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Consider the following arithmetical computations

(−1)2 − 1 = 0

(1)2 − 1 = 0

(2)2 − 1 = 3

. . .

A more general arithmetic expression for the LHS:

x2 − 1

ATPHOL’06-[2] – p.38
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Consider the 0’s (Nullstellen) of this function; we can express the
existence of two 0’s in first-order logic as follows
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Consider the 0’s (Nullstellen) of this function; we can express the
existence of two 0’s in first-order logic as follows

∃n, m.n2 − 1 = 0 ∧m2 − 1 = 0 ∧ n ̸= m

Now we may want to talk about the existence of a function f with two 0’s:

(1) ∃f.∃n, m.f(n) = 0 ∧ f(m) = 0 ∧ n ̸= m

This expression is not a first-order statement; however we want to be able
to express such statements. We also want to prove such statements and
in a constructive proof we would like to provide witnesses for f and n, m.
In first-order logic we can describe f by the following equation

f(x) = x2 − 1

ATPHOL’06-[2] – p.39
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In λ-calculus the specified function f can be described (without
giving it a name) by the witnessing λ-term

[λx.x2 − 1]

and the witnesses for n and m are −1 and 1.
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described by the following context-free grammar in BNF:

1. <expr> ::= <identifier>
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Given a countably infinite set of identifiers, say
a, b, c, ..., x, y, z, x1, x2, .... The set of all λ-expressions can then be
described by the following context-free grammar in BNF:

1. <expr> ::= <identifier>
2. <expr> ::= [λ <identifier> . <expr>] abstraction
3. <expr> ::= [<expr> <expr>] application
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We often omit brackets with the following conventions:

! [FAB] means [[FA]B]. (Application associates to the left.)
! [λx.λy.B] means [λx.[λy.B]].
! A dot (except possibly after λ <identifier>) stands for a left
bracket whose mate is as far to the right as possible without
changing the existing bracketing.

ATPHOL’06-[2] – p.42

Benzmüller, Christoph




c⃝Benzmüller, 2006

λ-Calculus: β-reduction
HO

L

AT
Pλ

Consider now the instantiation of (1) with these witness terms

∃f.∃n,m.f(n) = 0 ∧ f(m) = 0 ∧ n ̸= m

ATPHOL’06-[2] – p.43

Benzmüller, Christoph




c⃝Benzmüller, 2006

λ-Calculus: β-reduction
HO

L

AT
Pλ

Consider now the instantiation of (1) with these witness terms

∃f.∃n,m.f(n) = 0 ∧ f(m) = 0 ∧ n ̸= m

f −→ ∃n,m.[[λx.x2 − 1] n] = 0 ∧ [[λx.x2 − 1]m] = 0 ∧ n ̸= m

ATPHOL’06-[2] – p.43

Benzmüller, Christoph




c⃝Benzmüller, 2006

λ-Calculus: β-reduction
HO

L

AT
Pλ

Consider now the instantiation of (1) with these witness terms

∃f.∃n,m.f(n) = 0 ∧ f(m) = 0 ∧ n ̸= m

f −→ ∃n,m.[[λx.x2 − 1] n] = 0 ∧ [[λx.x2 − 1]m] = 0 ∧ n ̸= m
n,m −→ [[λx.x2 − 1] − 1] = 0 ∧ [[λx.x2 − 1] 1] = 0 ∧ −1 ̸= 1
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Consider now the instantiation of (1) with these witness terms

∃f.∃n,m.f(n) = 0 ∧ f(m) = 0 ∧ n ̸= m

f −→ ∃n,m.[[λx.x2 − 1] n] = 0 ∧ [[λx.x2 − 1]m] = 0 ∧ n ̸= m
n,m −→ [[λx.x2 − 1] − 1] = 0 ∧ [[λx.x2 − 1] 1] = 0 ∧ −1 ̸= 1

Finally we can ‘evaluate’ function applications by so called
β-reduction

((−1)2 − 1) = 0 ∧ (12 − 1) = 0 ∧ −1 ̸= 1

ATPHOL’06-[2] – p.43

Benzmüller, Christoph
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The β-reduction rule expresses the idea of function application as
motivated on the previous slide. Formally it states that

[[λx.A]B] −→β A[x/B]

if all free occurrences in B remain free in A[x/B]. Here, A[x/B]

means the expression E with every free occurrence of x in A

replaced with B.
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A function of two variables is expressed in lambda calculus as a
function of one argument which returns a function of one argument.
For instance, the function

f(x, y) = x2 − y

is encoded as

[λx.λy.x2 − y]

ATPHOL’06-[2] – p.45
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λx.x2 − 1 and λy.y2 − 1

denote the same function.
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The names of the bound variables are unimportant:

λx.x2 − 1 and λy.y2 − 1

denote the same function.
Formally, the α-conversion rule states that if x and y are variables
and A is a λ-expression then

[λx.A]←→α [λy.A[x/y]]

if y does not appear freely in A and y is not bound by a λ in A

whenever it replaces a x.

ATPHOL’06-[2] – p.46

Benzmüller, Christoph
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η-reduction expresses the idea of (functional) extensionality, which
in this context is that two functions are the same iff they give the
same result for all arguments:

[λx.Fx] −→η F

whenever x does not appear free in F.
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! We define←→∗αβη as the smallest equivalence relation closed
under the reduction rules −→β and −→η and α-conversion.
(Similarly we may define←→∗M for M ⊂ {α,β, η})
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under the reduction rules −→β and −→η and α-conversion.
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! We define←→∗αβη as the smallest equivalence relation closed
under the reduction rules −→β and −→η and α-conversion.
(Similarly we may define←→∗M for M ⊂ {α,β, η})

! We call two λ-terms E and T αβη-equivalent (or short
equivalent) if

E ←→∗αβη T

(Similarly we may define M-equivalence for M ⊂ {α,β, η})

ATPHOL’06-[2] – p.48
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! A λ-expression is called a β-normal form if it does not allow
any β-reduction, i.e., has no subexpression of the form

[[λx . A]B]
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! A λ-expression is called a β-normal form if it does not allow
any β-reduction, i.e., has no subexpression of the form

[[λx . A]B]

! A λ-expression is called a η-normal form if it does not allow
any η-reduction, i.e., has no subexpression of the form (where
x does not occur free in E)

[λx.E x]
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! A λ-expression is called a β-normal form if it does not allow
any β-reduction, i.e., has no subexpression of the form

[[λx . A]B]

! A λ-expression is called a η-normal form if it does not allow
any η-reduction, i.e., has no subexpression of the form (where
x does not occur free in E)

[λx.E x]

! A λ-expression is called a βη-normal form if it satisfies both
conditions.

ATPHOL’06-[2] – p.49

Benzmüller, Christoph
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! Not every λ-expression is equivalent to a ?-normal form (where
? ∈ {β,βη})

! The Church-Rosser theorem(s) state that if A −→∗ B and
A −→∗ C, then there is some D such that B −→∗ D and
C −→∗ D.
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! Not every λ-expression is equivalent to a ?-normal form (where
? ∈ {β,βη})

! The Church-Rosser theorem(s) state that if A −→∗ B and
A −→∗ C, then there is some D such that B −→∗ D and
C −→∗ D.

A

B C

D

! From Church-Rosser it follows that every term has at most one
∗-normal form (up to α-conversion).

ATPHOL’06-[2] – p.50
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f(f(x)) = (x2 − 1)2 − 1 = x4 − 2x2
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f(f(x)) = (x2 − 1)2 − 1 = x4 − 2x2

The following λ-term expresses twofold iteration of a function

[λg.λy.g [g y]]

Let us apply this λ-term now to our function f

[[λg.λy.g [g y]] [λx.x2 − 1]]

−→β [λy.[λx.x2 − 1][[λx.x2 − 1]y]
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f(f(x)) = (x2 − 1)2 − 1 = x4 − 2x2

The following λ-term expresses twofold iteration of a function

[λg.λy.g [g y]]

Let us apply this λ-term now to our function f

[[λg.λy.g [g y]] [λx.x2 − 1]]

−→β [λy.[λx.x2 − 1][[λx.x2 − 1]y]

−→β λy.[λx.x2 − 1] [y2 − 1]
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Consider twofold iteration of function f := [λx.x2 − 1]

f(f(x)) = (x2 − 1)2 − 1 = x4 − 2x2

The following λ-term expresses twofold iteration of a function

[λg.λy.g [g y]]

Let us apply this λ-term now to our function f

[[λg.λy.g [g y]] [λx.x2 − 1]]

−→β [λy.[λx.x2 − 1][[λx.x2 − 1]y]

−→β λy.[λx.x2 − 1] [y2 − 1]

−→β [λy.[y2 − 1]2 − 1] = λy.y4 − 2y2

ATPHOL’06-[2] – p.51

Benzmüller, Christoph
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We employ iteration to define natural numbers as Church numerals:

0 = [λf.λx.x], 1 = [λf.λx.fx], 2 = [λf.λx.f(fx)], . . .

Generally a natural number n is encoded as the Church numeral

n = [λf.λy.fn y]

where fn is an abbreviation for [f [f [f . . . [f
︸ ︷︷ ︸

n−times

y]]].
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We employ iteration to define natural numbers as Church numerals:

0 = [λf.λx.x], 1 = [λf.λx.fx], 2 = [λf.λx.f(fx)], . . .

Generally a natural number n is encoded as the Church numeral

n = [λf.λy.fn y]

where fn is an abbreviation for [f [f [f . . . [f
︸ ︷︷ ︸

n−times

y]]].

Intuitively, the number n in lambda calculus is a function that takes
a function f as argument and returns the n-th iterate of f.

ATPHOL’06-[2] – p.52

Benzmüller, Christoph
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We can now define a successor function SUCC, which takes a
number n and returns n + 1:

SUCC = [λn.λf.λx.f[nfx]]
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We can now define a successor function SUCC, which takes a
number n and returns n + 1:

SUCC = [λn.λf.λx.f[nfx]]

Addition is the defined as follows:

PLUS = [λm.λn.λf.λx.mf[nfx]]

Multiplication can then be defined as

MULT = λm.λn.m[PLUS n]0,

the idea being that multiplying m and n is the same as adding n to 0

m times.

ATPHOL’06-[2] – p.53

Benzmüller, Christoph
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The predecessesor function is more difficult:

PRED = λn.λf.λx.n[λg.λh.h [g f]] [λu.x] [λu.u]
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The predecessesor function is more difficult:

PRED = λn.λf.λx.n[λg.λh.h [g f]] [λu.x] [λu.u]

or alternatively

PRED = λn.n[λg.λk.[g 1] [λu.PLUS [g k] 1] k] [λl. 0] 0
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The predecessesor function is more difficult:

PRED = λn.λf.λx.n[λg.λh.h [g f]] [λu.x] [λu.u]

or alternatively

PRED = λn.n[λg.λk.[g 1] [λu.PLUS [g k] 1] k] [λl. 0] 0

Note the trick [g1][λu.PLUS[g k] 1]k which evaluates to k if [g 1] is 0

and to [g k] + 1 otherwise.

ATPHOL’06-[2] – p.54

Benzmüller, Christoph
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{x|x2 − 1 = 0}

({−1, 1})
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{x|x2 − 1 = 0}

({−1, 1})

The set A has two elements:

∃A.∃m, n.m ∈ A ∧ n ∈ A ∧m ̸= n

In first-order, A can be ’defined’ by:

[x ∈ A] ≡ [x2 − 1 = 0]
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∃A.∃m, n.m ∈ A ∧ n ∈ A ∧m ̸= n

In first-order, A can be ’defined’ by:
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{x|x2 − 1 = 0}

({−1, 1})

The set A has two elements:

∃A.∃m, n.m ∈ A ∧ n ∈ A ∧m ̸= n

In first-order, A can be ’defined’ by:

[x ∈ A] ≡ [x2 − 1 = 0]

In this expression we talk about ’membership’
Alternatively, we can express the characteristic function of A by the
λ-term

[λx.[x2 − 1 = 0]]
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[λx.x2 − 1 = 0]

The idea is as follows

[[λx.x2 − 1 = 0] a] evaluates to a2 − 1 = 0

The expression a2 − 1 = 0 is ⊤ (⊤ denotes Truth) if a is −1 or 1.
Otherwise, a2 − 1 = 0 is ⊥ (⊥ denotes Falsehood)
The characteristic function [λx.x2 − 1 = 0] provides a witness for

∃P.∃m, n. [Pm] ∧ [Pn] ∧ m ̸= n

ATPHOL’06-[2] – p.56
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n = λf.λy.[fn y]
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n = λf.λy.[fn y]

We can also define the set N of all Church numerals
N must satisfy three properties:
1. [N 0] “0 is a Church numeral”
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n = λf.λy.[fn y]

We can also define the set N of all Church numerals
N must satisfy three properties:
1. [N 0] “0 is a Church numeral”
2. ∀x.[N x] ⊃ [N[SUCC x]] “N is closed under successor”
3. ∀P.[P0] ∧ [∀x.[Px] ⊃ [P [SUCC x]]] ⊃ [N ⊆ P]
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For each natural number n there is a Church numeral:

n = λf.λy.[fn y]

We can also define the set N of all Church numerals
N must satisfy three properties:
1. [N 0] “0 is a Church numeral”
2. ∀x.[N x] ⊃ [N[SUCC x]] “N is closed under successor”
3. ∀P.[P0] ∧ [∀x.[Px] ⊃ [P [SUCC x]]] ⊃ [N ⊆ P]

“N is the least such set”
Define N to be:

λz.∀P.[[P0] ∧ [∀x. [Px] ⊃ [P .SUCC x]]] ⊃ [P z]
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Define N to be:

λz.∀P.[[P0] ∧ [∀x. [Px] ⊃ [P .SUCC x]]] ⊃ [P z]
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Define N to be:

λz.∀P.[[P0] ∧ [∀x. [Px] ⊃ [P .SUCC x]]] ⊃ [P z]

This satisfies the three requirements.
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Define N to be:

λz.∀P.[[P0] ∧ [∀x. [Px] ⊃ [P .SUCC x]]] ⊃ [P z]

This satisfies the three requirements.
! [N 0] since [P0] implies [P0]
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Define N to be:

λz.∀P.[[P0] ∧ [∀x. [Px] ⊃ [P .SUCC x]]] ⊃ [P z]

This satisfies the three requirements.
! [N 0] since [P0] implies [P0]

! ∀x.[N x] ⊃ [N[SUCC x] since if Px and P is closed under
successor, then P [SUCCp]]

ATPHOL’06-[2] – p.58

Benzmüller, Christoph




c⃝Benzmüller, 2006

λ-Calculus: Sets
HO

L

AT
Pλ

Define N to be:

λz.∀P.[[P0] ∧ [∀x. [Px] ⊃ [P .SUCC x]]] ⊃ [P z]

This satisfies the three requirements.
! [N 0] since [P0] implies [P0]

! ∀x.[N x] ⊃ [N[SUCC x] since if Px and P is closed under
successor, then P [SUCCp]]

! ∀P.[P0] ∧ [∀x.[Px] ⊃ [P [SUCC x]]] ⊃ [N ⊆ P]

N is the least such set as the intersection of all such sets P

ATPHOL’06-[2] – p.58

Benzmüller, Christoph
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Define N to be:

λz.∀P.[[P0] ∧ [∀x. [Px] ⊃ [P .SUCC x]]] ⊃ [P z]

This satisfies the three requirements.
We have used quantification over sets (characteristic functions –
the variable P) to define N.
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Our representation framework is very powerful.
Actually it is so powerful that it is inconsistent!
Russell’s paradox:
Consider the term R:

[λx.¬[x x]]

As a characteristic function, R represents the set of all sets which
do not contain themselves:

{x|x /∈ x}

ATPHOL’06-[2] – p.59

Benzmüller, Christoph
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Consider the term R:
[λx.¬[x x]]

Now we evaluate the expression E := [RR]

[[λx.¬.x x] R]
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Consider the term R:
[λx.¬[x x]]

Now we evaluate the expression E := [RR]

[[λx.¬.x x] R] evaluates to ¬[RR]

And we evaluate ¬[RR]

¬[[λx.¬.x x]R] evaluates to ¬¬[RR]

which is equivalent to [RR]
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Consider the term R:
[λx.¬[x x]]

Now we evaluate the expression E := [RR]

[[λx.¬.x x] R] evaluates to ¬[RR]

And we evaluate ¬[RR]

¬[[λx.¬.x x]R] evaluates to ¬¬[RR]

which is equivalent to [RR]

Thus if E holds we can infer ¬E and vice versa. This is Russell’s
paradox.

ATPHOL’06-[2] – p.60
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Note that the term [λx.¬.x x] (just as the standard example [λx.x x])
does not terminate with respect to β-reduction:

[RR] −→β ¬[RR] −→β ¬¬[RR] −→β . . .

ATPHOL’06-[2] – p.61

Benzmüller, Christoph
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