synonyms in this talk
Church’s Simple Type Theory
Classical Higher Order Logic (HOL)
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(Alonzo Church, 1940)

> simple types «, 5 ::= t|o]a = 3 (opt. further base types)
» HOL defined by
St = pal X

| (AXaxS)amp | (Samp ta)s
| (_‘o—>o So)o | (50 Voso-o0 to)o | (n(a—>o)—>o ()\Xa- to))o

» HOL is well understood

- Origin (Church, J.Symb.Log., 1940)
- Henkin semantics (Henkin, J.Symb.Log., 1950)
(Andrews, J.Symb.Log., 1971, 1972)

- Extens./Intens. (BenzmiillerEtAl., J.Symb.Log., 2004)
(Muskens, J.Symb.Log., 2007)
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Opinions about HOL:

» HOL is expressive

but ...

» HOL can not be effectively automated
» HOL is a classical logic and not easily compatible with

» modal logics
» intuitionistic logic
> .

» HOL can not fruitfully serve as a basis for combining logics
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Opinions about HOL: Position of this talk

» HOL is expressive and we exploit this here

but ...

» HOL can [t be effectively automated (at least partly)

» HOL is a classical logic and ff/f easily compatible with
» (normal) modal logics
» intuitionistic logic
>

» HOL can f#f fruitfully serve as a basis for combining logics
(interesting application area: multi-agent systems)

... I will give theoretical and practical evidence

Christoph Benzmiiller

Logics in Simple Type Theory



Quantified Multimodal Logics (QML)
as HOL Fragments

(jww Larry Paulson)
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Quantified Multimodal Logics (QML)

» QML defined by

s, t =

» Kripke style semantics
» notion of (QS5) models:

QS57

Christoph Benzmiiller

P|(kX'...X™
| s|sVt

| O,s

| ViX.s | VPP.s

(Fitting, J.Symb.Log., 2005)
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Quantified Multimodal Logics (QML)

» QML defined by

st n= Pl(kX'...X")
| s|sVt
| O,s
| ViX.s | VPP.s
» Kripke style semantics
» notion of (QS5) models: (Fitting, J.Symb.Log., 2005)
QS57 — QK7 (correspondence to Henkin models)

(BenzmiillerPaulson, Techn.Report, 2009)

Christoph Benzmiiller Combining Logics in Simple Type Theory
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2.2. Quantified Multimodal Logic

First-order quantification can be constant domain or varying domain. Below
we only consider the constant domain case: every possible world has the same
domain. We adapt the presentation of syntax and semantics of quantified
modal logic from Fitting [18]. In contrast to Fitting we are not interested in
S5 structures but in the more general case of K.

Let IV be a set of first-order (individual) variables, PV a set of proposi-
tional variables, and SYM a set of predicate symbols of any arity. Like Fitting,
we keep our definitions simple by not having function or constant symbols;
our language has no terms other than variables. While Fitting [18] studies
quantified monomodal logic, we are interested in quantified multimodal logic.
Hence, we introduce multiple O, operators for symbols r from an index set
S. The grammar for our quantified multimodal logic QML is thus

s, u= PlEX'Y ..., X")|=s|sVt|VX.s|VP.s|O,s

where P € PV, k € SYM, and X, X’ € IV.

Further connectives, quantifiers, and modal operators can be defined
as usual. We also obey the usual definitions of free variable occurrences and
substitutions.

Fitting introduces three different notions of semantics: QS57—, QS5m,
and QS57F. We study related notions QK7 ~, QK7, and QK7+ for a modal
context K, and we support multiple modalities.

A QKn~ model is a structure M = (W, (R;)res, D, P, (Iy)wew) such
that (W, (R,)res) is a multimodal frame (that is, W is the set of possible
worlds and the R, are accessibility relations between worlds in W), D is a
non-empty set (the first-order domain), P is a non-empty collection of subsets
of W (the propositional domain), and the I,, are interpretation functions
mapping each n-place relation symbol £ € SYM to some n-place relation on
D in world w.

A wariable assignment g = (g'’,gP") is a pair of maps ¢* : IV — D
and g’ : PV — P, where ¢ maps each individual variable in IV to a an
object in D and gP” maps each propositional variable in PV to a set of worlds
in P.

Validity of a formula s for a model M = (W, (R;)res, D, P, I,), a world
w € W, and a variable assighment g = (¢**, gP) is denoted as M, g,w = s
and defined as follows, where [a/Z]g denotes the assignment identical to g
except that ([a/Z]g)(Z) = a:

M,g,w = k(X ..., X™) ifand only if (g™ (X1),...,¢""(X™)) € I,(k)

M,g,w = P if and only if w € ¢g"?(P)

M,g,wE s if and only if M, g,w [~ s

M,gwEs Vit if and only if M,g,wlsor M,g,w =t
M,g,wEVX.s if and only if M, ([d/X]¢", ¢"*),w = s

for alld € D
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M, g,w EVQ. s if and only if M, (¢, [p/Q]g""),w |= s
forallpe P
M,g,w E0O,s if and only if M, g,v=sforallve W

with (w,v) € R,

A QK7m~ model M = (W, (R;)res, D, P, (Iy)wew) is a QKT model if for
every variable assignment g and every formula s € QML, the set of worlds
{weW | M,g,w [ s} is a member of P.

A QKm model M = (W, (R,)res, D, P, (Iy)wew) is a QK™ model if
every world w € W is member of an atom in P. The atoms of P are minimal
non-empty elements of P: no proper subsets of an atom are also elements of
P.

A QML formula s is valid in model M for world w if M, g, w = s for all
variable assignments g. A formula s is valid in model M if M,g,w | s for
all g and w. Formula s is QKm-valid if s is valid in all QK7 models, when we
write |:QK7r s; we define QK7 -valid and QK7 t-valid analogously.

In the remainder we mainly focus on QK7 models. These models natu-
rally correspond to Henkin models, as we shall see in Section 4.

3. Embedding Quantified Multimodal Logic in STT

The idea of the encoding is simple. We choose type ¢ to denote the (non-
empty) set of individuals and we reserve a second base type p to denote
the (non-empty) set of possible worlds. The type o denotes the set of truth
values. Certain formulas of type p — o then correspond to multimodal logic
expressions. The multimodal connectives =, V, and O, become A-terms of
types (1 — 0) = (11— 0), (1~ 0) — (1 = 0) — (4 — 0), and (i1 > 1 — 0) —
(1 — 0) = (1 — o) respectively.

Quantification is handled as usual in higher-order logic by modeling
VX.s as II(AX.s) for a suitably chosen connective II, as we remarked in Sec-
tion 2. Here we are interested in defining two particular modal II-connectives:
II*, for quantification over individual variables, and II*7°, for quantifica-
tion over modal propositional variables that depend on worlds, of types
(¢~ (= 0)) = (1 —o)and ((n—0) = (1= 0)) > (1 — o), respectively.

In previous work [10] we have discussed first-order and higher-order
modal logic, including a means of explicitly excluding terms of certain types.
The idea was that no proper subterm of ¢,,_,, should introduce a dependency
on worlds. Here we skip this restriction. This leads to a simpler definition of
a quantified multimodal language QMLSTT below, and it does not affect our
soundness and completeness results.

Definition 3.1 (Modal operators). The modal operators -, V,O0,II*, and
I1"7° are defined as follows:

T (p=0)= (p—0) = APpor AW (0 W)
V (u=0)= (1=0)=(1~0) = APpor AMPpsor AW @ WV h W
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O (uop0) (o) (20) = ARpuopso Absn AWa WV m(RW V) V ¢V

H’E/,—>([u,—>o))—>(/1,—>o) = )\QSL—)(M—n))' )\W/J,' VXL' ¢ XWwW
H,(L(;io)a(uao))%(uﬂo) = >\¢(;L~>o)~>(,u~>o)' )\WP«' VP,u,ao- ¢ PWw

Note that our encoding actually only employs the second-order fragment of
simple type theory enhanced with lambda-notation.
Further operators can be introduced, for example,

T (s0)s(use) = VPuoon PV = P
Lo)yo(umoy =T
N (u=0)=(110)~(1i~0) = ABpmor Mipmor 21 (10 V 210)
D (p=0)=(u=0)=(n—0) = APusor AMPyson 19 V Y
O (pmpi=0)=(p=0)=(u=0) = ARy por A@p0nm (AR (2 9))
= (u=0))=(u=0) = AP (o) 7 (I (AX = (¢ X))

B (40) = (0= (o) = AP(u0) (o) 7 (I (AP on 2 (6 P)))

We could also introduce further modal operators, such as the difference
modality D, the global modality F, nominals with !, or the @ operator (cf.
the recent work of Kaminski and Smolka [23] in the propositional hybrid logic
context):

Djo)y= (o) = APposor AW IV W £V A 9V
E(0)=(y—0) = APp—or @ V D ¢
lpmo)s(umo) = APp—o B (¢ A = (D ¢))
Qs (ps0) = (u—s0) = AWps AGpson @ W
For defining QMLSTT-propositions we fix a set IVSTT of individual

variables of type ¢, a set PVSTT of propositional variables of type u — 0, and a
set SYMSTT of n-ary (curried) predicate constants of types¢ — ... - ¢ - (u —
——

n
0). The latter types will be abbreviated as ¢™ — (1 — 0) in the remainder.
Moreover, we fix a set SSTT of accessibility relation constants of type p —
= o.

Definition 3.2 (QMLSTT-propositions). QMLSTT-propositions are defined as
the smallest set of simply typed A-terms for which the following hold:

e Each variable P,., € PVSTT is an atomic QMLSTT-proposition, and
if X € IVSTT (for j =1, ..., n) and k,n_(,—0) € SYMSTT, then the
term (kX' ... X™),, is an atomic QMLSTT-proposition.

o If ¢ and ¢ are QMLSTT-propositions, then so are = ¢ and ¢ V .

o If 7,.,~0 € SSTT is an accessibility relation constant and if ¢ is an
QMLSTT-proposition, then O7r ¢ is a QMLSTT-proposition.

e If X, € IVSTT is an individual variable and ¢ is a QMLSTT-proposition
then IT*(AX,.¢) is a QMLSTT-proposition.

o If P,,, € PVSTT is a propositional variable and ¢ is a QMLSTT-
proposition then IT*7?(AP,_ 0. ¢) is a QMLSTT-proposition.
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We write O,¢, VX.¢, and VP,..¢ for Ore¢, II'(AX.¢), and
IT"7°(AP,—ox @), respectively.

Because the defining equations in Definition 3.1 are themselves formu-
las in simple type theory, we can express proof problems in a higher-order
theorem prover elegantly in the syntax of quantified multimodal logic. Using
rewriting or definition expanding, we can reduce these representations to cor-
responding statements containing only the basic connectives =, VvV, =, II*,
and IT#7° of simple type theory.

Ezample. The following QMLSTT proof problem expresses that in all acces-
sible worlds there exists truth:

0,3P,.0 P
The term rewrites into the following Sn-normal term of type p — o

AW, VY, =(r W Y) V (VP e (P Y))

Next, we define validity of QMLSTT propositions ¢,, in the obvious
way: a QML-proposition ¢, is valid if and only if for all possible worlds w,,
we have w, € ¢,-0, that is, if and only if ¢, w, holds.

Definition 3.3 (Validity). Validity is modeled as an abbreviation for the fol-
lowing simply typed A-term:
valid = Ao VW o W
Alternatively, we could define validity simply as I1(,,_)o-
Ezample. We analyze whether the proposition O, 3P,_,,. P is valid or not.
For this, we formalize the following proof problem
valid (O, 3P,_.. P)

Expanding this term leads to

VWV, =(rWY) V (VXL (X Y))
It is easy to check that this term is valid in Henkin semantics: put X =

AY,. T.

An obvious question is whether the notion of quantified multimodal
logics we obtain via this embedding indeed exhibits the desired properties.
In the next section, we prove soundness and completeness for a mapping of
QML-propositions to QMLSTT-propositions.

4. Soundness and Completeness of the Embedding

In our soundness proof, we exploit the following mapping of QKz models
into Henkin models. We assume that the QML logic L under consideration
is constructed as outlined in Section 2 from a set of individual variables IV,
a set of propositional variables PV, and a set of predicate symbols SYM. Let
O,1, ..., O for r* € S be the box operators of L.
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Definition 4.1 (QMLSTT logic ISTT for QML logic L). Given an QML logic
L, define a mapping _ as follows:

X = X, for every X €1V
P= P,_, for every P € PV
k= kun(u—o) for every n-ary k € SYM

P = Tuspu—o for every r € S

The QMLSTT logic LSTT is obtained from L by applying Def. 3.2 with
IVSTT = {X | X € IV}, PVSTT = {P | P € PV}, SYMSTT = {k | k €
SYM}, and SSTT = {7 | r € S}. Our construction obviously induces a one-
to-one correspondence _ between languages L and ISTT,

Moreover, let g = (g% : IV — D, g** : PV — P) be a variable
assignment for L. We define the corresponding variable assignment

g=(¢" :IVSTT — D = D,, §*" : PVSTT — P = D,,_,)

for LSTT o that §(X,) = §(X) = g(X) and §(P,_,) = §(P) = g(P) for all
X, € IVSTT and P,_, € PVSTT.

Finally, a variable assignment ¢ is lifted to an assignment for variables
Z,, of arbitrary type by choosing ¢(Z,) = d € D,, arbitrarily, if & # ¢, u — o.

LSTT

We assume below that L, , g and ¢ are defined as above.

Definition 4.2 (Henkin model H% for QK7 model Q). Given a QK7 model
Q= W,(R)res, D, P,(Iy)wew) for L, a Henkin model HC = ({DataeT 1)

for LSTT is constructed as follows. We choose

the set D), as the set of possible worlds W,

the set D, as the set of individuals D (cf. definition of ¢*),

the set D, as the set of sets of possible worlds P (cf. definition of
g7)?

the set D, ,—0 as the set of relations (R,)res,

and all other sets D, as (not necessarily full) sets of functions from
D, to Dg; for all sets D, the rule that everything denotes must be
obeyed, in particular, we require that the sets D n_(,_,) contain the
elements I kjbna(lﬁo) as characterized below.

The interpretation I is as follows:
o Let kyno(ymo) = k: for k € SYM and let X7 = X for X' € IV. We choose
Ik:bnﬁ(u_,o) € Dyny(y—o) such that
(ITR)(G(X)), .., g(X]),w) =T

for all worlds w € D,, such that Q,g,w = k(X',...,X™), that is, if
(g(X1),...,g(X™)) € Ly(k). Otherwise (Ik)(9(X}),...,q(X}"),w) =
F.

2To keep things simple, we identify sets with their characteristic functions.
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o Let rynpyso = 7 for r € S. We choose Ir,.,~o € Dyop—o such that
(Irpsp—o)(w,w') = T if (w,w’) € R, in Q and (Ir,_puso)(w,w’) = F
otherwise.

It is not hard to verify that H? = ({Dy},cT, ) is a Henkin model.

Lemma 4.3. Let Q = (W, (R;)res, D, P, (I)wew) be a QKm model and let
H® = ({Da},er 1) be a Henkin model for Q. Furthermore, let s,-, = $
for s € L. Then for all worlds w € W and variable assignments g we have
Q,9,w = s in Q if and only if Viww,)g (Su—oWy) =T in HC.

Proof. The proof is by induction on the structure of s € L.

Let s = P for P € PV. By construction of Henkin model H® and by def-
inition of g, we have for P,_, = P that Viw/w,lg (Pu—o Wi) = §(Pu-o)(w) =
T if and only if Q, g, w | P, that is, w € g(P).

Let s = k(X',...,X") for k € SYM and X' € IV. By construction
of Henkin model H? and by definition of ¢, we have for I%(Xl, - 7X") =
(kbnﬁ(#ﬁo) )(L1 an) that

Viww,lg (Bnouma X, - XIYW,) = (TR)(9(X])), ..., g(X"),w) =T

if and only if Q, g,w = k(X1,..., X™), that is, (g(X1),...,g(X™)) € I,(k).

Let s = =t for t € L. We have Q,g,w = —s if and only Q,g,w [~ s,
which is equivalent by induction to Vi, w,jg (t,~0 W) = F and hence to
Viw/wlg ~(tuso Wi) =gn Viw/w,s (7 tumo) W) =T

Let s = (¢t V 1) for t,l € L. We have Q,g,w = (t V I) if and only if
Q,9,w E t or @,g,w = [. The latter condition is equivalent by induction
to Viw/w,g (tuso Wi) = T or Viyw,jg (lumo Wu) = T and therefore to
Viw/w,lg (tuso W) V (luso Wi) =g Viw/w,lg (tpso V luso W) =T

Let s = O, ¢ for t € L. We have Q,g,w = O, t if and only if for all u
with (w,u) € R, we have Q,g,u |= t. The latter condition is equivalent by
induction to this one: for all u with (w,u) € R, we have Vi, v, 15 (tu-0o Vi) =
T. That is equivalent to

Viu/Vaw/Wolg (Cuspso Wi Vi) V (tuso Vi) =T
and thus to
Viw/w,lg (VYM' (_‘(Tu—w—w Wy Yu) v (tu—m Yu))) =pn Viw/W,lg (@t VV/L) =T

Let s =VX.tfort € L and X € IV. We have Q,g,w E VX.t if and
only if @,[d/X]g,w [= ¢t for all d € D. The latter condition is equivalent by
induction to Vig/x,jjw/w,]g (tu—o Wu) = T for all d € D,. That condition is
equivalent to

Vi wlg s o)moA X tumo W) =gy
V[w/WM]_('] (()‘Vu' (Hh—»o)—»o ()‘Xb'tﬂ—w Vu))) Wu) =T
and so by definition of II* to V iy /w15 (TX(,2 (uo0))=( AXwtyso)) Wy) =
Viw/w,lg (VX tuo) Wy) =T
The case for s = VP.t where t € L and P € PV is analogous to
s=VX.t. O

1—0) (



10 Christoph Benzmiiller and Lawrence C. Paulson

We exploit this result to prove the soundness of our embedding.

Theorem 4.4 (Soundness for QK7 semantics). Let s € L be a QML proposi-
tion and let s,., = $ be the corresponding QMLSTT proposition. If ):STT
(valid s;—o) then =@ g

Proof. By contraposition, assume %QK” s: that is, there is a QK7 model Q) =
(W, (Ry)res, D, P, (Iy)wew), a variable assignment g and a world w € W,
such that Q, g, w [~ s. By Lemma 4.3, we have Vi, w14 (8,0 W) = F in a
Henkin model H? for Q. Thus, V; (YW, ($,-0 W)) =g, Vg (valid s,_,) = F.
Hence, %STT (valid s,,-0). O

In order to prove completeness, we reverse our mapping from Henkin
models to QK7 models.

Definition 4.5 (QML logic LOML g5 QMLSTT logic L). The mapping - is
defined as the reverse map of _ from Def. 4.1.

The QML logic LAML 5 obtained from QMLSTT logic L by choosing
IV ={X, | X, € IVSTT}, PV = {P,_, | Puso € PVSTT}, SYM = {k,n_ (0 |
Euno(uooy € SYMSTT}, and S = {Tu_ o | Tpopso € SSTT}.

Moreover, let g : IVSTTUPVSTT — DUP be a variable assignment for
L. The corresponding variable assignment g : IVUPV — D U P for LML
is defined as follows: g(X) = g(X,) = ¢(X,) and §(P) = §(Pu-o) = 9(Pu-o)
for all X € IV and P € PV.

We assume below that L, LQML7 g and g are defined as above.

Definition 4.6 (QK7~ model Q' for Henkin model H). Given a Henkin
model H = ({Dqa} e, 1) for QMLSTT logic L, we construct a QML model
QH = (W, (Ry)res, D, P, (Ly)wew) for LAML by choosing W = D,,, D = D,,
and P = D,_,,. Moreover, let k = Ebnﬂ(lﬁo) and let X* = X!. We choose
I, (k) such that (g(X1),...,g(X™)) € L,(k) if and only if

(LR)(g(XD), .., g(X]),w) = T.

Finally, let 7 = 7, ,,. We choose R, such that (w,w’) € R, if and only if
Iy o) (w,w') =T

It is not hard to verify that Q¥ = (W, (R,),es, D, P, (I,)wew ) meets
the definition of QK7~ models. Below we will see that it also meets the
definition of QK7 models.

Lemma 4.7. Let Qff = (W, (R,)res, D, P, (Lw)wew) be a QKT~ model for a
given Henkin model H = ({Dq}oe 1, I). Furthermore, let s = 5,.,. For all
worlds w € W and variable assignments g we have Vi w, g (Su—oWy) =T
in H if and only if Q¥ ,g,w |= s in QY.

Proof. The proof is by induction on the structure of s,,-., € L and it is similar
to the proof of Lemma 4.3. (]
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With the help of Lemma 4.7, we now show that the QK7~ models we
construct in Def. 4.6 are in fact always QK7 models. Thus, Henkin models
never relate to QK7~ models that do not already fulfill the QK= criterion.

Lemma 4.8. Let Q¥ = (W,(R,)res, D, P,(I,)wew) be a QKn~ model for a
given Henkin model H = ({Dy} e, I). Then Q¥ is also a QKm model.

Proof. We need to show that for every variable assignment g and formula
$ = 8.0 the set {w € W | Q",g,w [ s} is a member of P in QF.
This is a consequence of the rule that everything denotes in the Henkin
model H. To see this, consider Vys,., = Vg(AV,us,, V) for variable V,,
not occurring free in s,,. By definition of Henkin models this denotes
that function from D, = W to truth values D, = {T, F} whose value for
each argument w € D, is V[w/vu]g(s V), that is, s,., denotes the char-
acteristic function Aw € W.Viy,v,1g (Su~0V,) = T which we identify with
the set {w € W | Viy/v,g(8u-0Vu) = T}. Hence, we have {w € W |
Viw/vig (8u=oVu) = T} € D, By the choice of P = D,,, in the con-
struction of Q¥ we know {w € W | Vi v,1g (Su=0Vy) = T} € P. By Lemma

4.7 we get {w € W | Q",g,w = s} € P. O
Theorem 4.9 (Completeness for QK7 models). Let s,,_, be a QMLSTT propo-
sition and let s = 5, be the corresponding QML proposition. If = QK™ 5 then

=STT (valid s;—o).

Proof. By contraposition, assume I#STT (valid s,-0): there is a Henkin model
H = {({Du},e1,I) and a variables assignment g such that V, (valid s,-,) =
F. Hence, for some world w € D,, we have Vi, /w,g (5u~0W,) = F. By
Lemma 4.7 we then get Q¥ , g, w %QK’F s for s = 5,., in QK7™ model Q¥
for H. By Lemma 4.8 we know that Q¥ is actually a QK7 model. Hence,
pQKm 5 O

Our soundness and completeness results obviously also apply to frag-
ments of QML logics.

Corollary 4.10. The reduction of our embedding to propositional quantified
multimodal logics (which only allow quantification over propositional vari-
ables) is sound and complete.

Corollary 4.11. The reduction of our embedding to first-order multimodal
logics (which only allow quantification over individual variables) is sound
and complete.

Corollary 4.12. The reduction of our embedding to propositional multimodal
logics (no quantification) is sound and complete.

5. Conclusion

We have presented a straightforward embedding of quantified multimodal
logics in simple type theory and we have shown that this embedding is sound
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(Normal) QML as Fragment of HOL

— related, but significantly extending (Ohlbach, 1988/93) —
Straightforward encoding

» base type ¢: non-empty set of possible worlds

» base type u: non-empty set of individuals

QML formulas — HOL terms of type ¢ — o

QML operators as abbreviations for specific HOL terms
= Ao AW (¢ W)
V = Moo AW s WV b W
0 = AR 1o Ao ALYV n(RW V)V 6 V
(V) = AT (o) AW X (7 X) W
(Vp) n-°= )\T(L—>O)—>(L—>O)')\WL'VPL—>O' (’7’ P) w
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(Normal) QML as Fragment of HOL

— related, but significantly extending (Ohlbach, 1988/93) —
Straightforward encoding

» base type ¢: non-empty set of possible worlds

» base type u: non-empty set of individuals

QML formulas — HOL terms of type ¢ — o

operators as abbreviations for specific terms
QML bbreviations f ific HOL
= AP0 AW (0 W)
Vot =IMWuo WVt W
O = ARsis0 Ao ALYV 2(RW V)V o V
(V) = AT (o) AW X (7 X) W
(Vp) n—°= )\T(L—>O)—>(L—>O)')\WL'VPL—>O' (’7’ P) w
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(Normal) QML as Fragment of HOL

— related, but significantly extending (Ohlbach, 1988/93) —
Straightforward encoding

» base type ¢: non-empty set of possible worlds

» base type u: non-empty set of individuals

QML formulas — HOL terms of type ¢ — o

QML operators as abbreviations for specific HOL terms
= Ao AW (¢ W)
(Vo)W =oWVyW
0 = AR 1o Ao ALYV n(RW V)V 6 V
(V) = AT (o) AW X (7 X) W
(Vp) n-°= )\T(L—>O)—>(L—>O)')\WL'VPL—>O' (’7’ P) w
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(Normal) QML as Fragment of HOL

— related, but significantly extending (Ohlbach, 1988/93) —
Straightforward encoding

» base type ¢: non-empty set of possible worlds

» base type u: non-empty set of individuals

QML formulas — HOL terms of type ¢ — o

QML operators as abbreviations for specific HOL terms
= Ao AW (¢ W)
V' = Ay My AW 6 WV 0 W
0 = AR 1o Ao ALYV n(RW V)V 6 V
(V) = AT (o) AW X (7 X) W
(Vp) n—°= )\T(L—>O)—>(L—>O)')\WL'VPL—>O' (’7’ P) w

Christoph Benzmiiller Combining Logics in Simple Type Theory



(Normal) QML as Fragment of HOL

— related, but significantly extending (Ohlbach, 1988/93) —
Straightforward encoding

» base type ¢: non-empty set of possible worlds

» base type u: non-empty set of individuals

QML formulas — HOL terms of type ¢ — o

QML operators as abbreviations for specific HOL terms
= Ao AW (6 W)
V = Ao Mo AW o WV ) W
Ok = Adroo AWV V. (RW V)V ¢ V
(V) IV = AT (o) AW Y X (7 X) W
(V7)) 1170 = AT(10)a (o) AW VP on (7 P) W
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(Normal) QML as Fragment of HOL

— related, but significantly extending (Ohlbach, 1988/93) —
Straightforward encoding

» base type ¢: non-empty set of possible worlds

» base type u: non-empty set of individuals

QML formulas — HOL terms of type ¢ — o

QML operators as abbreviations for specific HOL terms
= Ao AW (¢ W)
V' = Ay My AW 6 WV 0 W
0 = AR 1o Ao ALYV n(RW V)V 6 V
(V) = AT (o) AW X (7 X) W
(Vp) n—°= )\T(L—>O)—>(L—>O)')\WL'VPL—>O' (’7’ P) w
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(Normal) QML as Fragment of HOL

Encoding of validity

valid = ApooVW.op W

Christoph Benzmiiller Combining Logics in Simple Type Theory



Example: In all r-accessible worlds exists truth

Formulate problem in HOL using original QML syntax

valid O, 3PP, .. P

Christoph Benzmiiller ining Logics in Simple Type Theory



Example: In all r-accessible worlds exists truth

Formulate problem in HOL using original QML syntax
valid O, 3PP,_,. P

then automatically rewrite abbreviations

rewrite

o, B
rewrite

o L

rewrite
—

Bnl
—

valid
YWY Yar WY V (VP —(P Y))
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Example: In all r-accessible worlds exists truth

Formulate problem in HOL using original QML syntax
valid O, 3PP,_,. P

then automatically rewrite abbreviations

rewrite

o, B
rewrite

o L

rewrite
—

Bnl
—

valid .
YWY Yar WY V (VP —(P Y))

and prove automatically (LEO-II, IsabelleP, TPS, Satallax, . ..
here the provers need to generate witness term P = \Y,. T)
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Soundness and Completeness

Soundness and Completeness Theorem:

Edkr s ifand only if =95, valids, o

(BenzmiillerPaulson, Techn.Report, 2009)

Soundness and Completeness Theorem for Propositional
Multimodal Logic

(BenzmiillerPaulson, Log.J.IGPL, 2010)
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Further interesting Fragments of HOL

» Intuitionistic Logic
(exploiting Godel’s translation to S4)
(BenzmiillerPaulson, Log.J.IGPL, 2010)

» Access Control Logics
(exploiting a translation by Garg and Abadi)
(Benzmiiller, IFIP SEC, 2009)

» Region Connection Calculus — later in this talk

> ..
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Reasoning about Combinations of
Logics
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Reasoning about Combinations of Logics: Correspondence

Correspondences between properties of accessibility relations like

symmetric = ARVS, T.RST=RTS
serial = ARVS.AT.RST

and corresponding axioms

VR.symmetricR <=
= valid VPg.¢ D OrOr¢  (B)

VR.serial R <
= valid V’¢.0g ¢ O Oro (D)
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Reasoning about Combinations of Logics: Correspondence

Correspondences between properties of accessibility relations like

symmetric = ARVS, T.RST=RTS
serial = ARVS.AT.RST

and corresponding axioms

e
o
@

VR.symmetric R

<
o
@

valid VP, D OgOr¢  (B)

o
0

VR.serial R 0
2 valid Po.0g ¢ D Oro (D)

o

Such proofs — including axioms D, M, 4, B, 5 — can be
automated with LEO-II in no-time!
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Reasoning about Combinations of Logics:  Modal Cube

S S5 = M5 = MB5 = M4B5
M
D

= M45 = M4B = D4B
D4 | D45 M
/@/ 4
5
B| }//YB

= D4B5 = DB5
|

B~ mB

=

4]
K4] D/@ [KB5 |= K4B5 = K4B
K5

modal cube reproduced from [?]

(J. Garson, Modal Logic, SEP 2009)
K (KB
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Reasoning about Combinations of Logics: M5 < D4B

VR.

valid VPo.Or ¢ D ¢
A valid VPh. Or ¢ D OrOrd M5

A valid VP¢o.Og ¢ D OgOg o

valid Vp¢.DR¢ D) <>R¢
DAB
A valid VPh.¢ D Og Og o
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Reasoning about Combinations of Logics: M5 < D4B

VR.
valid VPo.Or ¢ D ¢
A valid VPh. Or ¢ D OrOrd M5
=
serial R

AN valid VPQZ).DRQZ) D) DRDR¢ D4B
A symmetric R
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Reasoning about Combinations of Logics: M5 < D4B

VR.
reflexive R
A euclidean R M5
=
serial R
A transitive R D4B

A symmetric R
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Reasoning about Combinations of Logics: M5 < D4B

VR.
reflexive R
A euclidean R M5
0.1s
[==4
serial R
A transitive R D4B

A symmetric R

Proof with LEO-Il in 0.1s
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Reasoning about Combinations of Logics: Cube Verification

S4

S5| = M5 = MB5 = M4B5
= M45 = M4B = D4B
= D4B5 = DB5

fastest results by:
LEO-II (prover)
Satallax (prover)
TPS (prover)
Satallax (mod.find.)
IsabelleN (mod.find.)
IsabelleM (mod.find.)

5

KB5| = k4B5 = K4B

> < 40sec.

Christoph Benzmiiller
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Reasoning about Combinations of Logics: Segerberg

(Segerberg, 1973) discusses a 2-dimensional logic providing two S5
modalities O, and Op. He adds further axioms stating that these
modalities are commutative and orthogonal. It actually turns out
that orthogonality is already implied in this context.

reflexive a, transitive a, euclid. a,
reflexive b, transitive b, euclid. b,
validVo. 0,0, ¢ < O,0,¢
|-HOL
valid Vo, ¢, O,(0,¢ Vv Op) D (0,0 V O,7)
A
valid Vo, . O, (0,0 V Optp) D (p oV Op )
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Reasoning about Combinations of Logics: Segerberg

(Segerberg, 1973) discusses a 2-dimensional logic providing two S5
modalities O, and Op. He adds further axioms stating that these
modalities are commutative and orthogonal. It actually turns out
that orthogonality is already implied in this context.

reflexive a, transitive a, euclid. a,
reflexive b, transitive b, euclid. b,
validVo. 0,0, ¢ < O,0,¢

HoL proof by LEO-II in 0.2s
valid Vo, ¢, O,(0,¢ Vv Op) D (0,0 V O,7)
A
valid Vo, . O, (0,0 V Optp) D (p oV Op )
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Reasoning within Combined Logics
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Reasoning within Combined Logics: Wise Men Puzzle

Wise Men Puzzle

Once upon a time, a king
wanted to find the wisest
out of his three wisest men.
He arranged them in a cir-
cle and told them that he
would put a white or a black
spot on their foreheads and
that one of the three spots
would certainly be white.
The three wise men could
see and hear each other but,
of course, they could not
see their faces reflected any-
where. The king, then,
asked to each of them to
find out the color of his own
spot. After a while, the wis-
est correctly answered that
his spot was white.

ics in Simple Type Theory



Reasoning within Combined Logics: Wise Men Puzzle

Wise Men Puzzle .
(adapted from (Baldoni, PhD, 1998))
Once upon a time, a king

wanted to find the wisest > epistemic modalities:

out of his three wisest men. O,,0p,0¢: three wise men

He arranged them in a cir- 0O - common knowledge
cle and told them that he fool - g

would put a.white or a black > predicate constant:
spot on their foreheads and
that one of the three spots
would certainly be white.
The three wise men could
see and hear each other but,
of course, they could not
see their faces reflected any-
where. The king, then,
asked to each of them to
find out the color of his own
spot. After a while, the wis-
est correctly answered that
his spot was white.

ws: 'has white spot’

ics in Simple Type Theory



Reasoning within Combined Logics: Wise Men Puzzle

Wise Men Puzzle .
(adapted from (Baldoni, PhD, 1998))

Once upon a time, a king

wanted to find the wisest ~ » common knowledge:

out of his three wisest men. at least one of the wise men has a white spot
He arranged them in a cir-
cle and told them that he
would put a white or a black
spot on their foreheads and

valid Ogor (wsa) V (wsb) V (wsc)

that one of the three spots if X one has a white spot then Y can see this
would certainly be white.
The three wise men could (va|id Ofo0l (WSX) = Oy (WSX))

see and hear each other but,
of course, they could not
see their faces reflected any-
where. The king, then,

if X has not a white spot then Y can see this

asked to each of them to valid Ofy01 — (W5 X) = Oy = (W5 X))
find out the color of his own
spot. After a while, the wis- X#Ye{ab,c)

est correctly answered that
his spot was white.
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Reasoning within Combined Logics: Wise Men Puzzle

Wise Men Puzzle .
(adapted from (Baldoni, PhD, 1998))

Once upon a time, a king

wanted to find the wisest — » if X knows ¢ then Y knows this

out of his three wisest men.

He arranged them in a cir- id VP o,

cle and told them that he valid v ¢ (DX ¢ = Dy Ox ¢)
would put a white or a black

spot on their foreheads and ~ » if X does not know ¢ then Y knows this
that one of the three spots

would certainly be white. validVP¢. (- Ox ¢ = Oy =~ Ox ¢)
The three wise men could

see and hear each other but,

of course, they could not X #Y e{ab,c}
see their faces reflected any- .

where.  The king, then, » axioms for common knowledge

asked to each of them to

find out the color of his own valid VP ¢. Ogoo1 @ = & (M)
o el e \aid 0. O DO (8
his spot was white. YR.valid VP ¢, Osoo ¢ = Og &
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Reasoning within Combined Logics: Wise Men Puzzle

Wise Men Puzzl
Se e e (adapted from (Baldoni, PhD, 1998))

Once upon a time, a king

wanted to find the wisest ~ » a, b do not know that they have a white spot
out of his three wisest men.

He arranged them in a cir- valid— O, (ws a) valid = O (ws b)
cle and told them that he

would put a white or a black

spot on their foreheads and ~ » prove that ¢ does know he has a white spot:
that one of the three spots

would certainly be white. .. FHOL yalid Oc (ws c)

The three wise men could

see and hear each other but,

of course, they could not

see their faces reflected any-

where. The king, then,

asked to each of them to

find out the color of his own

spot. After a while, the wis-

est correctly answered that

his spot was white.
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Reasoning within Combined Logics: Wise Men Puzzle

Wise Men Puzzl
Se e e (adapted from (Baldoni, PhD, 1998))

Once upon a time, a king

wanted to find the wisest ~ » a, b do not know that they have a white spot
out of his three wisest men.

He arranged them in a cir- valid— O, (ws a) valid = O (ws b)

cle and told them that he

would put a white or a black

spot on their foreheads and ~ » prove that ¢ does know he has a white spot:

that one of the three spots

would certainly be white. .. FHOL yalid Oc (ws c)

The three wise men could

see and hear each other but,

of course, they could not

see their faces reflected any- LEO-II can prove this result in 0.4s
where. The king, then,

asked to each of them to

find out the color of his own

spot. After a while, the wis-

est correctly answered that

his spot was white.
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Reasoning within Combined Logics: Epistemic & Spatial

Region Connection Calculus (RCC) (RandellCuiCohn, 1992)
as fragment of HOL:
disconnected : =AY (e X Y)
part of : = AL AYRVZ. ((c Z X) = (c ZY))
identical with : =AM AYL(p X Y)A(p Y X))
overlaps : = A AYL3Z((p Z X) A (p ZY))
partially o : =M AYR (0 X Y)A=(p X Y)A=(p Y X))
ext. connected : =AM AYR (e X Y)A=(o X Y))
proper part : =AML AYL(p X Y)A=(p Y X))
tangential pp : =AY ((pp X Y)A3Z((ec Z X) A (ec Z Y)))
nontang. pp : = AXnAYn((pp X YYA-3Z.((ec Z X) A (ec Z Y)))
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Reasoning within Combined Logics: Epistemic & Spatial

A trivial problem for RCC:

Catalunya is a border region of Spain (tpp catalunya spain),

Spain and France share a border (ec spain france),
Paris is a region inside France (ntpp paris france)
l_HOL
Catalunya and Paris are disconnected ~ (dc catalunya paris)
VAN
Spain and Paris are disconnected (dc spain paris)
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Reasoning within Combined Logics: Epistemic & Spatial

A trivial problem for RCC:

Catalunya is a border region of Spain (tpp catalunya spain),

Spain and France share a border (ec spain france),
Paris is a region inside France (ntpp paris france)
HOL
|_2.3s
Catalunya and Paris are disconnected ~ (dc catalunya paris)
VAN
Spain and Paris are disconnected (dc spain paris)
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Reasoning within Combined Logics: Epistemic & Spatial

valid V. Ofo1 ¢ D Opop, ¢,
valid Ogoq (AWV. )
valid Opp (AW, )
valid Opgp (AWV. )
FHOL  yalid Doy (MWL ((d ' )
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Reasoning within Combined Logics: Epistemic & Spatial

valid V. Ofoo1 ¢ D Opop ¢,

valid Ogoq) (AW. (ec spain france)),

valid Opop (AW. (tpp catalunya spain)),

valid Opop (AWV. (n ) paris france))
A

I—HOL (dc catalunya paris) A (dc spain paris)))
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Reasoning within Combined Logics: Epistemic & Spatial

HOL
I_20.45

|71HOL

Christoph Benzmiiller

valid V. Ofool @ D Opop ¢,

valid Ogoo) (AW. (ec spain france)),

valid Opop (AW.(tpp catalunya spain)),

valid Oy (AW. (ntpp paris france))

valid Opep (AW. ((dc catalunya paris) A (dc spain paris)))
valid Ogoo) (AW. ((dc catalunya paris) A (dc spain paris)))
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Reasoning within Combined Logics: Epistemic & Spatial

HOL
I_20.45

HOL

39.7s

Christoph Benzmiiller

valid V. Ofool @ D Opop ¢,

valid Ogoo) (AW. (ec spain france)),

valid Opop (AW.(tpp catalunya spain)),

valid Oy (AW. (ntpp paris france))

valid Opep (AW. ((dc catalunya paris) A (dc spain paris)))
valid Ogoo) (AW. ((dc catalunya paris) A (dc spain paris)))
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Reasoning within Combined Logics: Epistemic & Spatial

valid V. Ofool @ D Opop ¢,

valid Do (AW. ),
valid Opop (AWV. ),
valid Opop (AWV. )
FHOL - valid Opop (AW, )
HOL  valid Do (AW, )

Key idea is “Lifting” of RCC propositions to modal predicates:

(W )

typeo typet—o
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Conclusion

» HOL seems well suited as framework for combining logics

> automation of object-/meta-level reasoning — scalability?

» embeddings can possibly be fully verified in Isabelle/HOL?

You

(consistency of QML embedding: 3.8s — IsabelleN)
current work: application to ontology reasoning (SUMO)

can use this framework right away! Try it!

new TPTP infrastructure for automated HOL reasoning
(SutcliffeBenzmiiller, J.Formalized Reasoning, 2010)

» standardized input / output language (THF)

» problem library: 3000 problems

» yearly CASC competitions
provers and examples are online; demo: http://tptp.org
Wise Men Puzzle:

http://www.cs.miami.edu/~tptp/cgi-bin/SeeTPTP?Category=Problems&Domain=PUZ&File=PUZ087~1.p
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Application to Ontology Reasoning

» possible worlds semantics for SUMO ontology

» mapping of modal operators in SUMO to appropriate modal
logic operators

» logic combinations
» automation with LEO-II (and other THFQ reasoners)

— see my presentation ARCOE-10 (tomorrow)

SUMO ontology and Sigma ontology engineering tool

— two more presentations at IKBET-10 (tomorrow)
and ARCOE-10 (today)

Christoph Benzmiiller Combining Logics in Simple Type Theory



(EPRSC grant EP/D070511/1 at Cambridge University)

Thanks to Larry Paulson

Christoph Benzmiiller Combining Logics in Simple Type Theory



UNIVERSITY OF
(¥ CAMBRIDGE
[} ﬂ UNIVERSITAT
DES
SAARLANDES

An Effective Higher-Order Theorem Prover

o FEALs
A

LEO-Il employs FO-ATPs: E, Spass, Vampire

http://www.ags.uni-sb.de/"leo
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Reasoning about Combinations of Logics: Cube Verification

best proving time by
n-L: LEO-II
n-S: Satallax
n-T: TPS
n-S: Satallax
n-N: IsabelleN
n-M: IsabelleM
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Reasoning about Combinations of Logics: Cube Verification

S4 3/1 S5 M5 £ MB5 = M4B5
2/0 2/0 2 mas5 £ maB 2 DaB
r,/ 2 paB5 < DB5
M 3/1 B
2/2 2/2
2/3 /JI)E 2/01/0 ~[D45 3/2
2/1
2. | D5 /
_l//2/2 2/2
D] [DB]
3/2 3/2 3/2
3/3 Ka|—73/2 7={Ka5 1 3/1-[KB5 | k4Bs £ k4B

IS g TS (N
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HOL: Church’s STT with Henkin Semantics
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Freie Universitat |/

Automated Reasoners for HOL

-
TPS ... (Peter Andrews) ?
LEO-I/LEO-II (myself)

Isabelle (Nipkow/Paulson/Blanchette) -
Satallax (Brown) -
Nitpick (Blanchette) -
agsyHOL (Lindblatt) S

e all accept TPTP THF Syntax [SutcliffeBenzmiiller, J.Form.Reas, 2009]
e can be called remotely via SystemOnTPTP at Miami
e they significantly gained in strength over the last years
e they can be bundled into a combined prover HOL-P

Exploit HOL with Henkin semantics as metalogic
Automate other logics (& combinations) via semantic embeddings
— HOL-P becomes a Universal Reasoner —




Short Demonstration of HOL-P

FO Modal Logic example: (OIxPH A OVy(OPy = Qy)) = ©3zQz
encoding in HOL: valid (O3xPfx A OVy (O Py = Qy)) = ©3zQz
. in THF Syntax: ...not here ...




Short Demonstration of HOL-P

FO Modal Logic example: (OIxPH A OVy(OPy = Qy)) = ©3zQz
encoding in HOL: valid (O3xPfx A OVy (O Py = Qy)) = ©3zQz
. in THF Syntax: ...not here ...

%> ./HOL-P example.thf -timeout 20 -logic s4 -domain varying




Short Demonstration of HOL-P

FO Modal Logic example: (OIxPx A OVy(OPy = Qy)) = ©3zQz
encoding in HOL: valid (©3xPfx A OVy(OPy = Qy)) = ©3zQz
. in THF Syntax: ...not here ...

%> ./HOL-P example.thf -timeout 20 -logic s4 -domain varying

Calling HOL Resoners remotely in Miami ... thanks to Geoff Sutcliffe
— LEO-II says Theorem — CPU 0.08s

— Satallax says Theorem — CPU 0.03s

— lIsabelle says Unknown — CPU 11.93s

— Nitpick says Unknown — CPU 10.62s

— agsyHOL says Theorem — CPU 0.55s




Short Demonstration of HOL-P

FO Modal Logic example: (OIxPx A OVy(OPy = Qy)) = ©3zQz
encoding in HOL: valid (©3xPfx A OVy(OPy = Qy)) = ©3zQz
. in THF Syntax: ...not here ...

%> ./HOL-P example.thf -timfeout 20 -logic s4 -domain varying

Calling HOL Resoners reniotely in Miami ... thanks to Geoff Sutcliffe
— LEO-Il says Theorem CPU 0.08s

— Satallax says Theoreny — CPU 0.03s

— lIsabelle says Unknown — CPU 11.93s

— Nitpick says Unknoywin — CPU 10.62s

%> ./HOL-P example.thf -timeout 20 -logic k -domain constant
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Short Demonstration of HOL-P

FO Modal Logic example: (OIxPix A OVy(OPy = Qy)) = <3zQz
encoding in HOL: (OIxPix A OVy(CPy = Qy)) = ©3zQz
. in THF Syntax: ...not here ...

%> ./HOL-P example.thf -timeout 20 -logic s4 -domain varying

Calling HOL Resoners remotely in Miami ... thanks to Geoff Sutcliffe
— LEO-II says — CPU 0.08s
— Satallax says — CPU 0.03s

— lIsabelle says Unknown — CPU 11.93s
— Nitpick says Unknown — CPU 10.62s
— agsyHOL says — CPU 0.55s

%> ./HOL-P example.thf -timeout 20 -logic k -domain constant

Calling HOL Resoners remotely in Miami ... thanks to Geoff Sutcliffe
— LEO-II says Unknown — CPU 11.93s

— Satallax says CounterSatisfiable — CPU 0.04s

— Isabelle says Unknown — CPU 16.19s

— Nitpick says CounterSatisfiable — CPU 8.19s

— agsyHOL says Unknown — CPU 10.82s
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HOL — Church’s Simple Type Theory [Church, 1940]

Simple Types at=t|o|ar = a




Freie Universit:

HOL — Church’s Simple Type Theory [Church, 1940]
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HOL — Church’s Simple Type Theory [Church, 1940]
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HOL — Church’s Simple Type Theory [Church, 1940]
HOL s,t u= Clx|(Axs)|(st)]|(=s)]|(sVvi)|(¥Vxt)

HOL (with Henkin semantics) is meanwhile very well understood

- Origin [Church, J.Symb.Log., 1940]
- Henkin-Semantics [Henkin, J.Symb.Log., 1950]
[Andrews, J.Symb.Log., 1971, 1972]

- Extensionality/Intensionality  [BenzmiillerBrownKohlhase, J.Symb.Log., 2004]
[Muskens, J.Symb.Log., 2007]
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Embedding of First-order Modal Logic (FML) in HOL
HOL s,tou= Clx|(Axs)|(st)|(ms)]| (sVi)]|(Vxt)

FML o, u= Ptr,....ta) | (09) | (¢ V) | B | (Vx¢)
M,g,s = - iff not M,g,sE ¢
M,g,s=pVvy iff M g,skEq@orM,g,sk=1y
M,g,s = Op iff M, g,ul= @ for all uwith r(s, u)
M,g,s =Vxyp iff M,[d/x]g,s = ¢ forall d € D
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Embedding of First-order Modal Logic (FML) in HOL
HOL s,tou= Clx|(Axs)|(st)|(ms)]| (sVi)]|(Vxt)

FML o, u= Ptr,....ta) | (09) | (¢ V) | B | (Vx¢)
M,g,s = - iff not M,g,sE ¢
M,g,s=pVvy iff M g,skEq@orM,g,sk=1y
M,g,s = Op iff M, g,ul= @ for all uwith r(s, u)
M,g,s =Vxyp iff M,[d/x]g,s = ¢ forall d € D

FML in HOL:

= AP0 XS, ps

AP0 AP0 AS, (905 \4 TPS)
A0 ApLso AS, Vu, (—rsu Vo pu)
Ahy-(1~0) As, Vd,, hds

(Vx¢q stands for MAxyp)

00 < |
Il
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Embedding of First-order Modal Logic (FML) in HOL
HOL s,tou= Clx|(Axs)|(st)|(ms)|(sVi)|(Vxt)

FML o, u= Ptr,....ta) | (09) | (¢ V) | B | (Vx¢)
M,g,s = - iff not M,g,sE ¢
M,g,s=pVvy iff M g,skEq@orM,g,sk=1y
M,g,s = Op iff M, g,ul= @ for all uwith r(s, u)
M,g,s =Vxyp iff M,[d/x]g,s = ¢ forall d € D

FML in HOL: = AP0 AS, T(pS

AP0 Moo AS, (ps V 1s)
A0 ApLso AS, Vu, (—rsu V gu)
Ahy-(1~0) As, Vd,, hds

(Vxy stands for MAxy)

00 < |
Il

Idea: Lifting of modal formulas to predicates on worlds

Metalevel notions: valid = Ap,.o Vs, @s
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B: Example — Embedding of FML in HOL
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Propositional Quantification

Propositional Quantification [Fitting, J.Symb.Log., 2002

M,g,s =VPpy iff M,[v/plg,s = ¢ forall veP

(P is a non-empty collection of sets of worlds, it includes atom sets)
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Propositional Quantification

Propositional Quantification [Fitting, J.Symb.Log., 2002

M,g,s =VPpy iff M,[v/plg,s = ¢ forall veP

(P is a non-empty collection of sets of worlds, it includes atom sets)

Embedding in HOL

MNP = Ah(o)m(1m0) AS. VYV hvs  (Vipt)b stands for TP A1)
Modal logic axioms Semantical Condition
valid YPp(Op D Ogp) Vx3Jy(rxy)
Bridge rules Semantical Condition
valid YPo(O,p D Osp) VxVy(rxy D sxy)

We get a wide range of modal logics and combinations for free!




B: Example — Embedding of FML in HOL

(CIxPfx A OYy(OPy = Qy)) = ©3zQz
valid (OCIxPfx A OVy(OPy = Qy)) = ¢3zQz
valid (O3xPtx A (Aw Yv(=(Rwv) V (Vy(CPy=Qy) v)))) = ©3zQz

Vw(——(==Yv(=Rwv V —=Vx=P(fx)v) V —Vv(=Rwv V
Vy(==VYu(=RvuV-=Pyu)V Qyv)))V-VYv(-RwvV--Vz=Qzv))

Axiomatization of properties of accessibility relation R

Logic K: no axioms

Logic T: (reflexive R) — which expands into Vx Rxx
Logic S4: (reflexive R) A (symmetric R) A (transitive R)
Logic ... ..
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B: Example — Embedding of FML in HOL

(OIxPfx A OVy(OPy = Qy)) = ©3zQz
valid (OCIxPfx A OVy(OPy = Qy)) = <¢3zQz
valid (O3xPtx A (Aw Yv(=(Rwv) V (Vy(CPy=Qy) v)))) = ©3zQz

Vw(—==(==Vv(=Rwv V —=Vx=P(fx)v) V =Vv(=Rwv V
Vy(==VYu(=RvuV-=Pyu)V Qyv)))V-VYv(-RwvV--Vz=Qzv))

Axiomatization of properties of accessibility relation R

Logic K: no axioms

Logic T: (reflexive R) — which expands into Vx Rxx
Logic S4: (reflexive R) A (symmetric R) A (transitive R)
Logic ... ..

This automates FML with constant domain semantics in HOL




B: Example — Embedding FML in HOL

To obtain varying domain semantics:

» modify quantifier: M= AgAwVx ExistsIn\Wxw = gxw
» add non-emptiness axiom: Vw dxExistsInWxw
» add designation axioms for constants c: Vw ExistslnWew

(similar for function symbols)




B: Example — Embedding FML in HOL

To obtain varying domain semantics:

» modify quantifier: M= AgA\wVx XW = gxw
» add non-emptiness axiom: Yw dx XwW
» add designation axioms for constants c: Yw cw

(similar for function symbols)

To obtain cumulative domain semantics:

» add axiom: VxVvVw xv A Rvw = XW

C. Benzmiiller, 2013 —— A Top-down Approach to Combining Logics— ICAART

Berlin
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Varying and Cumulative Domain Quantification

Constant Domain

D(i>i>0): accessibility relations

@ accessibility
relation r PY

D(i>0): predicates/sets of worlds

v

D(mu): individuals

O ()

D(o): truth values.

D(i): worlds

M= AhAw, Vx, hxw
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Varying and Cumulative Domain Quantification

Varying and Cumulative Domain

D(i>i>0): accessibility relations

Constant Domain
D(mu=i>o0)

D(i>i>0): accessibility relations
accessibility accessibility
relation r i
relation r

D(i>0): predicates/sets of worlds
/ {omu): mdividua\s ‘
\ n

D(i>0): predicates/sets of worlds

D(mu): individuals @

D(o): truth values

v

D(i): worlds

D(i): worlds

M= AhAw, Vx, hxw M = XhAw, Vx, (mexInWxw V hxw)

C. Benzmiiller, 2013 — HOL based Universal Reasoning— UNILOG’2013
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Varying and Cumulative Domain Quantification
Varying and Cumulative Domain

Constant Domain
D(i>i>0): accessibility relations

D(mu>i>0)

D(i>i>0): accessibility relations
accessibility accessibility
relation G
relation r
i { ptmu): mdwidua\s
\ .

D(i): worlds

D(i>0): predicates/sets of worlds

D(o): truth values

D(i>0): predicates/sets of worlds

gl
E

D(mu): individuals

<

D(o): truth values

D(i): worlds

M = XAh Aw, Vx, (—exInWxw V hxw)

[T = XhAw, Vx,, hxw
domains are non-empty —— v, Ix,, exInWxw
Vw, exInWcw

denotation (constants & functions) V/w(exI;)thw A AexInWiw
L ...
O exInW(ft'...t")w)

10
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Varying and Cumulative Domain Quantification
Varying and Cumulative Domain

Constant Domain

Freie Universitat

D(i>i>0): accessibility relations

D(i>i>0): accessibility relations D(mu>i>0)
accessibility accessibility
relation r relation r

D(i>0): predicates/sets of worlds

(mu). mdwmua\
/ va.ues

D(i): worlds

D(i>0): predicates/sets of worlds

D(o): truth values

v

D(mu): individuals

D(i): worlds

[T = XhAw, Vx,, hxw M = Ah Aw, Vx, (—exInWxw V hxw)
domains are non-empty ——— v, Ix,, exInWxw
Yw, exInWcw

denotation (constants & functions) V/w,,(exI;)thw A AexInWiw

O exInW(ft'...t")w)

cumulative domains —
Vx, v, w (exInWxv A rvw D exInWxw)
10

C. Benzmiiller, 2013 — HOL based Universal Reasoning— UNILOG’2013
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Soundness and Completeness (and Cut-elimination)

Ely iff  EHOL valid g,

Logics L studied so far:

» Propositional Multimodal Logics [BenzmiillerPaulson, Log.J.IGPL, 2010]

» Quantified Multimodal LOgiCS [BenzmiillerPaulson, Log.Univ., 2012]
» Intuitionistic Logics [BenzmiillerPaulson, Log.J.IGPL, 2010]
» Access Control Logics [Benzmiiller, IFIP SEC, 2009]
» Propositional Conditional Logics [BenzmiillerEtAl., AMAI, 2012]
» Quantified Conditional Logics [Benzmiiller, 1JCAI, 2013]
> ...more is on the way ...
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Soundness and Completeness (and Cut-elimination)

seqHOL
cut-free

Ely iff EHOL validp,., iff + valid @pyo

Logics L studied so far:
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» Quantified Multimodal LOgiCS [BenzmiillerPaulson, Log.Univ., 2012]
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> ...more is on the way ...




Evaluation: What Systems are there to compare with?

» Combinations of Quantified Logics  no systems available
» Quantified Conditional Logics no systems available
» Quantified Multimodal Logics no systems available
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Evaluation: What Systems are there to compare with?

» Combinations of Quantified Logics no systems available

» Quantified Conditional Logics no systems available
» Quantified Multimodal Logics no systems available
>

» First-order Monomodal Logics yes, some systems exist

There is now even a benchmark library:
QMLTP-lib (580 Problems): http://www.iltp.de/qmltp/

Earlier experiments (see [BenzmiillerOttenRaths, ECAI, 2012]) already
showed that the HOL approach performs quite well.

C. Benzmiiller, 2013 — HOL based Universal Reasoning— UNILOG’2013 13
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FMLtoHOL

» implemented as part of Sutcliffe’'s TPTP2X tool

» included in the QMLTP—v1.1 package available at:
http://www.iltp.de/qmltp/problems.html

» written in Prolog, can be easily modified and extended

» invoked as
./tptp2X -f thf:<logic>:<domain> <gmf-file>

where <logic> € {k,k4,d,d4 t,s4,s5} and
<domain> € {const, vary, cumul}.
» generates TPTP thf0-files; employs include-mechanism

» can easily be combined (shell script) with HOL-P metaprover

C. Benzmiiller, 2014 — HOL based First-order Modal Logic Provers — Experiments— ARQNL'2014 8
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FMLtoHOL combined with HOL-P

FO Modal Logic example: (OIxPH A OVy(OPy = Qy)) = ©3zQz




FMLtoHOL combined with HOL-P
FO Modal Logic example: (OIxPH A OVy(OPy = Qy)) = ©3zQz

%L)./FMLtoHOL—P example.thf -timeout 20 -logic s4 -domain varying
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FMLtoHOL combined with HOL-P
FO Modal Logic example: (OIxPx A OVy(OPy = Qy)) = ©3zQz

%> ./FMLtoHOL-P example.thf -timeout 20 -logic s4 -domain varying
Calling HOL Resoners remotely in Miami ... thanks to Geoff Sutcliffe
— LEO-II says Theorem — CPU 0.08s

— Satallax says Theorem — CPU 0.03s

— Isabelle says Unknown — CPU 11.93s

— Nitpick says Unknown — CPU 10.62s

— agsyHOL says Theorem — CPU 0.55s
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FMLtoHOL combined with HOL-P
FO Modal Logic example: (OIxPix A OVy(OPy = Qy)) = <3zQz

%> ./FMLtoHOL-P example.thf -timeout 20 -logic s4 -domain varying
Calling HOL Resoners remotely in Miami ... thanks to Geoff Sutcliffe
— LEO-II says — CPU 0.08s

— Satallax says — CPU 0.03s

— Isabelle says Unknown — CPU 11.93s

— Nitpick says Unknown — CPU 10.62s

— agsyHOL says — CPU 0.55s

%> ./FMLtHOL-P example.thf -timeout 20 -logic k -domain constant

C. Benzmiiller, 2014 — HOL based First-order Modal Logic Provers — Experiments— ARQNL'2014



Freie Universitat |

FMLtoHOL combined with HOL-P
FO Modal Logic example: (OIxPix A OVy(OPy = Qy)) = <3zQz

%> ./FMLtoHOL-P example.thf -timeout 20 -logic s4 -domain varying
Calling HOL Resoners remotely in Miami ... thanks to Geoff Sutcliffe
— LEO-II says — CPU 0.08s

— Satallax says — CPU 0.03s

— Isabelle says Unknown — CPU 11.93s

— Nitpick says Unknown — CPU 10.62s

— agsyHOL says — CPU 0.55s

%> ./FMLtHOL-P example.thf -timeout 20 -logic k -domain constant

Calling HOL Resoners remotely in Miami ... thanks to Geoff Sutcliffe
— LEO-II says Unknown — CPU 11.93s

— Satallax says CounterSatisfiable — CPU 0.04s

— lIsabelle says Unknown — CPU 16.19s

— Nitpick says CounterSatisfiable — CPU 8.19s

— agsyHOL says Unknown — CPU 10.82s

C. Benzmiiller, 2014 — HOL based First-order Modal Logic Provers — Experiments— ARQNL'2014 9
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Evaluation: FML’s (D — constant/varying/cumulative)

No. of solved monomodal problems (out of 580 problems, 600sec
timeout, inHOL-P a timeout of 120s was given to each of the 5
subprovers.)

MileanSeP | MleanTAP | f2p-MSPASS | MleanCoP | HOL-P
labelled labelled instant. & labelled
sequents tableaux transform. | connections
Logic D, constant domains
Theorem 135 134 76 217 208
Non-Theorem 1 4 107 209 250
Solved 136 138 183 426 458
Logic D, cumulative domains
Theorem 130 120 79 200 184
Non-Theorem 4 4 108 224 269
Solved 134 124 187 424 453
Logic D, varying domains
Theorem - 100 - 170 163
Non-Theorem - 4 - 243 295
Solved - 104 - 413 458

C. Benzmiiller, 2014 — HOL based First-order Modal Logic Provers — Experiments— ARQNL'2014 10
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Evaluation: FML’s (S4— constant/varying/cumulative)

No. of solved monomodal problems (out of 580 problems, 600sec
timeout, inHOL-P a timeout of 120s was given to each of the 5
subprovers.)

MileanSeP | MleanTAP | f2p-MSPASS | MleanCoP | HOL-P
labelled labelled instant. & labelled
sequents tableaux transform. | connections
Logic S4, constant domains
Theorem 197 220 111 352 300
Non-Theorem 1 4 36 82 132
Solved 198 224 147 434 432
Logic S4, cumulative domains
Theorem 197 205 121 338 278
Non-Theorem 4 4 41 94 146
Solved 201 209 162 432 424
Logic S4, varying domains
Theorem - 169 - 274 245
Non-Theorem - 4 - 119 184
Solved - 173 - 393 429

C. Benzmiiller, 2014 — HOL based First-order Modal Logic Provers — Experiments— ARQNL'2014
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Evaluation: Coverage of Logics

Freie Universitat

ATP system supported modal logics supported domain cond.
MleanSeP 1.2 K,K4,D,D4,T,S4 constant,cumulative
MleanTAP 1.3 D,T,S4,S5 constant,cumulative,varying
MleanCoP 1.2 D,T,S4,S5 (meanwhile extended) | constant,cumulative,varying
f2p-MSPASS 3.0 K,K4,K5,B,D,T,S4,S5 constant,cumulative
HOL-P K,K4,K5,B,D,D4,T,S4,S5,. ..

constant,cumulative,varying

HOL-P directly applicable also for multi-modal logics.

C. Benzmiiller, 2014 — HOL based First-order Modal Logic Provers — Experiments— ARQNL'2014 12



New Evaluation: First Experiment

» HOL-P: sequentially schedules LEO-1I—1.6.2, Satallax—2.7,
Isabelle—2013, Nitrox—2013, agsyHOL—1.0.

Freie Universitat

» Timeout for each prover 120sec of CPU time (HOL-P 600sec).

» Experiments were run via SystemOnTPTP in Miami

K D T S4 S5
Type | co cu va co cu va co cu va co cu va co cu va
THM | 192 168 149 | 206 180 159 | 260 234 211 | 298 271 242 | 345 333 282
CSA | 259 284 309 | 2563 270 299 | 177 190 229 | 132 146 186 | 77 77 129
SAT |3 8 S 2 2 2 2 2 2 2 2 2 2 2 2
> 454 455 461 | 461 452 460 | 439 426 442 | 432 419 430 | 424 412 413
> 458 453 458 432 424 429

C. Benzmiiller, 2014 — HOL based First-order Modal Logic Provers — Experiments— ARQNL'2014

» The particular results for logics D and S4 slightly differ from those

reported at LPAR 2013

» Conjecture: Differences are related to SystemOnTPTP issues. How
can the replication precision of experiments conducted via the

SystemOnTPTP be improved?

13



New Evaluation: First Experiment

7000

THM

. 6000
Cumulative perfor-

mance of each prover 5000
(with a timeout of
120sec) for all 8700
QMLTP problem vari-
ants. The cumulative 2000
performance of HOL-P
(with a 600sec timeout)
is also depicted. 0

4000

3000

No. of Problems

1000

| THM CSA SAT | ¥ | UNK
HOL-P [ 3530 3017 33 | 6580 | 2120
Satallax | 3167 752 0 | 3919 | 4781

Nitrox 0 3017 33 3050 | 5650
Isabelle 2955 0 0 2955 | 5745
LEO-II 2647 284 0 2931 | 5769

agsyHOL | 2784 0 0 2784 | 5916




New Evaluation: Second Experiment

» HOL-P: sequentially schedules LEO-1I—1.6.2, Satallax—2.7,
Isabelle—2013, Nitrox—2013, agsyHOL—1.0.

» Timeout for each prover 20sec of CPU time (HOL-P 100sec).

Freie Universitat

K D T S4 S5
Type | co cu va co cu va co cu va co cu va coO cu va
THM | 186 162 141 | 201 175 154 | 252 223 205 | 289 261 233 | 345 319 270
CSA | 263 275 298 | 233 245 268 | 159 180 211 | 128 140 179 |77 74 126
SAT |3 S 8 2 2 2 2 2 2 2 2 2 2 2 2
> 452 440 442 | 436 422 424 | 413 405 418 | 419 403 414 | 424 395 398

C. Benzmiiller, 2014 — HOL based First-order Modal Logic Provers — Experiments— ARQNL'2014
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New Evaluation: Second Experiment

7000

THM ===
CSA ===
Cumulative perfor- 80 S
mance of each prover 5000
(with a timeout of
20sec) for all 8700
QMLTP problem vari-
ants. The cumulative 2000
performance of HOL-P
(with a 100sec timeout)

is also depicted. 0

4000

3000

No. of Problems

1000

\ THM CSA SAT \ b \ UNK
HOL-P 3408 2856 33 6297 | 2403
Satallax | 3024 749 0 3773 | 4927
Nitrox 0 2856 33 2889 | 5811
LEO-II 2472 231 0 2703 | 5997
agsyHOL | 2644 0 0 2644 | 6056
Isabelle 2354 0 0 2354 | 6346
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New Evaluation: Third Experiment

» HOL-P: sequentially schedules only Satallax—2.7 and Nitrox—2013.
» Timeout for each prover 50sec of CPU time (HOL-P 100sec).

K D T S4 S5

Type | co cu va co cu va co cu va co cu va cO cu va
THM | 162 150 132 | 175 161 141 | 225 212 190 | 262 246 219 | 305 305 258
THM | 186 162 141 | 201 175 154 | 252 223 205 | 289 261 233 | 345 319 270
CSA | 266 280 308 | 251 267 298 | 176 190 223 | 132 146 186 | 77 77 129
CSA | 263 275 298 | 233 245 268 | 159 180 211 | 128 140 179 |77 74 126
SAT |3 8 3 2 2 2 2 2 2 2 2 2 2 2 2
SAT |3 3 3 2 2 2 2 2 2 2 2 2 2 2 2

> 431 433 443 | 428 430 441 | 403 404 415 | 396 394 407 | 384 384 389
> 452 440 442 | 436 422 424 | 413 405 418 | 419 403 414 | 424 395 398

» performance of HOL-P in this experiment is weaker than in the
second experiment

» illustrates the complementary strength of the HOL proveres for
proving theorems

> however, the performance for finding countermodels (mainly by
Nitrox) has slightly improved now for HOL-P

C. Benzmiiller, 2014 — HOL based First-order Modal Logic Provers — Experiments— ARQNL'2014 17
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Conclusion

HOL based universal reasoning
» many quantified non-classical logics are fragments of HOL

v

logic combinations: bridge rules as axioms

cut-elimination and automation for free

v

v

applications: expressive ontologies (SUMO, Cyc, Dolce, ...)




Freie Universitat

Conclusion

HOL based universal reasoning

» many quantified non-classical logics are fragments of HOL

v

logic combinations: bridge rules as axioms
» cut-elimination and automation for free

» applications: expressive ontologies (SUMO, Cyc, Dolce, ...)

Other (implemented) approaches to compare with?

» Institutions are great — but not helpful for automation
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Conclusion

HOL based universal reasoning
» many quantified non-classical logics are fragments of HOL
» logic combinations: bridge rules as axioms
» cut-elimination and automation for free

» applications: expressive ontologies (SUMO, Cyc, Dolce, ...)

Other (implemented) approaches to compare with?

» Institutions are great — but not helpful for automation

Future work
» more embeddings (eg. multi-valued, paraconsistent)
» other combinations (eg. fibrings)
» range of embeddable logics

» scalability to real world applications

C. Benzmiiller, 2013 — HOL based Universal Reasoning— UNILOG’2013 15
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Type Theory with LEO-II!
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The Story — on a single slide

@ Simple Type Theory / HOL — an Expressive Logic

@ Multimodal Logics as Fragments of HOL

Access Control Logics as Fragments of S4 and hence HOL

@ Mechanization and Automation in HOL (prover LEO-II)

Christoph Benzmiiller Automating Access Control Logics in STT with LEO-II



Simple Type Theory / HOL

Christoph Benzmiiller Automating Access Control Logics in STT with LEO-II



Simple Type Theory / HOL

> simple types o, 3 ::= t|o|la = 8 (additional base types ;)
» simple type theory / HOL defined by

s;t m= pa|Xa|(AXar$g)amg | (Sa=p ta)s | (Fom0S0)o |
(So Voso—0 to)o ‘ (n(a—>o)—>o ta—>o)o

» semantics well understood [Henkin50,Andrews72a/b,BenzmiillerEtAl04]
- Henkin semantics

» base logic of many (interactive) proof assistants:
Isabelle/HOL, HOL, HOL-light, PVS, OMEGA, ...

» (too) few ATPs so far — EU IIF Project THFTPTP

Christoph Benzmiiller Automating Access Control Logics in STT with LEO-II



Simple Type Theory / HOL — Expressivity

Property FOL HOL Example
Quantification over

- individuals oV Y P(F(x))
- functions - v VYF.P(F(x))
- predicates/sets/relations = v VP.P(F(x))
Unnamed

- functions - v o (Axx)

- predicates/sets/relations ~ — vV o (Ax#2)
Statements about

- functions - v’ continuous(Ax.x)
- predicates/sets/relations ~ — v reflexive(=)

Christoph Benzmiiller Automating Access Control Logics in STT with LEO-II



Multimodal Logics
as Fragments of HOL

Christoph Benzmiiller Automating Access Control Logics in STT with LEO-II



Multimodal Logics as Fragments of HOL

s,t = p|oslsVvtO,s

Simple, Straightforward Encoding

> base type ¢ set of possible worlds
> (certain) terms of type + — o: multimodal logic formulas
[=s] = Awa(ls] w)
sVt = Aw.|s|wV|t]w
[O,s] = Aw.Vy.|rlwy=|s|y
\.pJ = P,—o

Related Work: [Gallin73], [Ohlbach88], [Carpenter98], [Merz99],
[Brown05], [Hardt&Smolka07], [Kaminski&Smolka07]

Christoph Benzmiiller Automating Access Control Logics in STT with LEO-II



Multimodal Logics as Fragments of HOL

s,t = p|oslsVvtO,s

Simple, Straightforward Encoding

> base type ¢ set of possible worlds
> (certain) terms of type + — o: multimodal logic formulas
[ = As,mosAWu—(sw)
V| = AsimosAtimoe AWsw V Etw
O = Moo ASimoe AW YY,arwy = sy
Pl = Ppi—o
Irl = rfoi—o

Related Work: [Gallin73], [Ohlbach88], [Carpenter98], [Merz99],
[Brown05], [Hardt&Smolka07], [Kaminski&Smolka07]
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(Normal) Multimodal Logic in HOL

Encoding of Validity

Mvals,—o| = VYw.sw

Christoph Benzmiiller Automating Access Control Logics in STT with LEO-II



(Normal) Multimodal Logic in HOL

Encoding of Validity

Mvals,—o| = VYw.sw
[Mvall

AS, . on VWS W

Christoph Benzmiiller Automating Access Control Logics in STT with LEO-II



(Normal) Multimodal Logic in HOL

Encoding of Validity

Mvals,—o| = VYw.sw

Mval] = As,oeVW.sw

Local Definition Expansion

Mval O, T| = |[Mval||O||r||T]
=P Yw, Vy.rwy =T

Christoph Benzmiiller Automating Access Control Logics in STT with LEO-II



Even simpler: Reasoning within Multimodal Logics

Problem LEO-II
Mval O, T| 0.025s
Mval O,a D 0O, 3 0.026s
Mval O,a D Os a| -

Mval O, (0,2 D O, a)] 0.026s
Mval O, (a A b) & (O,a A O, b)| 0.044s
Mval &, (a D b) D O,a D <, b 0.030s
Mval =<,a D O, (a D b) 0.029s
Mval O,b D O,(a D b)| 0.026s
Mval (¢,a D O,b) D O,(a D b)| 0.027s

Mval (¢,a D O,b) D (O,a D O,b)] 0.029s
Mval (¢,a D O,b) D (¢,a D O, b)] 0.030s

Christoph Benzmiiller Automating Access Control Logics in STT with LEO-II



Example Proof: [Mval O;(0,a D O, a)|

Initialization of problem

—[Mval Og (O,a D O, a)|

Christoph Benzmiiller Automating Access Control Logics in STT with LEO-II



Example Proof: [Mval O;(0,a D O, a)|

Initialization of problem

—[Mval Og (O,a D O, a)|

Definition expansion

“(VxuVyusxy V (-(Vupa—ryuVau)) VvV (Yva.-ryvVav)))
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Example Proof: [Mval O;(0,a D O, a)|

Initialization of problem
—[Mval Og (O,a D O, a)|
Definition expansion
“(VxuVyusxy V (-(Vupa—ryuVau)) VvV (Yva.-ryvVav)))

Normalization (x, y, u are now Skolem constants, V is a free
variable)

SXy —au

ryu aVVv-ryV
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Example Proof: [Mval O;(0,a D O, a)|

Initialization of problem

—[Mval Og (O,a D O, a)|

Definition expansion
“(VxuVyusxy V (-(Vupa—ryuVau)) VvV (Yva.-ryvVav)))

Normalization (x, y, u are now Skolem constants, V is a free
variable)

sxy —au
ryu aVVv-ryV
Translation to FOL [Kerber94], [Hurd02], [MengPaulson04]

[@ (@ (s,x). 0] [@(a,u)]"
[@(@(ry),u)]”  [e(a V)T VIe(Q(r,y), V)]

Christoph Benzmiiller Automating Access Control Logics in STT with LEO-II



UNIVERSITY OF
CAMBRIDGE
[ ] M UNIVERSITAT
DES
SARRLANDES

An Effective Higher-Order Theorem Prover

LEO-II employs FO-ATPs: E, Spass, Vampire

www.leoprover.org
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Access Control Logics are
fragments of S4 and hence HOL

Christoph Benzmiiller Automating Access Control Logics in STT with LEO-II



Access Control Logics

[GargAbadi08]:
A Modal Deconstruction of Access Control Logics

» ICL: Propositional Intuitionistic Logic 4+ "says”

gAdmin says deletefilel) D deletefilel
|

Admin says that filel should be deleted, then this must be the case.

Admin says ((Bob says deletefilel) D deletefilel)

Admin trusts Bob to decide whether filel should be deleted.

Bob says deletefilel

Bob wants to delete filel.

deletefilel Example |

Is deletion permitted?

Christoph Benzmiiller Automating Access Control Logics in STT with LEO-II



Access Control Logics

[GargAbadi08]:
A Modal Deconstruction of Access Control Logics

» ICL: Propositional Intuitionistic Logic 4+ "says”
» ICL=: ICL + = (speaks for)

gAdmin says deletefilel) D deletefilel
|

Admin says that filel should be deleted, then this must be the case.

Admin says ((Bob says deletefilel) D deletefilel)

Admin trusts Bob to decide whether filel should be deleted.

Bob says (Alice = Bob)

Bob delegates his authority to delete filel to Alice

Alice says deletefilel

Alics wants to delete filel.

deletefilel Example 11

Is deletion permitted?

Christoph Benzmiiller Automating Access Control Logics in STT with LEO-II



Access Control Logics

[GargAbadi08]:
A Modal Deconstruction of Access Control Logics

» ICL: Propositional Intuitionistic Logic 4+ "says”
» ICL=: ICL + = (speaks for)
» ICLB: ICL + Boolean combinations of principals

(Admin says 1) D deletefilel

Admin is trusted on deletefilel and its consequences.

Admin says ((Bob D Admin) says deletefilel)

Admin further delegates this authority to Bob.

Bob says deletefilel

Bob wants to delete filel.

deletefilel Example 11

Is deletion permitted?

Christoph Benzmiiller Automating Access Control Logics in STT with LEO-II



Access Control Logics

[GargAbadi08]:

A Modal Deconstruction of Access Control Logics
» ICL: Propositional Intuitionistic Logic + "says”
» ICL=: ICL + = (speaks for)

» ICLB: ICL + Boolean combinations of principals

Christoph Benzmiiller Automating Access Control Logics in STT with LEO-II



Access Control Logics

[GargAbadi08]:
A Modal Deconstruction of Access Control Logics

» ICL: Propositional Intuitionistic Logic 4+ "says”
» ICL=: ICL + = (speaks for)

» ICLB: ICL + Boolean combinations of principals

Sound and Complete Translations to Modal Logic S4
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Access Control Logics

[GargAbadi08]:
A Modal Deconstruction of Access Control Logics

» ICL: Propositional Intuitionistic Logic 4+ "says”
» ICL=: ICL + = (speaks for)

» ICLB: ICL + Boolean combinations of principals

Sound and Complete Translations to Modal Logic S4

So, let's combine this with our previous work . ..and apply LEO-II

Christoph Benzmiiller Automating Access Control Logics in STT with LEO-II



Access Control Logics as Fragments of S4 and HOL

s,¢tu=p|sAt|sVt|sDOt|L|T|Asayss

Translation [.] (of Garg and Abadi) into S4

[Pl = Op
[snt] = [s]Aft]
[svie] = [s]V]t]
[sot] = O([s] Dt])
M =7
[L] = L
[Asayss| = O(AV][s])

Christoph Benzmiiller Automating Access Control Logics in STT with LEO-II



Access Control Logics as Fragments of S4 and HOL

s,tu=p|sAt|sVt|sDt|L|T|Asayss|s=t

Translation [.] (of Garg and Abadi) into S4

[Pl = Op
[sAnt] = [s|A[t]
[sVt] = [s]V[t]
[sot] = O([s]DTt])
[T = T
[L] = L
[Asayss|] = O(AV[s])
[s = t] = 0O([s]>t])

Christoph Benzmiiller Automating Access Control Logics in STT with LEO-II



Access Control Logics as Fragments of S4 and HOL

s,tu=p|sAt|sVt|sDOt|L|T|Asayss|s=t
Translation ||.|| to HOL

|r|  (we fix one single r!ll)

1~ = |0, p|

1Al = |A|

Nl = AS AL s At

IVl = ASAt|sV i

=] = As.At.|O(s D t)]
Tl = |T|

[|LIl = |1

|says|]| = MAXs.|O, (AVs)]
|= | = As.At.|O,(sDt)|

Christoph Benzmiiller Automating Access Control Logics in STT with LEO-II



Access Control Logics as Fragments of S4 and HOL

s,tu=p|sAt|sVt|sDOt|L|T|Asayss|s=t
Translation ||.|| to HOL

f—,—o (we fix one single r!!!)
||P|| = MuVyulsoXy = poY

| Al = 3, (distinct from the p,.,)

Nl = AS Lo Al AWLSW At W

IVl = AS oAl or AWLSW V EW

II=]] = ASmor Ao AW YYrwy = (sy = ty)
| Tl = ASon |

HJ-H = AS—o-l

lsays|| = MNi—odASmoe AW Vyrwy = (AyVsy)
|=1 = Asimodtiso:AW.Vy.rwy = (sy=ty)

Christoph Benzmiiller Automating Access Control Logics in STT with LEO-II



Access Control Logics as Fragments of S4 and HOL

Notion of Validity

ICLval = Mval

Christoph Benzmiiller Automating Access Control Logics in STT with LEO-II



Access Control Logics as Fragments of S4 and HOL

Notion of Validity
ICLval = Mval
Addition of Modal Logic Axioms for S4

Vp,—o.Mval O, p D p|
vPL—>0'|Mva]- Ur,pD 0,0 P|

Christoph Benzmiiller Automating Access Control Logics in STT with LEO-II



Access Control Logics as Fragments of S4 and HOL

Notion of Validity
ICLval = Mval

Addition of Modal Logic Axioms for S4

Vp,—o.Mval O, p D p|
vPL—>0'|Mva]- Ur,pD 0,0 P|

Soundness and Completeness of Embedding

Proof: see paper; employs transformation from Kripke models into
corresponding Henkin models and vice versa; combines this with
results of [GargAbadi08]

Christoph Benzmiiller Automating Access Control Logics in STT with LEO-II



Access Control Logics as Fragments of S4 and HOL

Example | (from [GargAbadi08]):

ICLval (Admin says deletefilel) D deletefilel

If Admin says that filel should be deleted, then this must be the case.

ICLval Admin says ((Bob says deletefilel) D deletefilel)

Admin trusts Bob to decide whether filel should be deleted.

ICLval Bob says deletefilel

Bob wants to delete filel.

ICLval deletefilel

Is deletion permitted?

Christoph Benzmiiller Automating Access Control Logics in STT with LEO-II



Access Control Logics as Fragments of S4 and HOL

Example | (from [GargAbadi08]):

|[ICLval (Admin says deletefilel) D deletefilel|

If Admin says that filel should be deleted, then this must be the case.
|[ICLval Admin says ((Bob says deletefilel) D deletefilel)|

Admin trusts Bob to decide whether filel should be deleted.

||ICLval Bob says deletefilel]|

Bob wants to delete filel.

||ICLval deletefilel]|

Is deletion permitted?

Christoph Benzmiiller Automating Access Control Logics in STT with LEO-II



Access Control Logics as Fragments of S4 and HOL

Example | (from [GargAbadi08]):

|[ICLval (Admin says deletefilel) D deletefilel|

If Admin says that filel should be deleted, then this must be the case.
|[ICLval Admin says ((Bob says deletefilel) D deletefilel)|

Admin trusts Bob to decide whether filel should be deleted.

[Mval O, (Bob V O, deletefilel)]

Bob wants to delete filel.

||ICLval deletefilel]|

Is deletion permitted?

Christoph Benzmiiller Automating Access Control Logics in STT with LEO-II



Access Control Logics as Fragments of S4 and HOL

Example | (from [GargAbadi08]):

|[ICLval (Admin says deletefilel) O deletefilel|

If Admin says that filel should be deleted, then this must be the case.

|[ICLval Admin says ((Bob says deletefilel) D deletefilel)]

Admin trusts Bob to decide whether filel should be deleted.

YW, Vy,.rwy = (Boby V Vu,.rwu = deletefilel u)

Bob wants to delete filel.
||ICLval deletefilel]||

Is deletion permitted?

LEO-II: 0.301 seconds

Christoph Benzmiiller Automating Access Control Logics in STT with LEO-II



More Examples from

» Example I: 0.301 seconds
» Example Il (ICL=): 0.503 seconds
» Example Il (ICLB): 0.077 seconds

Also possible: reasoning about meta-properties
» ICL= can be expressed in ICLB: 0.073 seconds

Christoph Benzmiiller Automating Access Control Logics in STT with LEO-II



Exp.: Access Control Logic in HOL

ICL:

Name Problem LEO (s) |
unit {R,T} =MOL ||1CLval s O (A says s)|| 0.053
cuc {R,T} E="OL ||1CLval

(Asays (s D t)) D (Asayss) D (A says t) 0.167
idem {R,T} E=MOL ||ICLval (A says A says s) D (A says )| 0.058
unit® =HOL ||1CLval s D (A says s)|| -
cuck =HOL ||1CLval (A says (s D t)) D (A says s) D (A says t)| -
idem¥ =HOL || ICLval (A says A says s) D (A says )| -

R, T: reflexivity and transitivity axioms for S4 as seen before

Christoph Benzmiiller Automating Access Control Logics in STT with LEO-II



Exp.: Access Control Logic in HOL

ICL=:
Name Problem LEO (s) |
refl {R,T} EMOL ||l 1CLval A = A|| 0.059
trans {R,T} MO ||1cLval (A = B) D (B = C) D> (A = Q)| 0.083
sp.-for {R,T} MO ||1CLval (A = B) D (A says s) D (B says s)|| 0.107
handoff {R,T} E"OL || 1CLval (B says (A = B)) D (A = B)|| 0.075
reflX E=HOL ||1cLval A = A|| 0.034
trans/ E=HOL ||1cLval (A = B) D (B = C) D (A = Q)| -
sp.-fork =HOL ||l1cLval (A = B) D (A says s) D (B says s)|| -
handoff¥ =HOL ||1CLval (B says (A = B)) D (A = B)|| -

R, T: reflexivity and transitivity axioms as for S4 seen before

Christoph Benzmiiller Automating Access Control Logics in STT with LEO-II



Exp.: Access Control Logic in HOL

ICL5:

Name Problem LEO (s) |
trust {R,T} =MOL ||1CLval (L says s) D s 0.058
untrust {R,T,||ICLval A = T||} =ML ||ICLval A says L|| 0.046
cuc’ {R,T} E=MOL ||1CLval

((A D B) says s) D (A says s) D (B says s)|| 0.200
trustX =HOL ||1CLval (L says s) D s| -
untrustX {llzcLval A = T||} =M°L ||I1CLval A says L|| 0.055
cuc'K E=HOL ||1cLval ((A D B) says s) O (A says s) D (B says s)]|| -

R, T: reflexivity and transitivity axioms for S4 as seen before

Christoph Benzmiiller Automating Access Control Logics in STT with LEO-II



Conclusion

» Prominent Access Control Logics are fragments of HOL

» Interactive and automated HOL provers can generally be
applied for reasoning in and about these logics

» Challenge: How good does approach scale?
» Examples submitted to THFTPTP

Ongoing and Future Research

» THFTPTP infrastructure
» Improvement of LEO-II — make it scale for larger examples
» Combination of different logics

» Formal verification of approach e.g. in Isabelle/HOL

Christoph Benzmiiller Automating Access Control Logics in STT with LEO-II



THFTPTP
(EU grant THFTPTP — PIIF-GA-2008-219982)

Thanks to hard working Geoff Sutcliffe
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THFTPTP — Progress in ATP for HOL

» THF syntax for HOL
» library for HOL (> 2700 problems)

» tools for HOL
(parser, type checker, pretty printer, ...)

» integrated HOL ATPs: IsabelleP, TPS, LEO-II
> integrated HOL model generator: IsabelleM
> SystemOnTPTP online interface

Christoph Benzmiiller Automating Access Control Logics in STT with LEO-II



THFTPTP — Progress in ATP for HOL

ALG
GRA

LCL

NUM
PUZ
SET/SEU

SWV
SYN/SYO

higher-order abstract syntax
Ramsey numbers (several open)
modal logic

Landau’s Grundlagen

puzzles

set theory, dependently typed set
theory, binary relations

security, access control logic

simple test problems

Christoph Benzmiiller

ALG GRA LCL NUM PUZ SE? SWV 8¥? Total Unique

Problems 50 93 61221 5749 37 59 1275
THM/UNS 50 25 51221 5746 25 47 1170
CSA/SAT 0 o1l 0 0 3 511 29
LEO-II099a 34 0 48181 3401 19 42 725 127
IsabelleP2008 0 0 0197 5361 1 30 594 74
TPS 3.0 10 0 40150 3285 9 35 532 6
Any 32 0 50203 5490 20 52 B43 207
All 0 0 0134 2214 0 22 372
None 18 93 12 18 0259 17 15 432
IsabelleM 2008 C 0O 1 0 O O 0O 8 9

Automating Access Control Logics i



(EPRSC grant EP/D070511/1 at Cambridge University)

Thanks to Larry Paulson
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An Effective Higher-Order Theorem Prover

P

LEO-II employs FO-ATPs: E, Spass, Vampire

http://www.ags.uni-sb.de/"1leo
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