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Def.: Types

Let 7 be the least set s.t:
oceT

Le T
Va,8€T :(aB)eT
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Def.: Types

Let 7 be the least set s.t:
oceT

Le T
Va,8€T :(aB)eT

We say that a € 7 is a simple type (or type).
() is called a function type.
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Def.: Types

Let 7 be the least set s.t:
oceT

Le T
Va,8€T :(aB)eT

We say that a € 7 is a simple type (or type).
() is called a function type.

The set 7 is defined inductively.

The set 7 is "freely generated".
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Ex.: Freely Generated

Consider the set N = {0,1,2...}.
0eN
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Ex.: Freely Generated

Consider the set N = {0,1,2...}.
0eN
Vn e N:s(n) € N.
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Ex.: Freely Generated

Consider the set N = {0,1,2...}.
0eN
Vn e N:s(n) € N.
Vn : 0 # s(n).
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Ex.: Freely Generated

Consider the set N = {0,1,2...}.
0eN
Vn e N:s(n) € N.
Vn : 0 # s(n).

Vm,n:s(m)=s(n) = m =n.
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Ex.: Freely Generated

Consider the set N = {0,1,2...}.
0eN
Vn e N:s(n) € N.

Vn : 0 # s(n).

Vm,n:s(m) =s(n) = m =n.

The set N is "freely generated".
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Ex.: Freely Generated

Consider the set N = {0,1,2...}.
0eN
Vn e N:s(n) € N.
Vn : 0 # s(n).

Vm,n:s(m) =s(n) = m =n.
The set N is "freely generated".

Contrast Nto Z=1{...,—1,0,1,...}.
Note that Z contains 0 and is closed under successor, but is not the
least such set.
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Ex.: Freely Generated

The set 7 is "freely generated":

0F 1L
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Ex.: Freely Generated

The set 7 is "freely generated":
0F 1L
o 7# (o)
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Ex.: Freely Generated

The set 7 is "freely generated":
0F 1L
o 7# (o)
v # (af)
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Ex.: Freely Generated

The set 7 is "freely generated":
0F 1L
o 7# (o)
v # (af)
(af) = () > a=yAB=26
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Ex.: Types

(o) € T
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Ex.: Types

(o) € T
(o(or)) € T
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Ex.: Types

(o) € T
(o(or)) € T
() €T
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Ex.: Types

o) eT
o(o)) € T
w) eT

T

(
(
(
((oL)e) €
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Ex.: Types

o) eT
o(o)) € T
w) eT
(o)) € T

Is (oce) also a type?

(
(
(
(
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Ex.: Types

o) eT
o(o)) € T
w) eT
(o)) € T

Is (oue) also a type? —no

(
(
(
(
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Ex.: Types

o) eT
o(o)) € T
w) eT
(o)) € T

Is (oue) also a type? —no

(
(
(
(

But we can and will consider it shorthand by replacing missing
parenthesis, associating to the left: (o..) = ((oc)r) # (o(we)).
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Def.: Functions

Let A, B be sets.
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Def.: Functions

Let A, B be sets.
f: B — A :afunction from B to A.
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Def.: Functions

Let A, B be sets.
f: B — A :afunction from B to A.
AB: set of functions from B to A.
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Def.: Functions

Let A, B be sets.
f: B — A :afunction from B to A.
AB: set of functions from B to A.

Assume (only for the moment) that A, B are finite.
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Def.: Functions

Let A, B be sets.
f: B — A :afunction from B to A.
AB: set of functions from B to A.

Assume (only for the moment) that A, B are finite.
Let |A| = m, |B| = n. Then |AB| = m" = |A|BI,
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Def.: Functions

Let A, B be sets.
f: B — A :afunction from B to A.
AB: set of functions from B to A.

Assume (only for the moment) that A, B are finite.
Let |A| = m, |B| = n. Then |AB| = m" = |A|BI,

Example:
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Def.: Functions

Let A, B be sets.
f: B — A :afunction from B to A.
AB: set of functions from B to A.

Assume (only for the moment) that A, B are finite.
Let |A| = m, |B| = n. Then |AB| = m" = |A|BI,

Example:
f:{0,1,2} — {0,1}
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Def.: Functions

Let A, B be sets.
f: B — A :afunction from B to A.
AB: set of functions from B to A.

Assume (only for the moment) that A, B are finite.
Let |A| = m, |B| = n. Then |AB| = m" = |A|BI,

Example:
f:{0,1,2} — {0,1}
f(0),f(1),f(2) € {0,1}
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Def.: Functions

Let A, B be sets.
f: B — A :afunction from B to A.
AB: set of functions from B to A.

Assume (only for the moment) that A, B are finite.
Let |A| = m, |B| = n. Then |AB| = m" = |A|BI,

Example:
f:{0,1,2} — {0,1}
f(0),f(1),f(2) € {0,1}
A=1{0,1},B={0,1,2}
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Def.: Functions

Let A, B be sets.
f: B — A :afunction from B to A.
AB: set of functions from B to A.

Assume (only for the moment) that A, B are finite.
Let |A| = m, |B| = n. Then |AB| = m" = |A|BI,

Example:
f:{0,1,2} — {0,1}
f(0),f(1),f(2) € {0,1}
A=1{0,1},B ={0,1,2}
AB|=2.2.2=23=3
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Ex.: Sets of Functions

LetF = {f:B — Al¥x,y € B:x <y = f(x) < f(y)} C AB,
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Ex.: Sets of Functions

LetF = {f:B — Al¥x,y € B:x <y = f(x) < f(y)} C AB,

F| =7
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Ex.: Sets of Functions

LetF = {f: B — AlVx,y € B:x <y = f(x) <f(y)} C AB.

F| =7
AB | f(0) | f(1) | f(2)
fo€P 1 0 10169 Consider:
SUE R - g : x = 0,y = 1,x < vy, but
¢F | O 1 0 c
x) > f(y) = F.
o 1 1 11 (x) = f(y) =g ¢
gé¢F 1 0 0
¢ F 1 0 1
¢ F 1 1 0
KieF 1 1 1
G ?ﬁm §gVERSITATS ATPHOL06-[3] — p.8
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Ex.: Sets of Functions

LetF = {f: B — AlVx,y € B:x <y = f(x) <f(y)} C AB.

F| =7
A® | £(0) | f(1) | f(2)
Ko e F 0 0 0 Consider-
eF| O 0 1 g : x = 0,y = 1,x . but
ol f(x) = fy) =>g¢F
X s |
cF 0 ] 1 > . .
g¢F 1 0 5
F| =4
¢ F 1 0 1
¢ F 1 ] 5
Ki€F 1 ] 1
AEER UNIVERSITAT
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Ex.: Sets of Labelled Functions

C = {red, blue, green}
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Ex.: Sets of Labelled Functions

C = {red, blue, green}

Fc ={(c,f)lce C,f € F}
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Ex.: Sets of Labelled Functions

C = {red, blue, green}

Fc ={(c,f)lce C,f € F}

Fc|=3-4=12
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Def.: Frames

A frame is a family (D, ).c7 Of nonempty sets s.t:
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Def.: Frames

A frame is a family (D, ).c7 Of nonempty sets s.t:

(©Benzmiiller, 2006

Yo, 3€ T : Dyg C DY
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Def.: Frames

A frame is a family (D, ).c7 Of nonempty sets s.t:
Yo, 3€ T : Dyg C DY

A Frame is called standard if
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Def.: Frames

A frame is a family (D, ).c7 Of nonempty sets s.t:
Yo, 3€ T : Dyg C DY
A Frame is called standard if

Dos =DY? Va,BeT
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Ex.: Frames

Do={1,T}
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Ex.: Frames

Do={1,T}

D, = {1}
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Ex.: Frames

Do={1,T}
DL — {1}

Daﬁ = Dq
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Ex.: Frames

Do={1,T}
D, = {1}
Daﬁ — Dgﬁ

D: the standard frame with D, = { L, T}, D; = {1}
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Ex.: Frames (Contd.)

Consider the set Dy(,,)((0(10)))- IS the set empty?
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Ex.: Frames (Contd.)

Consider the set Dy (,)((0(10)))- IS the set empty? — no!

(©)Benzmiiller, 2006 ATPHOL06-[3] — p.8



Ex.: Frames (Contd.)

Consider the set Dy (,)((0(10)))- IS the set empty? — no!

Claim: Ya € T : D, # 0.
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Ex.: Frames (Contd.)

Consider the set Dy (,)((0(10)))- IS the set empty? — no!

Claim: Ya € T : D, # 0.
Proof: induction on type.

(©)Benzmiiller, 2006 ATPHOL06-[3] — p.8



Ex.: Frames (Contd.)

Consider the set Dy (,)((0(10)))- IS the set empty? — no!

Claim: Ya € T : D, # 0.
Proof: induction on type.

Base: Do = {L, T} £ 0,D; = {1} # 0.
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Ex.: Frames (Contd.)

Consider the set Dy,,)((0(10)))- IS the set empty? — no!

Claim: Ya € T : D, # 0.
Proof: induction on type.

Base: Do = {1, T} # 0,D; = {1} +# 0.
Step: Assume D, # 0 A Dg # (). Want to show: D,z # 0.
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Ex.: Frames (Contd.)

Consider the set Dy,,)((0(10)))- IS the set empty? — no!

Claim: Ya € T : D, # 0.
Proof: induction on type.

Base: Do = {L, T} £ 0,D; = {1} # 0.

Step: Assume D, # 0 A Dg # (). Want to show: D,z # 0.
Since D, # () = da € D,,
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Ex.: Frames (Contd.)

Consider the set Dy,,)((0(10)))- IS the set empty? — no!

Claim: Ya € T : D, # 0.
Proof: induction on type.

Base: Do = {L, T} £ 0,D; = {1} # 0.

Step: Assume D, # 0 A Dg # (). Want to show: D,z # 0.
Since D, # ) = Ja € D,, hence K, € D,3.
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Ex.: Frames (Contd.)

Consider the set Dy,,)((0(10)))- IS the set empty? — no!

Claim: Ya € T : D, # 0.
Proof: induction on type.
Base: Do = {L, T} #0,D; = {1} #£ 0.

Step: Assume D, # 0 A Dg # (). Want to show: D,z # 0.
Since D, # ) = Ja € D,, hence K, € D,3.

(Here K, is the constant function which always returns a. We
will often use this notation for constant functions.)
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Def.: Typed Applicative Structure

A (typed) applicative structure is a tupel
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Def.: Typed Applicative Structure

A (typed) applicative structure is a tupel
(D, @)

where
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Def.: Typed Applicative Structure

A (typed) applicative structure is a tupel
(D, @)

where

D := (Da)act is a family of nonempty sets

(©Benzmiiller, 2006
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Def.: Typed Applicative Structure

A (typed) applicative structure is a tupel
(D, @)

where
D := (D4 )aeT is a family of nonempty sets
Q = (@Ozﬁ : Daﬁ X Dﬁ —> Da)a,ﬁET
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Def.: Typed Applicative Structure

A (typed) applicative structure is a tupel
(D, @)

where
D := (D4 )aeT is a family of nonempty sets
Q = (@Ozﬁ : Daﬁ X Dﬁ —> Da)Oé,ﬁe’]'

Usually we write f@b for @*(f,b) when f € D,g A b € Dg
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Rem.: Currying

The application operator @ in an applicative structure is an ab-

stract version of function application.

AOORN  UNIVERSITAT
mmﬁj‘::“mm DES
24 SAARLANDES ATPHOL06-[3] - p.9

(©Benzmiiller, 2006



Rem.: Currying

The application operator @ in an applicative structure is an abstract
version of function application. It is no restriction to exclusively use
a binary application operator, which corresponds to unary function

application,
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Rem.: Currying

The application operator @ in an applicative structure is an abstract
version of function application. It is no restriction to exclusively use
a binary application operator, which corresponds to unary function
application, since we can define higher-arity application operators
from the binary one by setting f@(al,...,a") = (... (f@al)... @a")
(“Currying”).
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Interesting Properties

Let D be a frame.
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Interesting Properties

Let D be a frame.

Vf,g €Dus (VbeDg:f(b)=gb))=f=g
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Interesting Properties

Let D be a frame.

Vf,g €Dus (VbeDg:f(b)=gb))=f=g

Let (D, @) be an applicative structure. Consider the property:
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Interesting Properties

Let D be a frame.

Vf,g €Dus (VbeDg:f(b)=gb))=f=g

Let (D, @) be an applicative structure. Consider the property:

Vi,g € Dog (Vb€ Dg:f@b=gQb)=f=g.
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Def.: Functional Applicative Structures

Given an applicative structure (D, @).
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Def.: Functional Applicative Structures

Given an applicative structure (D, @). We say that (D, @) is
functional if
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Def.: Functional Applicative Structures

Given an applicative structure (D, @). We say that (D, @) is
functional if

Vo, € T :Vf,g € Dog(Vb € Dy : fGb = g@b) = f =g
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Def.: Full Applicative Structures

Given an applicative structure (D, @).
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Def.: Full Applicative Structures

Given an applicative structure (D, @). We say that (D, @) is full if
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Def.: Full Applicative Structures

Given an applicative structure (D, @). We say that (D, @) is full if

Vo, Vh:Dg— D, 3f € Dysvbe Dg: f@b = h(b)
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Def.: Standard Applicative Structures

An applicative structure A := (D, @) is called standard if
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Def.: Standard Applicative Structures

An applicative structure A := (D, @) is called standard if
it is a frame structure (i.e. @ is function application) where D is
standard.
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Def.: Standard Applicative Structures

An applicative structure A := (D, @) is called standard if

it is a frame structure (i.e. @ is function application) where D is
standard.

Note that the definitions of functional, full, and standard impose re-

strictions on the domains for function types only.
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Rem.: Frames and Applicative Structures _|

It is easy to show that every frame is functional.
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Rem.: Frames and Applicative Structures _|

It is easy to show that every frame is functional.

Furthermore, an applicative structure is standard iff it is a full frame.
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Example: Full Functional Appl. Structure _|

Let D, = {1} Va
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Example: Full Functional Appl. Structure _|

Let D, = {1} Va

Letf@b =1 VfcD,3 VbeDg
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Example: Full Functional Appl. Structure _

Let D, = {1} Va
Letf@b =1 VfcD,3 VbeDg

(D, @) is a full functional applicative structure, but it is not a frame.
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Example: Full Functional Appl. Structure _

Let D, = {1} Va
Letf@b =1 VfcD,3 VbeDg

(D, @) is a full functional applicative structure, but it is not a frame.

1 € Do but 1 ¢ DP> = Do, ¢ D2
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Def.: Homomorphic Appl. Structures

Let (D!, @) and (D?, @2) are applicative structures.
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Def.: Homomorphic Appl. Structures

Let (D!, @!) and (D?, @2?) are applicative structures. We say that «
is a homomorphism from (D!, @) to (D?, @2) if
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Def.: Homomorphic Appl. Structures

Let (D!, @!) and (D?, @2?) are applicative structures. We say that «
is a homomorphism from (D!, @) to (D?, @2) if

Ko : DL — D2 VaeT
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Def.: Homomorphic Appl. Structures

Let (D!, @!) and (D?, @2?) are applicative structures. We say that «
is a homomorphism from (D!, @) to (D?, @2) if

Ko : DL — D2 VaeT
Va,3 €T, VfeDS; VbeDg:

k(f)@%k(b) = k(f@'b)
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Def.: Isomorphic Appl. Structures

We say that (D!, @!) and (D?, @2) are isomorphic if Ji, | s.t:
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Def.: Isomorphic Appl. Structures

We say that (D!, @!) and (D?, @2) are isomorphic if Ji, | s.t:

i is @ homomorphism from (D!, @!) to (D?, @2)
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Def.: Isomorphic Appl. Structures

We say that (D!, @!) and (D?, @2) are isomorphic if Ji, | s.t:
i is @ homomorphism from (D!, @!) to (D?, @2)

j is a homomorphism from (D?, @2) to (D!, @)
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Def.: Isomorphic Appl. Structures

We say that (D!, @!) and (D?, @2) are isomorphic if Ji, | s.t:
i is @ homomorphism from (D!, @!) to (D?, @2)
j is a homomorphism from (D?, @2) to (D!, @)

i and j are inverses (i.e i(j(a%)) = a% and j(i(al)) = a?).
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Def.: Untyped M\-Calculus

Let >~ = (V,C) be a signature where
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Def.: Untyped M\-Calculus

Let >~ = (V,C) be a signature where

Y — countably infinite set of variables
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Def.: Untyped M\-Calculus

Let >~ = (V,C) be a signature where
Y — countably infinite set of variables

C — possibly empty set of constants

(©Benzmiiller, 2006
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Def.: Untyped M\-Calculus

Let >~ = (V,C) be a signature where
Y — countably infinite set of variables
C — possibly empty set of constants

We define the set A = wify- (%) to be the smallest set s.t:
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Def.: Untyped M\-Calculus

Let >~ = (V,C) be a signature where
Y — countably infinite set of variables
C — possibly empty set of constants

We define the set A = wify- (%) to be the smallest set s.t:

x €V thenx € A
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Def.: Untyped M\-Calculus

Let >~ = (V,C) be a signature where
Y — countably infinite set of variables
C — possibly empty set of constants

We define the set A = wify- (%) to be the smallest set s.t:

x €V thenx € A

ccCthenceA
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Def.: Untyped M\-Calculus

Let >~ = (V,C) be a signature where
Y — countably infinite set of variables
C — possibly empty set of constants

We define the set A = wify- (%) to be the smallest set s.t:

x € Vthenx & A
ccCthenceA
Ae N BeAthen (AB) e A
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Def.: Untyped M\-Calculus

Let >~ = (V,C) be a signature where
Y — countably infinite set of variables
C — possibly empty set of constants

We define the set A = wify- (%) to be the smallest set s.t:

x € Vthenxe A
ceCthenceA
Ae N BeAthen (AB) e A
x €V, A e Nthen (Ax.A) € A
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Simply Typed A-Calculus

Let X = (V*,C“) be a signature where
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Simply Typed A-Calculus

Let X = (V*,C“) be a signature where

V* = |J V., — countably infinite sets of variables
aeT
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Simply Typed A-Calculus

Let X = (V*,C“) be a signature where

V* = |J V., — countably infinite sets of variables
acT

C* = |J C, — possibly empty sets of constants
acT
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Simply Typed A-Calculus

Let X = (V*,C“) be a signature where

V¢ = |J V. — countably infinite sets of variables
acT

C* = |J C, — possibly empty sets of constants
acT

We define the set A\* = wifs (X)), = (J A, to be the smallest set s.t:
acT
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Simply Typed A-Calculus

Let X = (V*,C“) be a signature where

V¢ = |J V. — countably infinite sets of variables
acT

C* = |J C, — possibly empty sets of constants
acT

We define the set A\* = wifs (X)), = (J A, to be the smallest set s.t:
acT

X, € V, then x, € A,
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Simply Typed A-Calculus

Let X = (V*,C“) be a signature where

V¢ = |J V. — countably infinite sets of variables
acT

C* = |J C, — possibly empty sets of constants
acT

We define the set A\* = wifs (X)), = (J A, to be the smallest set s.t:
acT

X, € V, then x, € A,

c, € C, thenc, € A,
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Simply Typed A-Calculus

Let X = (V*,C“) be a signature where

V¢ = |J V. — countably infinite sets of variables
acT

C* = |J C, — possibly empty sets of constants
acT

We define the set A\* = wifs (X)), = (J A, to be the smallest set s.t:
acT

X, € V, then x, € A,
c, € C, thenc, € A,
Aag c /\aﬁ, Bﬁ ~ /\5 then (A B) AW
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Simply Typed A-Calculus

Let X = (V*,C“) be a signature where

V* = |J V., — countably infinite sets of variables
acT

C* = |J C, — possibly empty sets of constants
acT

We define the set A\* = wifs (X)), = (J A, to be the smallest set s.t:
acT

Xy €V, then x, € A,

c, € C, thenc, € A,

Aas € Nopg, Bg € Agthen (AB) € A,

Xa € Vo s Ag € Ng then (Ax,.Ag)ga € N
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Notational Conventions

brackets may be avoided: ABC ~~ ((AB) ()
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Notational Conventions

brackets may be avoided: ABC ~~ ((AB) ()

Ax,.Ao, B, C, — dots as far to the right as is consistent:
((Ax,.A0,B,)C,)
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Notational Conventions

brackets may be avoided: ABC ~~ ((AB) ()

Ax,.Ao, B, C, — dots as far to the right as is consistent:
((Ax,.A0,B,)C,)

AX, YA~ (Ax.(Ay.A))
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Notational Conventions

brackets may be avoided: ABC ~~ ((AB) ()

Ax,.Ao, B, C, — dots as far to the right as is consistent:
((Ax,.A0,B,)C,)

AX, YA~ (Ax.(Ay.A))
AXTA s (A1 (o (A A) L)
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Notational Conventions

brackets may be avoided: ABC ~~ ((AB) ()

Ax,.Ao, B, C, — dots as far to the right as is consistent:
((Ax,.A0,B,)C,)

AX, YA~ (Ax.(Ay.A))
AXTA s (A1 (o (A A) L)

AX.A — n is not important
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Notational Conventions

brackets may be avoided: ABC ~~ ((AB) ()

Ax,.Ao, B, C, — dots as far to the right as is consistent:
((Ax,.A0,B,)C,)

AX, YA~ (Ax.(Ay.A))

AXTA ~ (AX1.(- .- (Axp A) L))
AX.A — n is not important
(fFA") ~ (... (FAY) AZ) ... A")
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Def.: Positions in \-Terms

Consider the following term:

(Axx)((Ay.y)(Az.2)))
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Def.: Positions in \-Terms

Consider the following term:

(Axx)((Ay.y)(Az.2)))

The position [212] points to the red y in

(Axx)((Ay.y)(Az.2)))
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Def.: Positions in \-Terms

Consider the following term:

(Axx)((Ay.y)(Az.2)))

The position [212] points to the red y in

(Axx)((Ay.y)(Az.2)))

... Graphics on Blackboard ...
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Def.: Position (Contd.)

The expression
AP

refers to the subterm of A at position p.
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Def.: Position (Contd.)

The expression
AP

refers to the subterm of A at position p.

Example: Consider T := ((Ax.x)((Ay.y)(Az.2)))
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Def.: Position (Contd.)

The expression
AP

refers to the subterm of A at position p.

Example: Consider T := ((Ax.x)((Ay.y)(Az.2)))

T[212] =Y

(©Benzmiiller, 2006
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Def.: Replacement at Position

Replacement of A, in A by a term B is denoted as

ABJ
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Def.: Replacement at Position

Replacement of A, in A by a term B is denoted as
AlBlp

Example:
T x)]212) = ((Axx)((Ay.(fx))(Az.2)))
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Def.: Scope of \-Term

(Ax.A) : We say that A is in the scope of A-binder that binds x.
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Def.: Free and Bound Variables

An occurrence of a variable x in a term A is called bound if it is in
the scope of a A\-binder that binds x.
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Def.: Free and Bound Variables

An occurrence of a variable x in a term A is called bound if it is in
the scope of a A\-binder that binds x.

Otherwise it is called free.
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Def.: Free and Bound Variables

An occurrence of a variable x in a term A is called bound if it is in
the scope of a A\-binder that binds x.

Otherwise it is called free.

We denote the set of all free variables in a A\-term as FV(A).
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Syntax: Simply Typed
A-Calculus (Contd.)
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Def.: Substitution

Substitution is a map
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Def.: Substitution

Substitution is a map

[A/x] : N — A (untyped)
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Def.: Substitution

Substitution is a map

[A/x] : N — A (untyped)
[Aa/xa] : Ao — Mg (typed)
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Def.: Substitution

Substitution is a map

[A/x] : N — A (untyped)
Aa/Xa] : Ao — Ao (typed)
and is defined as follows:
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Def.: Substitution

Substitution is a map

[A/x] : N — A (untyped)
Aa/Xa] : Ao — Ao (typed)
and is defined as follows:

1. [No/Xa]Xa = Ng
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Def.: Substitution

Substitution is a map

[A/x] : N — A (untyped)
Aa/Xa] : Ao — Ao (typed)
and is defined as follows:
1. [No/Xa]Xa = Ng
2. [Na/xa]aﬁ = ag if ag # Xo N\ ag € V@ UCﬁ
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Def.: Substitution

Substitution is a map

[A/x] : N — A (untyped)
Aa/Xa] : Ao — Ao (typed)
and is defined as follows:
1. [No/Xa]Xa = Ng
2. :Na/xa:aﬁ = ag if ag # Xo N\ ag € V@ UCﬁ
3. :Na/xa:(AaaBﬁ) = ([Na/xa]A)([Na/xa]B)

(©)Benzmiiller, 2006 ATPHOL06-[4] — p.11



Def.: Substitution

Substitution is a map

[A/x] : N — A (untyped)
Aa/Xa] : Ao — Ao (typed)
and is defined as follows:
:Na/xa:xa = Ng
:Na/xa:aﬁ = ag if ag # Xo N\ ag € V@ U C@
:Na/xa:(AaaBﬁ) = ([Na/xa]A)([Na/xa]B)
N /Xal W Ay) = (AxaAy)

> W o~
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Def.: Substitution

Substitution is a map

and is defined as follows:

o &~ w0 b =

(©Benzmiiller, 2006

Na/Xa]
Na/Xa]
- (Aaa Bﬁ) —

Na/Xa]

| (Axq-Ay)

Na/Xa]

[(Ayg-Ay) =

- a/xa_

xa#yﬁA(ws%FV

Xa:Na

Aa/Xa] : N — Ao

A/X] A — A

agzagifag#xaA35€V5U65

([Na/xa]A)([Na/xa]B)

(
(
(No

Ao Ay
W%

(untyped)
(typed)
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Def.: Substitution

Substitution is a map

[A/x] : N — A (untyped)
[Aa/xa] : Ao — Mg (typed)

and is defined as follows:

Na/Xa

o &~ w0 b =

- a/xa

xa#yﬁA(ws%FV

Na/Xa]
Na/Xa]

Na/Xa]

Xo = Ng

ag = agifag # x4 Nag € VgUCg
[(AaaBg) = ([Na/xa]A)([Na/xa]B)
[(Axa-Ay) = (AxaAy)

Cus) = Qv Vol

) Vxa & FV(A))

6. [No/xal(Wa-Ay) = (Az5.[Na/xal[25/y5]A5) if xa # ya/
(yg € FV(Ng) Axq € FV(A, )) and z is a fresh’ variable.

(©Benzmiiller, 2006
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Ex.: Substitution

ly/x](Ay.x) — the occurrence of x is free
#+ (A\y.y) — if we replace x with y, the variable y becomes
bound.
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Ex.: Substitution

ly/x](Ay.x) — the occurrence of x is free
#+ (Ay.y) — if we replace x with y, the variable y becomes

bound.

ly/x](Ay.x) — the occurrence of x is free
= (Az[y/x][z/y]x) — we need a fresh variable

= (Az.y) — the occurrence of y is free

AOORN  UNIVERSITAT
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Ex.: Substitution

ly/x](Ay.x) — the occurrence of x is free
#+ (A\y.y) — if we replace x with y, the variable y becomes

bound.

y/x|(Ay.x) — the occurrence of x is free
= (Az|y/x||z/y]x) — we need a fresh variable
= (Az.y) — the occurrence of y is free

Further Examples on Blackboard
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Ex.: Substitution

ly/x](Ay.x) — the occurrence of x is free
#+ (A\y.y) — if we replace x with y, the variable y becomes

bound.

y/x|(Ay.x) — the occurrence of x is free
= (Az|y/x||z/y]x) — we need a fresh variable
= (Az.y) — the occurrence of y is free

Further Examples on Blackboard

Claim: [N/x]A = Aif x ¢ FV(A)
Proof: Induction on A
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Def.: a-Conversion

A M| —q [Ay. y/x]M]
wherey ¢ FV(M)
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Def.: a-Conversion

AxM] =4 [Ay. [y/x]M]
wherey ¢ FV(M)

A="B

if A can be converted to B by renaming the bound variables. We
read A =, B as A is a-equal to B.
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Def.: a-Conversion

AxM] =4 [Ay. [y/x]M]
wherey ¢ FV(M)

A="B

if A can be converted to B by renaming the bound variables. We
read A =, B as A is a-equal to B.

From now on (\y.y) = (Az. z), that is, we will say that two terms are
simply equal, if they are a-equal. Two terms are equal means that
two terms are a-convertable.
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Def.: 5-Conversion

A (-redex is a term ((Ax. A)B). The g-reduct of this redex is [B/x]A.
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Def.: 5-Conversion

A (-redex is a term ((Ax. A)B). The g-reduct of this redex is [B/x]A.

We say M —3 N, le. g-reduces in 1 step, if

M = P[(Ax.A)B],
N = P[B/xA],
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Def.: 5-Conversion

A (-redex is a term ((Ax. A)B). The g-reduct of this redex is [B/x]A.

We say M —3 N, le. g-reduces in 1 step, if

M = P[(Ax.A)B],
N = P[B/xA],

We say M — 5 N, ie. 3-reduces in several steps, if IM!, ... M" for
n > 1such that M = M and N = M" and M' —5 M+,
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Def.: 5-Normal Form

A term is called g-normal if it contains no G-redexes.
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Def.: 5-Normal Form

A term is called g-normal if it contains no G-redexes.

Any term that does not contain A-abstractions is 5-normal.
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Def.: 5-Normal Form

A term is called g-normal if it contains no 3-redexes.

Any term that does not contain A-abstractions is 5-normal.

A term is called 5-head normal if the head term of its outermost
application can not be further reduced.
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Def.: 5-Normal Form

A term is called g-normal if it contains no 3-redexes.

Any term that does not contain A-abstractions is 5-normal.

A term is called 5-head normal if the head term of its outermost
application can not be further reduced.

Any term that does not contain A-abstractions is #-head normal.
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Thm.: Church-Rosser Property for —
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Thm.: Church-Rosser Property for —

If T, B-reduces in multiple steps with one strategy to L, and with
another strategy to R, then there exists a term B,, such that L, and
R. G-reduce in multiple steps to B,,.

A55PN  UNIVERSITAT
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Thm.: Church-Rosser Property for —

If T, B-reduces in multiple steps with one strategy to L, and with
another strategy to R, then there exists a term B,, such that L, and
R. G-reduce in multiple steps to B,,.

Note that B, is not necessarily in normal form.
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Thm.: Church-Rosser Property for —

If T, B-reduces in multiple steps with one strategy to L, and with
another strategy to R, then there exists a term B,, such that L, and
R. G-reduce in multiple steps to B,,.

Note that B, is not necessarily in normal form.

The Church-Rosser Property for — 3 holds for A and A“.
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mmﬁ‘ﬁu,mwﬁ DES
5 SAARLANDES ATPHOL06-[4] — p.11'

(©)Benzmiiller, 2006



Ex.: Church-Rosser Property for —

ﬁﬁ ﬁ\
s(02)  (OF.0)g)a
N /
B
NK
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Termination

Do we always get a G-normal form as we apply 5-reduction?
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Termination

Do we always get a G-normal form as we apply 5-reduction?

Typed Case: Forall A, there exists a unique (up to a-conversion)
B-normal term B such that A —3 B
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Termination

Do we always get a G-normal form as we apply 5-reduction?

Typed Case: Forall A, there exists a unique (up to a-conversion)
B-normal term B such that A —3 B

Untyped Case: Consider the term w = (Ax. xx)

(AX. xx) (AX. xx) —% W
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Def.: n-Conversion

A n-redex is a term of the form (Axg. Fo5x) where x  FV(F). The
n-reduct of this termis F.
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Def.: n-Conversion

A n-redex is a term of the form (Axg. Fo5x) where x  FV(F). The
n-reduct of this termis F.

We say M —, N, ie. n-reduces in 1 step, if

M
N

P[(Axg. Fapx)lp
PIF]p
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Def.: n-Conversion

A n-redex is a term of the form (Axg. Fo5x) where x  FV(F). The
n-reduct of this termis F.

We say M —, N, ie. n-reduces in 1 step, if

|\/| - P[()\Xﬁ. Faﬁx)]p
N = P[F]p
We say M —, N, ie. n-reduces in several steps, if IM*, ... M" for

n > 1suchthat M = M*and N = M" and M' —5 M'*1,
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Def.: 7»-Normal Form

A term is called n-normal if it contains no n-redexes.
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Thm.: Church-Rosser Property for —,
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Thm.: Church-Rosser Property for —,

If T, n-reduces in multiple steps with one strategy to L, and with
another strategy to R, then there exists a term B,, such that L, and
R. n-reduce in multiple steps to B,.
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Thm.: Church-Rosser Property for —,

If T, n-reduces in multiple steps with one strategy to L, and with
another strategy to R, then there exists a term B, such that L, and

R. n-reduce in multiple steps to B,.

The Church-Rosser Property for —, holds for A and A“.
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Def.: 5n-Conversion

—pni=—p U —
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Def.: 5n-Conversion

—on=—p U=y

If M — 3, N we say M [n-reduces in 1 step to N.
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Def.: 5n-Conversion

—pn=—g U —y

If M — 3, N we say M [n-reduces in 1 step to N.

We say M — 3, N, ie. n-reduces in several steps, if IM*, ... M" for

n > 1suchthatM = M and N = M" and M' — 5, M+,

(©Benzmiiller, 2006
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Def.: 5n-Normal Form

A term is gn-normal if it contains no g-redexes and no n-redexes.
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Thm.: Church-Rosser Property for —;,
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Thm.: Church-Rosser Property for —;,

If T, Bn-reduces in multiple steps with one strategy to L., and with
another strategy to R, then there exists a term B,, such that L, and
R, On-reduce in multiple steps to B,,.
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Thm.: Church-Rosser Property for —;,

If T, Bn-reduces in multiple steps with one strategy to L., and with
another strategy to R, then there exists a term B,, such that L, and
R, On-reduce in multiple steps to B,,.

The Church-Rosser Property for — 3, holds for A and A“.
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Thm.: Strong Church-Rosser Property

In A* (simply typed A-calculus) the relations — 3 and — g, have the
strong Church Rosser property:
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Thm.: Strong Church-Rosser Property

In A* (simply typed A-calculus) the relations — 3 and — g, have the
strong Church Rosser property: for very term A, there exists a
unique (up to a-renaming) G-normal resp. Gn-normal term B such

that A; —3 B resp. A, —3, B-.
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Def.: Long 3n-Normal Form

Letn>0,a',....,a" € 7, and 3 € {o,.}. Aterm A of type
(B,a",...,at)isin long Bn-normal form if it is of form

1 1
)\Xal c. Xgn.(hﬁfym...fylA,yl c. A,r?m)

for a variable or constant hz.~ .1, m > 0 and long sn-normal forms
1
Avl’ oy Al
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Def.: Long 3n-Normal Form

Letn>0,a',....,a" € 7, and 3 € {o,.}. Aterm A of type
(B,a",...,at)isin long Bn-normal form if it is of form

1 1
)\Xal c. Xgén.(hﬁfymmfylA,yl c. A,Tm)

for a variable or constant hz.~ .1, m > 0 and long sn-normal forms
A%l, ...,ATl.. Note that this is an inductive definition; the base case

IS when m = 0.
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Def.: Long 3n-Normal Form

Letn>0,a',....,a" € 7, and 3 € {o,.}. Aterm A of type
(B,a",...,at)isin long Bn-normal form if it is of form

1 1
)\Xal c. Xgén.(hﬁfym_._fylA,yl c. A,Tm)

for a variable or constant hz.~ .1, m > 0 and long sn-normal forms

A%l, ...,ATl.. Note that this is an inductive definition; the base case

is when m = 0. Note that if Ax".(hA™) is in long Bn-normal form
then (hAM) is of base type.
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Ex.: Long Gn-Normal Form

Consider the 3n-normal term f,, ).

fL(LL)
T??
)\WLL. (fL<LL)WLL)
T??
Aw,, . (f(Ax,. w,, X))
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Thm.: Long 5n-Normal Form

For every term A there is unique long gn-normal form B such that
A =1 B.
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Rem.: Sn-Head Normal Form

Instead of terms in long Bn-normal form we often use in practice
terms in gn-head normal form.
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Rem.: Sn-Head Normal Form

Instead of terms in long Bn-normal form we often use in practice
terms in Gn-head normal form. Definition is similar to long
Bn-normal, but we do not require the embedded terms Ai,yi to be in
normal form.

&SP UNIVERSITAT

i u:m DES

(© Benzmiller, 2006 =55 SAARLANDES ATPHOL06-[4] — p.12



Notation

Al is the B-normal form of A.
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Notation

Al is the B-normal form of A.

Al, is the n-normal form of A.
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Notation

Al is the B-normal form of A.

Al, is the n-normal form of A.

A| is the Bn-normal form of A.
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Notation

| g is the g-normal form of A.
| i1s the n-normal form of A.

| is the Bn-normal form of A.

> > > P

| is the long Bn-normal form of A.
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Semantics: > -Evaluations
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Ex.: An Interesting Applicative Structure

Do := {Aq € Ao Alis closed}.

Is D, non-empty for all a?
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Ex.: An Interesting Applicative Structure

Do := {Aq € Ao Alis closed}.

Is D, non-empty for all a?
IfC, A0 and C, # 0, thenVa € T.A, # 0.
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Ex.: An Interesting Applicative Structure

Do := {Aq € Ao Alis closed}.

Is D, non-empty for all a?
IfC, A0 and C, # 0, thenVa € T.A, # 0.

Is D,z a set of functions? (ie. D5 C (D,)"??) — No!
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Ex.: An Interesting Applicative Structure

Do := {Aq € Ao Alis closed}.

Is D, non-empty for all a?

IfC, A0 and C, # 0, thenVa € T.A, # 0.

Is D,z a set of functions? (ie. D5 C (D,)"??) — No!
Is (Ax,x) € D,,? — Yes!
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Ex.: An Interesting Applicative Structure

Do := {Aq € Ao Alis closed}.

Is D, non-empty for all a?

IfC, A0 and C, # 0, thenVa € T.A, # 0.

Is D,z a set of functions? (ie. D5 C (D,)"??) — No!
Is (Ax,x) € D,,? — Yes!

D = (Dq)aeT is NOt a frame!
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Ex.: An Interesting Applicative Structure

Do := {Aq € Ao Alis closed}.

Is D, non-empty for all a?

IfC, A#0and C, # 0, thenVa € T.A\, # 0.

Is D,z a set of functions? (ie. D5 C (D,)"??) — No!
Is (Ax,x) € D,,? — Yes!

D = (Da)acr is not a frame!

It requires a specific application operator @ : D3 x Dg — D,
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Ex.: An Interesting Applicative Structure

Do := {Aq € Ao Alis closed}.

Is D, non-empty for all a?

IfC, A#0and C, # 0, thenVa € T.A\, # 0.

Is D,z a set of functions? (ie. D,s C (D,)”??) — No!

Is (Ax,x) € D,,? — Yes!

D = (Dq)aeT is NOt a frame!

It requires a specific application operator @ : D3 x Dg — D,

If A, is non-empty for all « € 7, then < D, @ > is an applicative
structure.
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EXx.: Interpretation of Terms

Syntax  Semantics < D,Q@ >
(Ax,.X)
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EXx.: Interpretation of Terms

Syntax  Semantics < D,Q@ >
(Ax,.X) (Ax,. %)
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EXx.: Interpretation of Terms

Syntax  Semantics < D,Q@ >
(AX,.X) (Ax,.X) e D,

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.13



EXx.: Interpretation of Terms

Syntax  Semantics < D,Q@ >
(AX,.X) (Ax,.X) e D,
Ye
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EXx.: Interpretation of Terms

Syntax  Semantics < D,Q@ >
(AX,.X) (Ax,.X) e D,
Y. p(y)
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EXx.: Interpretation of Terms

Syntax  Semantics < D,Q@ >
(AX,.X) (Ax,.X) c D,
Y. P(y) c D,
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EXx.: Interpretation of Terms

Syntax  Semantics < D,Q@ >
(AX,.X) (Ax,.X) e D,

Y, o(y) e D,
a, € C
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EXx.: Interpretation of Terms

Syntax  Semantics < D,Q@ >
(AX,.X) (Ax,.X) e D,

Y. ©(y) e D,
a, € C a
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EXx.: Interpretation of Terms

Syntax  Semantics < D,Q@ >
(AX,.X) (Ax,.X) e D,

Y. o(y) e D,
a, € C a c D,
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EXx.: Interpretation of Terms

Syntax  Semantics < D,Q@ >
(AX,.X) (Ax,.X) e D,

Y. ©(y) e D,
a, € C a c D,
(Ax,.X)a,
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EXx.: Interpretation of Terms

Syntax  Semantics < D,Q@ >
(Ax,.X) (Ax,. %) D,
i o(y) €D,
a, € C a c D,
(Ax,.X)a, (Ax,.x)@a,

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.13



EXx.: Interpretation of Terms

Syntax  Semantics < D,Q@ >
(Ax,.X) (Ax,. %) D,
i o(y) €D,
a, € C a c D,
(Ax,.X)a, (Ax,.x)@a, € D,

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.13



Ex.: Interpretation of Terms

Syntax  Semantics < D,Q@ >
(AX,.X) (Ax,.X) c D,
i o(y) €D,
a, € C a c D,
(Ax,.x)a, (Ax,.x)@a, c D,

Remark: The variable y, is a non-closed well-formed formula of
type .. We need an assignment ¢, : V, — D, to give it a meaning.

&SP UNIVERSITAT

i u:m DES

(©Benzmiiller, 2006 215V SAARLANDES ATPHOL06-[5] — p.13:



Ex.: Interesting Applicative Structures |

Let D, |g:= {An € Ay|Alisclosed and A is in 3-normal form }
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Ex.: Interesting Applicative Structures |

Let D, |g:= {An € Ay|Alisclosed and A is in 3-normal form }
Let D := (Do |8)acT
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Ex.: Interesting Applicative Structures |

Let D, |g:= {An € Ay|Alisclosed and A is in 3-normal form }
Let D := (Do |8)acT
Let @55 : D,s x Ds — D, be defined by

Fl6@05Gs = (FG) |y

forall F,s € Dys and G5 € Dy.
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Ex.: Interesting Applicative Structures |

Let D, |g:= {An € Ay|Alisclosed and A is in 3-normal form }
Let D := (Do |8)acT
Let @55 : D,s x Ds — D, be defined by

Fl6@05Gs = (FG) |y

forall F,s € Dys and G5 € Dy.

Qf = (@55)7567
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Ex.: Interesting Applicative Structures

Let D, |g:= {An € Ay|Alisclosed and A is in 3-normal form }
Let D := (Do |8)acT
Let @55 : D5 x Ds — D, be defined by

Fl6@05Gs = (FG) |y

forall F,s € Dys and G5 € Dy.

Qf = (@55)7567

Claim: If C, # ) and C, # 0 (i.e., at least one constant for each base

type is given), then (D, @”) is an applicative structure.
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Ex.: Interesting Applicative Structures |

Proof:

Is D, |g nonempty for all o« € 77
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Ex.: Interesting Applicative Structures

Proof:
Is D, |g nonempty for all o« € 77
Yes! This follows since C, # 0 and C, # 0 .
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Ex.: Interesting Applicative Structures

Proof:
Is D, |g nonempty for all o« € 77
Yes! This follows since C, # 0 and C, # 0 .

Is F 5@ :Gs € Dy |57
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Ex.: Interesting Applicative Structures

Proof:
Is D, |g nonempty for all o« € 77
Yes! This follows since C, # 0 and C, # 0 .

Is F 5@ :Gs € Dy |57

Let’s check: ny(g@g(SG(g — (F G) lﬁE D,y lﬁ
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Ex.: Interesting Applicative Structures |

Let Dy, | g:= {Aa € Ao| Alis closed and A is in 37n-normal form }
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Ex.: Interesting Applicative Structures |

Let Dy, | g:= {Aa € Ao| Alis closed and A is in 37n-normal form }
Let D := (Do 1gn)acT
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Ex.: Interesting Applicative Structures |

Let Dy, | g:= {Aa € Ao| Alis closed and A is in 37n-normal form }

Let D := (D, lﬁn)aeT
Let @fg : D.,s x Ds — D be defined by

F6@01Gs = (FG) |

forall F,s € Dys and G5 € Dy.
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Ex.: Interesting Applicative Structures |

Let Dy, | g:= {Aa € Ao| Alis closed and A is in 37n-normal form }

Let D := (D, lﬁn)aeT
Let @fg : D.,s x Ds — D be defined by

F6@01Gs = (FG) |

forall F,s € Dys and G5 € Dy.

@ = (@07) ser
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Ex.: Interesting Applicative Structures

Let Dy, | g:= {Aa € Ao| Alis closed and A is in 37n-normal form }

Let D := (D, lﬁn)aeT
Let @fg : D.,s x Ds — D be defined by

F6@01Gs = (FG) |

forall F,s € Dys and G5 € Dy.

@ = (@07) ser

Claim: If C, # ) and C, # 0 (i.e., at least one constant for each base

type is given), then (D, @°7) is an applicative structure.
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Ex.: Interesting Applicative Structures |

Proof:

...analogous ...
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Def.: Variable Assignment

Let A := (D, @) be an applicative structure.
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Def.: Variable Assignment

Let A := (D, @) be an applicative structure.

A typed function o:V — D := (¢,: Vo — Dy )act is called a
variable assignment into A.
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Def.: Variable Assignment

Let A := (D, @) be an applicative structure.

A typed function o:V — D := (¢,: Vo — Dy )act is called a
variable assignment into A.

Given a variable assignment o, variable X, and value a € D,
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Def.: Variable Assignment

Let A := (D, @) be an applicative structure.

A typed function o:V — D := (¢,: Vo — Dy )act is called a
variable assignment into A.

Given a variable assignment o, variable X, and value a € D, we
use p, |a/X| to denote the variable assignment with
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Def.: Variable Assignment

Let A := (D, @) be an applicative structure.

A typed function o:V — D := (¢,: Vo — Dy )act is called a
variable assignment into A.

Given a variable assignment o, variable X, and value a € D, we
use p, |a/X| to denote the variable assignment with

(0, [a/X])(X) = a
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Def.: Variable Assignment

Let A := (D, @) be an applicative structure.

A typed function o:V — D := (¢,: Vo — Dy )act is called a
variable assignment into A.

Given a variable assignment o, variable X, and value a € D, we
use p, |a/X| to denote the variable assignment with

(0, [a/X])(X) = a

and
(0, [a/X])(Y) = ¢(Y)

for variables Y other than X.
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Some Assumptions

From now on, we assume the signature >, = (V,C) to be infinite
for each type «.
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Some Assumptions

From now on, we assume the signature >, = (V,C) to be infinite
for each type a. Furthermore, we assume there is a particular
cardinal Ny such that ¥, has cardinality X for every type a.
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Some Assumptions

From now on, we assume the signature >, = (V,C) to be infinite
for each type a. Furthermore, we assume there is a particular
cardinal ¥ such that >, has cardinality X, for every type a. Since
V is countable, this implies wif,(¥) := A“ and

cwif, (X)) := {A € N\“|Aclosed} have cardinality ¥, for each type «a.
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Some Assumptions

From now on, we assume the signature >, = (V,C) to be infinite
for each type a. Furthermore, we assume there is a particular
cardinal ¥ such that >, has cardinality X, for every type a. Since
V is countable, this implies wif,(¥) := A“ and

cwif, (X)) := {A € N\“|Aclosed} have cardinality ¥, for each type «a.
Also, whether or not primitive equality is included in the signature,
there can only be finitely many logical constants in X, for each

particular type «.
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Some Assumptions

From now on, we assume the signature >, = (V,C) to be infinite
for each type a. Furthermore, we assume there is a particular
cardinal ¥ such that >, has cardinality X, for every type a. Since
V is countable, this implies wif,(¥) := A“ and

cwif, (X)) := {A € N\“|Aclosed} have cardinality ¥, for each type «a.
Also, whether or not primitive equality is included in the signature,
there can only be finitely many logical constants in X, for each
particular type «. Thus, the cardinality of the set of parameters in
> . Is also N.. In the countable case, N. IS Ny.
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> =Evaluations

Let 2 be a signature.
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> -Evaluations

Let > be a signature. We build on the notion of applicative
structures to define > -evaluations, where the evaluation function is
assumed to respect application and (3-conversion.
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> =Evaluations

Let > be a signature. We build on the notion of applicative
structures to define > -evaluations, where the evaluation function is
assumed to respect application and (3-conversion.

In such models, a function is not uniquely determined by its
behavior on all possible arguments.
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> -Evaluations

Let > be a signature. We build on the notion of applicative
structures to define > -evaluations, where the evaluation function is
assumed to respect application and (3-conversion.

In such models, a function is not uniquely determined by its
behavior on all possible arguments.

Such models can be constructed, for example, by labeling for
functions (e.g., a green and a red version of a function f) in order to
differentiate between them, even though they are functionally
equivalent.
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> -Evaluations

Let £&: F7(V; D) — Fr(wif(X),D) be a total function, where
Fr(V;D) is the set of variable assignments and Fr(wff(X), D) is
the set of typed functions mapping terms into objects in D.
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> -Evaluations

Let £&: F7(V; D) — Fr(wif(X),D) be a total function, where
Fr(V;D) is the set of variable assignments and F7(wff(¥X), D) is
the set of typed functions mapping terms into objects in D. We will
write the argument of £ as a subscript. So, for each assignment ¢,

we have a typed function

Ep wif(X) — D
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> -Evaluations

Let £&: F7(V; D) — Fr(wif(X),D) be a total function, where
Fr(V;D) is the set of variable assignments and F7(wff(¥X), D) is
the set of typed functions mapping terms into objects in D. We will
write the argument of £ as a subscript. So, for each assignment ¢,

we have a typed function
Ep wif(X) — D

What properties shall £ fulfill?
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Def.: Evaluation Function

& is called an evaluation function for an applicative structure
A= (D,Q)
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Def.: Evaluation Function

& is called an evaluation function for an applicative structure
A = (D, Q) if for any assignments ¢ and ¢ into .4, we have
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Def.: Evaluation Function

& is called an evaluation function for an applicative structure
A = (D, Q) if for any assignments ¢ and ¢ into .4, we have
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Def.: Evaluation Function

& is called an evaluation function for an applicative structure
A = (D, Q) if for any assignments ¢ and ¢ into .4, we have

( ) = E,(F)Q&,(A) for any F € wrff,_,3(X) and
A € wff,(X) and types « and (.
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Def.: Evaluation Function

£ is called an evaluation function for an applicative structure
A = (D, Q) if for any assignments ¢ and ¢ into .4, we have

2. E,(FA) =E&,(F)Q&E,(A) for any F € wff,_.3(X) and
A € wif,(X) and types « and 3.

3. E,(A) =&y (A) for any type a and A € wff,(X), whenever ¢
and v coincide on FV(A).
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Def.: Evaluation Function

£ is called an evaluation function for an applicative structure
A = (D, Q) if for any assignments ¢ and ¢ into .4, we have
2. E,(FA) =E&,(F)Q&E,(A) for any F € wff,_.3(X) and
A € wif,(X) and types « and 3.

3. E,(A) =&y (A) for any type a and A € wff,(X), whenever ¢
and v coincide on FV(A).

4. E,(A) = EL(Aly) forall A € wif, ().
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Def.: > -Evaluation

We call 7 := (D, Q, ) a X-evaluation if (D, @) is an applicative
structure and £ is an evaluation function for (D, @). We call
E,(Ay) € D, the denotation of A, in J for .
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Def.: > -Evaluation

We call 7 := (D, @, ) a ~-evaluation if (D, @) is an applicative
structure and £ is an evaluation function for (D, @). We call
E,(Ay) € D, the denotation of A, in J for .

Remark: since £ is a function, the denotation in 7 is unique.

However, for a given applicative structure A, there may be many
possible evaluation functions.
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Def.: > -Evaluation

We call 7 := (D, @, ) a ~-evaluation if (D, @) is an applicative
structure and £ is an evaluation function for (D, @). We call
E,(Ay) € D, the denotation of A, in J for .

Remark: since £ is a function, the denotation in 7 is unique.

However, for a given applicative structure A, there may be many
possible evaluation functions.

If A is a closed formula, then £,(A) is independent of ¢, since

Free(A) = (). In these cases we sometimes drop the reference to ¢
from £,(A) and simply write £(A).
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Def.: Functional/Full/Standard > -Eval. _

We call a X-evaluation J := (D, @, £) functional [full, standard] if
the applicative structure (D, @) is functional [full, standard].
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Def.: Functional/Full/Standard > -Eval. _

We call a X-evaluation J := (D, @, £) functional [full, standard] if
the applicative structure (D, @) is functional [full, standard].

We say J is a >-evaluation over a frame if (D, @) is a frame.
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What is the Idea?

> -evaluations generalize > -evaluations over frames, which are the
basis for Henkin models, to the non-functional case.
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What is the Idea?

> -evaluations generalize > -evaluations over frames, which are the
basis for Henkin models, to the non-functional case.

The existence of an evaluation function that meets the conditions
as presented seems to be the weakest situation where one would
like to speak of a model.
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What is the Idea?

> -evaluations generalize > -evaluations over frames, which are the
basis for Henkin models, to the non-functional case.

The existence of an evaluation function that meets the conditions
as presented seems to be the weakest situation where one would
like to speak of a model.

We cannot in general assume the evaluation function is uniquely
determined by its values on constants as this requires functionality.
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What is the Idea?

> -evaluations generalize > -evaluations over frames, which are the
basis for Henkin models, to the non-functional case.

The existence of an evaluation function that meets the conditions
as presented seems to be the weakest situation where one would
like to speak of a model.

We cannot in general assume the evaluation function is uniquely
determined by its values on constants as this requires functionality.
Example: two evaluation functions £ and £’ on the same
applicative structure may agree on all constants, but give a different
value to the term (AX,.X).
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Lemma: 2 -Evaluations respect 5-Equality _

Let 7 := (D, @, £) be a X-evaluation and A=3B. For all
assignments ¢ into (D, @), we have
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Lemma: 2 -Evaluations respect 5-Equality _

Let 7 := (D, @, £) be a X-evaluation and A=3B. For all
assignments ¢ into (D, @), we have

Ep(A) = = &4(B)
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Lemma: 2 -Evaluations respect 5-Equality _

Let 7 := (D, @, £) be a X-evaluation and A=3B. For all
assignments ¢ into (D, @), we have

Eo(A) = E,(Alg) Ep(Blg) = Ep(B)
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Lemma: 2 -Evaluations respect 5-Equality _

Let 7 := (D, @, £) be a X-evaluation and A=3B. For all
assignments ¢ into (D, @), we have

Eq(A) = E,(Aly) = E,(Bly) = £,(B)
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Thm.: Substitution-Value Lemma

Let 7 .= (D, Q, &) be a -evaluation and ¢ be an assignment into
J.
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Thm.: Substitution-Value Lemma

Let 7 .= (D, Q, &) be a -evaluation and ¢ be an assignment into
J. For any types a and 3, variables X3, and formulae A € wrf, (X)
and B € wff3(X), we have
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Thm.: Substitution-Value Lemma

Let 7 .= (D, Q, &) be a -evaluation and ¢ be an assignment into
J. For any types a and 3, variables X3, and formulae A € wrf, (X)
and B € wff3(X), we have

Eoe.B) /x| (A) = EL(|B/X]A)
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Prf.: Substitution-Value Lemma

Proof:
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Prf.: Substitution-Value Lemma

Proof: Using the fact that £ respects -equality and the other
properties of £, we can compute
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Prf.: Substitution-Value Lemma

Proof: Using the fact that £ respects -equality and the other
properties of £, we can compute

Eple.B)/X|(A) =
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Prf.: Substitution-Value Lemma

Proof: Using the fact that £ respects -equality and the other
properties of £, we can compute

Eole,ByxI(A) = E,le,)/x(AXKA)X)
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Prf.: Substitution-Value Lemma

Proof: Using the fact that £ respects -equality and the other
properties of £, we can compute

Eole,ByxI(A) = E,le,)/x(AXKA)X)
= &y le,B)/X|(AKA)QE, 1o (B)/x] (X)
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Prf.: Substitution-Value Lemma

Proof: Using the fact that £ respects -equality and the other
properties of £, we can compute

Eole,ByxI(A) = E,le,)/x(AXKA)X)
= &y le,B)/X|(AKA)QE, 1o (B)/x] (X)
= £, (0\X.A)Q&,(B)
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Prf.: Substitution-Value Lemma

Proof: Using the fact that £ respects -equality and the other
properties of £, we can compute

Eole,ByxI(A) = E,le,)/x(AXKA)X)
= &y e, (B)/X|(AKA)QE, 1o (B)/x](X)
= £, (0\X.A)Q&,(B)
— 5¢((AXA) )
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Prf.: Substitution-Value Lemma

Proof: Using the fact that £ respects -equality and the other
properties of £, we can compute

Eole.BX(A) = & e, )X ((AKA)X)
= o le,B)/X|AKA)AE, e (B)/x] (X)
= £, (0\X.A)Q&,(B)
— 5¢((AXA) )
= &y([B/X]A).
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Weaker Notions of Functionality

We will consider two weaker notions of functionality. These forms
are often discussed in the literature (cf. [HindleySeldin86]).
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Weaker Notions of Functionality

We will consider two weaker notions of functionality. These forms
are often discussed in the literature (cf. [HindleySeldin86]).

n-functionality simply means the evaluation respects
n-conversion.
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Weaker Notions of Functionality

We will consider two weaker notions of functionality. These forms
are often discussed in the literature (cf. [HindleySeldin86]).

n-functionality simply means the evaluation respects
n-conversion.

¢-functionality means we have functionality (only) with respect
to A-abstractions.
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Def.: n-Functional

Let 7 = (D, @, ) be a X-evaluation.
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Def.: n-Functional

Let 7 = (D, @, ) be a X-evaluation.
We say 7 is n-functional if
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Def.: n-Functional

Let 7 = (D, @, ) be a X-evaluation.
We say 7 is n-functional if

Ep(A) = Ep(Alg,)

for any type «, formula A € wff,(X), and assignment ¢.
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Def.: £-Functional

Let 7 = (D, @, ) be a X-evaluation.
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Def.: £-Functional

Let 7 = (D, @, ) be a X-evaluation. We say J is ¢-functional if
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Def.: £-Functional

Let 7 = (D, @, ) be a X-evaluation. We say J is ¢-functional if
forall o, 3 € 7, M, N € wifg(X), assignments ¢, and variables X,,
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Def.: £-Functional

Let 7 = (D, @, ) be a X-evaluation. We say J is ¢-functional if
forall o, 3 € 7, M, N € wifg(X), assignments ¢, and variables X,,

Eo(AXawMp) = E,(AXaeNp)
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Def.: £-Functional

Let 7 = (D, @, ) be a X-evaluation. We say J is ¢-functional if
forall o, 3 € 7, M, N € wifg(X), assignments ¢, and variables X,,

Eo(MKaeMg) = E,(AX0eN )

whenever
Epla/x] (M) = &, 12/x7(N)

for every a € D,,.
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Lemma: Functionality and 7

Let 7 .= (D, @, &) be a functional X-evaluation.
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Lemma: Functionality and 7

Let 7 .= (D, @, &) be a functional X-evaluation.

1. For any assignment ¢ into J and F € wff,_.3(X) where
Xao ¢ Free(F), we have
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Lemma: Functionality and 7

Let 7 .= (D, @, &) be a functional X-evaluation.

1. For any assignment ¢ into J and F € wff,_.3(X) where
Xao ¢ Free(F), we have

E, (MK FX) = E,(F)
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Lemma: Functionality and 7

Let 7 .= (D, @, &) be a functional X-evaluation.
1. For any assignment ¢ into J and F € wff,_.3(X) where
Xao ¢ Free(F), we have

E, (MK FX) = E,(F)

2. If a formula A n-reduces to B in one step, then for any
assignment ¢ into 7, we have
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Lemma: Functionality and 7

Let 7 .= (D, @, &) be a functional X-evaluation.
1. For any assignment ¢ into J and F € wff,_.3(X) where
Xao ¢ Free(F), we have

E, (MK FX) = E,(F)

2. If a formula A n-reduces to B in one step, then for any
assignment ¢ into 7, we have
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Lemma: Functionality and 7

Let 7 .= (D, @, &) be a functional X-evaluation.

1. For any assignment ¢ into J and F € wff,_.3(X) where
Xao ¢ Free(F), we have

E, (MK FX) = E,(F)

2. If a formula A n-reduces to B in one step, then for any
assignment ¢ into 7, we have

Proof: Exercise
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Lemma: Functionality and n+¢

Let 7 .= (D, @, &) be a X-evaluation.
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Lemma: Functionality and n+¢

Let 7 := (D, @, ) be a L-evaluation. Then 7 is functional iff it is
both n-functional and £-functional.
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Lemma: Functionality and n+¢

Let 7 := (D, @, ) be a L-evaluation. Then 7 is functional iff it is
both n-functional and £-functional.

Proof: Exercise
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Logical Constants in Signature

Let X := (V,C) be a signature.
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Logical Constants in Signature

Let X := (V,C) be a signature.

The following logical constants may or may not be in the set C of
constants:
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Logical Constants in Signature

Let X := (V,C) be a signature.

The following logical constants may or may not be in the set C of
constants:

To; J—o» 100 vooo; /\0007 o005 <000
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Logical Constants in Signature

Let X := (V,C) be a signature.

The following logical constants may or may not be in the set C of
constants:

Tm J—o» 100 vooo; /\0007 o005 <000

n§<oa)(|_|a|:oa ~ VXQFX), Z§<0a)(ZaFoa ~ ElXaFX)
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Logical Constants in Signature

Let X := (V,C) be a signature.

The following logical constants may or may not be in the set C of
constants:

Tm J—o» 100 vooo; /\0007 o005 <000

n§<oa)(|_|a|:oa ~ VXQFX), Z§<0a)(ZaFoa ~ ElXaFX)
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Logical Constants in Signature

Let X := (V,C) be a signature.

The following logical constants may or may not be in the set C of
constants:

Tm J—o» 100 vooo; /\0007 o005 <000

n§<oa)(|_|a|:oa ~ VXQFX), Z§<0a)(ZaFoa ~ ElXaFX)

forall o € T
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Once More: Cantor’s Theorem

For any set A,

Al <IP(A)
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Once More: Cantor’s Theorem

For any set A,

Al <IP(A)

i.e., -dg : A — P(A) with g surjective.
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Once More: Cantor’s Theorem

Assume the set A is associated with ..
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Once More: Cantor’s Theorem

Assume the set A is associated with .. Then P(A) has type o, i.e.
the type of "sets" (or characteristic functions) over «.
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Once More: Cantor’s Theorem

Assume the set A is associated with .. Then P(A) has type o, i.e.
the type of "sets" (or characteristic functions) over «.

Do,
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Once More: Cantor’s Theorem

Assume the set A is associated with .. Then P(A) has type o, i.e.
the type of "sets" (or characteristic functions) over «.
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Once More: Cantor’s Theorem

Assume the set A is associated with .. Then P(A) has type o, i.e.
the type of "sets" (or characteristic functions) over «.

D,, = DY
— {J—vT}DL
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Once More: Cantor’s Theorem

Assume the set A is associated with .. Then P(A) has type o, i.e.
the type of "sets" (or characteristic functions) over «.

D,, = DY
— {J—vT}DL
= {f|f:D, - {L, T}}
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Once More: Cantor’s Theorem

Assume the set A is associated with .. Then P(A) has type o, i.e.
the type of "sets" (or characteristic functions) over «.

D,, = D2

_ (1, TD
{flf:D, = {L, T}}
{X|XCcD, }

10
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Once More: Cantor’s Theorem

Assume the set A is associated with .. Then P(A) has type o, i.e.
the type of "sets" (or characteristic functions) over «.

Do, = Dg"

_ {J_)T}DL
{flf:D, = {L, T}}
{X|XCD }
= P(D.)

10
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X
@)
=

N
v.

Once More: Cantor’s Theorem

We can now formulate Cantor’s Theorem with typed terms (as seen
before):
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X
@)
=

N
v.

Once More: Cantor’s Theorem

We can now formulate Cantor’s Theorem with typed terms (as seen
before):

—3go, Vo, X, : gx = f
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X
@)
=

N
v.

Once More: Cantor’s Theorem

We can now formulate Cantor’s Theorem with typed terms (as seen
before):

—3go, Vo, X, : gx = f

which is shorthand for:
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X
@)
=

N
v.

Once More: Cantor’s Theorem

We can now formulate Cantor’s Theorem with typed terms (as seen
before):

—3go, Vo, X, : gx = f

which is shorthand for:

oo Z{o(on (Aou Mifaton) (Mot Tior) (W fonen) @) ))
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N
v.

Once More: Cantor’s Theorem

We can now formulate Cantor’s Theorem with typed terms (as seen
before):

—3go, Vo, X, : gx = f

which is shorthand for:

oo Tlor) (Mo Meloton) (MorTogan (M- =fonyon @)

Note: for this term to be in the set cwff, (X ), the constants
150, Zgzg (010))’ I‘Igzo(m)), >“ and =° have to be in the set C.
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Once More: Cantor’s Theorem

Proof:
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Once More: Cantor’s Theorem

Proof: Assume such a function g exists.
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Once More: Cantor’s Theorem

Proof: Assume such a function g exists.
Let f = {x | x &€ gx} that is f = (\x,.—gxx).
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Once More: Cantor’s Theorem

Proof: Assume such a function g exists.
Let f = {x | x € gx} thatis f = (\x,.—gxx).
g IS surjective,
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Once More: Cantor’s Theorem

Proof: Assume such a function g exists.
Let f = {x | x € gx} thatis f = (\x,.—gxx).
g IS surjective, hence

(Jy. : gy = [Ax.—gxx])

(©Benzmiiller, 2006

ATPHOL06-[5] — p.15



Once More: Cantor’s Theorem

Proof: Assume such a function g exists.
Let f = {x | x € gx} thatis f = (\x,.—gxx).
g IS surjective, hence

(Jy. : gy = [Ax.—gxx])

hence
(gyy < —gyy)
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Once More: Cantor’s Theorem

Proof: Assume such a function g exists.
Let f = {x | x € gx} thatis f = (\x,.—gxx).
g IS surjective, hence

(Jy. : gy = [Ax.—gxx])

hence
(gyy < —gyy)

Contradiction!

(©Benzmiiller, 2006

ATPHOL06-[5] — p.15



Once More: Cantor’s Theorem

Proof: Assume such a function g exists.
Let f = {x | x € gx} thatis f = (\x,.—gxx).
g IS surjective, hence

(Jy. : gy = [Ax.—gxx])

hence
(gyy < —gyy)

Contradiction!

Note that the proof uses —.
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Def.: Properties of Logical Constants

Let (D, @) be an applicative structure and letv: D, — {T,F} be a
function (for given T # F).
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Def.: Properties of Logical Constants

Let (D, @) be an applicative structure and letv: D, — {T,F} be a
function (for given T # F). For each logical constant c3 and for
a € Dg, we define the proposition £.(()a) with respect to v:
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Def.: Properties of Logical Constants

Let (D, @) be an applicative structure and letv: D, — {T,F} be a
function (for given T # F). For each logical constant c3 and for
a € Dg, we define the proposition £.(()a) with respect to v:
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Def.: Properties of Logical Constants

Let (D, @) be an applicative structure and letv: D, — {T,F} be a
function (for given T # F). For each logical constant c3 and for
a € Dg, we define the proposition £.(()a) with respect to v:
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Def.: Properties of Logical Constants

Let (D, @) be an applicative structure and letv: D, — {T,F} be a
function (for given T # F). For each logical constant c3 and for
a € Dg, we define the proposition £.(()a) with respect to v:

C 6] £.(()a) holds when
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Def.: Properties of Logical Constants

Let (D, @) be an applicative structure and letv: D, — {T,F} be a
function (for given T # F). For each logical constant c3 and for
a € Dg, we define the proposition £.(()a) with respect to v:

C 6] £.(()a) holds when

A55PN  UNIVERSITAT

(© Benzmiiller, 2006 &Y SAARLANDES ATPHOL06-[6] — p.15!



Def.: Properties of Logical Constants

Let (D, @) be an applicative structure and letv: D, — {T,F} be a
function (for given T # F). For each logical constant c3 and for
a € Dg, we define the proposition £.(()a) with respect to v:

C 6] £.(()a) holds when
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Def.: Properties of Logical Constants

Let (D, @) be an applicative structure and letv: D, — {T,F} be a
function (for given T # F). For each logical constant c3 and for
a € Dg, we define the proposition £.(()a) with respect to v:

C 6] £.(()a) holds when

T o v(ia) =T
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Def.: Properties of Logical Constants

Let (D, @) be an applicative structure and letv: D, — {T,F} be a
function (for given T # F). For each logical constant c3 and for
a € Dg, we define the proposition £.(()a) with respect to v:

C 6] £.(()a) holds when

_|
o

v(ia) =T
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Def.: Properties of Logical Constants

Let (D, @) be an applicative structure and letv: D, — {T,F} be a
function (for given T # F). For each logical constant c3 and for
a € Dg, we define the proposition £.(()a) with respect to v:

C 6] £.(()a) holds when
T o v(ia) =T
L o

A55PN  UNIVERSITAT

(© Benzmiiller, 2006 &Y SAARLANDES ATPHOL06-[6] — p.15!



Def.: Properties of Logical Constants

Let (D, @) be an applicative structure and letv: D, — {T,F} be a
function (for given T # F). For each logical constant c3 and for
a € Dg, we define the proposition £.(()a) with respect to v:

C 16, £.(()a) holds when
T o v(ia) =T
1 o v(a) =F
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Def.: Properties of Logical Constants

Let (D, @) be an applicative structure and letv: D, — {T,F} be a
function (for given T # F). For each logical constant c3 and for
a € Dg, we define the proposition £.(()a) with respect to v:

C 16, £.(()a) holds when
T o v(ia) =T
1 o v(a) =F

]
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Def.: Properties of Logical Constants

Let (D, @) be an applicative structure and letv: D, — {T,F} be a
function (for given T # F). For each logical constant c3 and for
a € Dg, we define the proposition £.(()a) with respect to v:

C ¢ £c(()a) holds when
T o v(ia) =T

1 o v(a) =F

= 00
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Def.: Properties of Logical Constants

Let (D, @) be an applicative structure and letv: D, — {T,F} be a
function (for given T # F). For each logical constant c3 and for
a € Dg, we define the proposition £.(()a) with respect to v:

C ¢ £c(()a) holds when

T o v(ia) =T

1 o v(a) =F

- 00 v(a@b) =T iff v(b) =F Vb € D,
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Def.: Properties of Logical Constants

Let (D, @) be an applicative structure and letv: D, — {T,F} be a
function (for given T # F). For each logical constant c3 and for
a € Dg, we define the proposition £.(()a) with respect to v:

C ¢ £c(()a) holds when

T o v(ia) =T

1 o v(a) =F
00 v(a@b) =T iff v(b) =F Vb € D,
000
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Def.: Properties of Logical Constants

Let (D, @) be an applicative structure and letv: D, — {T,F} be a
function (for given T # F). For each logical constant c3 and for
a € Dg, we define the proposition £.(()a) with respect to v:

C ¢ £c(()a) holds when
T o v(ia) =T
1 o v(a) =F
00 v(a@b) =T iff v(b) =F Vb € D,
000 v(a@b@c) =T iff v(b) =T or v(c) =T Vb,c € D,
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Def.: Properties of Logical Constants

Let (D, @) be an applicative structure and letv: D, — {T,F} be a
function (for given T # F). For each logical constant c3 and for
a € Dg, we define the proposition £.(()a) with respect to v:

C ¢ £c(()a) holds when
T o v(ia) =T
1 o v(a) =F
00 v(a@b) =T iff v(b) =F Vb € D,
000 v(a@b@c) =T iff v(b) =T or v(c) =T Vb,c € D,
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Def.: Properties of Logical Constants

Let (D, @) be an applicative structure and letv: D, — {T,F} be a
function (for given T # F). For each logical constant c3 and for
a € Dg, we define the proposition £.(()a) with respect to v:

C ¢ £c(()a) holds when

T o v(ia) =T

1 o v(a) =F

- 00 v(a@b) =T iff v(b) =F Vb € D,

v 000 v(a@b@c) =T iff v(b) =T or v(c) =T Vb,c € D,
N
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Def.: Properties of Logical Constants

Let (D, @) be an applicative structure and letv: D, — {T,F} be a
function (for given T # F). For each logical constant c3 and for
a € Dg, we define the proposition £.(()a) with respect to v:

C ¢ £c(()a) holds when

T o v(ia) =T

1 o v(a) =F

- 00 v(a@b) =T iff v(b) =F Vb € D,

v 000 v(a@b@c) =T iff v(b) =T or v(c) =T Vb,c € D,
A 000
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Def.: Properties of Logical Constants

Let (D, @) be an applicative structure and letv: D, — {T,F} be a
function (for given T # F). For each logical constant c3 and for
a € Dg, we define the proposition £.(()a) with respect to v:

C 16 £c(()a) holds when

T o) v(ia) =T

L o) v(a) =F

- 00 v(a@b) =T iff v(b) =F Vb € D,

\Y% 000 v(a@b@Qc) =T iff v(b) =T or v(c) =T Vb,c € D,
A 000 v(a@b@c) =T iff v(b)=T and v(c) =T Vb,c € D,
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Def.: Properties of Logical Constants

Let (D, @) be an applicative structure and letv: D, — {T,F} be a
function (for given T # F). For each logical constant c3 and for
a € Dg, we define the proposition £.(()a) with respect to v:

C 16 £c(()a) holds when

T o) v(ia) =T

L o) v(a) =F

- 00 v(a@b) =T iff v(b) =F Vb € D,

\Y% 000 v(a@b@Qc) =T iff v(b) =T or v(c) =T Vb,c € D,
A 000 v(a@b@c) =T iff v(b)=T and v(c) =T Vb,c € D,
D)
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Def.: Properties of Logical Constants

Let (D, @) be an applicative structure and letv: D, — {T,F} be a
function (for given T # F). For each logical constant c3 and for
a € Dg, we define the proposition £.(()a) with respect to v:

C 16 £c(()a) holds when

T o) v(ia) =T

L o) v(a) =F

- 00 v(a@b) =T iff v(b) =F Vb € D,

\Y% 000 v(a@b@Qc) =T iff v(b) =T or v(c) =T Vb,c € D,
A 000 v(a@b@c) =T iff v(b)=T and v(c) =T Vb,c € D,
D) 000
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Def.: Properties of Logical Constants

Let (D, @) be an applicative structure and letv: D, — {T,F} be a
function (for given T # F). For each logical constant c3 and for
a € Dg, we define the proposition £.(()a) with respect to v:

C 16 £c(()a) holds when

T o) v(ia) =T

L o) v(a) =F

- 00 v(a@b) =T iff v(b) =F Vb € D,

\Y% 000 v(a@b@Qc) =T iff v(b) =T or v(c) =T Vb,c € D,
A 000 v(a@b@c) =T iff v(b)=T and v(c) =T Vb,c € D,
D 000 v(a@b@c) =T iff v(b)=F or v(c) =T Vb,c € D,
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Def.: Properties of Logical Constants

Let (D, @) be an applicative structure and letv: D, — {T,F} be a
function (for given T # F). For each logical constant c3 and for
a € Dg, we define the proposition £.(()a) with respect to v:

C 16 £c(()a) holds when

T o) v(ia) =T

L o) v(a) =F

- 00 v(a@b) =T iff v(b) =F Vb € D,

\Y% 000 v(a@b@Qc) =T iff v(b) =T or v(c) =T Vb,c € D,
A 000 v(a@b@c) =T iff v(b)=T and v(c) =T Vb,c € D,
D 000 v(a@b@c) =T iff v(b)=F or v(c) =T Vb,c € D,
=
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Def.: Properties of Logical Constants

Let (D, @) be an applicative structure and letv: D, — {T,F} be a
function (for given T # F). For each logical constant c3 and for
a € Dg, we define the proposition £.(()a) with respect to v:

C 16 £c(()a) holds when

T o) v(ia) =T

L o) v(a) =F

- 00 v(a@b) =T iff v(b) =F Vb € D,

\Y% 000 v(a@b@Qc) =T iff v(b) =T or v(c) =T Vb,c € D,
A 000 v(a@b@c) =T iff v(b)=T and v(c) =T Vb,c € D,
D 000 v(a@b@c) =T iff v(b)=F or v(c) =T Vb,c € D,
&= 000
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Def.: Properties of Logical Constants

Let (D, @) be an applicative structure and letv: D, — {T,F} be a
function (for given T # F). For each logical constant c3 and for
a € Dg, we define the proposition £.(()a) with respect to v:

C 16 £c(()a) holds when

T o) v(ia) =T

L o) v(a) =F

- 00 v(a@b) =T iff v(b) =F Vb € D,

V 000 v(a@b@c) =T iff v(b) =T or v(c) =T Vb,c € D,
A 000 v(a@b@c) =T iff v(b)=T and v(c) =T Vb,c € D,
D 000 v(a@b@c) =T iff v(b)=F or v(c) =T Vb,c € D,
& 000 v(a@b@c) =T iff v(b) =v(c) Vb,c € D,
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Def.: Properties of Logical Constants

Let (D, @) be an applicative structure and letv: D, — {T,F} be a
function (for given T # F). For each logical constant c3 and for
a € Dg, we define the proposition £.(()a) with respect to v:

C 16 £c(()a) holds when

T o) v(ia) =T

L o) v(a) =F

- 00 v(a@b) =T iff v(b) =F Vb € D,

V 000 v(a@b@c) =T iff v(b) =T or v(c) =T Vb,c € D,
A 000 v(a@b@c) =T iff v(b)=T and v(c) =T Vb,c € D,
D 000 v(a@b@c) =T iff v(b)=F or v(c) =T Vb,c € D,
& 000 v(a@b@c) =T iff v(b) =v(c) Vb,c € D,
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Def.: Properties of Logical Constants

Let (D, @) be an applicative structure and letv: D, — {T,F} be a
function (for given T # F). For each logical constant c3 and for
a € Dg, we define the proposition £.(()a) with respect to v:

C 16 £c(()a) holds when

T o) v(ia) =T

L o) v(a) =F

- 00 v(a@b) =T iff v(b) =F Vb € D,

V 000 v(a@b@c) =T iff v(b) =T or v(c) =T Vb,c € D,
A 000 v(a@b@c) =T iff v(b)=T and v(c) =T Vb,c € D,
D 000 v(a@b@c) =T iff v(b)=F or v(c) =T Vb,c € D,
& 000 v(a@b@c) =T iff v(b) =v(c) Vb,c € D,
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Def.: Properties of Logical Constants

Let (D, @) be an applicative structure and letv: D, — {T,F} be a
function (for given T # F). For each logical constant c3 and for
a € Dg, we define the proposition £.(()a) with respect to v:

C 16 £c(()a) holds when

T o) v(ia) =T

L o) v(a) =F

- 00 v(a@b) =T iff v(b) =F Vb € D,

V 000 v(a@b@c) =T iff v(b) =T or v(c) =T Vb,c € D,
A 000 v(a@b@c) =T iff v(b)=T and v(c) =T Vb,c € D,
D 000 v(a@b@c) =T iff v(b)=F or v(c) =T Vb,c € D,
& 000 v(a@b@c) =T iff v(b) =v(c) Vb,c € D,

= o v(a@b@c) =T iff b=c Vb,ce D,
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Def.: Properties of Logical Constants

Let (D, @) be an applicative structure and letv: D, — {T,F} be a
function (for given T # F). For each logical constant c3 and for
a € Dg, we define the proposition £.(()a) with respect to v:

C 16 £c(()a) holds when

T o) v(ia) =T

L o) v(a) =F

- 00 v(a@b) =T iff v(b) =F Vb € D,

V 000 v(a@b@c) =T iff v(b) =T or v(c) =T Vb,c € D,
A 000 v(a@b@c) =T iff v(b)=T and v(c) =T Vb,c € D,
D 000 v(a@b@c) =T iff v(b)=F or v(c) =T Vb,c € D,
& 000 v(a@b@c) =T iff v(b) =v(c) Vb,c € D,

= o v(a@b@c) =T iff b=c Vb,ce D,

e
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Def.: Properties of Logical Constants

Let (D, @) be an applicative structure and letv: D, — {T,F} be a
function (for given T # F). For each logical constant c3 and for
a € Dg, we define the proposition £.(()a) with respect to v:

C 16 £c(()a) holds when

T o) v(ia) =T

L o) v(a) =F

- 00 v(a@b) =T iff v(b) =F Vb € D,

V 000 v(a@b@c) =T iff v(b) =T or v(c) =T Vb,c € D,
A 000 v(a@b@c) =T iff v(b)=T and v(c) =T Vb,c € D,
D 000 v(a@b@c) =T iff v(b)=F or v(c) =T Vb,c € D,
& 000 v(a@b@c) =T iff v(b) =v(c) Vb,c € D,

= o v(a@b@c) =T iff b=c Vb,ce D,

e o(oq)
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Def.: Properties of Logical Constants

Let (D, @) be an applicative structure and letv: D, — {T,F} be a
function (for given T # F). For each logical constant c3 and for
a € Dg, we define the proposition £.(()a) with respect to v:

C 16 £c(()a) holds when

T o) v(ia) =T

L o) v(a) =F

- 00 v(a@b) =T iff v(b) =F Vb € D,

V 000 v(a@b@c) =T iff v(b) =T or v(c) =T Vb, c € Ds
A 000 v(a@b@c) =T iff v(b)=T and v(c) =T Vb,c € D,
D 000 v(a@b@c) =T iff v(b)=F or v(c) =T Vb,c € D,
& 000 v(a@b@c) =T iff v(b) =v(c) Vb,c € D,

= o v(a@b@c) =T iff b=c Vb,ce D,

e o(oa) v(a@f) =T iff Vb € Dy : v(f@b) =T Vf € Don
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Def.: Properties of Logical Constants

Let (D, @) be an applicative structure and letv: D, — {T,F} be a
function (for given T # F). For each logical constant c3 and for
a € Dg, we define the proposition £.(()a) with respect to v:

C B £c(()a) holds when

T o v(ia) =T

1 o v(a) =F

- 00 v(a@b) =T iff v(b) =F Vb € D,

v 000 v(a@b@c) =T iff v(b) =T or v(c) =T Vb,c € D,
A 000 v(a@b@c) =T iff v(b) =T and v(c) =T Vb,c € D,
D 000 v(a@b@c) =T iff v(b) =F or v(c) =T Vb,c € D,
& 000 v(a@b@c) =T iff v(b) =v(c) Vb,c € Dq

=% | oa« v(a@b@c) =T iff b=c Vb,c e D,

N | o(ow) v(a@f) =T iff Vb € Dy : v(f@b) =T Vf € Doq
yo
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Def.: Properties of Logical Constants

Let (D, @) be an applicative structure and letv: D, — {T,F} be a
function (for given T # F). For each logical constant c3 and for
a € Dg, we define the proposition £.(()a) with respect to v:

C 16 £c(()a) holds when

T o) v(ia) =T

L o) v(a) =F

- 00 v(a@b) =T iff v(b) =F Vb € D,

V 000 v(a@b@c) =T iff v(b) =T or v(c) =T Vb,c € Dq
A 000 v(a@b@c) =T iff v(b) =T and v(c) =T Vb,c € D,
D 000 v(a@b@c) =T iff v(b) =F or v(c) =T Vb,c € D,
& 000 v(a@b@c) =T iff v(b) =v(c) Vb,c € D,

=% | oa« v(a@b@Q@c) =T iff b=c Vb,c e D,

N® | o(oa) | v(a@f) =T iff Vb € Dy @ v(f@b) =T Vf € Don
> | o(ow)
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Def.: Properties of Logical Constants

Let (D, @) be an applicative structure and letv: D, — {T,F} be a
function (for given T # F). For each logical constant c3 and for
a € Dg, we define the proposition £.(()a) with respect to v:

C 16 £c(()a) holds when

T o) v(ia) =T

L o) v(a) =F

- 00 v(a@b) =T iff v(b) =F Vb € D,

V 000 v(a@b@c) =T iff v(b) =T or v(c) =T Vb,c € Dq
A 000 v(a@b@c) =T iff v(b) =T and v(c) =T Vb,c € D,
D 000 v(a@b@c) =T iff v(b) =F or v(c) =T Vb,c € D,
& 000 v(a@b@c) =T iff v(b) =v(c) Vb,c € D,

=% | oa« v(a@b@Q@c) =T iff b=c Vb,c e D,

N® | o(oa) | v(a@f) =T iff Vb € Dy @ v(f@b) =T Vf € Don
Y* | o(oa) | v(a@f) =T iff 3b € Dy @ v(f@b) =T Vf € Doq
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Def.: 2 -Valuation

Let 7 := (D,@, &) be a -evaluationand v : D, — {T,F}.
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Def.: > -Valuation &

Let 7 := (D, @, &) be a X-evaluation and v : D, — {T,F}. We say

v is a X-valuation w.r.t 7 if
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Def.: 2 -Valuation

Let 7 := (D, @, &) be a X-evaluation and v : D, — {T,F}. We say
v is a X-valuation w.rt 7 if £.((£(c))) holds w.r.t v for each logical

constantc € ..
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Def.: > -Model

Let 7 := (D, @, ) be a X-evaluation and letv: D, — {T,F} be a
2 -valuation w.r.t 7

(©)Benzmiiller, 2006 ATPHOL06-[6] — p.16



Def.: > -Model

Let 7 := (D, @, ) be a X-evaluation and letv: D, — {T,F} be a
2 -valuation w.r.t 7

We say M = (D, @, £,v) is a X-model.
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Def.: > -Model

Let 7 := (D, @, ) be a X-evaluation and letv: D, — {T,F} be a
2 -valuation w.r.t 7

We say M = (D, @, £,v) is a X-model.

If (D, @, &) is functional (full, standard), we say M is functional (full,
standard).
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Def.: > -Model

Let 7 := (D, @, ) be a X-evaluation and letv: D, — {T,F} be a
2 -valuation w.r.t 7

We say M = (D, @, £,v) is a X-model.

If (D, @, &) is functional (full, standard), we say M is functional (full,
standard).

If (D, @, &) is n-functional, we say M is n-functional.
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Def.: > -Model

Let 7 := (D, @, ) be a X-evaluation and letv: D, — {T,F} be a
2 -valuation w.r.t 7

We say M = (D, @, £,v) is a X-model.

If (D, @, &) is functional (full, standard), we say M is functional (full,
standard).

If (D, @, &) is n-functional, we say M is n-functional.

If (D, @, &) is &-functional, we say M is £-functional.
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Some Conventions: Equality

Some important conventions:

= denotes primitive equality
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Some Conventions: Equality

Some important conventions:
= denotes primitive equality
= denotes Leibniz equality: A, = B, := VPy..(PA) = (PB)
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Some Conventions: Equality

Some important conventions:
= denotes primitive equality
= denotes Leibniz equality: A, = B, := VPy..(PA) = (PB)

= ... other definition of equality (e.g., see [Andrews02])
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Some Conventions: Equality

Some important conventions:
= denotes primitive equality
= denotes Leibniz equality: A, = B, := VPy..(PA) = (PB)

= ... other definition of equality (e.g., see [Andrews02])

We use = in the following to refer to any of the above
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Def.: Properties f. b, 7, £

Let M = (D, @, &,v) be aC-model. We say, M has property
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Def.: Properties f. b, 7, £

Let M = (D, @, &,v) be aC-model. We say, M has property

n if M is np-functional (respectively (D, @, £) is n-functional)
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Def.: Properties f. b, 7, £

Let M = (D, @, &,v) be aC-model. We say, M has property
n if M is np-functional (respectively (D, @, £) is n-functional)

¢ if M is &-functional (respectively (D, @, £) is &-functional)
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Def.: Properties f. b, 7, £

Let M = (D, @, &,v) be aC-model. We say, M has property
n if M is np-functional (respectively (D, @, £) is n-functional)
¢ if M is &-functional (respectively (D, @, £) is &-functional)

f if M is functional (respectively (D, @, £) is functional)
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Def.: Properties f. b, 7, £

Let M = (D, @, &,v) be aC-model. We say, M has property
n if M is np-functional (respectively (D, @, £) is n-functional)
¢ if M is &-functional (respectively (D, @, £) is &-functional)
f if M is functional (respectively (D, @, £) is functional)

b if v is injective.
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Def.: Properties f. b, 7, £

Let M = (D, @, &,v) be aC-model. We say, M has property
n if M is np-functional (respectively (D, @, £) is n-functional)
¢ if M is &-functional (respectively (D, @, £) is &-functional)
f if M is functional (respectively (D, @, £) is functional)
b if v is injective.
Note: In the [JSCO04]-paper, b is defined as D, = {T, F}, but here we are using the
injectivity criterion, because we are varying the signature. If the signature is too

sparse, we could have a D, with two elements which both valuate via v to T. Another ill

case would be D, with just one element.
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Def.: Properties f. b, 7, £

Let M = (D, @, &,v) be aC-model. We say, M has property
n if M is np-functional (respectively (D, @, £) is n-functional)
¢ if M is &-functional (respectively (D, @, £) is &-functional)
f if M is functional (respectively (D, @, £) is functional)

b if v is injective.

q if for all « € 7 there is some q € Do, Such that £_.(q).
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Def.: Properties f. b, 7, £

Let M = (D, @, &,v) be aC-model. We say, M has property
n if M is np-functional (respectively (D, @, £) is n-functional)

if M is ¢£-functional (respectively (D, @, &) is £-functional)

e AR

if M is functional (respectively (D, @, &) is functional)

o8

if v is injective.

q if for all « € 7 there is some q € Dy, SUch that £_.(q).

Note: This basically says that for each type « the identity relation over « is already
present in the model. If we require =g € C With £-a (£, (=oaa)), then this property
is automatically ensured, but not for weaker signatures. See [Andrew71] for a detailed

discussion of property q. Andrews constructs a Henkin model where Leibniz equality

= does not evaluate to the intended identity relation. This is resolved by property q.
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Lemma: Surjective v

Let C be a signature and M = (D, @, £,v) be a C-model.
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Lemma: Surjective v

Let C be a signature and M = (D, @, £,v) be a C-model.
If T,F € C or = € C then v is surjective.
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Lemma: Surjective v

Let C be a signature and M = (D, @, £,v) be a C-model.
If T,F € C or = € C then v is surjective.

Proof: Exercise.
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Thm.: Property b

Let C be a signature and M = (D, @, £,v) be a C-model.

(©)Benzmiiller, 2006 ATPHOL06-[6] — p.16



Thm.: Property b

Let C be a signature and M = (D, @, £,v) be a C-model.
Suppose T.F € C or = € C.
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Thm.: Property b

Let C be a signature and M = (D, @, £,v) be a C-model.
Suppose T.F € C or = € C.
Then M satisfies property b iff |D,| = 2.
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Thm.: Property b

Let C be a signature and M = (D, @, £,v) be a C-model.
Suppose T.F € C or = € C.
Then M satisfies property b iff |D,| = 2.

Proof: Exercise.
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Semantics: HOL-CUBE
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Def. (Reminder): > -Model

Let 7 := (D, @, ) be a X-evaluation and letv: D, — {T,F} be a
2 -valuation w.r.t 7
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Def. (Reminder): > -Model

Let 7 := (D, @, ) be a X-evaluation and letv: D, — {T,F} be a
2 -valuation w.r.t 7

We say M = (D, @, £,v) is a X-model.
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Def. (Reminder): > -Model

Let 7 := (D, @, ) be a X-evaluation and letv: D, — {T,F} be a
2 -valuation w.r.t 7

We say M = (D, @, £,v) is a X-model.

If (D, @, &) is functional (full, standard), we say M is functional (full,
standard).
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Def. (Reminder): > -Model

Let 7 := (D, @, ) be a X-evaluation and letv: D, — {T,F} be a
2 -valuation w.r.t 7

We say M = (D, @, £,v) is a X-model.

If (D, @, &) is functional (full, standard), we say M is functional (full,
standard).

If (D, @, &) is n-functional, we say M is n-functional.
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Def. (Reminder): > -Model

Let 7 := (D, @, ) be a X-evaluation and letv: D, — {T,F} be a
2 -valuation w.r.t 7

We say M = (D, @, £,v) is a X-model.

If (D, @, &) is functional (full, standard), we say M is functional (full,
standard).

If (D, @, &) is n-functional, we say M is n-functional.

If (D, @, &) is &-functional, we say M is £-functional.

(©)Benzmiiller, 2006 ATPHOL06-[7] — p.16



Def. (Reminder): Properties f,b. n, &

Let M = (D, @, &,v) be aC-model. We say, M has property
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Def. (Reminder): Properties f,b. n, &

Let M = (D, @, &,v) be aC-model. We say, M has property

n if M is np-functional (respectively (D, @, £) is n-functional)
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Def. (Reminder): Properties f,b. n, &

Let M = (D, @, &,v) be aC-model. We say, M has property
n if M is np-functional (respectively (D, @, £) is n-functional)

¢ if M is &-functional (respectively (D, @, £) is &-functional)
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Def. (Reminder): Properties f,b. n, &

Let M = (D, @, &,v) be aC-model. We say, M has property
n if M is np-functional (respectively (D, @, £) is n-functional)
¢ if M is &-functional (respectively (D, @, £) is &-functional)

f if M is functional (respectively (D, @, £) is functional)
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Def. (Reminder): Properties f,b. n, &

Let M = (D, @, &,v) be aC-model. We say, M has property
n if M is np-functional (respectively (D, @, £) is n-functional)
¢ if M is &-functional (respectively (D, @, £) is &-functional)
f if M is functional (respectively (D, @, £) is functional)

b if v is injective.
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Def. (Reminder): Properties f,b. n, &

Let M = (D, @, &,v) be aC-model. We say, M has property
n if M is np-functional (respectively (D, @, £) is n-functional)
¢ if M is &-functional (respectively (D, @, £) is &-functional)
f if M is functional (respectively (D, @, £) is functional)

b if v is injective.

q if for all « € 7 there is some q € Do, Such that £_.(q).
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Def. (Reminder): Different Model Classes __

We denote the class of C-models by Miz(%).
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Def. (Reminder): Different Model Classes __

We denote the class of C-models by M13(3x). We obtain a hierarchy
of subclasses of 9iz(%) by adding the properties ¢, 7, f, b.
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Def. (Reminder): Different Model Classes __

We denote the class of C-models by M13(3x). We obtain a hierarchy
of subclasses of 9iz(%) by adding the properties ¢, n,f,b. Thus we
obtain
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Def. (Reminder): Different Model Classes __

We denote the class of C-models by M13(3x). We obtain a hierarchy
of subclasses of 9iz(%) by adding the properties ¢, n,f,b. Thus we
obtain

mﬁn(z)
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Def. (Reminder): Different Model Classes __

We denote the class of C-models by M13(3x). We obtain a hierarchy
of subclasses of 9iz(%) by adding the properties ¢, n,f,b. Thus we
obtain

mﬁn(z)
Mge(X)
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Def. (Reminder): Different Model Classes __

We denote the class of C-models by M13(3x). We obtain a hierarchy
of subclasses of 9iz(%) by adding the properties ¢, n,f,b. Thus we
obtain
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Def. (Reminder): Different Model Classes __

We denote the class of C-models by M13(3x). We obtain a hierarchy
of subclasses of 9iz(%) by adding the properties ¢, n,f,b. Thus we
obtain

n(X)
e(X)
i(2)
b(2)

S
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Def. (Reminder): Different Model Classes __

We denote the class of C-models by M13(3x). We obtain a hierarchy
of subclasses of 9iz(%) by adding the properties ¢, n,f,b. Thus we
obtain
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Def. (Reminder): Different Model Classes __

We denote the class of C-models by Miz(X).

We obtain a hierarchy

of subclasses of 9iz(%) by adding the properties ¢, n,f,b. Thus we

obtain
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Def. (Reminder): Different Model Classes __

We denote the class of C-models by Miz(X).

We obtain a hierarchy

of subclasses of 9iz(%) by adding the properties ¢, n,f,b. Thus we

obtain
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Def.: Satisfies, models, and —

Let M = (D, @, &,v) be a X-model and let ¢ be an assignment into
M.
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Def.: Satisfies, models, and —

Let M = (D, @, &,v) be a X-model and let ¢ be an assignment into
M.

We say ¢ satisfies a formula A € wff,(X) in M (we write M |=, A)
if v(E,(A)) =T.
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Def.: Satisfies, models, and —

Let M = (D, @, &,v) be a X-model and let ¢ be an assignment into
M.

We say ¢ satisfies a formula A € wff,(X) in M (we write M =, A)
if v(E,(A)) =T.

We say that A is valid in M (and write M = A) if M =, A for all
assignments o.
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Def.: Satisfies, models, and —

Let M = (D, @, &,v) be a X-model and let ¢ be an assignment into
M.

We say ¢ satisfies a formula A € wff,(X) in M (we write M =, A)
if v(E,(A)) =T.

We say that A is valid in M (and write M = A) if M =, A for all
assignments ¢. When A € cwff,(¥), we drop the reference to the
assignment and use the notation M = A.
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Def.: Satisfies, models, and —

Let M = (D, @, &,v) be a X-model and let ¢ be an assignment into
M.

We say ¢ satisfies a formula A € wff,(X) in M (we write M =, A)
if v(E,(A)) =T.

We say that A is valid in M (and write M = A) if M =, A for all
assignments ¢. When A € cwff,(¥), we drop the reference to the
assignment and use the notation M = A.

Finally, we say that M is a >-model for a set ® C cwff,(X) (we write
MED)IfME Aforall A € o.
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Semantics: HOL-CUBE

/ | Landscape of HOL model classes
: ) \ [Kohlhase-PhD-94]
/ [Benzmiiller-PhD-99]

b
v * [Brown-PhD-04]

Mige () f My, (Z) gmﬁb (%) [Benzm.BrownKohlhase-JSL-04]
| d
n 3
b
Y A V
Mg (X) mﬁ&b (2) NMsne (X)
b
A V
ﬂﬁﬁﬂ, Z
fuII
v
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Semantics: HOL-CUBE

e | Landscape of HOL model classes
: ) \ [Kohlhase-PhD-94]
/ [Benzmiiller-PhD-99]

b
v * [Brown-PhD-04]

Mige (2) f Mgy, (Z) gmﬁb (%) [Benzm.BrownKohlhase-JSL-04]
| e
| model class for 2 -fragment of
\ A V
Mgy (%) mﬁ&b (%) NMsne (X)
\ / .
N\7748
mﬁfh z) ~
fuII
\/
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Semantics: HOL-CUBE

o Landscape of HOL model classes
£ n \ [Kohlhase-PhD-94]
/ [Benzmiiller-PhD-99]

b
v * [Brown-PhD-04]

Mg (X) f Mg, (T) M (T) [Benzm.BrownKohlhase-JSL-04]
| e oo 7/
| K model class for 2 -fragment of
Y "A Y
Mt (%) Mago (X) f Migno (X)

| S WETOMN model class for >-fragment of
\ n 3 extensional type theory (Henkin models)
N\7748
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Semantics: HOL-CUBE

(B: models support G-equality
g: models provide identity relations
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Semantics: HOL-CUBE

(B: models support G-equality
g: models provide identity relations

5(T
|
v /v "\

[Andrews72]: without property q
Leibniz equality = not necessarily
evaluates to identity relation even
in Henkin semantics (H(X))
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Standard Models and Henkin Models &

Leon Henkin generalized the class of admissible domains for
functional types.
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Standard Models and Henkin Models &

Leon Henkin generalized the class of admissible domains for
functional types.

Instead of requiring D,z (and thus in particular, D,,) to be the full
set of functions (predicates), it is sufficient to require that D3 has
enough members that any well-formed formula can be evaluated
(in other words, the domains of function types are rich enough to
satisfy comprehension).
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Standard Models and Henkin Models &

Leon Henkin generalized the class of admissible domains for
functional types.

Instead of requiring D,z (and thus in particular, D,,) to be the full
set of functions (predicates), it is sufficient to require that D3 has
enough members that any well-formed formula can be evaluated
(in other words, the domains of function types are rich enough to
satisfy comprehension).

Note that with this generalized notion of a model, there are fewer
formulae that are valid in all models (intuitively, for any given formula
there are more possibilities for counter-models).
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Standard Models and Henkin Models

 <

. formulas
Henkin- formulas

standard- valid In Gl ln
models models standard- Henkin-

semantics semantics

e ———
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Standard Models and Henkin Models &

The generalization to Henkin models restricts the set of valid formu-
lae sufficiently so that all of them can be proven by a Hilbert-style
calculus [Henkin50].
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Standard Models and Henkin Models &

The generalization to Henkin models restricts the set of valid formu-
lae sufficiently so that all of them can be proven by a Hilbert-style
calculus [Henkin50].

Of course our HOL-CUBE is not complete here; we can axiomati-
cally require the existence of particular (classes of) functions, e.g.,
by assuming the description or choice operators.
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Standard Models and Henkin Models &

The generalization to Henkin models restricts the set of valid formu-
lae sufficiently so that all of them can be proven by a Hilbert-style
calculus [Henkin50].

Of course our HOL-CUBE is not complete here; we can axiomati-
cally require the existence of particular (classes of) functions, e.g.,
by assuming the description or choice operators.

We will not pursue this here; for a detailed discussion of the se-
mantic issues raised by the presence of these logical constants see
[Andrews72].
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Standard Models and Henkin Models &

The generalization to Henkin models restricts the set of valid formu-
lae sufficiently so that all of them can be proven by a Hilbert-style
calculus [Henkin50].

Of course our HOL-CUBE is not complete here; we can axiomati-
cally require the existence of particular (classes of) functions, e.g.,
by assuming the description or choice operators.

We will not pursue this here; for a detailed discussion of the se-
mantic issues raised by the presence of these logical constants see
[Andrews72].

Note that even though we can consider model classes with richer
and richer function spaces, we can never reach standard models
where function spaces are full while maintaining complete (recur-
sively axiomatizable) calculi.
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Standard Models and Henkin Models

- —————

. formulas
Henkin- formulas

standard- valid In Gl ln
models models standard- Henkin-

semantics semantics
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Standard Models and Henkin Models

- —————

_ formulas
Lhar e formulas

standard- valid in valid in
models models standard- Henkin-

semantics semantics

e ———

What has been our motivation for further generalization of Henkin
semantics with respect to Boolean and functional extensionality?
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Models without Functional Extensionality _

Motivation: modeling programs as (higher-order) functions

We might be interested in intensional properties like run-time
complexity.
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Models without Functional Extensionality _

Motivation: modeling programs as (higher-order) functions

We might be interested in intensional properties like run-time
complexity.

I:= MX.X and L := MX.rev(rev(X)), where rev is the self-inverse
function.
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Models without Functional Extensionality _

Motivation: modeling programs as (higher-order) functions
We might be interested in intensional properties like run-time
complexity.
I:= MX.X and L := MX.rev(rev(X)), where rev is the self-inverse
function.

The identity function has constant complexity, the function rev
is linear in the length of its argument.
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Models without Functional Extensionality _

How do we account for models without functional extensionality?

We have generalized the notion of domains at function types
and evaluation functions.
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Models without Functional Extensionality _

How do we account for models without functional extensionality?

We have generalized the notion of domains at function types
and evaluation functions.

The usual construction already uses sets of (extensional)
functions for the domains of function type and the property of
functionality to construct values for A-terms.
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Models without Functional Extensionality _

How do we account for models without functional extensionality?

We have generalized the notion of domains at function types
and evaluation functions.

The usual construction already uses sets of (extensional)
functions for the domains of function type and the property of
functionality to construct values for A-terms.

We build on the notion of applicative structures to define
> -evaluations, where the evaluation function is assumed to
respect application and #-conversion.
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Models without Functional Extensionality _

How do we account for models without functional extensionality?

We have generalized the notion of domains at function types
and evaluation functions.

The usual construction already uses sets of (extensional)
functions for the domains of function type and the property of
functionality to construct values for A-terms.

We build on the notion of applicative structures to define
> -evaluations, where the evaluation function is assumed to
respect application and #-conversion.

In such models, a function is not uniquely determined by its
behavior on all possible arguments.
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Semantics: HOL-CUBE

(Z) f: models are functional

\ Vf,g € Dy :
/ v f =giff f{@a = gQ@a (Va € D)

Mge (X) Mgy, (X) mﬁb (¥)

P

mﬁf (Z Msep () ngnb

\"x W/

fmﬁfb

fuII
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Models without 7)- or ¢-Functionality

Motivation: in standard literature functional extensionality is often is
discussed in terms of
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Models without 7)- or ¢-Functionality

Motivation: in standard literature functional extensionality is often is
discussed in terms of

¢-functionality
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Models without 7)- or ¢-Functionality

Motivation: in standard literature functional extensionality is often is
discussed in terms of

¢-functionality

n-functionality
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Models without 7)- or ¢-Functionality

Motivation: in standard literature functional extensionality is often is
discussed in terms of

¢-functionality
n-functionality

Therefore, we integrated these two cases in our landscape.
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Semantics: HOL-CUBE
Mg (X)

n: models are n-functional

// v \ &P(A) — &P(A lﬁn)

Mg () imﬁn

P

fmﬁf (Z Maep (X) f

\"x W/

fmﬁfb

fuII

g UNIVERSITAT
i oes
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Semantics: HOL-CUBE

(Z) &: models are £-functional
\ Eo(AXa Mg) Eo(AXa:Np) iff
/ v Eo,[a/X] (M) - a/x]( ) (Va € Dqy)

mﬁn z) imm, ()
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Models without Boolean Extensionality ___|

Motivation: Semantics of natural language
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Models without Boolean Extensionality ___|

Motivation: Semantics of natural language

We may not want to commit to a logic where the sentence
“John believes that Phil is a woodchuck”
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Motivation: Semantics of natural language

We may not want to commit to a logic where the sentence
“John believes that Phil is a woodchuck” automatically entails
“John believes that Phil is a groundhog” since John might not
know that “woodchuck” is just another word for “groundhog”.

However, Boolean extensionality does just that: whenever two
propositions are equivalent, they must be equal, and can be
substituted for each other.
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Models without Boolean Extensionality ___|

Motivation: Semantics of natural language

We may not want to commit to a logic where the sentence
“John believes that Phil is a woodchuck” automatically entails
“John believes that Phil is a groundhog” since John might not
know that “woodchuck” is just another word for “groundhog”.

However, Boolean extensionality does just that: whenever two
propositions are equivalent, they must be equal, and can be
substituted for each other.

Another example: obvious(O) and obvious(F') where
O=2+2=4andF =Vn>2x"+y"=2"=x=y=2z=0
should not be equivalent, even if their arguments are.
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Models without Boolean Extensionality ___|

Motivation: Semantics of natural language

We may not want to commit to a logic where the sentence
“John believes that Phil is a woodchuck” automatically entails
“John believes that Phil is a groundhog” since John might not
know that “woodchuck” is just another word for “groundhog”.

However, Boolean extensionality does just that: whenever two
propositions are equivalent, they must be equal, and can be
substituted for each other.

Another example: obvious(O) and obvious(F') where
O=2+2=4andF =Vn>2x"+y"=2"=x=y=2z=0
should not be equivalent, even if their arguments are.

Such phenomena have been studied under the heading of
“hyper-intensional semantics” in theoretical semantics.
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Models without Boolean Extensionality

How do we account for models without Boolean extensionality?

We have weakened the assumption that D, = {T,F}, since this
entails that the values of O and F are identical.
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Models without Boolean Extensionality

How do we account for models without Boolean extensionality?

We have weakened the assumption that D, = {T,F}, since this
entails that the values of O and F are identical.

In our > -models without property b we only insist that there is a
division of the truth values into “good” and “bad” ones, which
we express by insisting on the existence of a valuation v of D,
l.e., a function v: D, — {T,F} that is coordinated with the
interpretations of the logical constants —, v, and IN* (for each

type «).
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Models without Boolean Extensionality

How do we account for models without Boolean extensionality?

We have weakened the assumption that D, = {T,F}, since this
entails that the values of O and F are identical.

In our > -models without property b we only insist that there is a
division of the truth values into “good” and “bad” ones, which
we express by insisting on the existence of a valuation v of D,
l.e., a function v: D, — {T,F} that is coordinated with the
interpretations of the logical constants —, v, and IN* (for each

type «).
Notion of validity: we call a sentence A valid in such a model if
v(a) = T, where a € D, is the denotation of the sentence A.
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Semantics: HOL-CUBE

B(Z)

b: models are Boolean extensional

v is injective

S
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Semantics: HOL-CUBE

fmﬁs(
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M3 (%)

//m: T

mﬁb (Z)

b: models are Boolean extensional

v is injective

If > contains sufficiently many logical

constants:
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Semantics and Theorem
Proving: Test Problems for
Theorem Provers

e UNIVERSITAT
jlislijp DES
5 SAARLANDES

ATPHOL06-[7] - p.18!



Test Problems for Theorem Provers

Test problems for FOL theorem provers
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Test Problems for Theorem Provers

Test problems for FOL theorem provers

[McCharenOverbeekWos76], [WilsonMinker79],
[Pelletier86], etc.
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Test Problems for Theorem Provers

Test problems for FOL theorem provers
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[McCharenOverbeekWos76], [WilsonMinker79],
[Pelletier86], etc.

TPTP [PelletierSutcliffeSuttner02]
significantly fostered the development of FOL ATPs
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Test Problems for Theorem Provers

Test problems for FOL theorem provers

[McCharenOverbeekWos76], [WilsonMinker79],
[Pelletier86], etc.

TPTP [PelletierSutcliffeSuttner02]
significantly fostered the development of FOL ATPs

Test problems for HOL theorem provers
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Test Problems for Theorem Provers

Test problems for FOL theorem provers

[McCharenOverbeekWos76], [WilsonMinker79],
[Pelletier86], etc.

TPTP [PelletierSutcliffeSuttner02]
significantly fostered the development of FOL ATPs

Test problems for HOL theorem provers
common library missing
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Test Problems for Theorem Provers

Test problems for FOL theorem provers

[McCharenOverbeekWos76], [WilsonMinker79],
[Pelletier86], etc.

TPTP [PelletierSutcliffeSuttner02]
significantly fostered the development of FOL ATPs

Test problems for HOL theorem provers
common library missing

Following slides: example problems from our paper
[TPHOLS-05]
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Test Problems for Theorem Provers

Test problems for FOL theorem provers

[McCharenOverbeekWos76], [WilsonMinker79],
[Pelletier86], etc.

TPTP [PelletierSutcliffeSuttner02]
significantly fostered the development of FOL ATPs

Test problems for HOL theorem provers
common library missing

Following slides: example problems from our paper
[TPHOLS-05]

Are we proposing challenging HOL benchmark problems?
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Test Problems for Theorem Provers

Test problems for FOL theorem provers

[McCharenOverbeekWos76], [WilsonMinker79],
[Pelletier86], etc.

TPTP [PelletierSutcliffeSuttner02]
significantly fostered the development of FOL ATPs

Test problems for HOL theorem provers
common library missing

Following slides: example problems from our paper
[TPHOLS-05]

Are we proposing challenging HOL benchmark problems?
No!!!
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Test Problems for Theorem Provers

Examples are simple
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Test Problems for Theorem Provers

Examples are simple
highlight the essence of some semantical or technical point
easy to understand and easy to encode
relevant for both: automated and interactive TP
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Examples are simple
highlight the essence of some semantical or technical point
easy to understand and easy to encode
relevant for both: automated and interactive TP

Examples are structured
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Test Problems for Theorem Provers

Examples are simple
highlight the essence of some semantical or technical point
easy to understand and easy to encode
relevant for both: automated and interactive TP

Examples are structured

quick indicators for completeness and soundness wrt to
HOL model classes from [Benzm.BrownKohlhase-JSL-04]
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Test Problems for Theorem Provers

Examples are simple
highlight the essence of some semantical or technical point
easy to understand and easy to encode
relevant for both: automated and interactive TP

Examples are structured

quick indicators for completeness and soundness wrt to
HOL model classes from [Benzm.BrownKohlhase-JSL-04]

shall precede formal soundness / completeness analysis
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Test Problems for Theorem Provers

Examples are simple
highlight the essence of some semantical or technical point
easy to understand and easy to encode
relevant for both: automated and interactive TP

Examples are structured

quick indicators for completeness and soundness wrt to
HOL model classes from [Benzm.BrownKohlhase-JSL-04]

shall precede formal soundness / completeness analysis
many are collected from experience with LEO and TPS
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Test Problems for Theorem Provers

Examples are simple
highlight the essence of some semantical or technical point
easy to understand and easy to encode
relevant for both: automated and interactive TP

Examples are structured

quick indicators for completeness and soundness wrt to
HOL model classes from [Benzm.BrownKohlhase-JSL-04]

shall precede formal soundness / completeness analysis
many are collected from experience with LEO and TPS

(Some more challenging examples are also added in
[TPHOLS-05])

AOORN  UNIVERSITAT
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Remark: Signature

Unless stated otherwise we assume on the following slides that our
signature X contains the following logical connectives:

{T,L,~,A,V,D, U {N* X% =2}

(less logical connectives are possible)
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HOL-Problems: (3

- | = is equivalence relation
3 n " VX0 X = X
/ v 5 VXa,YaX ZY DY £ X

" YXo,Ya, Zae(X=YAY =Z) DX =
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HOL-Problems: (3

Mg () )
/ | — is equivalence relation
¢ n \ 5 VXaX 2 X
/ v " A 5 VXa,YaX ZY DY ZX
NMse (T) i My, () " YXa,Ya,Za:(X=YAY =Z) DX =
N
§ / b § = is congruence relation

® YXa,Ya,FaaX =Y D (FX) = (FY)
® YXa, Ya, PoaX =Y A (PX) D (PY)
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HOL-Problems:

* - - -
— is equivalence relation

VXa-X = X
VXa, YaX =Y DY = X
Migp () YXa, Yo, Za(X=YAY =2Z) DX =
.
n = is congruence relation
v ¥Xa, Yo, FaaX 2 Y S (FX) = (FY)

Xe, Yo, PoarX =
mﬁnb (Z) A Y A (PX) D) (PY)

Trivial directions of Boolean and functional exten

sionality
VAo, Bo-A =B D (A < B)
YF5a,Gga-F = G D (VXa.FX = GX)
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HOL-Problems: b &

/ | Non-trivial direction of Boolean extensionality
/ n \ VAo, Bou(A < B) DA X B
\ "X
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HOL-Problems: f 3

/ | Non-trivial direct. of functional extensionality
/ n \ VF5a, Gaa-(¥Xa-FX = GX) DF = G
\ 'A
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HOL-Problems: 7

Example requiring property 7
(pO(LL) ()‘bebbx)) ) (p f)
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HOL-Problems: ¢

Example requiring property & (and ')

(VX (FLeX) = X) A Po(i0) (AXeX)
D p(AX,.fX)
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HOL-Problems: §

Example requiring property § (and ¢!)
(VX (FLeX) = X) A Po(i1) (AXeX)
D (pf)

e UNIVERSITAT
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HOL-Problems: b

& / 7|7 \ Examples requiring property b
/ v N (Poo 20) A (p bo) = (p (a A b))

—(a=—a) (in particular ~(a = —a)

(hwo((hT) = (hL))) = (hl)
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HOL-Problems: Other Examples

e/ |
n Playing with DeMorgan’s Law:
/ v "A 5 VX YXAY & (=X V AY)

'Ok’ for all model classes
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HOL-Problems: DeMorgan’s Law

Playing with DeMorgan’s Law:
VX, YXAY & —(=XV =Y)
VX, YXAY = =(=X V1Y)

requires b
e UNIVERSITAT
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HOL-Problems: DeMorgan’s Law

Mg ()
/|
§ n \ Playing with DeMorgan’s Law:
//v "\ VX, YXAY & =(=X V =Y)
Mie () i M, (L) VX, Y. XAY = =(=X V AY)
. N . s (AUAV.U A V) = (AXAY.=(=X V Y))

requires b and &
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HOL-Problems: DeMorgan’s Law

Mg (X)
92 \
§ n
Playing with DeMorgan’s Law:
v £\
VX, YXAY & —(=XV Y)
Ve (X) J Mign (2) VX, Y XAY £ S(=X v =Y)
¢ - S ¢ - (AUAVLU A V) = (AXAY.=(=X V Y))

| |
n n
A = (AXAY.=(=X V =Y))
\ 'A \

requires b and §
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HOL-Problems: Set Comprehension

Set comprehension

qu \ big challenge for automation
/ v b * [Benzm.BrownKohlhase-Draft-05] set

instantiations can be used to simulate

Mae (X) f May (%) Msp (%) cut-rule if one of the following axioms

is given: comprehension, induction,
extensionality, choice, description

| |
" U
v b* v dependend on logical constants in ¥
Mgy
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HOL-Problems: Set Comprehension

Set comprehension

/ § 7|7 \ big challenge for automation

[Benzm.BrownKohlhase-Draft-05] set
instantiations can be used to simulate
cut-rule if one of the following axioms
IS given: comprehension, induction,
extensionality, choice, description

dependend on logical constants in &

On the following slides emphasis on:
signature X varying

no property g assumed
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HOL-Problems: Set Comprehension

Mz (X) . i
et comprehension
/|
§ n big challenge for automation

/ v [Benzm.BrownKohlhase-Draft-05] set
instantiations can be used to simulate
Mg (%) f Mgy (2) cut-rule if one of the following axioms

: “ S is given: comprehension, induction,

extensionality, choice, description

dependend on logical constants in &

On the following slides emphasis on:
signature X varying
no property q assumed
External vs. internal logical constants
if = ¢ X:

MGl UNIVERSITAT

— refers to ’external’ symbol
M = —A means M £ A
iy es
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HOL-Problems: Set Comprehension

Ms(X)
2N
v "\
Mige () f Mgy (2) Migo (2) Set comprehension
S S S

© dNooVPo.NP & —P
» ifmeXor{LlL,D}CXor
{Lie}rCx
» e.g.: Noo «— AXo—X
e.9.: Noo «— AXoX DO L
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HOL-Problems: Set Comprehension

Ms(2)
</ \
v N |
Mg (X) f My, () Mo () Set comprehension
7~ N b yd ANgoVPo.NP < =P

if - ¢ ¥ and

|
; !
v b& v {L,D}ZYor{l, &} ZX
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HOL-Problems: Set Comprehension

M (%)
~
/ 7'7
/ \/ "\
Mg (X) f Mg, (L) Set comprehension

| : d N . S/ INoVPo.NP < —P

| g if -~ ¢ ¥ and
v v {LLDYZYXor{l, &} Zx
il imﬁnb (X) Other examples from [Brown-PhD-04]

Surjective Cantor Theorem

Injective Cantor Theorem
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Semantics: Examples of
> -Models
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Examples of > -Models

We now sketch the construction of models in the model classes
M.(X) to demonstrate concretely how properties for Boolean,
strong and weak functional extensionality can fail.
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Examples of ¥-Models 3

We now sketch the construction of models in the model classes
M.(X) to demonstrate concretely how properties for Boolean,
strong and weak functional extensionality can fail.

We need this to show that the inclusions of the model classes in our
landscape are proper, and we indeed need all of them.
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Ex.: Singleton Model

We choose (D, @) as the full frame with D, := {T,F} and
D, .= {x}.
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Ex.: Singleton Model

We choose (D, @) as the full frame with D, := {T,F} and

D, .= {x}.

Easy to define an evaluation function £ for this frame by
induction on terms, using functions to interpret A-abstractions.
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Ex.: Singleton Model

We choose (D, @) as the full frame with D, := {T,F} and

D, .= {x}.

Easy to define an evaluation function £ for this frame by
induction on terms, using functions to interpret A-abstractions.

The identity function v: D, — {T,F} is a valuation, assuming
the logical constants are interpreted in the standard way.
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Ex.: Singleton Model

We choose (D, @) as the full frame with D, := {T,F} and

D, .= {x}.

Easy to define an evaluation function £ for this frame by
induction on terms, using functions to interpret A-abstractions.

The identity function v: D, — {T,F} is a valuation, assuming
the logical constants are interpreted in the standard way.

Thus, M .= (D, @, £, v) defines a ¥-model.
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Ex.: Singleton Model

We choose (D, @) as the full frame with D, := {T,F} and

D, .= {x}.

Easy to define an evaluation function £ for this frame by
induction on terms, using functions to interpret A-abstractions.

The identity function v: D, — {T,F} is a valuation, assuming
the logical constants are interpreted in the standard way.

Thus, M .= (D, @, £, v) defines a ¥-model.

This model satisfies properties b, f (hence n and &) and g
(since the frame is full).
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Ex.: Singleton Model

We choose (D, @) as the full frame with D, := {T,F} and

D, .= {x}.

Easy to define an evaluation function £ for this frame by
induction on terms, using functions to interpret A-abstractions.

The identity function v: D, — {T,F} is a valuation, assuming
the logical constants are interpreted in the standard way.

Thus, M .= (D, @, £, v) defines a ¥-model.

This model satisfies properties b, f (hence n and &) and g
(since the frame is full).

So, MA € GZ(X) C H(Z) C Mgp(X) C
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Ex.: Singleton Model

full

o
N
o
|
S
%)
o
|
o
I
o
<




Ex.: Model without Boolean Extensionality

Assume X contains only the connectives —, Vv, [1%; other
connectives defined as usual, e.g., VX, Y.XAY & —(=X V Y).
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Ex.: Model without Boolean Extensionality

Assume X contains only the connectives —, Vv, [1%; other
connectives defined as usual, e.g., VX, Y.XAY & —(=X V Y).

Choose (D, @) as full frame with D, = {a,b,c} and D, = {0, 1}.
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Ex.: Model without Boolean Extensionality

Assume X contains only the connectives —, Vv, [1%; other
connectives defined as usual, e.g., VX, Y.XAY & —(=X V Y).

Choose (D, @) as full frame with D, = {a,b,c} and D, = {0, 1}.

We define evaluation function £ for this frame by defining £(—),

E(V), and E(M): ey la b c
E(—)|a b c a |a a a
cC Cc a b |a a a
cC |a a c
£(N)af — { a, if f@g e {a,b} forallg € D,
c, if fQg = cforsomeg < D,

(©Benzmiiller, 2006
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Ex.: Model without Boolean Extensionality .

Assume X contains only the connectives —, Vv, [1%; other
connectives defined as usual, e.g., VX, Y.XAY & —(=X V Y).

Choose (D, @) as full frame with D, = {a,b,c} and D, = {0, 1}.

We define evaluation function £ for this frame by defining £(—),

E(V), and E(M): ey la b c
E(—)|a b c a |a a a
cC Cc a b |a a a
cC |a a c
£(N)af — { a, if f@g e {a,b} forallg € D,
c, if fQg = cforsomeg < D,

We can choose £(w) to be arbitrary for parameters w € %..

AOORN  UNIVERSITAT
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Ex.: Model without Boolean Extensionality

Since (D, @) is a frame, hence functional, this uniquely
determines £ on all formulae.
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Ex.: Model without Boolean Extensionality .

Since (D, @) is a frame, hence functional, this uniquely
determines £ on all formulae.

Since the frame is full, we are guaranteed that there will be
enough functions to interpret A-abstractions.
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Ex.: Model without Boolean Extensionality .

Since (D, @) is a frame, hence functional, this uniquely
determines £ on all formulae.

Since the frame is full, we are guaranteed that there will be
enough functions to interpret A-abstractions.

Let v: D, — {T,F} be defined by v(a) := T, v(b) := T and
v(c) :=F.
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Ex.: Model without Boolean Extensionality .

Since (D, @) is a frame, hence functional, this uniquely
determines £ on all formulae.

Since the frame is full, we are guaranteed that there will be
enough functions to interpret A-abstractions.

Let v: D, — {T,F} be defined by v(a) := T, v(b) := T and
v(c) :=F.

Easy to check that M°' .= (D, @, £,v) is indeed a X-model.
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Ex.: Model without Boolean Extensionality .

Since (D, @) is a frame, hence functional, this uniquely
determines £ on all formulae.

Since the frame is full, we are guaranteed that there will be
enough functions to interpret A-abstractions.

Let v: D, — {T,F} be defined by v(a) := T, v(b) := T and
v(c) :=F.

Easy to check that M°' .= (D, @, £,v) is indeed a X-model.

Since M is a model over a frame it satisfies property f.
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Ex.: Model without Boolean Extensionality .

Since (D, @) is a frame, hence functional, this uniquely
determines £ on all formulae.

Since the frame is full, we are guaranteed that there will be
enough functions to interpret A-abstractions.

Let v: D, — {T,F} be defined by v(a) := T, v(b) := T and
v(c) :=F.

Easy to check that M°' .= (D, @, £,v) is indeed a X-model.
Since M is a model over a frame it satisfies property f.

Since this frame is full, we know property g holds.
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Ex.: Model without Boolean Extensionality .

Since (D, @) is a frame, hence functional, this uniquely
determines £ on all formulae.

Since the frame is full, we are guaranteed that there will be
enough functions to interpret A-abstractions.

Let v: D, — {T,F} be defined by v(a) := T, v(b) := T and
v(c) :=F.

Easy to check that M°' .= (D, @, £,v) is indeed a X-model.
Since M is a model over a frame it satisfies property f.
Since this frame is full, we know property g holds.

Clearly property b fails.
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Ex.: Model without Boolean Extensionality .

Since (D, @) is a frame, hence functional, this uniquely
determines £ on all formulae.

Since the frame is full, we are guaranteed that there will be
enough functions to interpret A-abstractions.

Let v: D, — {T,F} be defined by v(a) := T, v(b) := T and
v(c) :=F.

Easy to check that M7 .= (D, @, £, v) is indeed a X-model.
Since M is a model over a frame it satisfies property f.
Since this frame is full, we know property g holds.

Clearly property b fails.

So, M7 € Mg;(X) \ Mipo (%)
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Ex.: Model without Boolean Extensionality
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Ex.: Model without Boolean Extensionality

In the previous model one can easily verify, if d := £,(D,) and
e :=&,(E,), then the values £,(D AE), £,(D = E), and
£,(D < E) are given by the following tables:

e:
EMDAE)|a b ¢ ED=E) ED < E) b ¢
d aja a c d: a d: a a ¢
bla a c b b a c

clc c c C C cC a

Now we show that one can properly model the

woodchuck/groundhog example.
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Ex.: Groundhogs and Woodchucks

Let M7 be given as above and suppose woodchuck,_,o,
groundhog, .., john,, and phil, are in the signature %..
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Ex.: Groundhogs and Woodchucks

Let M7 be given as above and suppose woodchuck,_,o,
groundhog, .., john,, and phil, are in the signature %..

Let £(phil) :== 0 and £(john) := 1.
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Ex.: Groundhogs and Woodchucks

Let M7 be given as above and suppose woodchuck,_,o,
groundhog, .., john,, and phil, are in the signature %..

Let £(phil) :== 0 and £(john) := 1.

Let £(woodchuck) be the function w € D,_,, with w(0) = b and
w(l) =c.
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Ex.: Groundhogs and Woodchucks

Let M7 be given as above and suppose woodchuck,_,o,
groundhog, .., john,, and phil, are in the signature %..

Let £(phil) :== 0 and £(john) := 1.

Let £(woodchuck) be the function w € D,_,, with w(0) = b and
w(l) =c.

Let £(groundhog) be the function g € D,_., with g(0) = a and
g(l) =c.
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Ex.: Groundhogs and Woodchucks

Let M7 be given as above and suppose woodchuck,_,o,
groundhog, .., john,, and phil, are in the signature %..

Let £(phil) :== 0 and £(john) := 1.
Let £(woodchuck) be the function w € D,_,, with w(0) = b and

w(l) =c.
Let £(groundhog) be the function g € D,_., with g(0) = a and
g(l) =c.

One can show that the sentence
VX,.(woodchuck X) < (groundhog X) is valid.
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Ex.: Groundhogs and Woodchucks

Let M7 be given as above and suppose woodchuck,_,o,
groundhog, .., john,, and phil, are in the signature %..

Let £(phil) :== 0 and £(john) := 1.
Let £(woodchuck) be the function w € D,_,, with w(0) = b and

w(l) =c.
Let £(groundhog) be the function g € D,_., with g(0) = a and
g(l) =c.

One can show that the sentence
VX,.(woodchuck X) < (groundhog X) is valid.

Also, £(woodchuck phil) = b and £(groundhog phil) = a, so the
propositions (woodchuck phil) and (groundhog phil) are valid.
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Ex.: Groundhogs and Woodchucks

Suppose believe, o, € X and &£(believe) is the (Curried)
function bel € D,_,,, such that bel(1)(b) = b and
bel(1)(a) = bel(1)(c) = bel(0)(a) = bel(0)(b) = bel(0)(c) = c.
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Ex.: Groundhogs and Woodchucks

Suppose believe, o, € X and &(believe) is the (Curried)
function bel € D,_,,, such that bel(1)(b) = b and
bel(1)(a) = bel(1)(c) = bel(0)(a) = bel(0)(b) = bel(0)(c) = c.

Intuitively, John believes propositions with value b, but not
those with value a or c.
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Ex.: Groundhogs and Woodchucks

Suppose believe, o, € X and &£(believe) is the (Curried)
function bel € D,_,,, such that bel(1)(b) = b and

bel(1)(a) = bel(1)(c) = bel(0)(a) = bel(0)(b) = bel(0)(c) = c.
Intuitively, John believes propositions with value b, but not
those with value a or c.

S0, believes john(woodchuck phil) is valid, while
believes john(groundhog phil) is not.
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Generalizing the Previous Model

As we have seen, Boolean extensionality fails when one has more
than two values in D,.
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Generalizing the Previous Model

As we have seen, Boolean extensionality fails when one has more
than two values in D,. We can generalize the construction defining
D, :={F} U B, where Bis any setwith T € Band F ¢ B.
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Generalizing the Previous Model

As we have seen, Boolean extensionality fails when one has more
than two values in D,. We can generalize the construction defining
D, :={F} U B, where B is any set with T € Band F ¢ 5. The
model will satisfy Boolean extensionality iff B = {T}.
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Generalizing the Previous Model

As we have seen, Boolean extensionality fails when one has more
than two values in D,. We can generalize the construction defining
D, :={F} U B, where B is any set with T ¢ Band F ¢ B. The
model will satisfy Boolean extensionality iff 5 = {T}. In this way,
we can easily construct models for the case with property b and the
case without property b simultaneously.

AOORN  UNIVERSITAT
mmﬁlﬁu‘mm DES
5 SAARLANDES ATPHOL06-[7] — p.21.

(©)Benzmiiller, 2006



Generalizing the Previous Model

As we have seen, Boolean extensionality fails when one has more
than two values in D,. We can generalize the construction defining
D, :={F} U B, where B is any set with T ¢ Band F ¢ B. The
model will satisfy Boolean extensionality iff 5 = {T}. In this way,
we can easily construct models for the case with property b and the
case without property b simultaneously. We will use this idea to
parameterize the remaining model constructions by 5.
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Generalizing the Previous Model

As we have seen, Boolean extensionality fails when one has more
than two values in D,. We can generalize the construction defining
D, :={F} U B, where B is any set with T ¢ Band F ¢ B. The
model will satisfy Boolean extensionality iff 5 = {T}. In this way,
we can easily construct models for the case with property b and the
case without property b simultaneously. We will use this idea to
parameterize the remaining model constructions by 5.

These semantic constructions are similar to those in multi-valued
logics.
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Generalizing the Previous Model

As we have seen, Boolean extensionality fails when one has more
than two values in D,. We can generalize the construction defining
D, :={F} U B, where B is any set with T ¢ Band F ¢ B. The
model will satisfy Boolean extensionality iff 5 = {T}. In this way,
we can easily construct models for the case with property b and the
case without property b simultaneously. We will use this idea to
parameterize the remaining model constructions by 5.

These semantic constructions are similar to those in multi-valued
logics. In contrast to these logics where the logical connectives
are adapted to talk about multiple truth values, in our setting we are
mainly interested in multiple truth values as diverse v-pre-images of
T and F.
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Ex.: Models without Funct. Extensionality _

|dea: attach distinguishing labels to functions without changing
their applicative behavior

(©)Benzmiiller, 2006 ATPHOL06-[8] — p.21



X
@)
=

N
v.

Ex.: Models without Funct. Extensionality _

|dea: attach distinguishing labels to functions without changing
their applicative behavior

Let Bbe any setwithTc BandF ¢ BB
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Ex.: Models without Funct. Extensionality _

|dea: attach distinguishing labels to functions without changing
their applicative behavior

Let Bbe any setwithTc BandF ¢ BB
Let D, :={F}UBand D, .= {x}
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Ex.: Models without Funct. Extensionality _

|dea: attach distinguishing labels to functions without changing
their applicative behavior

Let Bbe any setwithTc BandF ¢ BB
Let D, :={F}UBand D, .= {x}

For each function type Sa, let

Dﬁa = {(I,f) | | € {O, 1} and f: D, — 'Dﬁ}

A55PN  UNIVERSITAT
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Ex.: Models without Funct. Extensionality _

|dea: attach distinguishing labels to functions without changing
their applicative behavior

Let Bbe any setwithTc BandF ¢ BB
Let D, :={F}UBand D, .= {x}

For each function type Sa, let

Dﬁa = {(I,f) | | € {O, 1} and f: D, — 'Dﬁ}

We define application by
(i,f)Qa := f(a)

whenever (i,f) € Dg, and a € D,,
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Ex.: Models without 1 and

Easy to check that (D, @) is an applicative structure:
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Ex.: Models without 1 and

Easy to check that (D, @) is an applicative structure:

Evaluation function defined by induction on terms
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Ex.: Models without 1 and

Easy to check that (D, @) is an applicative structure:

Evaluation function defined by induction on terms
E(—) :=(0,n) where n(b) :=Fforeveryb € Band n(F) :=T

A55PN  UNIVERSITAT

(©)Benzmiiller, 2006 5 SAARLANDES ATPHOL06-[8] — p.21



Ex.: Models without 1 and

Easy to check that (D, @) is an applicative structure:

Evaluation function defined by induction on terms
E(—) :=(0,n) where n(b) := F forevery b € Band n(F) :=T
E(V) := (0,d) where
d(b) := (0, k") for every b € B and
d(F) := (0,id)
(k! is the constant T function)
(id is the identity function from D, to D,)
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Ex.: Models without 1 and

Easy to check that (D, @) is an applicative structure:

Evaluation function defined by induction on terms
E(—) :=(0,n) where n(b) :=Fforeverybe Band n(F) :=T
E(V) := (0,d) where
d(b) := (0, k") for every b € B and
d(F) := (0,id)
(k! is the constant T function)
(id is the identity function from D, to D,)
E(N%) := (0,7) where for each (i,f) € Dy, 7*((i,f)) := T if
f(a) € Bforalla € D, and 7“(i,f) := F otherwise
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Ex.: Models without 1 and

Easy to check that (D, @) is an applicative structure:

Evaluation function defined by induction on terms
E(—) :=(0,n) where n(b) :=Fforeverybe Band n(F) :=T
E(V) := (0,d) where
d(b) := (0, k") for every b € B and
d(F) := (0,id)
(k! is the constant T function)
(id is the identity function from D, to D,)
E(N%) := (0,7) where for each (i,f) € Dy, 7*((i,f)) := T if
f(a) € Bforalla € D, and 7“(i,f) := F otherwise
q“ := (0,9%) € Doaa Where q*(a) := (0,s%) and s?(b) := T if
a = b and s?(b) := F otherwise
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Ex.: Models without 1 and

Easy to check that (D, @) is an applicative structure:

Evaluation function defined by induction on terms
E(—) :=(0,n) where n(b) :=Fforeverybe Band n(F) :=T
E(V) := (0,d) where
d(b) := (0, k") for every b € B and
d(F) := (0,id)
(k! is the constant T function)
(id is the identity function from D, to D,)
E(N%) := (0,7) where for each (i,f) € Dy, 7*((i,f)) := T if
f(a) € Bforall a € D, and (i, f) := F otherwise
q“ :=(0,9%) € Dona Where g*(a) := (0,s?) and s*(b) := T if
a = b and s?(b) := F otherwise
E(w) € D, arbitrary for parameters w € ¥,.
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Ex.: Models without 1 and
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Ex.: Models without 1 and

For variables, we define £,(X) := p(X)
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Ex.: Models without 1 and

For variables, we define £,(X) := p(X)
For application, we define £,(FA) := £, (F)Q&,(A)
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Ex.: Models without 1 and

For variables, we define £,(X) := p(X)
For application, we define £,(FA) := £, (F)Q&,(A)

For A-abstractions, we define £,(A\X,.Bg) := (O f) where
f: D, — Dg is the function such that f(a) = /x(B) for

alla € D,
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Ex.: Models without 1 and

For variables, we define £,(X) := p(X)

For application, we define £,(FA) := £, (F)Q&,(A)

For A-abstractions, we define £,(A\X,.Bg) := (O f) where
f: D, — Dg is the function such that f(a) = /x(B) for
alla € D,

With some work (which we omit), one can show that this £ is
an evaluation function
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Ex.: Models without 1 and

For variables, we define £,(X) := p(X)
For application, we define £,(FA) := £, (F)Q&,(A)
For A-abstractions, we define £,(A\X,.Bg) := (O f) where

f: D, — Dg is the function such that f(a) = /x(B) for
alla € D,

With some work (which we omit), one can show that this £ is
an evaluation function

Taking v to be the function such that v(b) := T for every b € B
and v(F) := F, one can easily show that this is a valuation
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Ex.: Models without 1 and

For variables, we define £,(X) := p(X)
For application, we define £,(FA) := £, (F)Q&,(A)
For A-abstractions, we define £,(A\X,.Bg) := (O f) where

f: D, — Dg is the function such that f(a) = /x(B) for
alla € D,

With some work (which we omit), one can show that this £ is
an evaluation function

Taking v to be the function such that v(b) := T for every b € B
and v(F) := F, one can easily show that this is a valuation

Hence, M5 .= (D, @, £,v) is a ¥-model
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Ex.: Models without 1 and

The objects q* := (0, q*) witness property q for M5
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Ex.: Models without 1 and

The objects q* := (0, q*) witness property q for M5

The objects (1,q%) also witness property q (so, in the
non-functional case such witnesses are not unique)
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Ex.: Models without 1 and

The objects q* := (0, q*) witness property q for M5

The objects (1,q%) also witness property q (so, in the
non-functional case such witnesses are not unique)

Hence, M” := (D, @, £,v) is a ¥-model with property g
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Ex.: Models without 1 and

Property f fails for M5, since the applicative structure (D, @) is
not functional:
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Ex.: Models without 1 and

Property f fails for M5, since the applicative structure (D, @) is
not functional:

Consider u: D, — D,.
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Ex.: Models without 1 and

Property f fails for M5, since the applicative structure (D, @) is
not functional:

Consider u: D, — D,.
For both (0, u), (1,u) € D,, we have

(i, u)@x = %

although (0,u) # (1, u)
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Ex.: Models without 1 and

Does 1 hold?
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Ex.: Models without 1 and

Does 1 hold?
No!
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Ex.: Models without 1 and

Does 1 hold?
No!
Compute, for example, £(A\Fgz,.F) and £(AFgq-AX,.FX)
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Ex.: Models without 1 and

Does 1 hold?
No!

Compute, for example, £(A\Fgz,.F) and £(AFgq-AX,.FX)

E(AFga.F) = (0,id) where id is the identity function from Dg,,
to Dﬁa

(©)Benzmiiller, 2006 ATPHOL06-[8] — p.22



Ex.: Models without 1 and

Does 1 hold?
No!

Compute, for example, £(A\Fgz,.F) and £(AFgq-AX,.FX)
E(AFga.F) = (0,id) where id is the identity function from Dg,,
to Dﬁa

E(AF 3o AX0FX) = (0, p) where p is the function from Dg,, to
Dg, such that p((i,f)) = (0, f) for each f: D, — Dg
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Ex.: Models without 1 and

Does 1 hold?
No!

Compute, for example, £(A\Fgz,.F) and £(AFgq-AX,.FX)
E(AFga.F) = (0,id) where id is the identity function from Dg,,
to Dy,

E(AF 3o AX0FX) = (0, p) where p is the function from Dg,, to

Dg, such that p((i,f)) = (0, f) for each f: D, — Dg

Hence £(AFgq.F) # E(AF 50 AX0.FX)
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Ex.: Models without 1 and

Does ¢ hold?

(©)Benzmiiller, 2006 ATPHOL06-[8] — p.22



Ex.: Models without 1 and

Does ¢ hold?

Yes!
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Ex.: Models without 1 and

Does ¢ hold?
Yes!
If
Ep la/x](M) = &, 1a/x(N)

for every a € D,, then
Ep(AXp=M) = (0,f) = EL(AXN)

where f(a) — 5%[3/)(](1\/[) — 5§0,[a/x](N) for every a € D,.
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Ex.: Models without 1 and

If B = {T}, then the model M%® .= M{T} satisfies property b.
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Ex.: Models without 1 and

If B = {T}, then the model M%® .= M{T} satisfies property b.
So, we know MPE ¢ 9)?55[,(2) \mgf[,(Z).
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Ex.: Models without 1 and

If B = {T}, then the model M%® .= M{T} satisfies property b.
So, we know M™P € Mgep(T) \ M (T).

On the other hand, if b is any value with b ¢ {T,F}, and
B = {T, b}, then the model M%* = M1TP} does not satisfy

property b.
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Ex.: Models without 1 and

If B = {T}, then the model M%® .= M{T} satisfies property b.
So, we know M™P € Mgep(T) \ M (T).

On the other hand, if b is any value with b ¢ {T,F}, and
B = {T, b}, then the model M%* = M1TP} does not satisfy
property b.

In this case, we know M € Mge(X) \ (Mg5(T) U Mgep(X)).

A55PN  UNIVERSITAT
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Ex.: Models without 1 and
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Ex.: Models without 1 and

Z
o
a
|
)
©
IS




Ex.: Models without 1 and

Let MPZ be the ¥-model (D, @, £, v) as constructed before
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Ex.: Models without 1 and

Let MPZ be the ¥-model (D, @, £, v) as constructed before

Define an alternative evaluation function £’ by induction:
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Ex.: Models without 1 and

Let MPZ be the ¥-model (D, @, £, v) as constructed before

Define an alternative evaluation function £’ by induction:
Forallw € ¥, let £'(w) := E(w)
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Ex.: Models without 1 and

Let MPZ be the ¥-model (D, @, £, v) as constructed before

Define an alternative evaluation function £’ by induction:
Forallw € ¥, let £'(w) := E(w)
For variables we define &£,(X) := ¢(X)
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Ex.: Models without 1 and

Let MPZ be the ¥-model (D, @, £, v) as constructed before

Define an alternative evaluation function £’ by induction:
Forallw € ¥, let £'(w) := E(w)
For variables we define &£,(X) := ¢(X)
We must define £,(FA) := £, (F)Q&(A)
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Ex.: Models without 1 and

Let MPZ be the ¥-model (D, @, £, v) as constructed before

Define an alternative evaluation function £’ by induction:
Forallw € ¥, let £'(w) := E(w)
For variables we define &£,(X) := ¢(X)
We must define £,(FA) := £, (F)Q&(A)
We choose & (A\X..Bg) = (1,f) where f: D, — Djg is the
function such that f(a) = &, 1, /x(B) for all a € D,
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Ex.: Models without 1 and

Let MPZ be the ¥-model (D, @, £, v) as constructed before

Define an alternative evaluation function £’ by induction:
Forallw € ¥, let £'(w) := E(w)
For variables we define &£,(X) := ¢(X)
We must define £,(FA) := £, (F)Q&(A)
We choose & (A\X..Bg) = (1,f) where f: D, — Djg is the
function such that f(a) = &, 1, /x(B) for all a € D,

£ and &’ agree on all constants, they are different though:
E(AX.X) = (0,id) # (1,id) = &'(AX,.X)

where id : D, — D, is the identity function
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Ex.: Models without 1 and

Let MPZ be the ¥-model (D, @, £, v) as constructed before

Define an alternative evaluation function £’ by induction:
Forallw € ¥, let £'(w) := E(w)
For variables we define &£,(X) := ¢(X)
We must define £,(FA) := £, (F)Q&(A)
We choose & (A\X..Bg) = (1,f) where f: D, — Djg is the
function such that f(a) = S%[a/x](B) foralla € D,

£ and &’ agree on all constants, they are different though:
E(AX.X) = (0,id) # (1,id) = &'(AX,.X)

where id : D, — D, is the identity function

Thus, in non-functional models evaluation functions are not
uniquely determined by their values on constants

AOORN  UNIVERSITAT
) H‘@m W’"‘ DES

(©)Benzmiiller, 2006 &Y SAARLANDES ATPHOL06-[8] — p.22!



Ex.: Models without ¢

full

[
AN
o
|
)
1)
o
|
o
T
o
<C




Ex.: Models without ¢

Not here!

See [JSL-04]
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Ex.: Models without ¢

Not here!

See [JSL-04]
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