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From Natural Deduction
to Sequent Calculus

and Back

Remark: We first illustrate the correspondence between
natural deduction and sequent calculus in first-order logic.
Later we will present natural deduction calculi for HOL. More
precisely we will present one sound and complete calculus for
each class in our landscape of semantics as presented before.
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! F. Pfenning: Automated Theorem Proving, Course at Carnegie
Mellon University. Draft. 1999.

! A.S. Troelstra and H. Schwichtenberg: Basic Proof Theory.
Cambridge. 2nd Edition 2000.

! John Byrnes: Proof Search and Normal Forms in Natural
Deduction. PhD Thesis. Carnegie Mellon University. 1999.

! . . .many more books on Proof Theory . . .
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! Frege, Russel, Hilbert: Predicate calculus and type theory as
formal basis for mathematics

! Gentzen: Natural deduction (ND) as intuitive formulation of
predicate calculus; introduction and elimination rules for each
logical connective

The formalization of logical deduction, especially as it has been devel-
oped by Frege, Russel, and Hilbert, is rather far removed from the forms
of deduction used in practice in mathematical proofs. . . . In contrast I in-
tended first to set up a formal system which comes as close as possible
to actual reasoning. The result was a calculus of natural deduction (NJ
for intuitionist, NK for classical predicate logic).
[Gentzen: Investigations into logical deduction]

ATPHOL’06-[9] – p.232



c©Benzmüller, 2006

Sequent Calculus: Motivation
HO

L

AT
Pλ

! Gentzen had a pure technical motivation for sequent calculus:

ATPHOL’06-[9] – p.233



c©Benzmüller, 2006

Sequent Calculus: Motivation
HO

L

AT
Pλ

! Gentzen had a pure technical motivation for sequent calculus:
" same theorems as natural deduction

ATPHOL’06-[9] – p.233



c©Benzmüller, 2006

Sequent Calculus: Motivation
HO

L

AT
Pλ

! Gentzen had a pure technical motivation for sequent calculus:
" same theorems as natural deduction
" prove of the Hauptsatz (all sequent proofs can be found
with a simple strategy)

ATPHOL’06-[9] – p.233



c©Benzmüller, 2006

Sequent Calculus: Motivation
HO

L

AT
Pλ

! Gentzen had a pure technical motivation for sequent calculus:
" same theorems as natural deduction
" prove of the Hauptsatz (all sequent proofs can be found
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! Gentzen had a pure technical motivation for sequent calculus:
" same theorems as natural deduction
" prove of the Hauptsatz (all sequent proofs can be found
with a simple strategy)

" corollary: consistency of formal system(s)
The Hauptsatz says that every purely logical proof can be reduced to a
definite, though not unique, normal form. Perhaps we may express the
essential properties of such a normal proof by saying: it is not round-
about. . . .
In order to be able to prove the Hauptsatz in a convenient form, I had to
provide a logical calculus especially for the purpose. For this the natural
calculus proved unsuitable.
[Gentzen: Investigations into logical deduction]
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! Sequent calculus exposes many details of fine structure of
proofs in a very clear manner. Therefore it is well suited to
serve as a basic representation formalism for many automation
oriented search procedures
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! Sequent calculus exposes many details of fine structure of
proofs in a very clear manner. Therefore it is well suited to
serve as a basic representation formalism for many automation
oriented search procedures

" Backward: tableaux, connection methods, matrix methods,
some forms of resolution
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! Sequent calculus exposes many details of fine structure of
proofs in a very clear manner. Therefore it is well suited to
serve as a basic representation formalism for many automation
oriented search procedures

" Backward: tableaux, connection methods, matrix methods,
some forms of resolution

" Forward: classical resolution, inverse method

! Don’t be afraid of the many variants of sequent calculi.
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! Sequent calculus exposes many details of fine structure of
proofs in a very clear manner. Therefore it is well suited to
serve as a basic representation formalism for many automation
oriented search procedures

" Backward: tableaux, connection methods, matrix methods,
some forms of resolution

" Forward: classical resolution, inverse method

! Don’t be afraid of the many variants of sequent calculi.
! Choose the one that is most suited for you.

ATPHOL’06-[9] – p.234
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Example:

" Conjunction:

D1
A

D2
B

A ∧B
∧I

D1
A ∧B

A
∧El

D1
A ∧B

B
∧Er
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Example:

" Conjunction:

D1
A

D2
B

A ∧B
∧I

D1
A ∧B

A
∧El

D1
A ∧B

B
∧Er

The presentation on the next slides treats the proof tree
aspects implicit.
Example:
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Natural deduction rules operate on proof trees.
Example:

" Conjunction:

D1
A

D2
B

A ∧B
∧I

D1
A ∧B

A
∧El

D1
A ∧B

B
∧Er

The presentation on the next slides treats the proof tree
aspects implicit.
Example:

" Conjunction:
A B
A ∧B

∧I
A ∧B

A
∧El

A ∧B
B

∧Er

ATPHOL’06-[9] – p.235
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! Conjunction:
A B
A ∧B

∧I
A ∧B

A
∧El

A ∧B
B

∧Er
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! Conjunction:
A B
A ∧B

∧I
A ∧B

A
∧El

A ∧B
B

∧Er

! Disjunction:
A

A ∨B
∨Il

B
A ∨B

∨Ir
A ∨B

[A]1....
C

[B]2....
C

C ∨E1,2
r
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! Conjunction:
A B
A ∧B

∧I
A ∧B

A
∧El

A ∧B
B

∧Er

! Disjunction:
A

A ∨B
∨Il

B
A ∨B

∨Ir
A ∨B

[A]1....
C

[B]2....
C

C ∨E1,2
r

! Implication:

[A]1....
B

A⇒ B ⇒I1
A⇒ B A

B
⇒E
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! Conjunction:
A B
A ∧B

∧I
A ∧B

A
∧El

A ∧B
B

∧Er

! Disjunction:
A

A ∨B
∨Il

B
A ∨B

∨Ir
A ∨B

[A]1....
C

[B]2....
C

C ∨E1,2
r

! Implication:

[A]1....
B

A⇒ B ⇒I1
A⇒ B A

B
⇒E

! Truth and Falsehood: $ $I
⊥
C
⊥E

ATPHOL’06-[9] – p.236
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! Negation:

[A]1....
⊥
¬A ¬I1

¬A A
⊥ ¬E

ATPHOL’06-[9] – p.237
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! Negation:

[A]1....
⊥
¬A ¬I1

¬A A
⊥ ¬E

! Universal Quantif.:
A[x/P∗]

∀x A
∀I

∀x A
A[x/T]

∀E

(*: parameter P must be new in context)

ATPHOL’06-[9] – p.237
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! Negation:

[A]1....
⊥
¬A ¬I1

¬A A
⊥ ¬E

! Universal Quantif.:
A[x/P∗]

∀x A
∀I

∀x A
A[x/T]

∀E

(*: parameter P must be new in context)

! Existential Quantif.:
A[x/T]

∃x A
∃I

∃x A

[A[x/P∗]]....
C

C
∃E

(*: parameter P must be new in context)

ATPHOL’06-[9] – p.237
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! For classical logic choose one of the following

" Excluded Middle A ∨ ¬A
XM

" Double Negation
¬¬A
A

¬¬C
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! For classical logic choose one of the following

" Excluded Middle A ∨ ¬A
XM

" Double Negation
¬¬A
A

¬¬C

" Proof by Contradiction

[¬A]....
⊥
A
⊥c

ATPHOL’06-[9] – p.238
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! Structural properties
" Exchange hypotheses order is irrelevant
" Weakening hypothesis need not be used
" Contraction hypotheses can be used more than once

ATPHOL’06-[9] – p.239
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[A]1 [A]2
A ∧A

∧I

A⇒ (A ∧A) ⇒I2

A⇒ (A⇒ (A ∧A)) ⇒I1
or

[A]1 [A]1
A ∧A

∧I

A⇒ (A ∧A) ⇒I2

A⇒ (A⇒ (A ∧A)) ⇒I1

[A ∧B]1
B

∧Er

[A ∧B]1
A

∧El

C ∨A
∨Ir

B ∧ (C ∨A)
∧I

(A ∧B)⇒ (B ∧ (C ∨A)) ⇒ I1

ATPHOL’06-[9] – p.240
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! FO-Soundness of ND: Let F be a first-order formula such that
there is a ND proof of F. Then F is valid. (( F ⇒ |= F)
(Proof: Standard textbooks)

ATPHOL’06-[9] – p.241



c©Benzmüller, 2006

Natural Deduction with Contexts
HO

L

AT
Pλ

! FO-Soundness of ND: Let F be a first-order formula such that
there is a ND proof of F. Then F is valid. (( F ⇒ |= F)
(Proof: Standard textbooks)

! FO-Completeness of ND: Let F be a valid first-order formula
then there is a ND proof of F (|= F ⇒ ( F).
(Proof: Standard textbooks)

ATPHOL’06-[9] – p.241
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Idea: Localizing hypotheses; explicit representation of the
available assumptions for each formula occurrence in a ND
proof:

Γ ( A

Γ is a multiset of the (uncanceled) assumptions on which
formula A depends. Γ is called context.
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Idea: Localizing hypotheses; explicit representation of the
available assumptions for each formula occurrence in a ND
proof:

Γ ( A

Γ is a multiset of the (uncanceled) assumptions on which
formula A depends. Γ is called context.

Example proof in context notation:

A1 ( A A2 ( A

A1,A2 ( A ∧A
∧I

A1 ( A⇒ (A ∧A)
⇒I2

( A⇒ (A⇒ (A ∧A))
⇒I1

ATPHOL’06-[9] – p.242
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Another Idea: Consider sets of assumptions instead of
multisets.

Γ ( A

Γ is now a set of (uncanceled) assumptions on which formula
A depends.
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Another Idea: Consider sets of assumptions instead of
multisets.

Γ ( A

Γ is now a set of (uncanceled) assumptions on which formula
A depends.

Example proof:

A ( A A ( A
A ( A ∧A

∧I

A ( A⇒ (A ∧A)
⇒I

( A⇒ (A⇒ (A ∧A))
⇒I

ATPHOL’06-[9] – p.243
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Structural properties to ensure
" Exchange (hypotheses order is irrelevant)

Γ,B,A ( C

Γ,A,B ( C

" Weakening (hypothesis need not be used)
Γ ( C

Γ,A ( C

" Contraction (hypotheses can be used more than once)
Γ,A,A ( C

Γ,A ( C

ATPHOL’06-[9] – p.244
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! Hypotheses: Γ,A,∆ ( A

! Conjunction:
Γ ( A Γ ( B

Γ ( A ∧B
∧I

Γ ( A ∧B
Γ ( A

∧El
Γ ( A ∧B

Γ ( B
∧Er

ATPHOL’06-[9] – p.245
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! Hypotheses: Γ,A,∆ ( A

! Conjunction:
Γ ( A Γ ( B

Γ ( A ∧B
∧I

Γ ( A ∧B
Γ ( A

∧El
Γ ( A ∧B

Γ ( B
∧Er

! Disjunction:
Γ ( A

Γ ( A ∨B
∨Il

Γ ( B
Γ ( A ∨B

∨Ir

Γ ( A ∨B Γ,A ( C Γ,B ( C

Γ ( C
∨Er

ATPHOL’06-[9] – p.245
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! Hypotheses: Γ,A,∆ ( A

! Conjunction:
Γ ( A Γ ( B

Γ ( A ∧B
∧I

Γ ( A ∧B
Γ ( A

∧El
Γ ( A ∧B

Γ ( B
∧Er

! Disjunction:
Γ ( A

Γ ( A ∨B
∨Il

Γ ( B
Γ ( A ∨B

∨Ir

Γ ( A ∨B Γ,A ( C Γ,B ( C

Γ ( C
∨Er

! Implication:
Γ,A ( B

Γ ( A⇒ B
⇒I

Γ ( A⇒ B Γ ( A
Γ ( B

⇒E

ATPHOL’06-[9] – p.245
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! Truth and Falsehood: Γ ( $ $I
Γ ( ⊥
Γ ( C

⊥E
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! Truth and Falsehood: Γ ( $ $I
Γ ( ⊥
Γ ( C

⊥E

! Negation:
Γ,A ( ⊥
Γ ( ¬A

¬I
Γ ( ¬A Γ ( A

Γ ( ⊥ ¬E
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! Truth and Falsehood: Γ ( $ $I
Γ ( ⊥
Γ ( C

⊥E

! Negation:
Γ,A ( ⊥
Γ ( ¬A

¬I
Γ ( ¬A Γ ( A

Γ ( ⊥ ¬E

! Universal Quantif.:
Γ ( A[x/P∗]

Γ ( ∀x A
∀I

Γ ( ∀x A
Γ ( A[x/T]

∀E

(*: parameter P must be new in context)
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! Truth and Falsehood: Γ ( $ $I
Γ ( ⊥
Γ ( C

⊥E

! Negation:
Γ,A ( ⊥
Γ ( ¬A

¬I
Γ ( ¬A Γ ( A

Γ ( ⊥ ¬E

! Universal Quantif.:
Γ ( A[x/P∗]

Γ ( ∀x A
∀I

Γ ( ∀x A
Γ ( A[x/T]

∀E

(*: parameter P must be new in context)

! Existential Quantif.:

Γ ( A[x/T]

Γ ( ∃x A
∃I

Γ ( ∃x A Γ,A[x/P∗] ( C

Γ ( C
∃E

(*: parameter P must be new in context)

ATPHOL’06-[9] – p.246
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For classical logic add:

! Proof by Contradiction:
Γ,¬A ( ⊥

Γ ( A
⊥c

ATPHOL’06-[9] – p.247
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! Idea (Prawitz, Sieg & Scheines, Byrnes & Sieg): Detour free
proofs: strictly use introduction rules bottom up (from proposed
theorem to hypothesis) and elimination rules top down (from
assumptions to proposed theorem). When they meet in the
middle we have found a proof in normal form.
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! Idea (Prawitz, Sieg & Scheines, Byrnes & Sieg): Detour free
proofs: strictly use introduction rules bottom up (from proposed
theorem to hypothesis) and elimination rules top down (from
assumptions to proposed theorem). When they meet in the
middle we have found a proof in normal form.

Assumptions.... elimination

↓
↑.... introduction

Goal

meet

....
A

....
B

A ∧B
∧I

A
∧El

....

ATPHOL’06-[9] – p.248
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! New annotations:
" A ↑ : A is obtained by an introduction derivation
" A ↓ : A is extracted from a hypothesis by an elimination
derivation
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! New annotations:
" A ↑ : A is obtained by an introduction derivation
" A ↓ : A is extracted from a hypothesis by an elimination
derivation

! Example:

Γ,A (ic B ↑

Γ (ic A⇒ B ↑ ⇒I
Γ (ic A⇒ B ↓ Γ (ic A ↑

Γ (ic B ↑ ⇒E

ATPHOL’06-[9] – p.249
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! Hypotheses: Γ,A,∆ (ic A ↓
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! Hypotheses: Γ,A,∆ (ic A ↓

! Conjunction:

Γ (ic A ↑ Γ (ic B ↑

Γ (ic A ∧B ↑ ∧I
Γ (ic A ∧B ↓

Γ (ic A ↓
∧El

Γ (ic A ∧B ↓

Γ (ic B ↓
∧Er

ATPHOL’06-[9] – p.250
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! Hypotheses: Γ,A,∆ (ic A ↓

! Conjunction:

Γ (ic A ↑ Γ (ic B ↑

Γ (ic A ∧B ↑ ∧I
Γ (ic A ∧B ↓

Γ (ic A ↓
∧El

Γ (ic A ∧B ↓

Γ (ic B ↓
∧Er

! Disjunction:
Γ (ic A ↑

Γ (ic A ∨B ↑
∨Il

Γ (ic B ↑

Γ (ic A ∨B ↑
∨Ir

Γ (ic A ∨B ↓ Γ,A (ic C ↑ Γ,B (ic C ↑

Γ (ic C ↑ ∨E

ATPHOL’06-[9] – p.250



c©Benzmüller, 2006

ND Intercalation Rules I
HO

L

AT
Pλ

! Hypotheses: Γ,A,∆ (ic A ↓

! Conjunction:

Γ (ic A ↑ Γ (ic B ↑

Γ (ic A ∧B ↑ ∧I
Γ (ic A ∧B ↓

Γ (ic A ↓
∧El

Γ (ic A ∧B ↓

Γ (ic B ↓
∧Er

! Disjunction:
Γ (ic A ↑

Γ (ic A ∨B ↑
∨Il

Γ (ic B ↑

Γ (ic A ∨B ↑
∨Ir

Γ (ic A ∨B ↓ Γ,A (ic C ↑ Γ,B (ic C ↑

Γ (ic C ↑ ∨E

! Implication:
Γ,A (ic B ↑

Γ (ic A⇒ B ↑ ⇒I
Γ (ic A⇒ B ↓ Γ (ic A ↑

Γ (ic B ↑ ⇒E

ATPHOL’06-[9] – p.250
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! Truth and Falsehood: Γ (ic $ ↑
$I

Γ (ic ⊥ ↓
Γ (ic C ↑ ⊥E
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ND Intercalation Rules II
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! Truth and Falsehood: Γ (ic $ ↑
$I

Γ (ic ⊥ ↓
Γ (ic C ↑ ⊥E

! Negation:
Γ,A (ic ⊥ ↑
Γ (ic ¬A ↑ ¬I

Γ (ic ¬A ↓ Γ (ic A ↑

Γ (ic ⊥ ↑
¬E
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ND Intercalation Rules II
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! Truth and Falsehood: Γ (ic $ ↑
$I

Γ (ic ⊥ ↓
Γ (ic C ↑ ⊥E

! Negation:
Γ,A (ic ⊥ ↑
Γ (ic ¬A ↑ ¬I

Γ (ic ¬A ↓ Γ (ic A ↑

Γ (ic ⊥ ↑
¬E

! Universal Quantif.:
Γ (ic A[x/P∗] ↑

Γ (ic ∀x A ↑ ∀I
Γ (ic ∀x A ↓

Γ (ic A[x/T] ↓
∀E

(*: parameter P must be new in context)
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! Truth and Falsehood: Γ (ic $ ↑
$I

Γ (ic ⊥ ↓
Γ (ic C ↑ ⊥E

! Negation:
Γ,A (ic ⊥ ↑
Γ (ic ¬A ↑ ¬I

Γ (ic ¬A ↓ Γ (ic A ↑

Γ (ic ⊥ ↑
¬E

! Universal Quantif.:
Γ (ic A[x/P∗] ↑

Γ (ic ∀x A ↑ ∀I
Γ (ic ∀x A ↓

Γ (ic A[x/T] ↓
∀E

(*: parameter P must be new in context)

! Existential Quantif.:
Γ (ic A[x/T] ↑

Γ (ic ∃x A ↑ ∃I
Γ (ic ∃x A ↓ Γ,A[x/P∗] (ic C ↑

Γ ( C ↑ ∃E

(*: parameter P must be new in context)
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For classical logic add:

! Proof by Contradiction:
Γ,¬A (ic ⊥ ↑

Γ (ic A ↑
⊥c
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! Normal form proofs

Assumptions.... elimination

↓
↑.... introduction

Goal

meet guaranteed by
Γ (ic A ↓

Γ (ic A ↑ meet
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! Normal form proofs

Assumptions.... elimination

↓
↑.... introduction

Goal

meet guaranteed by
Γ (ic A ↓

Γ (ic A ↑ meet

. . . proofs without detour . . .
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! Normal form proofs

Assumptions.... elimination

↓
↑.... introduction

Goal

meet guaranteed by
Γ (ic A ↓

Γ (ic A ↑ meet

. . . proofs without detour . . .

! To model all ND proofs add
Γ (ic A ↑

Γ (ic A ↓ roundabout

ATPHOL’06-[9] – p.253
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! In normal form

M ∧Q (ic M ∧Q ↓

M ∧Q (ic Q ↓
∧Er

M ∧Q (ic Q ↑ meet

M ∧Q (ic Q ∨ S ↑
∨Il

(ic (M ∧Q)⇒ (Q ∨ S) ↑
⇒ I

ATPHOL’06-[9] – p.254
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! In normal form

M ∧Q (ic M ∧Q ↓

M ∧Q (ic Q ↓
∧Er

M ∧Q (ic Q ↑ meet

M ∧Q (ic Q ∨ S ↑
∨Il

(ic (M ∧Q)⇒ (Q ∨ S) ↑
⇒ I

! With detour

....
M ∧Q (ic Q ↑

....
M ∧Q (ic M ↑

M ∧Q (ic Q ∧M ↑ ∧I

M ∧Q (ic Q ∧M ↓ roundabout

M ∧Q (ic Q ↓
∧El

M ∧Q (ic Q ↑ meet
....

ATPHOL’06-[9] – p.254
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Let (+ic denote the intercalation calculus with rule roundabout
and (ic the calculus without this rule.
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" Theorem 1 (Soundness of Γ (+ic relative to (): If Γ (+ic A ↑

then Γ ( A.
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then Γ ( A.
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then Γ (+ic A ↑ .
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Let (+ic denote the intercalation calculus with rule roundabout
and (ic the calculus without this rule.

" Theorem 1 (Soundness of Γ (+ic relative to (): If Γ (+ic A ↑

then Γ ( A.
" Theorem 2 (Completeness of Γ (+ic relative to (): If Γ ( A

then Γ (+ic A ↑ .
" Is normal form proof search also complete?:

If Γ (+ic A ↑ then Γ (ic A ↑ ?
We will investigate this question within the sequent
calculus.

ATPHOL’06-[9] – p.255
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Let (+ic denote the intercalation calculus with rule roundabout
and (ic the calculus without this rule.

" Theorem 1 (Soundness of Γ (+ic relative to (): If Γ (+ic A ↑

then Γ ( A.
" Theorem 2 (Completeness of Γ (+ic relative to (): If Γ ( A

then Γ (+ic A ↑ .
" Is normal form proof search also complete?:

If Γ (+ic A ↑ then Γ (ic A ↑ ?
We will investigate this question within the sequent
calculus.

ATPHOL’06-[9] – p.255
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↑.... intro

Goal

meet
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Normal form ND proofs Sequent proofs

Assumptions.... elim

↓
↑.... intro

Goal

meet =⇒
↑.... elim

Assumptions

⇑.... intro

Goal

initial
sequents
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Normal form ND proofs Sequent proofs

Assumptions.... elim

↓
↑.... intro

Goal

meet =⇒
↑.... elim

Assumptions

⇑.... intro

Goal

initial
sequents

Sequents pair <Γ,∆> of finite lists, multisets, or sets of formulas
Notation: Γ =⇒ ∆ Γ conjunctiv and ∆ disjunctive

Intuitive: a kind of implication, ∆ “follows from” Γ

ATPHOL’06-[9] – p.256
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! Initial Sequents: Γ,A =⇒ ∆,A
init (A atomic)
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! Initial Sequents: Γ,A =⇒ ∆,A
init (A atomic)

! Conjunction:
Γ,A,B =⇒ ∆

Γ,A ∧B =⇒ ∆
∧L

Γ =⇒ ∆,A Γ =⇒ ∆,B
Γ =⇒ ∆,A ∧B

∧R

ATPHOL’06-[9] – p.257
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Sequent Calculus Rules I
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! Initial Sequents: Γ,A =⇒ ∆,A
init (A atomic)

! Conjunction:
Γ,A,B =⇒ ∆

Γ,A ∧B =⇒ ∆
∧L

Γ =⇒ ∆,A Γ =⇒ ∆,B
Γ =⇒ ∆,A ∧B

∧R

! Implication
Γ =⇒ ∆,A Γ,B =⇒ ∆

Γ,A⇒ B =⇒ ∆
⇒ L

Γ,A =⇒ ∆,B
Γ =⇒ ∆,A⇒ B

⇒ R

ATPHOL’06-[9] – p.257
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! Initial Sequents: Γ,A =⇒ ∆,A
init (A atomic)

! Conjunction:
Γ,A,B =⇒ ∆

Γ,A ∧B =⇒ ∆
∧L

Γ =⇒ ∆,A Γ =⇒ ∆,B
Γ =⇒ ∆,A ∧B

∧R

! Implication
Γ =⇒ ∆,A Γ,B =⇒ ∆

Γ,A⇒ B =⇒ ∆
⇒ L

Γ,A =⇒ ∆,B
Γ =⇒ ∆,A⇒ B

⇒ R

! Truth and Falsehood Γ,⊥ =⇒ ∆
⊥L

Γ =⇒ ∆,$ $R
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! Negation:
Γ =⇒ ∆,A

Γ,¬A =⇒ ∆
¬L

Γ,A =⇒ ∆

Γ =⇒ ∆,¬A
¬R

ATPHOL’06-[9] – p.258



c©Benzmüller, 2006

Sequent Calculus Rules II
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! Negation:
Γ =⇒ ∆,A

Γ,¬A =⇒ ∆
¬L

Γ,A =⇒ ∆

Γ =⇒ ∆,¬A
¬R

! Disjunction:
Γ =⇒ ∆,A,B

Γ =⇒ ∆,A ∨B
∨R

Γ,A =⇒ ∆ Γ,B =⇒ ∆

Γ,A ∨B =⇒ ∆
∨L
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! Negation:
Γ =⇒ ∆,A

Γ,¬A =⇒ ∆
¬L

Γ,A =⇒ ∆

Γ =⇒ ∆,¬A
¬R

! Disjunction:
Γ =⇒ ∆,A,B

Γ =⇒ ∆,A ∨B
∨R

Γ,A =⇒ ∆ Γ,B =⇒ ∆

Γ,A ∨B =⇒ ∆
∨L

! Universal Quantification:
Γ,∀x A,A[x/T] =⇒ ∆

Γ,∀x A =⇒ ∆
∀L

Γ =⇒ ∆,A[x/P∗]

Γ =⇒ ∆,∀x A
∀R

(*: parameter P must be new in context)
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Sequent Calculus Rules II
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! Negation:
Γ =⇒ ∆,A

Γ,¬A =⇒ ∆
¬L

Γ,A =⇒ ∆

Γ =⇒ ∆,¬A
¬R

! Disjunction:
Γ =⇒ ∆,A,B

Γ =⇒ ∆,A ∨B
∨R

Γ,A =⇒ ∆ Γ,B =⇒ ∆

Γ,A ∨B =⇒ ∆
∨L

! Universal Quantification:
Γ,∀x A,A[x/T] =⇒ ∆

Γ,∀x A =⇒ ∆
∀L

Γ =⇒ ∆,A[x/P∗]

Γ =⇒ ∆,∀x A
∀R

(*: parameter P must be new in context)

! Existential Quantification:
Γ,A[x/P∗] =⇒ ∆

Γ,∃x A =⇒ ∆
∃L

Γ =⇒ ∆,∃x A,A[x/T]

Γ =⇒ ∆,∃x A
∃R

(*: parameter P must be new in context)
ATPHOL’06-[9] – p.258
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A,B =⇒ B
init

A ∧B =⇒ B
∧L

A,B =⇒ C,A init

A ∧B =⇒ C,A ∧L

A ∧B =⇒ C ∨A
∨R

A ∧B =⇒ B ∧ (C ∨A)
∧R

=⇒ (A ∧B)⇒ B ∧ (C ∨A)
⇒ R

ATPHOL’06-[9] – p.259
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! To map natural deductions (in ( and (+ic ) to sequent calculus
derivations we add the so called cut-rule:
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! To map natural deductions (in ( and (+ic ) to sequent calculus
derivations we add the so called cut-rule:

Γ =⇒ ∆,A Γ,A =⇒ ∆

Γ =⇒ ∆
Cut
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Sequent Calculus: Cut-rule
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! To map natural deductions (in ( and (+ic ) to sequent calculus
derivations we add the so called cut-rule:

Γ =⇒ ∆,A Γ,A =⇒ ∆

Γ =⇒ ∆
Cut

! The question whether normal form proof search ( (ic ) is
complete corresponds to the question whether the cut-rule can
be eliminated (is admissible) in sequent calculus.

ATPHOL’06-[9] – p.260
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Let =⇒+ denote the sequent calculus with cut-rule and =⇒
the sequent calculus without the cut-rule.
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Let =⇒+ denote the sequent calculus with cut-rule and =⇒
the sequent calculus without the cut-rule.
Theorem 3 (Soundness of =⇒ relative to Γ (ic and Γ (+ic )

(a) If Γ =⇒ C then Γ (ic C ↑ .
(b) If Γ =⇒+ C then Γ (+ic C ↑ .
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Sequent Calculus
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Let =⇒+ denote the sequent calculus with cut-rule and =⇒
the sequent calculus without the cut-rule.
Theorem 3 (Soundness of =⇒ relative to Γ (ic and Γ (+ic )

(a) If Γ =⇒ C then Γ (ic C ↑ .
(b) If Γ =⇒+ C then Γ (+ic C ↑ .

Theorem 4 (Completeness of =⇒ relative to Γ (ic and Γ (+ic )
(a) If Γ (ic C ↑ then Γ =⇒ C.
(b) If Γ (+ic C ↑ then Γ =⇒+ C.

ATPHOL’06-[9] – p.261
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Theorem 5 (Cut-Elimination): Cut-elimination holds for the
sequent calculus. In other words: The cut rule is admissible in
the sequent calculus.
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sequent calculus. In other words: The cut rule is admissible in
the sequent calculus.
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Theorem 5 (Cut-Elimination): Cut-elimination holds for the
sequent calculus. In other words: The cut rule is admissible in
the sequent calculus.

If Γ =⇒+ ∆ then Γ =⇒ ∆

Proof non-trivial; main means: nested inductions and case
distinctions over rule applications

ATPHOL’06-[9] – p.262



c©Benzmüller, 2006

Gentzen’s Hauptsatz
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Theorem 5 (Cut-Elimination): Cut-elimination holds for the
sequent calculus. In other words: The cut rule is admissible in
the sequent calculus.

If Γ =⇒+ ∆ then Γ =⇒ ∆

Proof non-trivial; main means: nested inductions and case
distinctions over rule applications

This result qualifies the sequent calculus as suitable for
automating proof search.

ATPHOL’06-[9] – p.262
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Theorem (Normalization for ND):
If Γ ( C then Γ (ic C ↑ .
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If Γ ( C then Γ (ic C ↑ .

Proof sketch:

" Assume Γ ( C.
" Then Γ (+ic C ↑ by completeness of (+ic .
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Applications of Cut-Elimination
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Theorem (Normalization for ND):
If Γ ( C then Γ (ic C ↑ .

Proof sketch:

" Assume Γ ( C.
" Then Γ (+ic C ↑ by completeness of (+ic .
" Then Γ =⇒+ C by completeness of =⇒+ .
" Then Γ =⇒ C by cut-elimination.
" Then Γ (ic C ↑ by soundness of =⇒ .

ATPHOL’06-[9] – p.263
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Natural Deduction
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(with detours)

−→
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Natural Deduction Intercalation Sequent Calculus
( (+ic =⇒+

(with detours) (with roundabout) (with cut)

−→ −→ −→ −→ ↓

←− ←− ←− ←− ←−

( (ic =⇒

(without detours) (without roundabout) (without cut)
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derivation ( ⊥.

Proof sketch:
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Applications of Cut-Elimination
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Theorem (Consistency of ND): There is no natural deduction
derivation ( ⊥.

Proof sketch:
" Assume there is a proof of ( ⊥.
" Then =⇒+ ⊥ by completeness of =⇒+ and (+ic .
" Then =⇒ ⊥ by cut-elimination.
" But =⇒ ⊥ cannot be the conclusion of any sequent rule.
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Summary
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! We have illustrated the connection of
" natural deduction and sequent calculus
" normal form natural deductions and cut-free sequent
calculus.

! Fact: Sequent calculus often employed as meta-theory for
specialized proof search calculi and strategies.

! Question: Can these calculi and strategies be transformed to
natural deduction proof search?
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Some conventions for this part:
! signature Σ contains only the logical constants ¬,∨,Πα unless
stated otherwise.
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Some conventions for this part:
! signature Σ contains only the logical constants ¬,∨,Πα unless
stated otherwise.

! Φ ∗ A := Φ ∪ {A}

! context representation of ND calculi
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NK(Hyp)

Φ (( A
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NK(∧EL)
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Inference rules for NKβ (for richer signatures)
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Alternative: Define logical constants ∧,⇒, Σ, etc. in terms of ¬,∨, Π as
usual and strictly use Leibniz equality instead of primitive equality; then
the above rules are not needed.
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Inference rules for extensionality (rules for ξ, η, f, b)

A
βη
= B Φ (( A

NK(η)
Φ (( B

ATPHOL’06-[10] – p.271



c©Benzmüller, 2006

ND Calculi for HOL
HO

L

AT
Pλ
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Inference rules for extensionality (rules for ξ, η, f, b)
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NK(ξ)

Φ (( (λxα M)
.
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.
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In case of a primitive notion of equality we define respective
extensionality rules also for =.
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! The Calculi NK∗

" The calculus NKβ consists of the inference rules for NKβ for
the provability judgment (( between sets of sentences Φ

and sentences A. (We write (( A for ∅ (( A.) The rule
NK(β) incorporates β-equality into ((. The others
characterize ‘the semantics of the connectives and
quantifiers.
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! The Calculi NK∗

" The calculus NKβ consists of the inference rules for NKβ for
the provability judgment (( between sets of sentences Φ

and sentences A. (We write (( A for ∅ (( A.) The rule
NK(β) incorporates β-equality into ((. The others
characterize ‘the semantics of the connectives and
quantifiers.

" For ∗ ∈ {βη,βξ,βf,βb,βηb,βξb,βfb} we obtain the calculus
NK∗ by adding the respective extensionality rules when
specified in ∗.
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ST(Σ)

Mβfb(Σ)"H(Σ)

NKβfb

Mβηb(Σ)

NKβηb
Mβξb(Σ)

NKβξb
Mβf(Σ)

NKβf

Mβξ(Σ)

NKβξ
Mβη(Σ)

NKβη
Mβb(Σ)

NKβb

Mβ(Σ)

NKβ

ξ

η

η

ηξ

f

ξ

f

b

b

b

b
ξη

full
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! Note that NKβ and NKβfb correspond to the extremes of the
model classes in our landscape of model classes. For
example, NKβfb will be proven sound and complete for Henkin
models, and NKβ will be proven sound and complete for
Mβ(Σ).
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model classes in our landscape of model classes. For
example, NKβfb will be proven sound and complete for Henkin
models, and NKβ will be proven sound and complete for
Mβ(Σ).

! Standard models do not admit (recursively axiomatizable)
calculi that are sound and complete.
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! Note that NKβ and NKβfb correspond to the extremes of the
model classes in our landscape of model classes. For
example, NKβfb will be proven sound and complete for Henkin
models, and NKβ will be proven sound and complete for
Mβ(Σ).

! Standard models do not admit (recursively axiomatizable)
calculi that are sound and complete.

! In the following we will develop the abstract consistency proof
method for HOL (wrt all the different semantic classes M∗(Σ)

in our landscape) and we will analyse soundness and
completeness of each NK∗ with respect to each corresponding
model class M∗(Σ) with the help of the abstract consistency
method.
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! (Soundness for NK∗ )
NK∗ is sound for M∗(Σ) for ∗ ∈ {β,βη,βξ,βf,βb,βηb,βξb,βfb}.
That is, if Φ ((NK∗

C is derivable, thenM |= C for all models
M = (D,@, E , υ) in M∗(Σ) such thatM |= Φ.

Proof: . . . exercise . . .
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! (Soundness for NK∗ )
NK∗ is sound for M∗(Σ) for ∗ ∈ {β,βη,βξ,βf,βb,βηb,βξb,βfb}.
That is, if Φ ((NK∗

C is derivable, thenM |= C for all models
M = (D,@, E , υ) in M∗(Σ) such thatM |= Φ.

Proof: . . . exercise . . .
! (Completeness for NK∗)
Let Φ be a sufficiently Σ-pure set of sentences, A be a
sentence, and ∗ ∈ {β,βη,βξ,βf,βb,βηb,βξb,βfb}. If A is valid in
all models M ∈M∗(Σ) that satisfy Φ, then Φ ((NK∗

A.

Proof: . . . will follow . . .
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That is, if Φ ((NK∗

C is derivable, thenM |= C for all models
M = (D,@, E , υ) in M∗(Σ) such thatM |= Φ.

Proof: . . . exercise . . .
! (Completeness for NK∗)
Let Φ be a sufficiently Σ-pure set of sentences, A be a
sentence, and ∗ ∈ {β,βη,βξ,βf,βb,βηb,βξb,βfb}. If A is valid in
all models M ∈M∗(Σ) that satisfy Φ, then Φ ((NK∗

A.

Proof: . . . will follow . . .
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Derivation of ¬(p ∨ ¬p) (( (p ∨ ¬p)

NK(Hyp)
¬(p ∨ ¬p), p (( ¬(p ∨ ¬p)

NK(Hyp)
¬(p ∨ ¬p), p (( p

NK(∨IL)
¬(p ∨ ¬p), p (( (p ∨ ¬p)

NK(¬E )
¬(p ∨ ¬p), p (( Fo

NK(¬I )
¬(p ∨ ¬p) (( ¬p

NK(∨IR)
¬(p ∨ ¬p) (( (p ∨ ¬p)
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