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1 Introduction

In the article “Eine Interpretation des intuitionistischen Aussagenkalküls”, presented in 1932
at the Mathematical Colloquium in Vienna and published in 1933, Kurt Gödel described an
interpretation of the intuitionistic propositional logic in a system of classical propositional
logic enriched with an additional unary operator B (which stands for provability). The main
purpose of this seminar paper is to provide an overview on the given interpretation and the
involved logical systems, and also to discuss the connection between the enriched system
and the modal logic S4.

2 Intuitionism, Intuitionistic Logic and Heyting’s Calculus

2.1 Intuitionism

Intuitionism is a philosophy ofmathematics that was introduced by theDutchmathematician
Luitzen E. J. Brouwer in 1908. In contrast to logicism intuitionism treats logic as a part of
mathematics rather than as the foundation of mathematics. Thus it is based on the idea that
mathematics is a creation of the mind. The truth of a mathematical statement can only be
conceived via a mental construction (a proof or verification) that proves it to be true:

“It does not make sense to think of truth or falsity of a mathematical statement
independently of our knowledge concerning the statement. A statement is true
if we have proof of it, and false if we can show that the assumption that there
is a proof for the statement leads to a contradiction.” (Troelstra and van Dalen
1988: p. 4)

In summary, intuitionism centers on proof rather than truth. Logical statements are not
just true or false, but provable, not provable or neither of both when the existence of a proof
is unclear.

2.2 Intuitionistic Propositional Calculus (IPC)

1930 Arend Heyting formalized the Intuitionistic Propositional Calculus (IPC) making
Brouwer’s definition of intuitionistic truth explicit. His calculus describes the rules for the
derivation of formulas that are valid from the point of view of an intuitionist.

A logical system is defined by a formal syntax, a formal semantics and a derivation system,
and in the following such a triple is characterized for IPC. We start by specifying how
intuitionistic formulas can be build and continue with assinging those formulas a meaning
by describing the semantics of IPC. As a last step we provide a proof system which is used
for logical reasoning within the system.
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2.2.1 Syntax

Alphabet. The alphabet of IPC consists of propositional variables (𝐴, 𝐵, 𝐶, ⋯), logical
connectives ⋅, +, ⊃ and a constant symbol ⊥.

The negation of a formula 𝜑, denoted as ∼ 𝜑, is abbreviated by 𝜑 ⊃ ⊥.

Atomic Formulas. Any propositional variable or ⊥ is an atomic formula.

Well-formed Formulas. The (well-formed) formulas of IPC are defined inductively as follows:

– Each atomic formula is a well-formed formula.
– If 𝜑 and 𝜓 are well-formed formulas, so are 𝜑 ⋅ 𝜓, 𝜑 + 𝜓 and 𝜑 ⊃ 𝜓.
– Nothing else is a well-formed formula.

2.2.2 Semantics

The Brouwer–Heyting–Kolmogorov (BHK) semantics is widely recognized as the official
representation of the intuitionistic meaning for the logical connectives of IPC. According
to BHK a statement is true if it has a proof, and the proof of a logically compound statement
depends on the proofs of its components. Employing the unexplained primitive notions of
construction and proof the description of BHK states informally that

– a proof of 𝜑 ⋅ 𝜓 consists of a proof of 𝜑 and a proof of 𝜓,
– a proof of 𝜑 + 𝜓 is given by presenting either a proof of 𝜑 or a proof of 𝜓,
– a proof of 𝜑 → 𝜓 is a construction which, given a proof of 𝜑, returns a proof of 𝜓, and
– ⊥ has no proof.

Negation is not included primitively in our syntax, but the corresponding BHK semantics
could be defined like that:

– A proof of ∼ 𝜑 is a construction which, given a proof of 𝜑, would return a proof of ⊥.

2.2.3 Proof System

The following collection of axiom schemes for a Hilbert-style proof system is introduced by
Troelstra and van Dalen (1988):
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1. 𝜑 ⊃ (𝜓 ⊃ 𝜑)

2. (𝜑 ⊃ (𝜓 ⊃ 𝜇)) ⊃ ((𝜑 ⊃ 𝜓) ⊃ (𝜑 ⊃ 𝜇))

3. (𝜑 ⋅ 𝜓) ⊃ 𝜑

4. (𝜑 ⋅ 𝜓) ⊃ 𝜓

5. 𝜑 ⊃ (𝜓 ⊃ (𝜑 ⋅ 𝜓))

6. 𝜑 ⊃ (𝜑 + 𝜓)

7. 𝜓 ⊃ (𝜑 + 𝜓)

8. (𝜑 ⊃ 𝜇) ⊃ ((𝜓 ⊃ 𝜇) ⊃ ((𝜑 + 𝜓) ⊃ 𝜇))

9. ⊥ ⊃ 𝜑

where 𝜑, 𝜓, 𝜇 are some arbitrary formulas in IPC.

To complete the Hilbert-style proof system we add the Modus Ponens as inference rule:

1. From 𝜑 and 𝜑 ⊃ 𝜓, conclude 𝜓.

where 𝜑, 𝜓 are some arbitrary formulas in IPC.

3 Classical Propositional Logic (CPL)

In this section we briefly discuss a syntax, a semantics and a Hilbert-style proof system for
the systemCPL to see if and how classical logic differs from intuitionistic logic.

3.1 Syntax

Syntactically, classical propositional logic and intuitionistic propositional logic have no
difference. However, for reasons of clarity we use different symbols for the logical operators
than we used in the definitions for IPC.

Alphabet. The alphabet of CPL consists of propositional variables (𝐴, 𝐵, 𝐶, ⋯), logical
connectives ∧, ∨, → and a constant symbol ⊥.

The negation of a formula 𝜑, denoted as ¬𝜑, is abbreviated by 𝜑 → ⊥.

Atomic Formulas. Any propositional variable or ⊥ is an atomic formula.
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Well-formed Formulas. The (well-formed) formulas ofCPL are defined inductively as fol-
lows:

– Each atomic formula is a well-formed formula.
– If 𝜑 and 𝜓 are well-formed formulas, so are 𝜑 ∧ 𝜓, 𝜑 ∨ 𝜓 and 𝜑 → 𝜓.
– Nothing else is a well-formed formula.

3.2 Semantics

The semantics ofCPL are subject to the usual conditions (“truth tables”):

– 𝜑 ∧ 𝜓 is true if and only if 𝜑 is true and 𝜓 is true,
– 𝜑 ∨ 𝜓 is true if and only if 𝜑 is true or 𝜓 is true (or both),
– 𝜑 → 𝜓 is false if and only if 𝜑 is true and 𝜓 is false, and
– ⊥ is false.

Once again, this would be the semantics of negated formulas ofCPL:

– A proof of ¬𝜑 is true if and only if 𝜑 is false.

3.3 Proof System

A proof system for intuitionistic logic can be turned into a proof system for classical logic
by adding a scheme expressing the Principle of Excluded Middle, 𝜑 ∨ ¬𝜑. Therefore, our
previously introduced collection of axiom schemes can be extended by a tenth scheme to
form a proper collection of axiom schemes forCPL’s proof system:

1. 𝜑 → (𝜓 → 𝜑)

2. (𝜑 → (𝜓 → 𝜇)) → ((𝜑 → 𝜓) → (𝜑 → 𝜇))

3. (𝜑 ∧ 𝜓) → 𝜑

4. (𝜑 ∧ 𝜓) → 𝜓

5. 𝜑 → (𝜓 → (𝜑 ∧ 𝜓))

6. 𝜑 → (𝜑 ∨ 𝜓)

7. 𝜓 → (𝜑 ∨ 𝜓)

8. (𝜑 → 𝜇) → ((𝜓 → 𝜇) → ((𝜑 ∨ 𝜓) → 𝜇))

9. ⊥ → 𝜑

10. 𝜑 ∨ (𝜑 → ⊥)
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where 𝜑, 𝜓, 𝜇 are some arbitrary formulas inCPL.

The collection of involved inference rules stays the same:

1. From 𝜑 and 𝜑 → 𝜓, conclude 𝜓.

where 𝜑, 𝜓 are some arbitrary formulas inCPL.

4 Gödel’s Interpretation

According to Gödel (1933), for defining an interpretation of intuitionistic propositional logic
in classical propositional logic a more expressive classical system thanCPL is needed. Such
a system 𝒢 can be achieved by adaptingCPL as discussed below.

4.1 System 𝒢
For Gödel’s system 𝒢 a new notion ‘a formula 𝜑 is provable’, denoted by B𝜑, is established.
Along with the unary operator B some new axiom schemes and a special inference rule are
added to the already known definitions ofCPL presented in section 3.

4.1.1 Syntax

Alphabet. The alphabet of 𝒢 consists of propositional variables (𝐴, 𝐵, 𝐶, ⋯), logical connec-
tives B, ∧, ∨, → and a constant symbol ⊥.

The negation of a formula 𝜑, denoted as ¬𝜑, is abbreviated by 𝜑 → ⊥.

Atomic Formulas. Any propositional variable or ⊥ is an atomic formula.

Well-formed Formulas. The (well-formed) formulas of 𝒢 are defined inductively as follows:

– Each atomic formula is a well-formed formula.
– If 𝜑 and 𝜓 are well-formed formulas, so are B𝜑, 𝜑 ∧ 𝜓, 𝜑 ∨ 𝜓 and 𝜑 → 𝜓.
– Nothing else is a well-formed formula.

4.1.2 Proof System

The original collection of axiom schemes ofCPL’s Hilbert-style proof system is expanded
by some particular schemes 11., 12. and 13., resulting in a new collection of axiom schemes
for the proof system of Gödel’s system 𝒢:
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1. 𝜑 → (𝜓 → 𝜑)

2. (𝜑 → (𝜓 → 𝜇)) → ((𝜑 → 𝜓) → (𝜑 → 𝜇))

3. (𝜑 ∧ 𝜓) → 𝜑

4. (𝜑 ∧ 𝜓) → 𝜓

5. 𝜑 → (𝜓 → (𝜑 ∧ 𝜓))

6. 𝜑 → (𝜑 ∨ 𝜓)

7. 𝜓 → (𝜑 ∨ 𝜓)

8. (𝜑 → 𝜇) → ((𝜓 → 𝜇) → ((𝜑 ∨ 𝜓) → 𝜇))

9. ⊥ → 𝜑

10. 𝜑 ∨ (𝜑 → ⊥)

11. B𝜑 → 𝜑

12. B𝜑 → (B(𝜑 → 𝜓) → B𝜓)

13. B𝜑 → BB𝜑

where 𝜑, 𝜓, 𝜇 are some arbitrary formulas in 𝒢.

The corresponding collection of inference rules is increased by one to finish 𝒢’s proof system:

1. From 𝜑 and 𝜑 → 𝜓, conclude 𝜓.

2. From 𝜑, conclude B𝜑.

where 𝜑, 𝜓 are some arbitrary formulas in 𝒢.

4.2 Interpretation

Having system 𝒢 defined as above Gödel stipulates his interpretation function 𝑔 ∶ IPC → 𝒢
as follows:
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𝑔(𝐴) ≔ 𝐴

𝑔(𝜑 ⋅ 𝜓) ≔ 𝑔(𝜑) ∧ 𝑔(𝜓)

𝑔(𝜑 + 𝜓) ≔ B 𝑔(𝜑) ∨ B 𝑔(𝜓)

𝑔(𝜑 ⊃ 𝜓) ≔ B 𝑔(𝜑) → B 𝑔(𝜓)

𝑔(⊥) ≔ ⊥

𝑔(∼ 𝜑) ≔ ¬ B 𝑔(𝜑).

He states, without proving, that

𝑔(𝜑 ⋅ 𝜓) ≔ B 𝑔(𝜑) ∧ B 𝑔(𝜓)

𝑔(∼ 𝜑) ≔ B ¬ B 𝑔(𝜑)

are variant but equally legit translations for the conjunction and the negation respectively.
The general idea of Gödel’s translation is to put the operator B before every subformula

of a certain formula 𝜑 . When the usual procedure of determining classical truth of 𝜑 is
applied to 𝑔(𝜑), it will test the provability (and not the truth) of each of 𝜑’s subformulas in
agreement with Brouwer’s ideas. Conversely, no formula of the form B𝜑 ∨ B𝜓 is derivable
from 𝒢 unless either B𝜑 or B𝜓 is derivable from 𝒢. Since for some arbitrary formula 𝜑 it is
the case that B𝜑 or B(𝜑 → ⊥) or – and that is the important point – none of these holds,
the translation of the Law of Excluded Middle is in general not derivable from 𝒢.
Gödel also notes that the operator B should be interpreted as ‘provable by any correct

means’ rather than as ‘provable in a given formal system’ because otherwise this would
contradict his second incompleteness theorem.

4.3 Gödel’s Results

Gödel claims that if a formula is derivable from intuitionistic propositional logic, then its
translation is derivable from 𝒢. That is:

If ⊢IPC 𝜑, then ⊢𝒢 𝑔(𝜑).

One can also say, that his translation preserves theoremhood. He also conjectures that the
converse holds, such that we have:

⊢IPC 𝜑 if, and only if ⊢𝒢 𝑔(𝜑).

Given these two directions Gödel’s translation can be seen as faithful. While the first
implication follows trivially, Gödel conjectures the backward direction without actually
showing it. Later on John C. C. McKinsey and Alfred Tarski (1948) show that the converse
implication is indeed true. But in their proof, the Lewis modal system S4 comes into play.
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4.4 Lewis Modal System S4

The system S4, originally named after its founder Clarence I. Lewis (1918), is a modal
propositional logic. Modal logic extends classical logic by an unary necessity operator � as
shown below.

4.4.1 Syntax

Alphabet. The alphabet of S4 consists of propositional variables (𝐴, 𝐵, 𝐶, ⋯), logical con-
nectives �, ∧, ∨, → and a constant symbol ⊥.

The negation of a formula 𝜑, denoted as ¬𝜑, is abbreviated by 𝜑 → ⊥.

Atomic Formulas. Any propositional variable or ⊥ is an atomic formula.

Well-formed Formulas. The (well-formed) formulas of S4 are defined inductively as follows:

– Each atomic formula is a well-formed formula.
– If 𝜑 and 𝜓 are well-formed formulas, so are �𝜑, 𝜑 ∧ 𝜓, 𝜑 ∨ 𝜓 and 𝜑 → 𝜓.
– Nothing else is a well-formed formula.

4.4.2 Proof System

McKinsey and Tarski (1948) present the following collection of axiom schemes for a Hilbert-
style proof system for S4:
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1. 𝜑 → (𝜓 → 𝜑)

2. (𝜑 → (𝜓 → 𝜇)) → ((𝜑 → 𝜓) → (𝜑 → 𝜇))

3. (𝜑 ∧ 𝜓) → 𝜑

4. (𝜑 ∧ 𝜓) → 𝜓

5. 𝜑 → (𝜓 → (𝜑 ∧ 𝜓))

6. 𝜑 → (𝜑 ∨ 𝜓)

7. 𝜓 → (𝜑 ∨ 𝜓)

8. (𝜑 → 𝜇) → ((𝜓 → 𝜇) → ((𝜑 ∨ 𝜓) → 𝜇))

9. ⊥ → 𝜑

10. 𝜑 ∨ (𝜑 → ⊥)

11. �𝜑 → 𝜑

12. �𝜑 → (�(𝜑 → 𝜓) → �𝜓)

13. �𝜑 → ��𝜑

where 𝜑, 𝜓, 𝜇 are some arbitrary formulas in S4.

Additionally, this collection of inference rules is presented:

1. From 𝜑 and 𝜑 → 𝜓, conclude 𝜓.

2. From 𝜑, conclude �𝜑.

where 𝜑, 𝜓 are some arbitrary formulas in S4.

The second rule is called the Necessity Rule.

4.5 Relation of 𝒢 and S4

Comparing the definitions given in sections 4.1 and 4.4 it becomes clear, that if B𝜑 is
understood as ‘𝜑 is necessary’, then the expanded system 𝒢 results as the Lewis modal
system S4 with B written for the necessity operator �. Hence, Gödel’s results show that
there is an interpretation of the intuitionistic propositional logic IPC in the modal logic S4.
If 𝜑 can be derived from IPC, then 𝜑’s translation, 𝑔(𝜑), can be derived from S4 and vice
versa:

⊢IPC 𝜑 if, and only if ⊢S4
𝑔(𝜑).
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Since the system S4 is a very popular and famous system in the broad field of logics, this
is a very outstanding and important contribution. In fact, Gödel was one of the first who
proposed an embedding of IPC into classical logic. And this conjecture above is what
McKinsey and Tarski finally prove years later in their paper from 1948.
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