a unit element etc., where
ZZ5 is the set of all congruence classes modulo 5 {0̄5, 1̄5, 2̄5, 3̄5, 4̄5} and +̄ is the
addition on residue classes. Moreover, we prove for two given structures whether
they are isomorphic or not. Although the problems in this domain are in the
range of traditional automated theorem provers it is nevertheless an interesting
domain for proof planning since multi strategy proof planning generates substan-
tially different proofs based on different proof ideas. For instance, one strategy
we realized in Multi converts statements on residue classes into statements on
numbers and then applies an exhaustive case analysis. Another strategy tries
to reduce the original goal into sets of equations to which Maple is applied
to check whether the equality actually holds. Moreover, the computer algebra
systems Maple and GAP are employed to compute witnesses for particular
elements, for instance, to compute 0̄5, the unit element of (ZZ5, +̄).

Another more recent case study is the proof of the Irrationality of
√

2. Here
the user proposes interactively the main conceptual steps. Simple but painful
logical subderivations are then passed to the ATPs and simple computations
can be done by the CASs.

The Ωmega system is available at http://www.ags.uni-sb.de/˜omega.

References

1. S. Allen, R. Constable, R. Eaton, C. Kreitz, and L. Lorigo. The Nuprl open logical
environment. In Proc. of CADE-17, LNAI 1831. Springer, 2000.

2. C. Benzmüller et al. Ωmega: Towards a mathematical assistant. In Proc. of
CADE-14, LNAI 1249. Springer, 1997.



Proof Development with Ωmega 149

3. C. Benzmüller and V. Sorge. Ω-Ants – An open Approach at Combining Interac-
tive and Automated Theorem Proving. In Proc. of Calculemus-2000. AK Peters,
2001.

4. W.W. Bledsoe. Challenge problems in elementary analysis. Journal of Automated
Reasoning, 6:341–359, 1990.

5. A. Bundy. The Use of Explicit Plans to Guide Inductive Proofs. In Proc. of
CADE-9, LNCS 310. Springer, 1988.

6. A. Bundy, F. van Harmelen, J. Hesketh, and A. Smaill. Experiments with proof
plans for induction. Journal of Automated Reasoning, 7:303-324, 1991. Earlier
version available from Edinburgh as DAI Research Paper No 413.

7. L. Cheikhrouhou and V. Sorge. PDS — A Three-Dimensional Data Structure for
Proof Plans. In Proc. of ACIDCA’2000, 2000.

8. A. Church. A Formulation of the Simple Theory of Types. The Journal of Symbolic
Logic, 5:56–68, 1940.

9. S. Owre et al. PVS: Combining specification, proof checking and model checking.
In Proc. of CAV-96, LNCS 1102. Springer, 1996.

10. A. Fiedler. P.rex : An interactive proof explainer. In Proc. of IJCAR 2001, LNAI
2083. Springer, 2001.

11. M. Kohlhase and J. Zimmer. System description: The MathWeb Software Bus for
Distributed Mathmatical Reasoning. In Proc. of CADE-18, LNAI. Springer, 2002.

12. A. Franke and M. Kohlhase. System description: MBase, an open mathematical
knowledge base. In Proc. of CADE-17, LNAI 1831. Springer, 2000.

13. M. Gordon and T. Melham. Introduction to HOL – A theorem proving environment
for higher order logic. Cambridge University Press, 1993.

14. W. McCune. Otter 3.0 reference manual and guide. Technical Report ANL-94-6,
Argonne National Laboratory, Argonne, Illinois 60439, USA, 1994.

15. A. Meier. TRAMP: Transformation of Machine-Found Proofs into Natural Deduc-
tion Proofs at the Assertion Level. In Proc. of CADE-17, LNAI 1831. Springer,
2000.

16. A. Meier, M. Pollet, and V. Sorge. Comparing Approaches to Explore the Domain
of Residue Classes. Journal of Symbolic Computations, 2002. forthcoming.

17. E. Melis and A. Meier. Proof Planning with Multiple Strategies. In Proc. of
CL-2000, LNAI 1861. Springer, 2000.

18. E. Melis and J. Siekmann. Knowledge-Based Proof Planning. Artificial Intelligence,
115(1):65–105, 1999.

19. E. Melis, J. Zimmer, and T. Müller. Integrating constraint solving into proof
planning. In Proc. of FroCoS 2000, LNAI 1794. Springer, 2000.

20. J.D.C Richardson, A. Smaill, and I.M. Green. System description: Proof planning
in higher-order logic with λ-CLAM. In Proc. of CADE-15, LNAI 1421, Springer,
1998.

21. J. Siekmann et al. LOUI: Lovely Ωmega User Interface. Formal Aspects of
Computing, 11:326–342, 1999.

22. V. Sorge. Non-Trivial Computations in Proof Planning. In Proc. of FroCoS 2000,
LNAI 1794. Springer, 2000.

23. Coq Development Team. The Coq Proof Assistant Reference Manual. INRIA. see
http://coq.inria.fr/doc/main.html.


