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Preface
With his Completeness Theorem the logician and philosopher Kurt Gödel made a first significant
step towards carrying out Hilbert’s Program, only to then shatter any hopes of a possible fulfilment
of the program with his Incompleteness Theorems.
Mathematician David Hilbert hoped to put all of mathematics on a sound logical basis by means of
introducing an axiomatic logical system with finitary methods of deduction. In 1929 Gödel proved
that classical predicate first order logic is both sound and complete. Based on this success he set
out to proceed likewise for higher order logic and came to the conclusion that it was not possible
[4]. He published his results in [1]. Below we shall outline the idea of the proof of the first theorem
according to [3].

1 The idea
So, how did Gödel go about proving his incompleteness theorem? The general idea is to construct a
sentence that states its own unprovability. A system that is expressive enough for such a sentence
to be stated can then not be consistent and complete. To be able to formulate the argument, let us
first consider some basic concepts.

1.1 Basic Notions

For a given language L, we mean

• E to be the set of all expressions over L

• H ⊂ E to be the set of all predicates over L

• S ⊂ E to be the set of all sentences over L

• P ⊂ S to be the set of all provable sentences over L

• R ⊂ S to be the set of all refutable sentences over L

• T ⊂ S to be the set of all true sentences over L

So if L is the language of Peano Arithmetic over alphabet Σ = {0, S,+, ·, <}, then
∃x(2 < x), 1 + 1, (y + x) = 3 and 2 < x would all be expressions, 2 < x a predicate and ∃x(2 < x)
a true sentence.
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Remark. Note that numerals are abbreviated by writing n instead of
n︷ ︸︸ ︷

SS . . . S 0.
To express that predicates like H ≡ 2 < x depend on x, we write H(x).
In the following, natural numbers will be at the centre of the discussion since it makes sense for the
definitions used and since it is what Gödel originally worked with. This is in spite of the fact that
one could consider languages with quite different domains.

Definition 1. Let n ∈ N, H ∈ H, we say n satisfies H if H(n) is a true sentence.
A set A ⊂ N is expressed by H iff

∀n ∈ N : H(n) ∈ T ⇔ n ∈ A

A is expressible in L if there is some predicate HA of L, s.t. A is expressed by HA.

So if we consider Peano Arithmetic, the set A = {0, 1} is expressed by HA ≡ x < 2.

Definition 2. L is a correct language if

(i) P ⊂ T

(ii) T ∩ R = ∅

Remark. Correctness is stronger than consistency:

L consistent ⇔ ∀S ∈ S : ¬(S ∈ P ∧ S ∈ R)

This will be relevant for the proof later on.

1.2 Gödel numberings

Definition 3. Given an injective function g : E→ N and expression E ∈ E, we call

g(E)

the Gödel number of E and g a Gödel numbering for language L.

Gödel numberings are a remarkable concept since they allow numbers to express statements about
themselves, which is what Gödel used to construct the sentence that states its own unprovability.
Note that the only requirement for a Gödel numbering is that it be injective. Usually a Gödel
numbering specific to the examined system is defined, s.t. it works well with the proof one wants to
develop, so we shall not give further requirements here.
Note also that one may assume that for any Gödel number n ∈ N there is a unique expression E,
s.t. g(E) = n. This is because we assume the expressions to be recursively enumerable and any
enumerable or countable set M has a bijection into the naturals N.

Example 4. We can define a suitable Gödel numbering g for Peano Arithmetic as follows. Let Γ =
Σ∪ {¬,∧,→, ∃, x, (, )} be the extended alphabet of Peano Arithmetic comprising Σ = {0, S,+, ·, <},
logical operators, a quantifier and metasymbols. We obtain g(E), E ∈ E, by doing the following:

• Assign each σ ∈ Γ a number: 0 S + · < ¬ ∧ → ∃ x ( )
0 1 2 3 4 5 6 7 8 9 A B
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• Create E′ by substituting every symbol by its assigned number.

• The Gödel number of E is the number whose base 12 representation is E′.

So for example one may want to find g(E) where E ≡ 1 < x and 1 < x short for (S 0) < x.

(S 0) < x →
E→E′

A10B49

g(1 < x) = 10 · 125 + 1 · 124 + 0 · 123 + 11 · 122 + 4 · 121 + 9 · 120

= A10B4912 = 251069710

1.3 Diagonalisation

Definition 5. Let En be the unique expression, s.t. g(En) = n.
We call En(n) the diagonalisation of En and

d : N→ N, d(n) = g(En(n))

the diagonal function.

Remark. En(n) is true iff En is satisfied by its own Gödel number n and d(n) is the Gödel number
of sentence En(n).
So for E ≡ 1 < x with Gödel number 2510697, En(n) would be the theorem 1 < 2510697 and d(n)
in turn would be the Gödel number of that expression. We shall refrain from explicitly stating
d(n) since this would require 2510697 many S and twice as many bracket symbols with the given
alphabet.

Definition 6. For any set A ⊂ N, let A∗ be the preimage of A under d:

n ∈ N : n ∈ A∗ ⇔ d(n) ∈ A

For any set A ⊂ N, let A be the complement of A:

A = N \A

2 Gödel’s Theorem - simplified
What follows is a simplified version of Gödel’s first incompleteness theorem. Since its proof only
requires the general concepts introduced above, it is well suited to explain the general outline of
Gödel’s original proof.

Theorem (Little Gödel). For a given language L, let P = {n | ∃S ∈ P : g(S) = n}
be the set of Gödel numbers of all provable sentences.
If set P ∗ is expressible in L and L is correct, then there is a true sentence of L which is not provable
in L.

Proof. Let H be the predicate that expresses P ∗. Let h be the Gödel number of H.
Since H expresses P ∗, for any n ∈ N:

H(n) true ⇔ n ∈ P ∗
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And thus:

H(h) true ⇔ h ∈ P ∗

⇔ d(h) ∈ P ⇔ d(h) 6∈ P

Note that d(h) = g(H(h)), so by definition of P we get

d(h) ∈ P ⇔ H(h) provable

and thus
H(h) true ⇔ d(h) 6∈ P ⇔ H(h) not provable

Case 1: H(h) is false and provable. Contradiction by correctness of L.
Case 2: H(h) is true and not provable.

Thus, by the theorem, for any correct system that is powerful enough for P ∗ to be expressible, there
will be a sentence both true and unprovable making the system incomplete.
Of course, if the system were not consistent and thus not correct then it could be complete. By
requiring the system to be correct, we actually demanded more than was necessary.

3 Gödel’s Theorems, the actual version - almost
To conclude, we shall state both incompleteness theorems and remark on their connection to theorem
Little Gödel. They are freely adapted from [2]. For Gödel’s originial version one may consult [1].

Theorem (Gödel’s Incompleteness Theorem I). For any consistent formal system F which contains
elementary arithmetic, there is a sentence, s.t. neither the sentence itself nor its negation can be
proved within the system.

Theorem (Gödel’s Incompleteness Theorem II). No formal system F can be consistent and prove
its own consistency.

Note that the first theorem refers to basic arithmetic. This is due to the fact that Gödel tried to prove
consistency and completeness of a formal system of arithmetic including higher order quantification.
The proof would have been an important achievement on the way to giving mathematics a solid
foundation. After all, arithmetic constitutes a significant part of mathematics. Since Gödel’s version
is concerned with arithmetic, it is clear why the Gödel numbering is so important: It makes it
possible to state sentences about arithmetic in arithmetic. In Little Gödel, we abstained from
referring to any concrete system but instead required a given system to be expressive enough. Basic
arithmetic is expressive enough and thus enables Gödel to construct the desired sentence.
From the second theorem it follows that a system F expressive enough to state its own consistency
as theorem Cons(F ) cannot be consistent and contain a proof for Cons(F ), this holds in particular
for any system containing basic arithmetic.

Albeit closer to the original, Gödel’s Incompleteness Theorems I and II as stated above are still only
informal versions of Theorems VI and XI in Gödel’s paper from 1931 [1]. The statement of those
requires further definitions. We leave it to the inclined reader to dive into the original, if desired.
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