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HOL-Syntax: Simple Types

0 (truth values)
Simple Types 7. L (individuals)
(v — [3)  (functions from o to /)

(v — [7) is sometimes written (Ja)

(v — [# — ) abbreviates (o« — (J — 7))
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HOL-Syntax: Simple Types

0 (truth values)
Simple Types 7. L (individuals)
(o — [#) (functions from « to /)

7 is a freely generated, inductive set.

Induction on Types: We can prove a property ¢(«) holds for all
types o by proving

(o)
p(0)
If p(a) and ¢(3), then p(a — ().
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HOL-Syntax: Simple Types

0 (truth values)
Simple Types 7. L (individuals)
(o — [#) (functions from « to /)

Recursion on Types: We can uniquely define a family D, for
a € T by specifying:

Dy
D,
A rule for forming D,_.3 given D, and Ds.
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HOL-Syntax: Simply Typed \-Terms

Typed Terms:
) Variables (V)
Co, Constants & Parameters (X & P)
(F.—3B.)s Application
(AYo Ap).—3  A-abstraction
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HOL-Syntax: Simply Typed \-Terms

Typed Terms:
) Variables (V)
Co, Constants & Parameters (X & P)
(F.—3B.)s Application
(AYo Ap).—3  A-abstraction

Equality of Terms:

a-conversion Changing bound variables
B-reduction  ((A\Y;A,)B;) = [B/Y]A
n-reduction (AYo (FoopyY)) — F (Ys ¢ Free(F))

(©Benzmiiller, 2007
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HOL-Syntax: Simply Typed \-Terms

Typed Terms:
X, Variables (V)
Co, Constants & Parameters (X & P)
(F.—3B.)s Application
(AYo Ap).—3  A-abstraction

Equality of Terms:

Every term has a unique gn-normal form (up to a-conversion).
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HOL: Adding Logical Connectives

T, —true

1, — false

—o_.o — hegation

Vo .o .o — disjunction

No 0.0 — CONjunction

Do 00 — IMplication

&6 .0 .0 —€quivalence

VX.....—universal quantification over type « (V types «)
dX,.. ... — existential quantification over type « (V types «)

=, .o o —equality at type « (V types «)

(©Benzmiiller, 2007 SEMHOL[0] - p.13



HOL: Adding Logical Constants to X

Our choice for signature %_:

—o_.o — hegation
Vo .0 .0 — disjunction
M, ). — universal quantification over type « (V types a)

=, .o .o — equality at type « (V types «)
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HOL: Adding Logical Constants to X

Our choice for signature %_:

—o_.o — hegation

Vo .0 .0 — disjunction

M, ). — universal quantification over type «

Use abbreviations for other logical operators

AV B
ANB
A DB
A < B
VXA
IXA

(©Benzmiiller, 2007

means
means
means
means
means
means

(VAB)

—(-A Vv -B)

-A VB
(ADB)A(BDA)
NAXA)

(VX —A)

(V types «)
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HOL: Adding Logical Constants to X

Our choice for signature %_:

—o_.o — hegation
Vo .0 .0 — disjunction

M, ). — universal quantification over type « (V types «)

Use Leibniz-equality to encode equality
A, =B, means VP, .o(PA D PB)
resp. M(AP, _o(—PA VvV PB))
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(different extensionality
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Model Classes (Extensionality)

Idea of Standard Semantics:

. — D, (choose)
o — D, =AT,F} (fixed)
(@ — p) —

D&_ﬁ — .7:(1)@, D@) (flxed)

Standard Models G%(X)
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Model Classes (Extensionality)

Idea of Standard Semantics:

IEREERREERY . — D, (choose)
h 0o — D, = {T,F} (fixed)
(()4 — 6) —

D&_ﬁ — ]:(Da, D@) (fIXGd)

Henkin’s Generalization:

D. .3 CF(D.,Ds) (choose)
Standard Models &%(X) but elements are still functions!

[Henkin-50]
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Model Classes (Extensionality)

Standard Models G%(X)

choose: D,
fixed: Do, D, — g, functions
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Model Classes (Extensionality)

Standard Models 6%(X) Formulas valid in 6%(%)

choose: D,
fixed: Do, D, — g, functions
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Model Classes (Extensionality)

Henkin Models $(X) = Mg (X) Formulas valid in g, () ?

choose: D,, D, .3
fixed: D,, functions
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Model Classes (Extensionality)

Henkin Models $(X) = Mg (X) Formulas valid in 9z, (X)

choose: D,, D, .3
fixed: D,, functions
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Model Classes (Extensionality)

Non-Extensional Models 913 (%) Formulas valid in 2tz (%) ?

choose: D,, D, .3, also non—functions, D,

fixed:
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Model Classes (Extensionality)

Non-Extensional Models 913 (%) Formulas valid in 2tz (%) ?

choose: D,, D, .3, also non—functions, D, Ex.: VW XVY.XVY & Y VX
fixed: vs. V = AXAY.Y Vv X
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Model Classes (Extensionality)

We additionally studied different model classes with ’varying degrees of extensionality’

VXYY XVY &Y VX VXYY XVY =Y VX
AXAY.X VY = AXAY.Y Vv X V = AXAY.Y Vv X
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- - @1
Model Classes (Extensionality) g °
UEIOMN non-extensional X-models

b: Boolean extensionality, D, = {T,F}
f(=n + £): functional extensionality
n: n-functional
¢: &-functionality

Y

Mgsp (L) ~ H(X)

full
\/

(©Benzmiiller, 2007 SEMHOL[0] - p.18
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Model Classes (Extensionality)

(©Benzmiiller, 2007

\ Motivation for

b : Models without Functional Extensionality

b, f(=n + &) modeling programs:
: p1 # p2 even if py@a = p,@a for
every a € D,

consider, e.g., run-time complexity:
p1 <— AX.1
and
Y P2 — AX1 4+ (X +1)% — (X2 +2X +1)

EXGEER]

fuII
\/
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Model Classes (Extensionality)

N

(©Benzmiiller, 2007

M (L)

b, f(=n+¢)

./

mﬁfb (Z) ~ H(X)

fuII
\/

A

Nigp (T)

Motivation for
Models without Boolean Extensionality?

modeling of intensional concepts
like ’knowledge’, ‘believe’, etc.

example:

O:=2+2=4

F :=Vx,y,z,n > 2x" 4+ y" =
Z2"=>x=y=z=0

We want to model:

O < F but

john_knows(F') < john_knows(O)

if we have D, = {T,F} then

O < F impliesO = F

which also enforces
john_knows(F') < john_knows(O)

SEMHOL[0] - p.18



. . 35
Model Classes (Extensionality) @
gﬁﬁ (Z Models without
/ \
fmﬁb(z)
@ﬂ=5+@

‘\ Y/

mﬁfh (Z) ~ H(X)

fuII
\/
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Model Classes (Extensionality)

N (X
Models without &

: . \
/ Eo(MXa-Mg) = Ep(AXaN) iff

Ep fa/x](M) =&, 1a/x)(N) (Va € Dq)

N,/

mﬁfh (Z) ~ H(X)

fuII
\/
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Model Classes (Extensionality)

s "A
e (x) N Mo (%)
o S
noo
Mgy (X)
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Model Classes (Extensionality)

(©Benzmiiller, 2007

fuII

\/

mﬁb (¥)
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Model Classes (Extensionality)
s (%)

/ Y \[’A

M (X) mgnm m@b (%)

m”>b* 2\ ;

mﬁgb () mﬁnb (X)

\& W«/

fuII
\/
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Model Classes (Extensionality)

VXYWYXVY &Y VX

valid for all model classes
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Model Classes (Extensionality)

VXYW XVY &Y VX
VXYY XVY =Y VX

validity requires b

(©Benzmiiller, 2007 SEMHOLI[0] - p.20



Model Classes (Extensionality)

VXYW XVY &Y VX
VXYY XVY =Y VX
AXAY X VY = AXAY.Y V X

validity requires b and &

(©Benzmiiller, 2007 SEMHOL[0] - p.21



Model Classes (Extensionality)

Mg (X)
/|
3 n YXVY.X VY < Y Vv X
/ v "\ VXYY X VY =Y VX
Mse (X) f My, () Mgp () AXAY. X VY = AXAY.Y Vv X
/ AN 6 / V = AXAY.Y Vv X
§ §

validity requires b and f

(©Benzmiiller, 2007 SEMHOL[0] - p.22



Useful: Test Problems for TPs

Examples requiring property b

(pac) A(pbo) = (p(aAb))
(ho—.((hT) = (hL))) = (hl)

(©Benzmiiller, 2007 SEMHOLI[0] - p.23



Semantics - Calculi - Abstract Consistency

Semantics:
Model Classes (Extensionality)
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Semantics - Calculi - Abstract Consistency

Semantics: Reference Calculi:
Model Classes (Extensionality) ND (and others)
/0.-| / | \
/5 ! \b ni¢) /TR0 ()
Y A s Y \
. IR
\ 774N R \ 774N Y
T4 N | -
\ noo 3 S MA(E)
N 77 N\774
Mapo (X)
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Semantics - Calculi - Abstract Consistency

Semantics: Reference Calculi:
Model Classes (Extensionality) ND (and others)
o POANRN
/5 n \b nae) /TR (o)
S A y’s \
R - . [T
7|7 g/ \b E/ 7|7 m;() m(g)/ \m(b) m(&)/ |
. 2\ MA(b) &)
\ 774N N \ 774N Y
. .. IRl
| -7 N | ‘
. 13 MA(E)
\ I MA(b) NA(n)
N7V N\774
Migie (T)

Abstract Consistency / Unifying Principle:
Extensions of Smullyan-63 and Andrews-71

7N
£ /v "\
\4
§
| / N /|
u \ % V%

n V V"1
Y '\ \/
5

pd
\Vb J}/v&
77
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Introduction
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History

Cantor’s Set Theory — late 1800’s

Frege’s Logic — late 1800’s

Russell’s Paradox — 1902

Zermelo’s Axiomatic Set Theory — 1908

Russell’'s Type Theory — 1908

Church’s Untyped A-Calculus (Computation) — 1930’s
Church’s Type Theory — HOL (Mathematics) — 1940

Henkin Models and Completeness — 1950

Cut-Elimination (Takahashi, Prawitz, Andrews) — 1967-1972
Theorem Proving — 1980’s - today

More Semantics and Cut-Elimination — mid 1990’s - today

(©Benzmiiller, 2007 SEMHOL[1] - p.26



A Standard Frame

D, = {T,F).
D, = N (natural numbers).
Do—p = Dg=, allfunctions from D, to Dy.

(©Benzmiiller, 2007 SEMHOL[1] - p.27



A Standard Frame

D, = {T,F}.

D, = N (natural numbers).

Do—p = Dg=, allfunctions from D, to Dy.
D, .o 2 P(N):

X C N induces XX € D,_.. (characteristic function)

)T ifxeX
XX(X) | F if x ¢ X

Everyf € D,_, s Xx where

X = {x € D,Jf(x) = T}

(©Benzmiiller, 2007
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A Standard Frame

D, = {T,F).
D, = N (natural numbers).
Do—p = Dg=, allfunctions from D, to Dy.

D, ..o =2 P(N x N): Binary relations on N

12

D(L—>O)—>O P(P(N))

(©Benzmiiller, 2007 SEMHOL[1] - p.27



Standard Frames

D, = any nonempty set
D, = any nonempty set
Do—p = (Dg)P=, all functions from D, to Dg.

Standard Frames are Determined by Domains of Base
Type: If D and ¢ are standard frames, D, = &,, and D, = £,, then
D =¢.

Proof: Induction on types.

(©Benzmiiller, 2007 SEMHOL[1] - p.28



Peano Arithmetic

Easy to Encode Peano’s Axioms with + as N,
0, a parameter and S, ., a parameter

1. Zero is a natural number.
0 has type ¢«

2. n natural number = successor of n is a natural number
[SN] has type . for any term N,

3. No successor is zero.
Vn,—[|Sn] = 0]
4. The successor function is injective.

5. Induction:

(©Benzmiiller, 2007 SEMHOL[1] - p.29



Peano Arithmetic

Easy to Encode Peano’s Axioms with + as N,
0, a parameter and S, ., a parameter

1. Zero is a natural number.
0 has type ¢«

2. n nhatural number = successor of n is a natural number

[SN] has type . for any term N,
3. No successor is zero.
LF

(t—0)—o0 AN [To—o [= o [Si—en] Ou]]]o

4. The successor function is injective.

5. Induction:
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Peano Arithmetic

Easy to Encode Peano’s Axioms with + as N,
0, a parameter and S, ., a parameter

1. Zero is a natural number.
0 has type ¢«

2. n natural number = successor of n is a natural number
[SN] has type . for any term N,

3. No successor is zero.

Vn,—[[Sn] = 0]
4. The successor function is injective.
Vn,Vm,[[[Sn] = [Sm]] D n = m]

5. Induction:
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Peano Arithmetic

Easy to Encode Peano’s Axioms with + as N,
0, a parameter and S, ., a parameter

1. Zero is a natural number.
0 has type ¢«

2. n natural number = successor of n is a natural number
[SN] has type . for any term N,

3. No successor is zero.
Vn,—|[[Sn] = 0]

4. The successor function is injective.
Vn,Vm,[[[Sn] = [Sm]] D n = m]

5. Induction: Vp,_.o[[p0] A [Vn,[[pn] D [p[Sn]]]] D [Vn, [pn]]]

(©Benzmiiller, 2007 SEMHOL[1] - p.29



S
Incompleteness wrt Standard Frames S

Only ONE standard frame with D, = {T,F} satisfies Peano: D, = N

Suppose we have a recursively axiomatizable deduction system
for HOL sound and complete for standard models with D, = {T, F}.

Godel construction gives: G,
G evaluates to T in standard frame D above < I/ [PA D G]

= [PA D G| =soundness G €valuatesto Tin D =/ [PA D G]

7 [PA © G] = G evaluates t0 T in D = completeness - [PA O G]

(©Benzmiiller, 2007 SEMHOL[1] - p.30



S
Incompleteness wrt Standard Frames S

Only ONE standard frame with D, = {T,F} satisfies Peano: D, = N

Suppose we have a recursively axiomatizable deduction system
for HOL sound and complete for standard models with D, = {T, F}.

Godel construction gives: G,
G evaluates to T in standard frame D above < I/ [PA D G]

There is no recursively axiomatizable deduction system for HOL
sound and complete wrt standard models.

(©Benzmiiller, 2007 SEMHOL[1] - p.30



Frames in General

D, = any nonempty set
D, = any nonempty set

Do—p C (Dg)P= (maybe not all functions)

Frames are NOT Determined by Domains of Base Type.

Henkin Completeness (1950): Church’s Deductive System is
Complete wrt a Class of General Frames (“Henkin Models”)

(©Benzmiiller, 2007 SEMHOL[1] - p.31



Theorem Proving in HOL

Interactive systems for constructing formal theories (these use
extensions of Church’s Type Theory):

|Isabelle-HOL
HOL-light
HOL4

Systems performing automated search for proofs in (fragments of)
Church’s Type Theory:

TPS
LEO

(©Benzmiiller, 2007 SEMHOL[1] - p.32



Theorem Proving: Extensionality

Consider [A, A Bo A [Qo—oA]] D [QB].

Theorem? Yes, assuming Boolean extensionality.
ldea: A and B true implies A and B are equal.

(©Benzmiiller, 2007 SEMHOL[1] - p.33



Theorem Proving: Extensionality

Consider [A, A Bo A [Qo—oA]] D [QB].

Theorem? Yes, assuming Boolean extensionality.
ldea: A and B true implies A and B are equal.

Automatic Search? Clauses to Refute:
A

B

QA]

-|QB]

What to resolve?
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Theorem Proving: Extensionality

Consider [A, A Bo A [Qo—oA]] D [QB].

Theorem? Yes, assuming Boolean extensionality.
ldea: A and B true implies A and B are equal.

Automatic Search? Clauses to Refute:
A

B

QA]

-|QB]

What to resolve?

None Unify Syntactically.
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Theorem Proving: Extensionality

Consider [A, A Bo A [Qo—oA]] D [QB].

Theorem? Yes, assuming Boolean extensionality.
ldea: A and B true implies A and B are equal.

Automatic Search? Clauses to Refute:

A

B

QA]

-[QB]

What to resolve?

None Unify Syntactically.

ldea: Resolve [Q A] and —=|Q B, then prove A =B

(©Benzmiiller, 2007 SEMHOL[1] - p.33



Theorem Proving: Extensionality

There are similar examples for functional extensionality

TPS traditionally searches without extensionality.

TPS could not prove such examples

TPS was not “Henkin Complete” (but maybe wrt other model
classes)?

LEO (1999) introduced search with extensionality

(©Benzmiiller, 2007 SEMHOL[1] - p.34



Coming Attractions

Semantics without all Logical Constants

Semantics without full Extensionality

(©Benzmiiller, 2007 SEMHOL[1] - p.35
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Generalizing the Semantics
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More Syntax

e o-conversion: We consider terms “identical” if they are the same
up renaming of bound variables.

Example: [Ax,\y, .|y x]] is identical to [Ay, Az, .|z Y]]

e [A /x|B denotes substitution of A for free occurrences of x in B.
We rename bound variables to ensure no capture.

Example: [y/x][\y, [p.—.—oxY]] is [Az, [py Z]].

e \We may also consider simultaneous substitutions 6 for a finite
number of variables.

(©Benzmiiller, 2007 SEMHOL[1] - p.37



More Syntax

e We will consider ¢ and » reduction and conversion.
B: [[Mxo Bg| A| B-reduces to [A /x|B
n: [Mq [Fa—px]] n-reduces to F if x ¢ Free(F)

e We write A - B if B is obtained by 3-reducing in some
position in A.

e We write A —; B if B is obtained by n-reducing in some
position in A.

o We write —— to denote the reflexive, transitive closure of —1.

e We write 2% to denote the reflexive, transitive closure of

i)l U 1.

(©Benzmiiller, 2007 SEMHOL[1] - p.38



More Syntax

e We will consider ¢ and » reduction and conversion.
B: [[Mxo Bg| A| B-reduces to [A /x|B
n: [Mq [Fa—px]] n-reduces to F if x ¢ Free(F)

Facts: —— and % satisfy the strong Church-Rosser property:
Every term A has a unique normal form.

e A| ; denotes the s-normal (i.e., — normal) form of A.

e Al ; denotes the By-normal (i.e., 7, normal) form of A.

-

(©Benzmiiller, 2007 SEMHOL[1] - p.38



Generalized Semantics

There are two key steps to generalize combinatory frames with
evaluations to give nonextensional models.

To obtain non-functional semantics, we allow D,__, 3 to be any
nonempty set and include an “application operator”
Q:Dy— 3 X Dy — Dg.

To generalize from two truth values, we allow D, to be any nonempty

set and include a “valuation” v : D, — {T,F}.

(©Benzmiiller, 2007 SEMHOL[1] - p.39



Coming Attractions

1. Definition of applicative structure generalizing frames
2. Definition of logical properties relative to v : D, — {T,F}.

3. Definition of evaluations for interpreting terms in applicative
structures

4. Definition of model for determining which terms of type o are
true

5. Definition of model classes varying extensionality

(©Benzmiiller, 2007 SEMHOL[1] - p.40



Applicative Structures

Def.: A (typed) applicative structure is a pair (D, @) where D is a
typed family of nonempty sets and @*~# : D, .5 x D, — Djs
for each function type (o — 3).

Write f@a for f@*~”a when f € D,_.5 and a € D, are clear in
context.

Def.: Let A := (D, @) be an applicative structure. We say A is

functional if for all types o and 8 and objects f,g € D, 3, f =g
whenever fQa = g@Qa for every a € D,,.

(©Benzmiiller, 2007 SEMHOL[1] - p.41



Logical Properties

Suppose v : D, — {T,F} is a function.

Def.: Let A := (D, @) be an applicative structure and
v: Dy — {T,F} be a function.
For each logical constant c, and element a € D, we define the
properties £.(a) with respect to v given in the following table...

(©Benzmiiller, 2007 SEMHOL[1] — p.42



Logical Properties

prop. where holds when for all
£-(n) n € Do_so v(n@a) =T iff wv(a)=F a €D,
Lv(d) | d € Doso—o v(d@a@b) =T iff wv(a)=Torwvw(b)=T a,b € D,
Lna(c) | ¢ € Do—so—o v(c@a@b) =T iff w(@)=Tandv(b)=T | a,b & D,
Lna(m) | ™ € Diqgoo)—o | v(m@f) =T iff Vaé&Dyuv(f@a)=T f € Daso
Lra(o) | 0 € Digoo)—so | v(0Qf) =T iff da &€ Dyv(f@a)=T f € Da—o
L£—a(q) | 9 € Dasa—o v(q@a@b) =T iff a=0b a,b € Dq

(©Benzmiiller, 2007
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Logical Properties

Def.: Suppose (D, @) is an applicative structure and
v : Dy — {T,F} is a function.

We say (D, @, v) realizes a logical constant c,,

if there is some a € D, such that £.(a) holds with respect to
this v. We say (D, @, v) realizes a signature % if it realizes
every c € 2.
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Variable Assignment

Def.: Let A := (D, @) be an applicative structure.
A typed function ¢: )V — D is called a variable assignment

into D.

Given a variable assignment ¢, variable %, and value a € D,,,
we use ¢, [a/x| to denote the variable assignment with

(¢,a/x])(x) = a and
(¢, [2/x])(y) = p(y) for variables y other than x.
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Evaluations

Def.: Let A = (D, @) be an applicative structure.

An X -evaluation function & for A is a function taking
assignments ¢ and terms A, to £,(A) € D, satisfying the
following properties:

1. E,(x) = p(x) forx e V.

2. E,(|[FA]) =E&,(F)QE,(A) forany F,_.53 and A, and types
« and (.

3. E,(A) =Ey(A) for any type a and A, whenever ¢ and v
coincide on Free(A).

4. E,(A) = 5¢(Alﬁ) for all A,,.
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Evaluations

If A is a closed formula, then £,(A) is independent of .

Then we write £(A).
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Evaluations

Def.: We call 7 := (D, @, &) an X-evaluation if
(D, @) is an applicative structure and
£ is an evaluation function for (D, @).

We call an X -evaluation J := (D, @, £) functional if the
applicative structure (D, @) is functional.

We say J is a X-evaluation over a frame if (D, @) is a frame.
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Evaluations Respect

If A 5-converts to B, then they have the same normal form.

Hence
Eo(A) = 590('%5) — 5¢(Bl5) = &, (B)
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Substitution-Value Lemma

Lemma: Substitution-Value Lemma

Ep [€.(Ba)/xs] (Aa) = EG([B/X|A)
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Substitution-Value Lemma

Lemma: Substitution-Value Lemma

Ep [€.(Ba)/xs] (Aa) = EG([B/X|A)

Proof:

Eole.BNA) = Esle.m)x([[AxA]X])
= & e, () ([MA)NAE, [ (B)/x (X)
= E,([AxA])QEL(B)
= Ey([[MxA]BJ)
= &([B/X|A).
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Substitution-Value Lemma

Lemma: Substitution-Value Lemma

Ep [€.(Ba)/xs] (Aa) = EG([B/X|A)

Proof:

Eole.BNA) = Esle.m)x([[AxA]X])
= & e, () ([MA)NAE, [ (B)/x (X)
= E,([AxA])QEL(B)
= Ey([[MxA]BJ)
= &([B/X|A).

Proof by Andrei Paskevich
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Weak Functionality

Def.: Let 7 = (D, @, &) be an X-evaluation.

We say 7 is n-functional if £,(A) = E,(A] 4,) for any type o,
term A, and assignment o.

We say J is &-functional if for all o, 3 € 7, Mg, Ng,

assignments ¢, and variables x,, E,([AxoMg]) = E,([AxaNpg|)
whenever &, 1, (M) = &, ./ (N) for every a € D,,.

(©Benzmiiller, 2007 SEMHOL[1] - p.51



f=n+¢

Lemma: functional = n-functional
functional = ¢-functional
n-functional and ¢-functional = functional

Proof: Exercise.
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Models

Def.: Let J .= (D, @, &) be an L-evaluation.

A function v: D, — {T,F} is called a X-valuation for 7 if
£.(E(c)) holds for every c € ..

In this case, M := (D, Q, &£, v) is called an X-model.
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Models

Def.: An assignment ¢ satisfies a formula A, in M
(we write M =, A)
if v(E,(A)) =T.

We say that A is valid in M
(and write M = A)
if M =, A for all assignments .

When A, is closed, we drop ¢ and write M = A.

Finally, we say that M is an ¥-model for a set ¢ of closed
formulas

(we write M |= )

if M = A forall A € .
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Example

Assume X contains — and Vv
Let M = (D, @, £, v) be a X-model
Claim: M |=, [VP[=P]] (i.e., P V = P) where P € wif,(X)
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Example

Assume X contains — and Vv

Let M = (D, @, £, v) be a X-model

Claim: M |=, [VP[=P]] (i.e., P V = P) where P € wif,(X)
Show: v(E, (VP [=P]])) =T
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Example

Assume X contains — and Vv

Let M = (D, @, £, v) be a X-model

Claim: M |=, [VP[=P]] (i.e., P V = P) where P € wif,(X)
Show: v(E,([VP[=P]]) =T

Note: £,(|V P |- P]]) = E,(V)QE,(P)QE,([—P]) (property of £)
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Example

Assume X contains — and Vv

Let M = (D, @, £, v) be a X-model

Claim: M |=, [VP[=P]] (i.e., P V = P) where P € wif,(X)
Show: v(E,([VP[=P]]) =T

Note: £,(|V P |- P]]) = E,(V)QE,(P)QE,([—P]) (property of £)
Use £\(E(V)) — Show: Either v(£,(P)) =Torv( E,([-P]) ) =T

\ . J/

~

Eo(m)@E,(P)
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Example

Assume X contains — and Vv

Let M = (D, @, £, v) be a X-model

Claim: M |=, [VP[=P]] (i.e., P V = P) where P € wif,(X)

Show: v(E,([VP[=P]]) =T

Note: £,(|V P |- P]]) = E,(V)QE,(P)QE,([—P]) (property of £)
Use £\(E(V)) — Show: Either v(£,(P)) =Torv( E,([-P]) ) =T

\ . J/
~

Eo(—)QE,(P)
Use £.(£(—)) — Show: Either v(€,(P)) = Tor v(E,(P)) =F
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Example

Assume X contains — and Vv

Let M = (D, @, £, v) be a X-model

Claim: M |=, [VP[=P]] (i.e., P V = P) where P € wif,(X)

Show: v(E,([VP[=P]]) =T

Note: £,(|V P |- P]]) = E,(V)QE,(P)QE,([—P]) (property of £)
Use £\(E(V)) — Show: Either v(£,(P)) =Torv( E,([-P]) ) =T

\ . J/
~

Eo(—)QE,(P)
Use £.(£(—)) — Show: Either v(€,(P)) = Tor v(E,(P)) =F

OK, since v : D, — {T,F}.
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Properties of Models

Def.: A X-model M := (D, @, £, v) is called functional if the
applicative structure (D, @) is functional.

Similarly, M is called n-functional [£-functional] if the
evaluation (D, @, £) is n-functional [¢-functional].

We say M is an X-model over a frame if (D, @) is a frame.
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Properties

Def.: Given an X-model M := (D, @, £,v), we say that M has
property
q iff for all « € 7 there is some q“ € D,_.._., Such that
£_2(q%) holds.

n iff M is n-functional.
¢ iff M is &-functional.

f iff M is functional. (This is generally associated with
functional extensionality.)

b iff v is injective (and so D, has at most two elements).
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Signature Restriction

Remember: We restrict to the signature X being either
{=VvIiu{N¥aeT} or|{-,VIU{NY =%aeT}.
Unless otherwise noted, other logical “constants” are abbreviations:
> is [Apo Ado [PV d]]
A'iS [Apo Ado =[—p V —q]]
I8 [Apo Ado [[P D a] A [a D pl]]
218 [Apa—o MM [Axa —[px]]]]

We sometimes consider “Leibniz Equality” denoted =

[AXaAYaVPa—ollPX] D [pY]l]
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Model Classes

Denote class of >-models that satisfy property q by 913(X).

Specialized subclasses of depending on the validity of the
properties n, &, f, and b denoted by

Mgy (L), Miae (), Migp(X), Miap(X),

mﬁnb(Z), mﬁgb(Z), and gﬁﬁﬁ,(Z).
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Semantics: HOL-CUBE
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Semantics: HOL-CUBE

M3 ()

WEIOBMN eclementary type theory (X-

models)

Assume that logical symbols are

b: v is injective (|Do| = 2) {—,viu{N“}or{-,Vv}iu {N* ==}

f(=n + €): M is functional |
n: M is n-functional We also require property g:

& M is &-functional

without this equality = not necessar-
ily evaluates to identity relation even in
Henkin models [Andrews72]

TR ESBGIOME extensional type the-

: ory (Henkin models)
full

Standard models
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Semantics: HOL-CUBE

M3 ()

Motivation for Models without Functional

\ Extensionality
modeling programs: p; # p2 even

[’* if f@Qa = g@a for every a € D,
Mg (X) consider properties like run-time
complexity:

P := AXpat.1 and
P) = MXpat.1 + (X +1)2 — (X% +
2X + 1)

b, f(=n+¢)

P, has constant complexity, P>

has not
however, P, behaves like P> on all
Y inputs

mﬁfb ) a logic with a functionally exten-
sional model theory (property f)
fuII necessarily conflates P; and P»

M semantically
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=
o
=

Semantics: HOL-CUBE $

M3 (%)
How do we account for Models without
\ Functional Extensionality?
b :§ generalized the notion of domains

at function types and evaluation
functions

: example:
b, f(=n+¢) (efficient, K1) # (inefficient, K1) €
) Dhat—nat Where Ky is the
constant-1 function and (!, *?)@n

is defined as *2(n)

we build on the notion of

applicative structures to define
Y Y -evaluations, where the

gmﬁfb ) evaluation function is assumed to
respect application and

fu|| (B-conversion

\J
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Semantics: HOL-CUBE 33

Motivation for models without Boolean
Extensionality?

Mg (X)
/ : \ modeling of intensional concepts
; b* like ’knowledge’, 'believe’, etc.
f .

example:
Migo (2) O:=2+2=4
: F :=Vxy,z,n > 2x" +y" =
n J— P -
b, f(=n+&) 2"=>x=y=2z=0

We want to model:
(1) O < Fistrue

®

/ john_knows(F') <4 john_knows(O)
b - _
* Y if we have D, = {T,F} then

(1) implies O = F
which enforces

john_knows(F') = john_knows(O)
fl;” and

ST(T) john_knows(F') < john_knows(O)

(©Benzmiiller, 2007 SEMHOL[2] - p.61
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Semantics: HOL-CUBE $

How do we account for models without

M3 (%)
: \ Boolean Extensionality?
: allow that |D,| > 2 and use v
: b A
f .

partition |D,| into representatives
Mg (X) of T and F;

e.g. Do := {11 12 Tt T2} with
v(L*)=Fandv(T*) =T

b, f(=n+¢)

now, a predicate like john_knows
may map:
m%@Q
T 71
T2 — |1
11— 1
b
* Y 12 71
Smﬁf[’ ) and we may choose:
fuII O evaluates to T!
M F evaluates to T2
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Semantics: HOL-CUBE $

Models without 7

G
e
: 5¢<A):5¢<A lﬁn)
e "N

M (X)

.,/

‘mﬁfb (Z) ~ H(X)

fuII
\/
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Semantics: HOL-CUBE $
Models without 7

-
& \ Eo(A) =Ep(A Lan)
s ‘A

mﬁﬁ(z) ' f .. A (X)

| S
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Semantics: HOL-CUBE

Models without &

Eo(MXa:Mg) = Ep(AXauNjg) ff

Epfa/x](M) = &, 1a/x1(N) (Va € Dq)

\& W«/

fuII
\/
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Semantics: HOL-CUBE
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HOL Example Problems

A \
§ 1 VXYY X VY < Y v X
A "

valid for all model classes
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HOL Example Problems

VXYW XVY &Y VX
VXYY XVY =Y VX

validity requires b
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HOL Example Problems

VXYW XVY &Y VX
VXYY XVY =Y VX
AXAY X VY = AXAY.Y V X

validity requires b and &
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HOL Example Problems

Mg (X)
/|
3 n YXVY.X VY < Y Vv X
/ v "\ VXYY X VY =Y VX
Mse (X) f My, () Mgp () AXAY. X VY = AXAY.Y Vv X
/ AN 6 / V = AXAY.Y Vv X
§ §

validity requires b and f
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Defined Logical Connectives
iIn >-Models
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Defined Logical Connectives

Lemma: (Truth and Falsity in >-Models)
Let M := (D, @, £,v) be a £-model and ¢ an assignment.
Let T, .= VP..P Vv —-P and F, .= —-T,.
Then v(E,(T,)) =T and v(E,(F,)) =F.
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Defined Logical Connectives

Lemma: (Truth and Falsity in >-Models)
Let M := (D, @, £,v) be a £-model and ¢ an assignment.
Let T, .= VP..P Vv —-P and F, .= —-T,.
Then v(E,(T,)) =T and v(E,(F,)) =F.
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Defined Logical Connectives

Lemma: (Truth and Falsity in >-Models)
Let M := (D, @, £,v) be a £-model and ¢ an assignment.
Let T, .= VP..P Vv —-P and F, .= —-T,.
Then v(E,(T,)) =T and v(E,(F,)) =F.

Proof: v(€,(To)) =T

(©Benzmiiller, 2007 SEMHOL[2] - p.67



Defined Logical Connectives

Lemma: (Truth and Falsity in >-Models)
Let M := (D, @, £,v) be a £-model and ¢ an assignment.
Let T, .= VP..P Vv —-P and F, .= —-T,.
Then v(E,(T,)) =T and v(E,(F,)) =F.
Proof: v(€,(To)) =T
iff U(ggo[p/P](P vV =P)) =T for all p € D,
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Defined Logical Connectives

Lemma: (Truth and Falsity in >-Models)
Let M := (D, @, £,v) be a £-model and ¢ an assignment.
Let T, .= VP..P Vv —-P and F, .= —-T,.
Then v(E,(T,)) =T and v(E,(F,)) =F.
Proof: v(€,(To)) =T
iff v(Epp/p)(PV —P))=Tforallpe D,
This is equivalent to v(E,,/p1(P)) = T or v(E,p/p(P)) = F.
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Defined Logical Connectives

Lemma: (Truth and Falsity in >-Models)

Let M := (D, @, £,v) be a £-model and ¢ an assignment.

Let T, .= VP..P Vv —-P and F, .= —-T,.

Then v(E,(T,)) =T and v(E,(F,)) =F.

Proof: v(€,(To)) =T

iff v(Epp/p)(PV —P))=Tforallpe D,
This is equivalent to v(E,,/p1(P)) = T or v(E p/p(P)) =
This is equivalent to v(p|p/P](P)) = T or v(p|p/P|(P)) =
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Defined Logical Connectives

Lemma: (Truth and Falsity in >-Models)

Let M := (D, @, £,v) be a £-model and ¢ an assignment.

Let T, .= VP..P Vv —-P and F, .= —-T,.

Then v(E,(T,)) =T and v(E,(F,)) =F.

Proof: v(€,(To)) =T

iff v(Epp/p)(PV —P))=Tforallpe D,
This is equivalent to v(E,p/p(P)) = T or v(E 1p/p)(P)) =
This is equivalent to v(p[p/P|(P)) = T or v(p|p/P|(P)) =
Since v maps into {T,F} this must be true.
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Defined Logical Connectives

Rem.: (|D,| > 2 and v surjective)
Let M = (D, @, £,v) be a £-model. By the previous Lemma,
D, must have at least the two elements £,(T,) and £,(F,),
and v must be surjective.
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Defined Logical Connectives

Lemma: (Equivalence)
Let M = (D, @, £,v) be a £-model, ¢ an assignment into M,
and A, B € wii, ().
V(€ (A & B)) =Tiff v(E,(A)) = v(EL(B)).
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Defined Logical Connectives

Lemma: (Equivalence)
Let M = (D, @, £,v) be a £-model, ¢ an assignment into M,
and A, B € wii, ().
V(€ (A & B)) =Tiff v(E,(A)) = v(EL(B)).

Proof:
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Defined Logical Connectives

Lemma: (Equivalence)
Let M = (D, @, £,v) be a £-model, ¢ an assignment into M,
and A, B € wii, ().
V(€ (A & B)) =Tiff v(E,(A)) = v(EL(B)).

Proof:  Suppose v(£,(A < B)) =T.
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X

Defined Logical Connectives

Lemma: (Equivalence)
Let M = (D, @, £,v) be a £-model, ¢ an assignment into M,
and A, B € wii, ().
V(EL(A & B)) =Tiff u(E,(A)) = v(E,(B)).
Proof:  Suppose v(£,(A < B)) =T.
This implies v(E,(—(—(-AVB)Vv-(-BVA)))) =T
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Defined Logical Connectives

Lemma: (Equivalence)
Let M = (D, @, £,v) be a £-model, ¢ an assignment into M,
and A, B € wii, ().
V(EL(A & B)) =Tiff u(E,(A)) = v(E,(B)).
Proof:  Suppose v(£,(A < B)) =T.
This implies v(E,(—(—(-AVB)Vv-(-BVA)))) =T
This implies v(€,(-A Vv B)) =Tand v(£,(-BV A)) =T.
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Defined Logical Connectives

Lemma: (Equivalence)

Let M = (D, @, £,v) be a £-model, ¢ an assignment into M,

and A, B € wii, ().

V(EL(A & B)) =Tiff u(E,(A)) = v(E,(B)).

Proof:  Suppose v(£,(A < B)) =

This implies v(E,(—(—(—A V B) V-a(-BVA)))) =
This implies v(£,(-A vV B)) =Tand v(E,(—B V A)) =
If v(£,(A)) =T, then v(E,(—A VvV B)) = T implies
U(Ee(B)) =T, 80 v(Ey(A)) =T = v(Ex(B)).
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Defined Logical Connectives

Lemma: (Equivalence)

Proof:

(©Benzmiiller, 2007

Let M = (D, @, £,v) be a £-model, ¢ an assignment into M,
and A, B € wff,(X).

V(EN(A & B)) = Tiff u(E,(A)) = v(E,(B)).

Suppose v(E,(A < B)) =

Al

(Ep(—(= (ﬂAVB) Vo(-BVA)))) =
This implies v(£,(-A vV B)) =Tand v(E,(—B V A)) =
If v(£,(A)) =T, then v(E,(—A VvV B)) = T implies
v(€p(B)) =T, 80 v(Ep(A)) =T = v(&Ex(B)).

If v(£,(A)) =F, then v(E,(—B V A)) = T implies
v(€p(B)) = F, 80 v(Ep(A)) = F = v(&,(B)).

This implies v
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Defined Logical Connectives

Lemma: (Equivalence)
Let M = (D, @, £,v) be a £-model, ¢ an assignment into M,
and A, B € wii, ().
V(€ (A & B)) =Tiff v(E,(A)) = v(EL(B)).

Proof:

(©Benzmiiller, 2007

+(A = B)) =

This implies v(E,(—(—(—A V B) V-a(-BVA)))) =

This implies v(£,(-A vV B)) =Tand v(E,(—B V A)) =

If v(£,(A)) =T, then v(E,(—A VvV B)) = T implies
v(€p(B)) =T, 80 v(Ep(A)) =T = v(&Ex(B)).

If v(£,(A)) =F, then v(E,(—B V A)) = T implies
v(€p(B)) = F, 80 v(Ep(A)) = F = v(&,(B)).

Since these are the only two possible values for v(£,(A)),
we have v(E,(A)) = v(E,(B)).

Suppose v(&
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X

Defined Logical Connectives

Lemma: (Equivalence)
Let M = (D, @, £,v) be a £-model, ¢ an assignment into M,
and A, B € wii, ().
V(€ (A & B)) =Tiff v(E,(A)) = v(EL(B)).

Proof:
Suppose v(Ey(A)) = v(Ex(B)).
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Defined Logical Connectives

Lemma: (Equivalence)
Let M = (D, @, £,v) be a £-model, ¢ an assignment into M,
and A, B € wii, ().
V(€ (A & B)) =Tiff v(E,(A)) = v(EL(B)).

Proof:

Suppose v(E,(A)) = v(EH(B)).
Either v(E,(A)) = v(Ey(B)) =T
or v(&,(A)) = v(€,(B)) =F.
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Defined Logical Connectives

Lemma: (Equivalence)
Let M = (D, @, £,v) be a £-model, ¢ an assignment into M,
and A, B € wii, ().
V(EL(A & B)) =Tiff u(E,(A)) = v(E,(B)).
Proof:
Suppose v(E,(A)) = v(&,(B )
Either u(,(A) = (&,(B) =

or v(Ey(A)) = v(Ep(B)) =
An easy consideration of both cases verifies

V(€ (mAVB))=Tand v(E,(—-BV A)) =
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Defined Logical Connectives

Lemma: (Equivalence)
Let M = (D, @, £,v) be a £-model, ¢ an assignment into M,
and A, B € wii, ().
V(€ (A & B)) =Tiff v(E,(A)) = v(EL(B)).

Proof:

Suppose v(E,(A)) = v(E,(B)).

Either v(E,(A)) = v(&,(B )):

or v(Ep(A)) = v(&p(B)) =

An easy consideration of both cases verifies
V(€ (mAVB))=Tand v(E,(—-BV A)) =
Hence, v(£,(A & B)) =
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Either v(E,(A)) = v(&,(B )):
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g.e.d.
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Defined Logical Connectives

Lemma: (Equivalence)
Let M = (D, @, £,v) be a £-model, ¢ an assignment into M,
and A, B € wii, ().
V(€ (A & B)) =Tiff v(E,(A)) = v(EL(B)).

Proof:

Suppose v(E,(A)) = v(E,(B)).

Either v(E,(A)) = v(&,(B )):

or v(Ey(A)) = v(Ep(B)) =
An easy consideration of both cases verifies
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Extensionality for Leibniz Equality

Def.: (Extensionality for Leibniz Equality)
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Extensionality for Leibniz Equality

Def.: (Extensionality for Leibniz Equality)

We call a formula of the form
EXTY P = WFa5¥Gape(WXarFX =7 GX) = F =77 G

an axiom of (strong) functional extensionality for Leibniz
equality.
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Extensionality for Leibniz Equality

Def.: (Extensionality for Leibniz Equality)

We call a formula of the form
EXTY P = WFa5¥Gape(WXarFX =7 GX) = F =77 G

an axiom of (strong) functional extensionality for Leibniz
equality.

We refer to the set
EXTZ == {EXTY 7 |, B € T}
as the axioms of (strong) functional extensionality for Leibniz

equality.
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Extensionality for Leibniz Equality

Def.: (Extensionality for Leibniz Equality)
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Extensionality for Leibniz Equality

Def.: (Extensionality for Leibniz Equality)

We call the formula
EXT? = VA.VBo(A< B)=A="B

the axiom of Boolean extensionality.
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Extensionality for Leibniz Equality

Def.: (Extensionality for Leibniz Equality)

We call the formula
EXT? = VA.VBo(A< B)=A="B

the axiom of Boolean extensionality.

We call the set EXT U {EXTS } the axioms of (strong)
extensionality for Leibniz equality.
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Extensionality and Leibniz Equality

Lemma: (Leibniz Equality in X-models) Let M := (D, @, £, v) be a
2 -model, ¢ be an assignment, o € 7, and A, B € wif,(X).
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Extensionality and Leibniz Equality

Lemma: (Leibniz Equality in X-models) Let M := (D, @, £, v) be a
2 -model, ¢ be an assignment, o € 7, and A, B € wif,(X).
1. fEL(A) = E,(B), then v(E,(A =% B)) =T.
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Extensionality and Leibniz Equality

Lemma: (Leibniz Equality in X-models) Let M := (D, @, £, v) be a
2 -model, ¢ be an assignment, o € 7, and A, B € wif,(X).
1. fEL(A) = E,(B), then v(E,(A =% B)) =T.
2. If M satisf. g and v(€,(A =% B)) =T, then £,(A) = E,(B).
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Extensionality and Leibniz Equality

Lemma: (Leibniz Equality in X-models) Let M := (D, @, £, v) be a
2 -model, ¢ be an assignment, o € 7, and A, B € wif,(X).
1. fEL(A) = E,(B), then v(E,(A =% B)) =T.
2. If M satisf. g and v(€,(A =% B)) =T, then £,(A) = E,(B).

Proof:
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Extensionality and Leibniz Equality

Lemma: (Leibniz Equality in X-models) Let M := (D, @, £, v) be a
2 -model, ¢ be an assignment, o € 7, and A, B € wif,(X).
1. fEL(A) = E,(B), then v(E,(A =% B)) =T.
2. If M satisf. g and v(€,(A =% B)) =T, then £,(A) = E,(B).

Proof: Let o be any assignment into M.
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Extensionality and Leibniz Equality

Lemma: (Leibniz Equality in X-models) Let M := (D, @, £, v) be a
2 -model, ¢ be an assignment, o € 7, and A, B € wif,(X).
1. fE,(A) =E,(B), then v(E,(A =" B)) =T.
2. If M satisf. gand v(E,(A = B)) =T, then £,(A) = £,(B).

Proof: Let o be any assignment into M.

For the first part, suppose £,(A) = £,(B).
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Extensionality and Leibniz Equality

Lemma: (Leibniz Equality in X-models) Let M := (D, @, £, v) be a
2 -model, ¢ be an assignment, o € 7, and A, B € wif,(X).
1. fE,(A) =E,(B), then v(E,(A =" B)) =T.
2. If M satisf. gand v(E,(A = B)) =T, then £,(A) = £,(B).

Proof: Let o be any assignment into M.

For the first part, suppose £,(A) = £,(B).
Givenr € D,_,,, we have either
v(r@&,(A)) =v(r@&,(B)) =F or
v(r@&,(B)) = v(r@&f,(A)) =T.
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Extensionality and Leibniz Equality

Lemma: (Leibniz Equality in X-models) Let M := (D, @, £, v) be a
2 -model, ¢ be an assignment, o € 7, and A, B € wif,(X).
1. fE,(A) =E,(B), then v(E,(A =" B)) =T.
2. If M satisf. gand v(E,(A = B)) =T, then £,(A) = £,(B).

Proof: Let o be any assignment into M.

For the first part, suppose £,(A) = £,(B).

Givenr € D,_,,, we have either

v(r@&,(A)) =v(r@&,(B)) =F or

v(r@&,(B)) = v(r@&f,(A)) =T.

In either case, for any variable P,_., not in

Free(A) U Free(B), we have v(&, ,/pj(—(PA) VPB)) =T.

(©Benzmiiller, 2007 SEMHOL[2] - p.73



Extensionality and Leibniz Equality

Lemma: (Leibniz Equality in X-models) Let M := (D, @, £, v) be a
2 -model, ¢ be an assignment, o € 7, and A, B € wif,(X).
1. fE,(A) =E,(B), then v(E,(A =" B)) =T.
2. If M satisf. gand v(E,(A = B)) =T, then £,(A) = £,(B).

Proof: Let o be any assignment into M.

For the first part, suppose £,(A) = £,(B).

Givenr € D,_,,, we have either

v(r@&,(A)) =v(r@&,(B)) =F or

v(r@&,(B)) = v(r@&f,(A)) =T.

In either case, for any variable P,_., not in

Free(A) U Free(B), we have v(&, /p|(~(PA) vV PB)) =T.

So, we have v(€,(A =" B)) =T.
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Extensionality and Leibniz Equality

Lemma: (Leibniz Equality in X-models) Let M := (D, @, £, v) be a
2 -model, ¢ be an assignment, o € 7, and A, B € wif,(X).
1. fEL(A) = E,(B), then v(E,(A =% B)) =T.
2. If M satisf. g and v(€,(A =% B)) =T, then £,(A) = E,(B).

Proot: To show the second part, suppose v(E,(A = B)) =T.
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Extensionality and Leibniz Equality

Lemma: (Leibniz Equality in X-models) Let M := (D, @, £, v) be a
2 -model, ¢ be an assignment, o € 7, and A, B € wif,(X).
1. fE,(A) =E,(B), then v(E,(A =" B)) =T.
2. If M satisf. gand v(E,(A = B)) =T, then £,(A) = £,(B).

Proot: To show the second part, suppose v(E,(A = B)) =T.

By property g, there is some q“ € D,_.,_., such that for
a,b € D, we have v(q*@a@b) = T iff a = b.
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Extensionality and Leibniz Equality

Lemma: (Leibniz Equality in X-models) Let M := (D, @, £, v) be a
2 -model, ¢ be an assignment, o € 7, and A, B € wif,(X).
1. fE,(A) =E,(B), then v(E,(A =" B)) =T.
2. If M satisf. gand v(E,(A = B)) =T, then £,(A) = £,(B).

Proot: To show the second part, suppose v(E,(A = B)) =T.

By property g, there is some q“ € D,_.,_., such that for
a,b € D, we have v(q*@a@b) = T iff a = b.
Let r = q“QE,(A).
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Extensionality and Leibniz Equality

Lemma: (Leibniz Equality in X-models) Let M := (D, @, £, v) be a
2 -model, ¢ be an assignment, o € 7, and A, B € wif,(X).
1. fE,(A) =E,(B), then v(E,(A =" B)) =T.
2. If M satisf. gand v(E,(A = B)) =T, then £,(A) = £,(B).

Proot: To show the second part, suppose v(E,(A = B)) =T.

By property g, there is some q“ € D,_.,_., such that for
a,b € D, we have v(q*@a@b) = T iff a = b.

Let r = q“QE,(A).
From v(E,(A =" B)) = T we get v(E, [, /p)(-PAVPB)) =T
(where P, _., ¢ Free(A) U Free(B)).
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Extensionality and Leibniz Equality

Lemma: (Leibniz Equality in X-models) Let M := (D, @, £, v) be a
2 -model, ¢ be an assignment, o € 7, and A, B € wif,(X).
1. fE,(A) =E,(B), then v(E,(A =" B)) =T.
2. If M satisf. gand v(E,(A = B)) =T, then £,(A) = £,(B).

Proot: To show the second part, suppose v(E,(A = B)) =T.

By property g, there is some q“ € D,_.,_., such that for
a,b € D, we have v(q*@a@b) = T iff a = b.

Let r = q“QE,(A).

From v(E,(A =" B)) = T we get v(E, [, /p)(-PAVPB)) =T
(where P, _., ¢ Free(A) U Free(B)).

Since v(&, r/p)(PA)) = v(q*QE,(A)QE,(A)) = T, we must
have ’U(g%[r/p](PB)) = T.
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Extensionality and Leibniz Equality

Lemma: (Leibniz Equality in X-models) Let M := (D, @, £, v) be a
2 -model, ¢ be an assignment, o € 7, and A, B € wif,(X).
1. fE,(A) =E,(B), then v(E,(A =" B)) =T.
2. If M satisf. gand v(E,(A = B)) =T, then £,(A) = £,(B).

Proot: To show the second part, suppose v(E,(A = B)) =T.

By property g, there is some q“ € D,_.,_., such that for

a,b € D, we have v(q*@Qa@b) = T iff a = b.

Let r = q“QE,(A).

From v(E,(A =" B)) = T we get v(E, [, /p)(-PAVPB)) =T
(where P, _., ¢ Free(A) U Free(B)).

Since v(&, r/p)(PA)) = v(q*QE,(A)QE,(A)) = T, we must
have ’U(g%[r/p](PB)) = T.

Thatis, v(q®@Q&,(A)QE,(B)) =T, hence £,(A) = E£,(B).
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Extensionality and Leibniz Equality

Lemma: (Leibniz Equality in X-models) Let M := (D, @, £, v) be a
2 -model, ¢ be an assignment, o € 7, and A, B € wif,(X).
1. fE,(A) =E,(B), then v(E,(A =" B)) =T.
2. If M satisf. gand v(E,(A = B)) =T, then £,(A) = £,(B).

Proot: To show the second part, suppose v(E,(A = B)) =T.

By property g, there is some q“ € D,_.,_., such that for

a,b € D, we have v(q*@Qa@b) = T iff a = b.

Let r = q“QE,(A).

From v(E,(A =" B)) = T we get v(E, [, /p)(-PAVPB)) =T
(where P, _., ¢ Free(A) U Free(B)).

Since v(&, r/p)(PA)) = v(q*QE,(A)QE,(A)) = T, we must
have ’U(g%[r/p](PB)) = T.

Thatis, v(q®@Q&,(A)QE,(B)) =T, hence £,(A) = E£,(B).
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Extensionality and Leibniz Equality

Thm.: (Extensionality in X-models)
Let M = (D, @, £, v) be a X-model.
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Extensionality and Leibniz Equality

Thm.: (Extensionality in X-models)
Let M = (D, @, £, v) be a X-model.
1. If M satisfies g but not property §, then M [= EXTZ.
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Extensionality and Leibniz Equality

Thm.: (Extensionality in X-models)
Let M = (D, @, £, v) be a X-model.
1. If M satisfies q but not property f, then M [= EXT.
2. If M satisfies q but not property b, then M = EXTC.
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Extensionality and Leibniz Equality

Thm.: (Extensionality in X-models)
Let M = (D, @, £, v) be a X-model.
1. If M satisfies q but not property f, then M [= EXT.
2. If M satisfies q but not property b, then M = EXTC.

3. If M satisfies q and f, then M |= EXTZ".
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Extensionality and Leibniz Equality

Thm.: (Extensionality in X-models)
Let M = (D, @, £, v) be a X-model.

1. If M satisfies q but not property f, then M [= EXT.
2. If M satisfies q but not property b, then M = EXTC.
3. If M satisfies q and f, then M |= EXTZ".

4. If M satisfies b, then M |= EXTC..
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Extensionality and Leibniz Equality

Thm.: (Extensionality in X-models)
Let M = (D, @, £, v) be a X-model.

1. If M satisfies g but not property §, then M [= EXTZ.
2. If M satisfies q but not property b, then M = EXTC..
3. If M satisfies q and f, then M |= EXT.

4. If M satisfies b, then M = EXTS..

in Mz (%), Mgy (3), Mge (X) Ms (2) Mige (), Mgne (), Mgep (X) || Mgpo ()
formula || valid? by valid? | by || valid? by valid? | by
EXT — 1. + 3. — -
EXTS — 2. — 2. + 4. +
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Extensionality and Leibniz Equality

Thm.: (Extensionality in X-models)
Let M = (D, @, £, v) be a X-model.
1. If M satisfies q but not property f, then M [= EXT.

Proof: Suppose M satisfies property q but does not satisfy property f.
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Extensionality and Leibniz Equality

Thm.: (Extensionality in X-models)
Let M = (D, @, £, v) be a X-model.

1. If M satisfies q but not property f, then M [= EXT.

Proof: Suppose M satisfies property q but does not satisfy property f.
Then there must be types o and 3 and objects f, g € D, .3 such that f # g but
f@a = g@a for every a € D,,.
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Extensionality and Leibniz Equality

Thm.: (Extensionality in X-models)
Let M = (D, @, £, v) be a X-model.

1. If M satisfies q but not property f, then M [= EXT.

Proof: Suppose M satisfies property q but does not satisfy property f.

Then there must be types o and 3 and objects f, g € D, .3 such that f # g but
f@a = g@a for every a € D,,.

Let F—.3,Ga—3 € Vo g be distinct variables, X, € V., and ¢ be any
assignment with ¢(F) = f and ¢(G) = g.
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Extensionality and Leibniz Equality

Thm.: (Extensionality in X-models)
Let M = (D, @, £, v) be a X-model.
1. If M satisfies q but not property f, then M [= EXT.

Proof: Suppose M satisfies property q but does not satisfy property f.

Then there must be types o and 3 and objects f, g € D, .3 such that f # g but
f@a = g@a for every a € D,,.

Let F—.3,Ga—3 € Vo g be distinct variables, X, € V., and ¢ be any
assignment with ¢(F) = f and ¢(G) = g.

Forany a € Do, fQa = gQa implies &, 5 /x)(FX) = &, a/x (GX) implies
v(Ey.a/x) (FX =" GX)) = T by Lemma "Leibniz Equality in ¥-models(1.).
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Extensionality and Leibniz Equality

Thm.: (Extensionality in X-models)
Let M = (D, @, £, v) be a X-model.
1. If M satisfies q but not property f, then M [= EXT.

Proof: Suppose M satisfies property q but does not satisfy property f.

Then there must be types o and 3 and objects f, g € D, .3 such that f # g but
f@a = g@a for every a € D,,.

Let F—.3,Ga—3 € Vo g be distinct variables, X, € V., and ¢ be any
assignment with ¢(F) = f and ¢(G) = g.

Forany a € Do, fQa = gQa implies &, 5 /x)(FX) = &, a/x (GX) implies
v(Ey.a/x) (FX =" GX)) = T by Lemma "Leibniz Equality in ¥-models(1.).
Hence, we have v (&, (VX.(FX =" GX))) = T.
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Extensionality and Leibniz Equality

Thm.: (Extensionality in X-models)
Let M = (D, @, £, v) be a X-model.

Proof:
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1.

If M satisfies g but not property f, then M = EXT.

Suppose M satisfies property q but does not satisfy property f.

Then there must be types o and 3 and objects f, g € D, .3 such that f # g but
f@a = g@a for every a € D,,.

Let F—.3,Ga—3 € Vo g be distinct variables, X, € V., and ¢ be any
assignment with ¢(F) = f and ¢(G) = g.

Forany a € Do, fQa = gQa implies &, 5 /x)(FX) = &, a/x (GX) implies
v(Ey.a/x) (FX =" GX)) = T by Lemma "Leibniz Equality in ¥-models(1.).
Hence, we have v (&, (VX.(FX =" GX))) = T.

On the other hand, since f # g and M satisfies property q, we have
v(E,(F —a—h G)) = F by contraposition of Lemma ’Leibniz Equality in
> -models(2.)’.
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Extensionality and Leibniz Equality

Thm.: (Extensionality in X-models)
Let M = (D, @, £, v) be a X-model.

Proof:
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1.

If M satisfies g but not property f, then M = EXT.

Suppose M satisfies property q but does not satisfy property f.

Then there must be types o and 3 and objects f, g € D, .3 such that f # g but
f@a = g@a for every a € D,,.

Let F—.3,Ga—3 € Vo g be distinct variables, X, € V., and ¢ be any
assignment with ¢(F) = f and ¢(G) = g.

Forany a € Do, fQa = gQa implies &, 5 /x)(FX) = &, a/x (GX) implies
v(Ey.a/x) (FX =" GX)) = T by Lemma "Leibniz Equality in ¥-models(1.).

Hence, we have v (&, (VX.(FX =" GX))) = T.

On the other hand, since f # g and M satisfies property q, we have
v(E,(F —a—h G)) = F by contraposition of Lemma ’Leibniz Equality in
> -models(2.)’.

This implies M (£ ExTY P,
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Extensionality and Leibniz Equality

Thm.: (Extensionality in X-models)
Let M = (D, @, £, v) be a X-model.
2. If M satisfies q but not property b, then M = EXTC.

Proof: Suppose M satisfies property q but does not satisfy property b.
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Extensionality and Leibniz Equality

Thm.: (Extensionality in X-models)
Let M = (D, @, £, v) be a X-model.

2. If M satisfies q but not property b, then M = EXTC.

Proof: Suppose M satisfies property q but does not satisfy property b.

Then, there must be at least three elements in D,. Since v maps into a two
element set, there must be two distinct elements a, b € D, such that v(a) = v(b).
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Extensionality and Leibniz Equality

Thm.: (Extensionality in X-models)
Let M = (D, @, £, v) be a X-model.

2. If M satisfies q but not property b, then M = EXTC.

Proof: Suppose M satisfies property q but does not satisfy property b.

Then, there must be at least three elements in D,. Since v maps into a two
element set, there must be two distinct elements a, b € D, such that v(a) = v(b).

Let Ao, Bo € Vs be distinct variables and ¢ be any assignment into M with
w(A) =aand p(B) = b.
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Extensionality and Leibniz Equality

Thm.: (Extensionality in X-models)
Let M = (D, @, £, v) be a X-model.

2. If M satisfies q but not property b, then M = EXTC.

Proof: Suppose M satisfies property q but does not satisfy property b.

Then, there must be at least three elements in D,. Since v maps into a two
element set, there must be two distinct elements a, b € D, such that v(a) = v(b).

Let Ao, Bo € Vs be distinct variables and ¢ be any assignment into M with
w(A) =aand p(B) = b.
By Lemma ’Equivalence’, we know v(E, (A < B)) = T.
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Extensionality and Leibniz Equality

Thm.: (Extensionality in X-models)
Let M = (D, @, £, v) be a X-model.
2. If M satisfies q but not property b, then M = EXTC.

Proof: Suppose M satisfies property q but does not satisfy property b.

Then, there must be at least three elements in D,. Since v maps into a two
element set, there must be two distinct elements a, b € D, such that v(a) = v(b).

Let Ao, Bo € Vs be distinct variables and ¢ be any assignment into M with
w(A) =aand p(B) = b.
By Lemma ’Equivalence’, we know v(E, (A < B)) = T.

Since a # b and property g holds, by contraposition of Lemma ’Leibniz Equality in
¥ -models(2.)’, we know v(E, (A =° B)) = F.

(©Benzmiiller, 2007 SEMHOL[2] - p.77



Extensionality and Leibniz Equality

Thm.: (Extensionality in X-models)
Let M = (D, @, £, v) be a X-model.
2. If M satisfies q but not property b, then M = EXTC.

Proof: Suppose M satisfies property q but does not satisfy property b.

Then, there must be at least three elements in D,. Since v maps into a two
element set, there must be two distinct elements a, b € D, such that v(a) = v(b).

Let Ao, Bo € Vs be distinct variables and ¢ be any assignment into M with
w(A) =aand p(B) = b.
By Lemma ’Equivalence’, we know v(E, (A < B)) = T.

Since a # b and property g holds, by contraposition of Lemma ’Leibniz Equality in
¥ -models(2.)’, we know v(E, (A =° B)) = F.

It follows that M = EXTS..

(©Benzmiiller, 2007 SEMHOL[2] - p.77



Extensionality and Leibniz Equality

Thm.: (Extensionality in X-models)
Let M = (D, @, £, v) be a X-model.
2. If M satisfies q but not property b, then M = EXTC.

Proof: Suppose M satisfies property q but does not satisfy property b.
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w(A) =aand p(B) = b.
By Lemma ’Equivalence’, we know v(E, (A < B)) = T.

Since a # b and property g holds, by contraposition of Lemma ’Leibniz Equality in
¥ -models(2.)’, we know v(E, (A =° B)) = F.

It follows that M = EXTS..

(©Benzmiiller, 2007 SEMHOL[2] - p.77



Extensionality and Leibniz Equality

Thm.: (Extensionality in X-models)
Let M = (D, @, £, v) be a X-model.
3. If M satisfies q and f, then M |= EXT.

Proof: Let © be any assignment into M.
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Extensionality and Leibniz Equality

Thm.: (Extensionality in X-models)
Let M = (D, @, £, v) be a X-model.

3. If M satisfies q and f, then M |= EXT.

Proof: Let © be any assignment into M.

From v(&E, (VXa.FX = GX)) = T we know v(&,, ,/x (FX = GX)) = T holds for all
aecD,.
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Extensionality and Leibniz Equality

Thm.: (Extensionality in X-models)
Let M = (D, @, £, v) be a X-model.

3. If M satisfies q and f, then M |= EXT.

Proof: Let » be any assignment into M.
From v(&E, (VXa.FX = GX)) = T we know v(&,, ,/x (FX = GX)) = T holds for all
aecD,.

By Lemma ’'Leibniz Equality in >-models(2.)’ we can conclude that
Ep la/x](FX) = &, 1a/x1(GX) for all a € D, and hence
890,[3/)(] (F)@ggo,[a/X] (X) = gcp,[a/X] (G)@gcp,[a/X] (X) forall a € D,.
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Extensionality and Leibniz Equality

Thm.: (Extensionality in X-models)
Let M = (D, @, £, v) be a X-model.

3. If M satisfies q and f, then M |= EXT.

Proof: Let » be any assignment into M.
From v(&E, (VXa.FX = GX)) = T we know v(&,, ,/x (FX = GX)) = T holds for all
aecD,.

By Lemma ’'Leibniz Equality in >-models(2.)’ we can conclude that
Ep la/x](FX) = &, 1a/x1(GX) for all a € D, and hence
Ep la/x](F)QE, 12 /x1(X) = &y 1a/x1(G)QE, [a/x1(X) for all a € D
Thatis, £, ,/x)(F)@a = &, ,/x(G)@a for all a € D
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Extensionality and Leibniz Equality

Thm.: (Extensionality in X-models)
Let M = (D, @, £, v) be a X-model.

3. If M satisfies q and f, then M |= EXTZ".

Proof: Let » be any assignment into M.
From v(&E, (VXa.FX = GX)) = T we know v(&,, ,/x (FX = GX)) = T holds for all
aecD,.

By Lemma ’'Leibniz Equality in >-models(2.)’ we can conclude that
Ep la/x](FX) = &, 1a/x1(GX) for all a € D, and hence

ggo,[a/X] (F)@gqp,[a/x] (X) - gcp,[a/X] (G)@gcp,[a/X] (X) foralla € D,.
That is, gcp,[a/X] (F)@a = 590,[3/)(] (G)@a foralla € D,.

Since X does not occur free in F or G, by property f and Definition of
¥ -evaluations we obtain £, (F) = £, (G).
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Thm.: (Extensionality in X-models)
Let M = (D, @, £, v) be a X-model.

3. If M satisfies q and f, then M |= EXTZ".

Proof: Let » be any assignment into M.
From v(&E, (VXa.FX = GX)) = T we know v(&,, ,/x (FX = GX)) = T holds for all
aecD,.

By Lemma ’'Leibniz Equality in >-models(2.)’ we can conclude that

Ep la/x](FX) = &, 1a/x1(GX) for all a € D, and hence

€ la/x1(F) @80 ax) (X) = €q a3 (G) Q¢ 15/ (X) Tor all a € D

That is, 590,[3/)(] (F)@a = 590,[3/)(] (G)@a foralla € D,.

Since X does not occur free in F or G, by property f and Definition of

¥ -evaluations we obtain £, (F) = £, (G).

This finally gives us that v(€,(F =" G)) = T with Lemma ’Leibniz Equality in
> -models(1.)’.
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Extensionality and Leibniz Equality

Thm.: (Extensionality in X-models)
Let M = (D, @, £, v) be a X-model.
3. If M satisfies q and f, then M |= EXTZ".

Proof: Let » be any assignment into M.
From v(&E, (VXa.FX = GX)) = T we know v(&,, ,/x (FX = GX)) = T holds for all
aecD,.

By Lemma ’'Leibniz Equality in >-models(2.)’ we can conclude that

Ep la/x](FX) = &, 1a/x1(GX) for all a € D, and hence

ggo,[a/X] (F)@gqp,[a/x] (X) - gcp,[a/X] (G)@gcp,[a/X] (X) foralla € D,.

That is, 590,[3/)(] (F)@a = 590,[3/)(] (G)@a foralla € D,.

Since X does not occur free in F or G, by property f and Definition of

¥ -evaluations we obtain £, (F) = £, (G).

This finally gives us that v(€,(F =" G)) = T with Lemma ’Leibniz Equality in
> -models(1.)’.

It follows that M = EXT® " and M = EXT T, since a and 3 were chosen
arbitrarily. B N
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Extensionality and Leibniz Equality

Thm.: (Extensionality in X-models)
Let M = (D, @, £, v) be a X-model.
4. If M satisfies b, then M = EXTS..

Proof: Let Ao, Bo € V, be distinct variables and ¢ be any assignment into M.
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Extensionality and Leibniz Equality

Thm.: (Extensionality in X-models)
Let M = (D, @, £, v) be a X-model.
4. If M satisfies b, then M |= EXTC..

Proof: Let Ao, Bo € V), be distinct variables and ¢ be any assignment into M.
Since property b holds, we can assume D, = {T,F} and v is the identity function.
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Extensionality and Leibniz Equality

Thm.: (Extensionality in X-models)
Let M = (D, @, £, v) be a X-model.

4. If M satisfies b, then M |= EXTC..

Proof: Let Ao, Bo € V), be distinct variables and ¢ be any assignment into M.
Since property b holds, we can assume D, = {T,F} and v is the identity function.

Suppose v(E,(A = B)) =T.
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Extensionality and Leibniz Equality

Thm.: (Extensionality in X-models)
Let M = (D, @, £, v) be a X-model.

4. If M satisfies b, then M |= EXTC..

Proof: Let Ao, Bo € V), be distinct variables and ¢ be any assignment into M.
Since property b holds, we can assume D, = {T,F} and v is the identity function.
Suppose v(E,(A = B)) =T.
By Lemma ’Equivalence’, we have £, (A) = v(E,(A)) = v(E,(B)) = E,(B).
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Extensionality and Leibniz Equality

Thm.: (Extensionality in X-models)
Let M = (D, @, £, v) be a X-model.

4. If M satisfies b, then M |= EXTC..

Proof: Let Ao, Bo € V), be distinct variables and ¢ be any assignment into M.
Since property b holds, we can assume D, = {T,F} and v is the identity function.
Suppose v(E,(A = B)) =T.
By Lemma ’Equivalence’, we have £, (A) = v(E,(A)) = v(E,(B)) = E,(B).
By Lemma ’Leibniz Equality in X-models(1.)’, we have v(E,(A =° B)) = T.
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Extensionality and Leibniz Equality

Thm.: (Extensionality in X-models)
Let M = (D, @, £, v) be a X-model.

1. If M satisfies q but not property f, then M [= EXT.
2. If M satisfies q but not property b, then M = EXTC.
3. If M satisfies q and f, then M |= EXTZ".

4. If M satisfies b, then M |= EXTC..

Proof: g.e.d.
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Thm.: (