
c©Benzmüller, 2006

HO
L

AT
Pλ

HO
L

AT
Pλ

Types, Frames, and
Applicative Structures

ATPHOL’06-[3] – p.79

c©Benzmüller, 2006

Def.: Types
HO

L

AT
Pλ

Let T be the least set s.t:
o ∈ T

ι ∈ T

∀α,β ∈ T : (αβ) ∈ T

ATPHOL’06-[3] – p.80

c©Benzmüller, 2006

Def.: Types
HO

L

AT
Pλ

Let T be the least set s.t:
o ∈ T

ι ∈ T

∀α,β ∈ T : (αβ) ∈ T

We say that α ∈ T is a simple type (or type).
(αβ) is called a function type.

ATPHOL’06-[3] – p.80

c©Benzmüller, 2006

Def.: Types
HO

L

AT
Pλ

Let T be the least set s.t:
o ∈ T

ι ∈ T

∀α,β ∈ T : (αβ) ∈ T

We say that α ∈ T is a simple type (or type).
(αβ) is called a function type.

! The set T is defined inductively.
! The set T is "freely generated".

ATPHOL’06-[3] – p.80

c©Benzmüller, 2006

Ex.: Freely Generated
HO

L

AT
Pλ

Consider the set N = {0, 1, 2...}.
! 0 ∈ N

ATPHOL’06-[3] – p.81

c©Benzmüller, 2006

Ex.: Freely Generated
HO

L

AT
Pλ

Consider the set N = {0, 1, 2...}.
! 0 ∈ N

! ∀n ∈ N : s(n) ∈ N.

ATPHOL’06-[3] – p.81

c©Benzmüller, 2006

Ex.: Freely Generated
HO

L

AT
Pλ

Consider the set N = {0, 1, 2...}.
! 0 ∈ N

! ∀n ∈ N : s(n) ∈ N.

! ∀n : 0 #= s(n).

ATPHOL’06-[3] – p.81

c©Benzmüller, 2006

Ex.: Freely Generated
HO

L

AT
Pλ

Consider the set N = {0, 1, 2...}.
! 0 ∈ N

! ∀n ∈ N : s(n) ∈ N.

! ∀n : 0 #= s(n).

! ∀m, n : s(m) = s(n)⇒ m = n.

ATPHOL’06-[3] – p.81

c©Benzmüller, 2006

Ex.: Freely Generated
HO

L

AT
Pλ

Consider the set N = {0, 1, 2...}.
! 0 ∈ N

! ∀n ∈ N : s(n) ∈ N.

! ∀n : 0 #= s(n).

! ∀m, n : s(m) = s(n)⇒ m = n.

The set N is "freely generated".

ATPHOL’06-[3] – p.81

c©Benzmüller, 2006

Ex.: Freely Generated
HO

L

AT
Pλ

Consider the set N = {0, 1, 2...}.
! 0 ∈ N

! ∀n ∈ N : s(n) ∈ N.

! ∀n : 0 #= s(n).

! ∀m, n : s(m) = s(n)⇒ m = n.

The set N is "freely generated".

Contrast N to Z = {...,−1, 0, 1, ...}.
Note that Z contains 0 and is closed under successor, but is not the
least such set.

ATPHOL’06-[3] – p.81

c©Benzmüller, 2006

Ex.: Freely Generated
HO

L

AT
Pλ

The set T is "freely generated":
! o #= ι

ATPHOL’06-[3] – p.82

c©Benzmüller, 2006

Ex.: Freely Generated
HO

L

AT
Pλ

The set T is "freely generated":
! o #= ι

! o #= (αβ)

ATPHOL’06-[3] – p.82

c©Benzmüller, 2006

Ex.: Freely Generated
HO

L

AT
Pλ

The set T is "freely generated":
! o #= ι

! o #= (αβ)

! ι #= (αβ)

ATPHOL’06-[3] – p.82

c©Benzmüller, 2006

Ex.: Freely Generated
HO

L

AT
Pλ

The set T is "freely generated":
! o #= ι

! o #= (αβ)

! ι #= (αβ)

! (αβ) = (γδ)⇒ α = γ ∧ β = δ

ATPHOL’06-[3] – p.82

c©Benzmüller, 2006

Ex.: Types
HO

L

AT
Pλ

! (oι) ∈ T

ATPHOL’06-[3] – p.83

c©Benzmüller, 2006

Ex.: Types
HO

L

AT
Pλ

! (oι) ∈ T

! (o(oι)) ∈ T

ATPHOL’06-[3] – p.83

c©Benzmüller, 2006

Ex.: Types
HO

L

AT
Pλ

! (oι) ∈ T

! (o(oι)) ∈ T

! (ιι) ∈ T

ATPHOL’06-[3] – p.83

c©Benzmüller, 2006

Ex.: Types
HO

L

AT
Pλ

! (oι) ∈ T

! (o(oι)) ∈ T

! (ιι) ∈ T

! ((oι)ι) ∈ T

ATPHOL’06-[3] – p.83

c©Benzmüller, 2006

Ex.: Types
HO

L

AT
Pλ

! (oι) ∈ T

! (o(oι)) ∈ T

! (ιι) ∈ T

! ((oι)ι) ∈ T

Is (oιι) also a type?

ATPHOL’06-[3] – p.83

c©Benzmüller, 2006

Ex.: Types
HO

L

AT
Pλ

! (oι) ∈ T

! (o(oι)) ∈ T

! (ιι) ∈ T

! ((oι)ι) ∈ T

Is (oιι) also a type? – no

ATPHOL’06-[3] – p.83

c©Benzmüller, 2006

Ex.: Types
HO

L

AT
Pλ

! (oι) ∈ T

! (o(oι)) ∈ T

! (ιι) ∈ T

! ((oι)ι) ∈ T

Is (oιι) also a type? – no

But we can and will consider it shorthand by replacing missing
parenthesis, associating to the left: (oιι) = ((oι)ι) #= (o(ιι)).

ATPHOL’06-[3] – p.83

c©Benzmüller, 2006

Def.: Functions
HO

L

AT
Pλ

Let A,B be sets.

ATPHOL’06-[3] – p.84

c©Benzmüller, 2006

Def.: Functions
HO

L

AT
Pλ

Let A,B be sets.
f : B→ A : a function from B to A.

ATPHOL’06-[3] – p.84

c©Benzmüller, 2006

Def.: Functions
HO

L

AT
Pλ

Let A,B be sets.
f : B→ A : a function from B to A.
AB: set of functions from B to A.

ATPHOL’06-[3] – p.84

c©Benzmüller, 2006

Def.: Functions
HO

L

AT
Pλ

Let A,B be sets.
f : B→ A : a function from B to A.
AB: set of functions from B to A.

Assume (only for the moment) that A,B are finite.

ATPHOL’06-[3] – p.84

c©Benzmüller, 2006

Def.: Functions
HO

L

AT
Pλ

Let A,B be sets.
f : B→ A : a function from B to A.
AB: set of functions from B to A.

Assume (only for the moment) that A,B are finite.
Let |A| = m, |B| = n. Then |AB| = mn = |A||B|.

ATPHOL’06-[3] – p.84

c©Benzmüller, 2006

Def.: Functions
HO

L

AT
Pλ

Let A,B be sets.
f : B→ A : a function from B to A.
AB: set of functions from B to A.

Assume (only for the moment) that A,B are finite.
Let |A| = m, |B| = n. Then |AB| = mn = |A||B|.

Example:

ATPHOL’06-[3] – p.84

c©Benzmüller, 2006

Def.: Functions
HO

L

AT
Pλ

Let A,B be sets.
f : B→ A : a function from B to A.
AB: set of functions from B to A.

Assume (only for the moment) that A,B are finite.
Let |A| = m, |B| = n. Then |AB| = mn = |A||B|.

Example:
! f : {0, 1, 2}→ {0, 1}

ATPHOL’06-[3] – p.84

c©Benzmüller, 2006

Def.: Functions
HO

L

AT
Pλ

Let A,B be sets.
f : B→ A : a function from B to A.
AB: set of functions from B to A.

Assume (only for the moment) that A,B are finite.
Let |A| = m, |B| = n. Then |AB| = mn = |A||B|.

Example:
! f : {0, 1, 2}→ {0, 1}

! f(0), f(1), f(2) ∈ {0, 1}

ATPHOL’06-[3] – p.84

c©Benzmüller, 2006

Def.: Functions
HO

L

AT
Pλ

Let A,B be sets.
f : B→ A : a function from B to A.
AB: set of functions from B to A.

Assume (only for the moment) that A,B are finite.
Let |A| = m, |B| = n. Then |AB| = mn = |A||B|.

Example:
! f : {0, 1, 2}→ {0, 1}

! f(0), f(1), f(2) ∈ {0, 1}

! A = {0, 1},B = {0, 1, 2}

ATPHOL’06-[3] – p.84

c©Benzmüller, 2006

Def.: Functions
HO

L

AT
Pλ

Let A,B be sets.
f : B→ A : a function from B to A.
AB: set of functions from B to A.

Assume (only for the moment) that A,B are finite.
Let |A| = m, |B| = n. Then |AB| = mn = |A||B|.

Example:
! f : {0, 1, 2}→ {0, 1}

! f(0), f(1), f(2) ∈ {0, 1}

! A = {0, 1},B = {0, 1, 2}

! |AB| = 2 · 2 · 2 = 23 = 8

ATPHOL’06-[3] – p.84

c©Benzmüller, 2006

Ex.: Sets of Functions
HO

L

AT
Pλ

Let F = {f : B→ A|∀x, y ∈ B : x ≤ y⇒ f(x) ≤ f(y)} ⊆ AB.

ATPHOL’06-[3] – p.85

c©Benzmüller, 2006

Ex.: Sets of Functions
HO

L

AT
Pλ

Let F = {f : B→ A|∀x, y ∈ B : x ≤ y⇒ f(x) ≤ f(y)} ⊆ AB.

|F| =?

ATPHOL’06-[3] – p.85

c©Benzmüller, 2006

Ex.: Sets of Functions
HO

L

AT
Pλ

Let F = {f : B→ A|∀x, y ∈ B : x ≤ y⇒ f(x) ≤ f(y)} ⊆ AB.

|F| =?

AB f(0) f(1) f(2)

K0 ∈ F 0 0 0
∈ F 0 0 1
/∈ F 0 1 0
∈ F 0 1 1

g /∈ F 1 0 0
/∈ F 1 0 1
/∈ F 1 1 0

K1 ∈ F 1 1 1

Consider:
g : x = 0, y = 1, x ≤ y, but
f(x) ≥ f(y)⇒ g /∈ F.

ATPHOL’06-[3] – p.85

c©Benzmüller, 2006

Ex.: Sets of Functions
HO

L

AT
Pλ

Let F = {f : B→ A|∀x, y ∈ B : x ≤ y⇒ f(x) ≤ f(y)} ⊆ AB.

|F| =?

AB f(0) f(1) f(2)

K0 ∈ F 0 0 0
∈ F 0 0 1
/∈ F 0 1 0
∈ F 0 1 1

g /∈ F 1 0 0
/∈ F 1 0 1
/∈ F 1 1 0

K1 ∈ F 1 1 1

Consider:
g : x = 0, y = 1, x ≤ y, but
f(x) ≥ f(y)⇒ g /∈ F.

|F| = 4

ATPHOL’06-[3] – p.85

c©Benzmüller, 2006

Ex.: Sets of Labelled Functions
HO

L

AT
Pλ

C = {red, blue, green}

ATPHOL’06-[3] – p.86

c©Benzmüller, 2006

Ex.: Sets of Labelled Functions
HO

L

AT
Pλ

C = {red, blue, green}

FC = {〈c, f〉|c ∈ C, f ∈ F}

ATPHOL’06-[3] – p.86

c©Benzmüller, 2006

Ex.: Sets of Labelled Functions
HO

L

AT
Pλ

C = {red, blue, green}

FC = {〈c, f〉|c ∈ C, f ∈ F}

|FC| = 3 · 4 = 12

ATPHOL’06-[3] – p.86

c©Benzmüller, 2006

Def.: Frames
HO

L

AT
Pλ

A frame is a family (Dα)α∈T of nonempty sets s.t:

ATPHOL’06-[3] – p.87

c©Benzmüller, 2006

Def.: Frames
HO

L

AT
Pλ

A frame is a family (Dα)α∈T of nonempty sets s.t:

∀α,β ∈ T : Dαβ ⊆ DDβ

α

ATPHOL’06-[3] – p.87

c©Benzmüller, 2006

Def.: Frames
HO

L

AT
Pλ

A frame is a family (Dα)α∈T of nonempty sets s.t:

∀α,β ∈ T : Dαβ ⊆ DDβ

α

A Frame is called standard if

ATPHOL’06-[3] – p.87

c©Benzmüller, 2006

Def.: Frames
HO

L

AT
Pλ

A frame is a family (Dα)α∈T of nonempty sets s.t:

∀α,β ∈ T : Dαβ ⊆ DDβ

α

A Frame is called standard if

Dαβ = DDβ

α ∀α,β ∈ T

ATPHOL’06-[3] – p.87

c©Benzmüller, 2006

Ex.: Frames
HO

L

AT
Pλ

Do = {⊥,.}

ATPHOL’06-[3] – p.88

c©Benzmüller, 2006

Ex.: Frames
HO

L

AT
Pλ

Do = {⊥,.}

Dι = {1}

ATPHOL’06-[3] – p.88

c©Benzmüller, 2006

Ex.: Frames
HO

L

AT
Pλ

Do = {⊥,.}

Dι = {1}

Dαβ = D
Dβ

α

ATPHOL’06-[3] – p.88

c©Benzmüller, 2006

Ex.: Frames
HO

L

AT
Pλ

Do = {⊥,.}

Dι = {1}

Dαβ = D
Dβ

α

D: the standard frame with Do = {⊥,.},Di = {1}

ATPHOL’06-[3] – p.88

c©Benzmüller, 2006

Ex.: Frames (Contd.)
HO

L

AT
Pλ

Consider the set Do(ιι)((o(ιo))). Is the set empty?

ATPHOL’06-[3] – p.89

c©Benzmüller, 2006

Ex.: Frames (Contd.)
HO

L

AT
Pλ

Consider the set Do(ιι)((o(ιo))). Is the set empty? — no!

ATPHOL’06-[3] – p.89

c©Benzmüller, 2006

Ex.: Frames (Contd.)
HO

L

AT
Pλ

Consider the set Do(ιι)((o(ιo))). Is the set empty? — no!

Claim: ∀α ∈ T : Dα #= ∅.

ATPHOL’06-[3] – p.89

c©Benzmüller, 2006

Ex.: Frames (Contd.)
HO

L

AT
Pλ

Consider the set Do(ιι)((o(ιo))). Is the set empty? — no!

Claim: ∀α ∈ T : Dα #= ∅.
Proof: induction on type.

ATPHOL’06-[3] – p.89

c©Benzmüller, 2006

Ex.: Frames (Contd.)
HO

L

AT
Pλ

Consider the set Do(ιι)((o(ιo))). Is the set empty? — no!

Claim: ∀α ∈ T : Dα #= ∅.
Proof: induction on type.

! Base: Do = {⊥,.} #= ∅,Di = {1} #= ∅.

ATPHOL’06-[3] – p.89

c©Benzmüller, 2006

Ex.: Frames (Contd.)
HO

L

AT
Pλ

Consider the set Do(ιι)((o(ιo))). Is the set empty? — no!

Claim: ∀α ∈ T : Dα #= ∅.
Proof: induction on type.

! Base: Do = {⊥,.} #= ∅,Di = {1} #= ∅.

! Step: Assume Dα #= ∅ ∧ Dβ #= ∅. Want to show: Dαβ #= ∅.

ATPHOL’06-[3] – p.89

c©Benzmüller, 2006

Ex.: Frames (Contd.)
HO

L

AT
Pλ

Consider the set Do(ιι)((o(ιo))). Is the set empty? — no!

Claim: ∀α ∈ T : Dα #= ∅.
Proof: induction on type.

! Base: Do = {⊥,.} #= ∅,Di = {1} #= ∅.

! Step: Assume Dα #= ∅ ∧ Dβ #= ∅. Want to show: Dαβ #= ∅.
Since Dα #= ∅ ⇒ ∃a ∈ Dα,

ATPHOL’06-[3] – p.89

c©Benzmüller, 2006

Ex.: Frames (Contd.)
HO

L

AT
Pλ

Consider the set Do(ιι)((o(ιo))). Is the set empty? — no!

Claim: ∀α ∈ T : Dα #= ∅.
Proof: induction on type.

! Base: Do = {⊥,.} #= ∅,Di = {1} #= ∅.

! Step: Assume Dα #= ∅ ∧ Dβ #= ∅. Want to show: Dαβ #= ∅.
Since Dα #= ∅ ⇒ ∃a ∈ Dα, hence Ka ∈ Dαβ .

ATPHOL’06-[3] – p.89

c©Benzmüller, 2006

Ex.: Frames (Contd.)
HO

L

AT
Pλ

Consider the set Do(ιι)((o(ιo))). Is the set empty? — no!

Claim: ∀α ∈ T : Dα #= ∅.
Proof: induction on type.

! Base: Do = {⊥,.} #= ∅,Di = {1} #= ∅.

! Step: Assume Dα #= ∅ ∧ Dβ #= ∅. Want to show: Dαβ #= ∅.
Since Dα #= ∅ ⇒ ∃a ∈ Dα, hence Ka ∈ Dαβ .

(Here Ka is the constant function which always returns a. We
will often use this notation for constant functions.)

ATPHOL’06-[3] – p.89

c©Benzmüller, 2006

Def.: Typed Applicative Structure
HO

L

AT
Pλ

A (typed) applicative structure is a tupel

ATPHOL’06-[3] – p.90

c©Benzmüller, 2006

Def.: Typed Applicative Structure
HO

L

AT
Pλ

A (typed) applicative structure is a tupel

〈D,@〉

where

ATPHOL’06-[3] – p.90

c©Benzmüller, 2006

Def.: Typed Applicative Structure
HO

L

AT
Pλ

A (typed) applicative structure is a tupel

〈D,@〉

where
! D := (Dα)α∈T is a family of nonempty sets

ATPHOL’06-[3] – p.90

c©Benzmüller, 2006

Def.: Typed Applicative Structure
HO

L

AT
Pλ

A (typed) applicative structure is a tupel

〈D,@〉

where
! D := (Dα)α∈T is a family of nonempty sets
! @ := (@αβ : Dαβ × Dβ → Dα)α,β∈T

ATPHOL’06-[3] – p.90

c©Benzmüller, 2006

Def.: Typed Applicative Structure
HO

L

AT
Pλ

A (typed) applicative structure is a tupel

〈D,@〉

where
! D := (Dα)α∈T is a family of nonempty sets
! @ := (@αβ : Dαβ × Dβ → Dα)α,β∈T

Usually we write f@b for @αβ(f, b) when f ∈ Dαβ ∧ b ∈ Dβ

ATPHOL’06-[3] – p.90

c©Benzmüller, 2006

Rem.: Currying
HO

L

AT
Pλ

The application operator @ in an applicative structure is an ab-

stract version of function application.

ATPHOL’06-[3] – p.91

c©Benzmüller, 2006

Rem.: Currying
HO

L

AT
Pλ

The application operator @ in an applicative structure is an abstract

version of function application. It is no restriction to exclusively use

a binary application operator, which corresponds to unary function

application,

ATPHOL’06-[3] – p.91

c©Benzmüller, 2006

Rem.: Currying
HO

L

AT
Pλ

The application operator @ in an applicative structure is an abstract

version of function application. It is no restriction to exclusively use

a binary application operator, which corresponds to unary function

application, since we can define higher-arity application operators

from the binary one by setting f@(a1, . . . , an) := (. . . (f@a1) . . . @an)

(“Currying”).

ATPHOL’06-[3] – p.91

c©Benzmüller, 2006

Interesting Properties
HO

L

AT
Pλ

Let D be a frame.

ATPHOL’06-[3] – p.92

c©Benzmüller, 2006

Interesting Properties
HO

L

AT
Pλ

Let D be a frame.

∀f, g ∈ Dαβ (∀b ∈ Dβ : f(b) = g(b))⇒ f = g.

ATPHOL’06-[3] – p.92

c©Benzmüller, 2006

Interesting Properties
HO

L

AT
Pλ

Let D be a frame.

∀f, g ∈ Dαβ (∀b ∈ Dβ : f(b) = g(b))⇒ f = g.

Let 〈D,@〉 be an applicative structure. Consider the property:

ATPHOL’06-[3] – p.92

c©Benzmüller, 2006

Interesting Properties
HO

L

AT
Pλ

Let D be a frame.

∀f, g ∈ Dαβ (∀b ∈ Dβ : f(b) = g(b))⇒ f = g.

Let 〈D,@〉 be an applicative structure. Consider the property:

∀f, g ∈ Dαβ (∀b ∈ Dβ : f@b = g@b)⇒ f = g.

ATPHOL’06-[3] – p.92

c©Benzmüller, 2006

Def.: Functional Applicative Structures
HO

L

AT
Pλ

Given an applicative structure 〈D,@〉.

ATPHOL’06-[3] – p.93

c©Benzmüller, 2006

Def.: Functional Applicative Structures
HO

L

AT
Pλ

Given an applicative structure 〈D,@〉. We say that 〈D,@〉 is
functional if

ATPHOL’06-[3] – p.93

c©Benzmüller, 2006

Def.: Functional Applicative Structures
HO

L

AT
Pλ

Given an applicative structure 〈D,@〉. We say that 〈D,@〉 is
functional if

∀α,β ∈ T : ∀f, g ∈ Dαβ(∀b ∈ Dβ : f@b = g@b)⇒ f = g

ATPHOL’06-[3] – p.93

c©Benzmüller, 2006

Def.: Full Applicative Structures
HO

L

AT
Pλ

Given an applicative structure 〈D,@〉.

ATPHOL’06-[3] – p.94

c©Benzmüller, 2006

Def.: Full Applicative Structures
HO

L

AT
Pλ

Given an applicative structure 〈D,@〉. We say that 〈D,@〉 is full if

ATPHOL’06-[3] – p.94

c©Benzmüller, 2006

Def.: Full Applicative Structures
HO

L

AT
Pλ

Given an applicative structure 〈D,@〉. We say that 〈D,@〉 is full if

∀α,β ∀h : Dβ → Dα ∃f ∈ Dαβ∀b ∈ Dβ : f@b = h(b)

ATPHOL’06-[3] – p.94

c©Benzmüller, 2006

Def.: Standard Applicative Structures
HO

L

AT
Pλ

An applicative structure A := 〈D,@〉 is called standard if

ATPHOL’06-[3] – p.95

c©Benzmüller, 2006

Def.: Standard Applicative Structures
HO

L

AT
Pλ

An applicative structure A := 〈D,@〉 is called standard if
it is a frame structure (i.e. @ is function application) where D is
standard.

ATPHOL’06-[3] – p.95

c©Benzmüller, 2006

Def.: Standard Applicative Structures
HO

L

AT
Pλ

An applicative structure A := 〈D,@〉 is called standard if
it is a frame structure (i.e. @ is function application) where D is
standard.

Note that the definitions of functional, full, and standard impose re-

strictions on the domains for function types only.

ATPHOL’06-[3] – p.95

c©Benzmüller, 2006

Rem.: Frames and Applicative Structures
HO

L

AT
Pλ

It is easy to show that every frame is functional.

ATPHOL’06-[3] – p.96

c©Benzmüller, 2006

Rem.: Frames and Applicative Structures
HO

L

AT
Pλ

It is easy to show that every frame is functional.

Furthermore, an applicative structure is standard iff it is a full frame.

ATPHOL’06-[3] – p.96

c©Benzmüller, 2006

Example: Full Functional Appl. Structure
HO

L

AT
Pλ

Let Dα = {1} ∀α

ATPHOL’06-[3] – p.97

c©Benzmüller, 2006

Example: Full Functional Appl. Structure
HO

L

AT
Pλ

Let Dα = {1} ∀α

Let f@b = 1 ∀f ∈ Dαβ ∀b ∈ Dβ

ATPHOL’06-[3] – p.97

c©Benzmüller, 2006

Example: Full Functional Appl. Structure
HO

L

AT
Pλ

Let Dα = {1} ∀α

Let f@b = 1 ∀f ∈ Dαβ ∀b ∈ Dβ

〈D,@〉 is a full functional applicative structure, but it is not a frame.

ATPHOL’06-[3] – p.97

c©Benzmüller, 2006

Example: Full Functional Appl. Structure
HO

L

AT
Pλ

Let Dα = {1} ∀α

Let f@b = 1 ∀f ∈ Dαβ ∀b ∈ Dβ

〈D,@〉 is a full functional applicative structure, but it is not a frame.

1 ∈ Doo but 1 /∈ DDo
o ⇒ Doo #⊆ DDo

o

ATPHOL’06-[3] – p.97

c©Benzmüller, 2006

Def.: Homomorphic Appl. Structures
HO

L

AT
Pλ

Let 〈D1,@1〉 and 〈D2,@2〉 are applicative structures.

ATPHOL’06-[3] – p.98

c©Benzmüller, 2006

Def.: Homomorphic Appl. Structures
HO

L

AT
Pλ

Let 〈D1,@1〉 and 〈D2,@2〉 are applicative structures. We say that κ
is a homomorphism from 〈D1,@1〉 to 〈D2,@2〉 if

ATPHOL’06-[3] – p.98

c©Benzmüller, 2006

Def.: Homomorphic Appl. Structures
HO

L

AT
Pλ

Let 〈D1,@1〉 and 〈D2,@2〉 are applicative structures. We say that κ
is a homomorphism from 〈D1,@1〉 to 〈D2,@2〉 if

! κα : D1
α → D2

α ∀α ∈ T

ATPHOL’06-[3] – p.98

c©Benzmüller, 2006

Def.: Homomorphic Appl. Structures
HO

L

AT
Pλ

Let 〈D1,@1〉 and 〈D2,@2〉 are applicative structures. We say that κ
is a homomorphism from 〈D1,@1〉 to 〈D2,@2〉 if

! κα : D1
α → D2

α ∀α ∈ T

! ∀α,β ∈ T , ∀f ∈ D1
αβ , ∀b ∈ D1

β :

κ(f)@2κ(b) = κ(f@1b)

ATPHOL’06-[3] – p.98

c©Benzmüller, 2006

Def.: Isomorphic Appl. Structures
HO

L

AT
Pλ

We say that 〈D1,@1〉 and 〈D2,@2〉 are isomorphic if ∃i, j s.t:

ATPHOL’06-[3] – p.99

c©Benzmüller, 2006

Def.: Isomorphic Appl. Structures
HO

L

AT
Pλ

We say that 〈D1,@1〉 and 〈D2,@2〉 are isomorphic if ∃i, j s.t:
! i is a homomorphism from 〈D1,@1〉 to 〈D2,@2〉

ATPHOL’06-[3] – p.99

c©Benzmüller, 2006

Def.: Isomorphic Appl. Structures
HO

L

AT
Pλ

We say that 〈D1,@1〉 and 〈D2,@2〉 are isomorphic if ∃i, j s.t:
! i is a homomorphism from 〈D1,@1〉 to 〈D2,@2〉

! j is a homomorphism from 〈D2,@2〉 to 〈D1,@1〉

ATPHOL’06-[3] – p.99

c©Benzmüller, 2006

Def.: Isomorphic Appl. Structures
HO

L

AT
Pλ

We say that 〈D1,@1〉 and 〈D2,@2〉 are isomorphic if ∃i, j s.t:
! i is a homomorphism from 〈D1,@1〉 to 〈D2,@2〉

! j is a homomorphism from 〈D2,@2〉 to 〈D1,@1〉

! i and j are inverses (i.e i(j(a2)) = a2 and j(i(a1)) = a1).

ATPHOL’06-[3] – p.99

c©Benzmüller, 2006

HO
L

AT
Pλ

HO
L

AT
Pλ

Simply Typed λ-Calculus

ATPHOL’06-[3] – p.100

c©Benzmüller, 2006

Def.: Untyped λ-Calculus
HO

L

AT
Pλ

Let Σ = (V , C) be a signature where

ATPHOL’06-[3] – p.101

c©Benzmüller, 2006

Def.: Untyped λ-Calculus
HO

L

AT
Pλ

Let Σ = (V , C) be a signature where
! V — countably infinite set of variables

ATPHOL’06-[3] – p.101

c©Benzmüller, 2006

Def.: Untyped λ-Calculus
HO

L

AT
Pλ

Let Σ = (V , C) be a signature where
! V — countably infinite set of variables
! C — possibly empty set of constants

ATPHOL’06-[3] – p.101

c©Benzmüller, 2006

Def.: Untyped λ-Calculus
HO

L

AT
Pλ

Let Σ = (V , C) be a signature where
! V — countably infinite set of variables
! C — possibly empty set of constants

We define the set Λ = wffΣ(Σ) to be the smallest set s.t:

ATPHOL’06-[3] – p.101

c©Benzmüller, 2006

Def.: Untyped λ-Calculus
HO

L

AT
Pλ

Let Σ = (V , C) be a signature where
! V — countably infinite set of variables
! C — possibly empty set of constants

We define the set Λ = wffΣ(Σ) to be the smallest set s.t:

! x ∈ V then x ∈ Λ

ATPHOL’06-[3] – p.101

c©Benzmüller, 2006

Def.: Untyped λ-Calculus
HO

L

AT
Pλ

Let Σ = (V , C) be a signature where
! V — countably infinite set of variables
! C — possibly empty set of constants

We define the set Λ = wffΣ(Σ) to be the smallest set s.t:

! x ∈ V then x ∈ Λ

! c ∈ C then c ∈ Λ

ATPHOL’06-[3] – p.101

c©Benzmüller, 2006

Def.: Untyped λ-Calculus
HO

L

AT
Pλ

Let Σ = (V , C) be a signature where
! V — countably infinite set of variables
! C — possibly empty set of constants

We define the set Λ = wffΣ(Σ) to be the smallest set s.t:

! x ∈ V then x ∈ Λ

! c ∈ C then c ∈ Λ

! A ∈ Λ, B ∈ Λ then (AB) ∈ Λ

ATPHOL’06-[3] – p.101

c©Benzmüller, 2006

Def.: Untyped λ-Calculus
HO

L

AT
Pλ

Let Σ = (V , C) be a signature where
! V — countably infinite set of variables
! C — possibly empty set of constants

We define the set Λ = wffΣ(Σ) to be the smallest set s.t:

! x ∈ V then x ∈ Λ

! c ∈ C then c ∈ Λ

! A ∈ Λ, B ∈ Λ then (AB) ∈ Λ

! x ∈ V , A ∈ Λ then (λx.A) ∈ Λ

ATPHOL’06-[3] – p.101

c©Benzmüller, 2006

Simply Typed λ-Calculus
HO

L

AT
Pλ

Let Σ = (Vα, Cα) be a signature where

ATPHOL’06-[3] – p.102

c©Benzmüller, 2006

Simply Typed λ-Calculus
HO

L

AT
Pλ

Let Σ = (Vα, Cα) be a signature where
! Vα =

⋃

α∈T
Vα — countably infinite sets of variables

ATPHOL’06-[3] – p.102

c©Benzmüller, 2006

Simply Typed λ-Calculus
HO

L

AT
Pλ

Let Σ = (Vα, Cα) be a signature where
! Vα =

⋃

α∈T
Vα — countably infinite sets of variables

! Cα =
⋃

α∈T
Cα — possibly empty sets of constants

ATPHOL’06-[3] – p.102

c©Benzmüller, 2006

Simply Typed λ-Calculus
HO

L

AT
Pλ

Let Σ = (Vα, Cα) be a signature where
! Vα =

⋃

α∈T
Vα — countably infinite sets of variables

! Cα =
⋃

α∈T
Cα — possibly empty sets of constants

We define the set Λα = wffΣ(Σ)α =
⋃

α∈T
Λα to be the smallest set s.t:

ATPHOL’06-[3] – p.102

c©Benzmüller, 2006

Simply Typed λ-Calculus
HO

L

AT
Pλ

Let Σ = (Vα, Cα) be a signature where
! Vα =

⋃

α∈T
Vα — countably infinite sets of variables

! Cα =
⋃

α∈T
Cα — possibly empty sets of constants

We define the set Λα = wffΣ(Σ)α =
⋃

α∈T
Λα to be the smallest set s.t:

! xα ∈ Vα then xα ∈ Λα

ATPHOL’06-[3] – p.102

c©Benzmüller, 2006

Simply Typed λ-Calculus
HO

L

AT
Pλ

Let Σ = (Vα, Cα) be a signature where
! Vα =

⋃

α∈T
Vα — countably infinite sets of variables

! Cα =
⋃

α∈T
Cα — possibly empty sets of constants

We define the set Λα = wffΣ(Σ)α =
⋃

α∈T
Λα to be the smallest set s.t:

! xα ∈ Vα then xα ∈ Λα

! cα ∈ Cα then cα ∈ Λα

ATPHOL’06-[3] – p.102

c©Benzmüller, 2006

Simply Typed λ-Calculus
HO

L

AT
Pλ

Let Σ = (Vα, Cα) be a signature where
! Vα =

⋃

α∈T
Vα — countably infinite sets of variables

! Cα =
⋃

α∈T
Cα — possibly empty sets of constants

We define the set Λα = wffΣ(Σ)α =
⋃

α∈T
Λα to be the smallest set s.t:

! xα ∈ Vα then xα ∈ Λα

! cα ∈ Cα then cα ∈ Λα

! Aαβ ∈ Λαβ , Bβ ∈ Λβ then (AB) ∈ Λα

ATPHOL’06-[3] – p.102

c©Benzmüller, 2006

Simply Typed λ-Calculus
HO

L

AT
Pλ

Let Σ = (Vα, Cα) be a signature where
! Vα =

⋃

α∈T
Vα — countably infinite sets of variables

! Cα =
⋃

α∈T
Cα — possibly empty sets of constants

We define the set Λα = wffΣ(Σ)α =
⋃

α∈T
Λα to be the smallest set s.t:

! xα ∈ Vα then xα ∈ Λα

! cα ∈ Cα then cα ∈ Λα

! Aαβ ∈ Λαβ , Bβ ∈ Λβ then (AB) ∈ Λα

! xα ∈ Vα , Aβ ∈ Λβ then (λxα.Aβ)βα ∈ Λβα

ATPHOL’06-[3] – p.102

c©Benzmüller, 2006

Notational Conventions
HO

L

AT
Pλ

! brackets may be avoided: ABC! ((AB)C)

ATPHOL’06-[3] – p.103

c©Benzmüller, 2006

Notational Conventions
HO

L

AT
Pλ

! brackets may be avoided: ABC! ((AB)C)

! λxι.Aoι Bι Cι — dots as far to the right as is consistent:
((λxι.AoιBι)Cι)

ATPHOL’06-[3] – p.103

c©Benzmüller, 2006

Notational Conventions
HO

L

AT
Pλ

! brackets may be avoided: ABC! ((AB)C)

! λxι.Aoι Bι Cι — dots as far to the right as is consistent:
((λxι.AoιBι)Cι)

! λx, y.A! (λx.(λy.A))

ATPHOL’06-[3] – p.103

c©Benzmüller, 2006

Notational Conventions
HO

L

AT
Pλ

! brackets may be avoided: ABC! ((AB)C)

! λxι.Aoι Bι Cι — dots as far to the right as is consistent:
((λxι.AoιBι)Cι)

! λx, y.A! (λx.(λy.A))

! λxn.A! (λx1.(. . . (λxn.A) . . .))

ATPHOL’06-[3] – p.103

c©Benzmüller, 2006

Notational Conventions
HO

L

AT
Pλ

! brackets may be avoided: ABC! ((AB)C)

! λxι.Aoι Bι Cι — dots as far to the right as is consistent:
((λxι.AoιBι)Cι)

! λx, y.A! (λx.(λy.A))

! λxn.A! (λx1.(. . . (λxn.A) . . .))

! λx.A — n is not important

ATPHOL’06-[3] – p.103

c©Benzmüller, 2006

Notational Conventions
HO

L

AT
Pλ

! brackets may be avoided: ABC! ((AB)C)

! λxι.Aoι Bι Cι — dots as far to the right as is consistent:
((λxι.AoιBι)Cι)

! λx, y.A! (λx.(λy.A))

! λxn.A! (λx1.(. . . (λxn.A) . . .))

! λx.A — n is not important
! (f A

n
)! (. . . ((f A1)A2) . . . An)

ATPHOL’06-[3] – p.103

c©Benzmüller, 2006

Def.: Positions in λ-Terms
HO

L

AT
Pλ

Consider the following term:

((λx.x)((λy.y)(λz.z)))

ATPHOL’06-[3] – p.104

c©Benzmüller, 2006

Def.: Positions in λ-Terms
HO

L

AT
Pλ

Consider the following term:

((λx.x)((λy.y)(λz.z)))

The position [212] points to the red y in

((λx.x)((λy.y)(λz.z)))

ATPHOL’06-[3] – p.104

c©Benzmüller, 2006

Def.: Positions in λ-Terms
HO

L

AT
Pλ

Consider the following term:

((λx.x)((λy.y)(λz.z)))

The position [212] points to the red y in

((λx.x)((λy.y)(λz.z)))

. . . Graphics on Blackboard . . .

ATPHOL’06-[3] – p.104

c©Benzmüller, 2006

Def.: Position (Contd.)
HO

L

AT
Pλ

The expression
Ap

refers to the subterm of A at position p.

ATPHOL’06-[3] – p.105

c©Benzmüller, 2006

Def.: Position (Contd.)
HO

L

AT
Pλ

The expression
Ap

refers to the subterm of A at position p.

Example: Consider T := ((λx.x)((λy.y)(λz.z)))

ATPHOL’06-[3] – p.105

c©Benzmüller, 2006

Def.: Position (Contd.)
HO

L

AT
Pλ

The expression
Ap

refers to the subterm of A at position p.

Example: Consider T := ((λx.x)((λy.y)(λz.z)))

T[212] = y

ATPHOL’06-[3] – p.105

c©Benzmüller, 2006

Def.: Replacement at Position
HO

L

AT
Pλ

Replacement of Ap in A by a term B is denoted as

A[B]p

ATPHOL’06-[3] – p.106

c©Benzmüller, 2006

Def.: Replacement at Position
HO

L

AT
Pλ

Replacement of Ap in A by a term B is denoted as

A[B]p

Example:
T[(f x)][212] = ((λx.x)((λy.(fx))(λz.z)))

ATPHOL’06-[3] – p.106

c©Benzmüller, 2006

Def.: Scope of λ-Term
HO

L

AT
Pλ

(λx.A) : We say that A is in the scope of λ-binder that binds x.

ATPHOL’06-[3] – p.107

c©Benzmüller, 2006

Def.: Free and Bound Variables
HO

L

AT
Pλ

An occurrence of a variable x in a term A is called bound if it is in
the scope of a λ-binder that binds x.

ATPHOL’06-[3] – p.108

c©Benzmüller, 2006

Def.: Free and Bound Variables
HO

L

AT
Pλ

An occurrence of a variable x in a term A is called bound if it is in
the scope of a λ-binder that binds x.

Otherwise it is called free.

ATPHOL’06-[3] – p.108

c©Benzmüller, 2006

Def.: Free and Bound Variables
HO

L

AT
Pλ

An occurrence of a variable x in a term A is called bound if it is in
the scope of a λ-binder that binds x.

Otherwise it is called free.

We denote the set of all free variables in a λ-term as FV(A).

ATPHOL’06-[3] – p.108

c©Benzmüller, 2006

HO
L

AT
Pλ

HO
L

AT
Pλ

Syntax: Simply Typed
λ-Calculus (Contd.)

ATPHOL’06-[4] – p.109

c©Benzmüller, 2006

Def.: Substitution
HO

L

AT
Pλ

Substitution is a map

ATPHOL’06-[4] – p.110

c©Benzmüller, 2006

Def.: Substitution
HO

L

AT
Pλ

Substitution is a map
[A/x] : Λ→ Λ (untyped)

ATPHOL’06-[4] – p.110

c©Benzmüller, 2006

Def.: Substitution
HO

L

AT
Pλ

Substitution is a map
[A/x] : Λ→ Λ (untyped)

[Aα/xα] : Λα → Λα (typed)

ATPHOL’06-[4] – p.110

c©Benzmüller, 2006

Def.: Substitution
HO

L

AT
Pλ

Substitution is a map
[A/x] : Λ→ Λ (untyped)

[Aα/xα] : Λα → Λα (typed)

and is defined as follows:

ATPHOL’06-[4] – p.110

c©Benzmüller, 2006

Def.: Substitution
HO

L

AT
Pλ

Substitution is a map
[A/x] : Λ→ Λ (untyped)

[Aα/xα] : Λα → Λα (typed)

and is defined as follows:

1. [Nα/xα]xα = Nα

ATPHOL’06-[4] – p.110

c©Benzmüller, 2006

Def.: Substitution
HO

L

AT
Pλ

Substitution is a map
[A/x] : Λ→ Λ (untyped)

[Aα/xα] : Λα → Λα (typed)

and is defined as follows:

1. [Nα/xα]xα = Nα

2. [Nα/xα]aβ = aβ if aβ #= xα ∧ aβ ∈ Vβ ∪ Cβ

ATPHOL’06-[4] – p.110

c©Benzmüller, 2006

Def.: Substitution
HO

L

AT
Pλ

Substitution is a map
[A/x] : Λ→ Λ (untyped)

[Aα/xα] : Λα → Λα (typed)

and is defined as follows:

1. [Nα/xα]xα = Nα

2. [Nα/xα]aβ = aβ if aβ #= xα ∧ aβ ∈ Vβ ∪ Cβ

3. [Nα/xα](AααBβ) = ([Nα/xα]A)([Nα/xα]B)

ATPHOL’06-[4] – p.110

c©Benzmüller, 2006

Def.: Substitution
HO

L

AT
Pλ

Substitution is a map
[A/x] : Λ→ Λ (untyped)

[Aα/xα] : Λα → Λα (typed)

and is defined as follows:

1. [Nα/xα]xα = Nα

2. [Nα/xα]aβ = aβ if aβ #= xα ∧ aβ ∈ Vβ ∪ Cβ

3. [Nα/xα](AααBβ) = ([Nα/xα]A)([Nα/xα]B)

4. [Nα/xα](λxα.Aγ) = (λxαAγ)

ATPHOL’06-[4] – p.110

c©Benzmüller, 2006

Def.: Substitution
HO

L

AT
Pλ

Substitution is a map
[A/x] : Λ→ Λ (untyped)

[Aα/xα] : Λα → Λα (typed)

and is defined as follows:

1. [Nα/xα]xα = Nα

2. [Nα/xα]aβ = aβ if aβ #= xα ∧ aβ ∈ Vβ ∪ Cβ

3. [Nα/xα](AααBβ) = ([Nα/xα]A)([Nα/xα]B)

4. [Nα/xα](λxα.Aγ) = (λxαAγ)

5. [Nα/xα](λyβ .Aγ) = (λyβ .[Nα/xα]Aγ) if
xα #= yβ ∧ (yβ /∈ FV(Nα) ∨ xα /∈ FV(Aγ))

ATPHOL’06-[4] – p.110

c©Benzmüller, 2006

Def.: Substitution
HO

L

AT
Pλ

Substitution is a map
[A/x] : Λ→ Λ (untyped)

[Aα/xα] : Λα → Λα (typed)

and is defined as follows:

1. [Nα/xα]xα = Nα

2. [Nα/xα]aβ = aβ if aβ #= xα ∧ aβ ∈ Vβ ∪ Cβ

3. [Nα/xα](AααBβ) = ([Nα/xα]A)([Nα/xα]B)

4. [Nα/xα](λxα.Aγ) = (λxαAγ)

5. [Nα/xα](λyβ .Aγ) = (λyβ .[Nα/xα]Aγ) if
xα #= yβ ∧ (yβ /∈ FV(Nα) ∨ xα /∈ FV(Aγ))

6. [Nα/xα](λyα.Aγ) = (λzβ .[Nα/xα][zβ/yβ]Aγ) if xα #= yβ∧
(yβ ∈ FV(Nα) ∧ xα ∈ FV(Aγ)) and z is a ’fresh’ variable.

ATPHOL’06-[4] – p.110

c©Benzmüller, 2006

Ex.: Substitution
HO

L

AT
Pλ

! [y/x](λy.x) — the occurrence of x is free
#= (λy.y) — if we replace x with y, the variable y becomes
bound.

ATPHOL’06-[4] – p.111

c©Benzmüller, 2006

Ex.: Substitution
HO

L

AT
Pλ

! [y/x](λy.x) — the occurrence of x is free
#= (λy.y) — if we replace x with y, the variable y becomes
bound.

! [y/x](λy.x) — the occurrence of x is free
= (λz[y/x][z/y]x) — we need a fresh variable
= (λz.y) — the occurrence of y is free

ATPHOL’06-[4] – p.111

c©Benzmüller, 2006

Ex.: Substitution
HO

L

AT
Pλ

! [y/x](λy.x) — the occurrence of x is free
#= (λy.y) — if we replace x with y, the variable y becomes
bound.

! [y/x](λy.x) — the occurrence of x is free
= (λz[y/x][z/y]x) — we need a fresh variable
= (λz.y) — the occurrence of y is free

! Further Examples on Blackboard

ATPHOL’06-[4] – p.111

c©Benzmüller, 2006

Ex.: Substitution
HO

L

AT
Pλ

! [y/x](λy.x) — the occurrence of x is free
#= (λy.y) — if we replace x with y, the variable y becomes
bound.

! [y/x](λy.x) — the occurrence of x is free
= (λz[y/x][z/y]x) — we need a fresh variable
= (λz.y) — the occurrence of y is free

! Further Examples on Blackboard
! Claim: [N/x]A = A if x /∈ FV(A)

Proof: Induction on A

ATPHOL’06-[4] – p.111

c©Benzmüller, 2006

Def.: α-Conversion
HO

L

AT
Pλ

[λx.M] →α [λy. [y/x]M]

where y /∈ FV(M)

ATPHOL’06-[4] – p.112

c©Benzmüller, 2006

Def.: α-Conversion
HO

L

AT
Pλ

[λx.M] →α [λy. [y/x]M]

where y /∈ FV(M)

A =α B

if A can be converted to B by renaming the bound variables. We
read A =α B as A is α-equal to B.

ATPHOL’06-[4] – p.112

c©Benzmüller, 2006

Def.: α-Conversion
HO

L

AT
Pλ

[λx.M] →α [λy. [y/x]M]

where y /∈ FV(M)

A =α B

if A can be converted to B by renaming the bound variables. We
read A =α B as A is α-equal to B.

From now on (λy. y) = (λz. z), that is, we will say that two terms are
simply equal, if they are α-equal. Two terms are equal means that
two terms are α-convertable.

ATPHOL’06-[4] – p.112

c©Benzmüller, 2006

Def.: β-Conversion
HO

L

AT
Pλ

A β-redex is a term ((λx.A)B). The β-reduct of this redex is [B/x]A.

ATPHOL’06-[4] – p.113

c©Benzmüller, 2006

Def.: β-Conversion
HO

L

AT
Pλ

A β-redex is a term ((λx.A)B). The β-reduct of this redex is [B/x]A.

We say M→β N, ie. β-reduces in 1 step, if

M = P[(λx.A)B]p

N = P[[B/x]A]p

ATPHOL’06-[4] – p.113

c©Benzmüller, 2006

Def.: β-Conversion
HO

L

AT
Pλ

A β-redex is a term ((λx.A)B). The β-reduct of this redex is [B/x]A.

We say M→β N, ie. β-reduces in 1 step, if

M = P[(λx.A)B]p

N = P[[B/x]A]p

We say M"β N, ie. β-reduces in several steps, if ∃M1, . . . ,Mn for
n ≥ 1 such that M = M1 and N = Mn and Mi →β Mi+1.

ATPHOL’06-[4] – p.113

c©Benzmüller, 2006

Def.: β-Normal Form
HO

L

AT
Pλ

A term is called β-normal if it contains no β-redexes.

ATPHOL’06-[4] – p.114

c©Benzmüller, 2006

Def.: β-Normal Form
HO

L

AT
Pλ

A term is called β-normal if it contains no β-redexes.

Any term that does not contain λ-abstractions is β-normal.

ATPHOL’06-[4] – p.114

c©Benzmüller, 2006

Def.: β-Normal Form
HO

L

AT
Pλ

A term is called β-normal if it contains no β-redexes.

Any term that does not contain λ-abstractions is β-normal.

A term is called β-head normal if the head term of its outermost
application can not be further reduced.

ATPHOL’06-[4] – p.114

c©Benzmüller, 2006

Def.: β-Normal Form
HO

L

AT
Pλ

A term is called β-normal if it contains no β-redexes.

Any term that does not contain λ-abstractions is β-normal.

A term is called β-head normal if the head term of its outermost
application can not be further reduced.

Any term that does not contain λ-abstractions is β-head normal.

ATPHOL’06-[4] – p.114

c©Benzmüller, 2006

Thm.: Church-Rosser Property for"β
HO

L

AT
Pλ

Tα

Lα Rα

Bα

β β

β β

ATPHOL’06-[4] – p.115

c©Benzmüller, 2006

Thm.: Church-Rosser Property for"β
HO

L

AT
Pλ

Tα

Lα Rα

Bα

β β

β β

If Tα β-reduces in multiple steps with one strategy to Lα and with
another strategy to Rα then there exists a term Bα such that Lα and
Rα β-reduce in multiple steps to Bα.

ATPHOL’06-[4] – p.115

c©Benzmüller, 2006

Thm.: Church-Rosser Property for"β
HO

L

AT
Pλ

Tα

Lα Rα

Bα

β β

β β

If Tα β-reduces in multiple steps with one strategy to Lα and with
another strategy to Rα then there exists a term Bα such that Lα and
Rα β-reduce in multiple steps to Bα.

Note that Bα is not necessarily in normal form.

ATPHOL’06-[4] – p.115

c©Benzmüller, 2006

Thm.: Church-Rosser Property for"β
HO

L

AT
Pλ

Tα

Lα Rα

Bα

β β

β β

If Tα β-reduces in multiple steps with one strategy to Lα and with
another strategy to Rα then there exists a term Bα such that Lα and
Rα β-reduce in multiple steps to Bα.

Note that Bα is not necessarily in normal form.

The Church-Rosser Property for"β holds for Λ and Λα.

ATPHOL’06-[4] – p.115

c©Benzmüller, 2006

Ex.: Church-Rosser Property for"β
HO

L

AT
Pλ

((λf. f) g)((λx. x) a)

g((λx. x) a) ((λf. f)g) a

g a

β β

β β

ATPHOL’06-[4] – p.116

c©Benzmüller, 2006

Termination
HO

L

AT
Pλ

Do we always get a β-normal form as we apply β-reduction?

ATPHOL’06-[4] – p.117

c©Benzmüller, 2006

Termination
HO

L

AT
Pλ

Do we always get a β-normal form as we apply β-reduction?

Typed Case: Forall Aα there exists a unique (up to α-conversion)
β-normal term B such that A"β B

ATPHOL’06-[4] – p.117

c©Benzmüller, 2006

Termination
HO

L

AT
Pλ

Do we always get a β-normal form as we apply β-reduction?

Typed Case: Forall Aα there exists a unique (up to α-conversion)
β-normal term B such that A"β B

Untyped Case: Consider the term ω = (λx. xx)

(λx. xx)(λx. xx)→1
β ωω

ATPHOL’06-[4] – p.117

c©Benzmüller, 2006

Def.: η-Conversion
HO

L

AT
Pλ

A η-redex is a term of the form (λxβ .Fαβ x) where x #∈ FV(F). The
η-reduct of this term is F.

ATPHOL’06-[4] – p.118

c©Benzmüller, 2006

Def.: η-Conversion
HO

L

AT
Pλ

A η-redex is a term of the form (λxβ .Fαβ x) where x #∈ FV(F). The
η-reduct of this term is F.

We say M→η N, ie. η-reduces in 1 step, if

M = P[(λxβ .Fαβx)]p

N = P[F]p

ATPHOL’06-[4] – p.118

c©Benzmüller, 2006

Def.: η-Conversion
HO

L

AT
Pλ

A η-redex is a term of the form (λxβ .Fαβ x) where x #∈ FV(F). The
η-reduct of this term is F.

We say M→η N, ie. η-reduces in 1 step, if

M = P[(λxβ .Fαβx)]p

N = P[F]p

We say M"η N, ie. η-reduces in several steps, if ∃M1, . . . ,Mn for
n ≥ 1 such that M = M1 and N = Mn and Mi →β Mi+1.

ATPHOL’06-[4] – p.118

c©Benzmüller, 2006

Def.: η-Normal Form
HO

L

AT
Pλ

A term is called η-normal if it contains no η-redexes.

ATPHOL’06-[4] – p.119

c©Benzmüller, 2006

Thm.: Church-Rosser Property for"η
HO

L

AT
Pλ

Tα

Lα Rα

Bα

η η

η η

ATPHOL’06-[4] – p.120

c©Benzmüller, 2006

Thm.: Church-Rosser Property for"η
HO

L

AT
Pλ

Tα

Lα Rα

Bα

η η

η η

If Tα η-reduces in multiple steps with one strategy to Lα and with
another strategy to Rα then there exists a term Bα such that Lα and
Rα η-reduce in multiple steps to Bα.

ATPHOL’06-[4] – p.120

c©Benzmüller, 2006

Thm.: Church-Rosser Property for"η
HO

L

AT
Pλ

Tα

Lα Rα

Bα

η η

η η

If Tα η-reduces in multiple steps with one strategy to Lα and with
another strategy to Rα then there exists a term Bα such that Lα and
Rα η-reduce in multiple steps to Bα.

The Church-Rosser Property for"η holds for Λ and Λα.

ATPHOL’06-[4] – p.120

c©Benzmüller, 2006

Def.: βη-Conversion
HO

L

AT
Pλ

→βη :=→β ∪ →η

ATPHOL’06-[4] – p.121

c©Benzmüller, 2006

Def.: βη-Conversion
HO

L

AT
Pλ

→βη :=→β ∪ →η

If M→βη N we say M βη-reduces in 1 step to N.

ATPHOL’06-[4] – p.121

c©Benzmüller, 2006

Def.: βη-Conversion
HO

L

AT
Pλ

→βη :=→β ∪ →η

If M→βη N we say M βη-reduces in 1 step to N.

We say M"βη N, ie. η-reduces in several steps, if ∃M1, . . . ,Mn for
n ≥ 1 such that M = M1 and N = Mn and Mi →βη Mi+1.

ATPHOL’06-[4] – p.121

c©Benzmüller, 2006

Def.: βη-Normal Form
HO

L

AT
Pλ

A term is βη-normal if it contains no β-redexes and no η-redexes.

ATPHOL’06-[4] – p.122

c©Benzmüller, 2006

Thm.: Church-Rosser Property for"βη
HO

L

AT
Pλ

Tα

Lα Rα

Bα

βη βη

βη βη

ATPHOL’06-[4] – p.123

c©Benzmüller, 2006

Thm.: Church-Rosser Property for"βη
HO

L

AT
Pλ

Tα

Lα Rα

Bα

βη βη

βη βη

If Tα βη-reduces in multiple steps with one strategy to Lα and with
another strategy to Rα then there exists a term Bα such that Lα and
Rα βη-reduce in multiple steps to Bα.

ATPHOL’06-[4] – p.123

c©Benzmüller, 2006

Thm.: Church-Rosser Property for"βη
HO

L

AT
Pλ

Tα

Lα Rα

Bα

βη βη

βη βη

If Tα βη-reduces in multiple steps with one strategy to Lα and with
another strategy to Rα then there exists a term Bα such that Lα and
Rα βη-reduce in multiple steps to Bα.

The Church-Rosser Property for"βη holds for Λ and Λα.

ATPHOL’06-[4] – p.123

c©Benzmüller, 2006

Thm.: Strong Church-Rosser Property
HO

L

AT
Pλ

In Λα (simply typed λ-calculus) the relations"β and"βη have the
strong Church Rosser property:

ATPHOL’06-[4] – p.124

c©Benzmüller, 2006

Thm.: Strong Church-Rosser Property
HO

L

AT
Pλ

In Λα (simply typed λ-calculus) the relations"β and"βη have the
strong Church Rosser property: for very term Aτ there exists a
unique (up to α-renaming) β-normal resp. βη-normal term Bτ such
that Aτ "β Bτ resp. Aτ "βη Bτ .

ATPHOL’06-[4] – p.124

c©Benzmüller, 2006

Def.: Long βη-Normal Form
HO

L

AT
Pλ

Let n ≥ 0, α1, . . . ,αn ∈ T , and β ∈ {o, ι}. A term A of type
(β,αn, . . . ,α1) is in long βη-normal form if it is of form

λx1
α1 . . . xn

αn .(hβγm...γ1A1
γ1 . . . Am

γm)

for a variable or constant hβγm...γ1 , m ≥ 0 and long βη-normal forms
A1
γ1 , . . . ,Am

γm .

ATPHOL’06-[4] – p.125

c©Benzmüller, 2006

Def.: Long βη-Normal Form
HO

L

AT
Pλ

Let n ≥ 0, α1, . . . ,αn ∈ T , and β ∈ {o, ι}. A term A of type
(β,αn, . . . ,α1) is in long βη-normal form if it is of form

λx1
α1 . . . xn

αn .(hβγm...γ1A1
γ1 . . . Am

γm)

for a variable or constant hβγm...γ1 , m ≥ 0 and long βη-normal forms
A1
γ1 , . . . ,Am

γm . Note that this is an inductive definition; the base case
is when m = 0.

ATPHOL’06-[4] – p.125

c©Benzmüller, 2006

Def.: Long βη-Normal Form
HO

L

AT
Pλ

Let n ≥ 0, α1, . . . ,αn ∈ T , and β ∈ {o, ι}. A term A of type
(β,αn, . . . ,α1) is in long βη-normal form if it is of form

λx1
α1 . . . xn

αn .(hβγm...γ1A1
γ1 . . . Am

γm)

for a variable or constant hβγm...γ1 , m ≥ 0 and long βη-normal forms
A1
γ1 , . . . ,Am

γm . Note that this is an inductive definition; the base case
is when m = 0. Note that if λxn.(hAm) is in long βη-normal form
then (hAm) is of base type.

ATPHOL’06-[4] – p.125

c©Benzmüller, 2006

Ex.: Long βη-Normal Form
HO

L

AT
Pλ

Consider the βη-normal term fι(ιι).

fι(ιι)

↑η

λwιι. (fι(ιι)wιι)

↑η

λwιι. (f(λxι.wιιx))

ATPHOL’06-[4] – p.126

c©Benzmüller, 2006

Thm.: Long βη-Normal Form
HO

L

AT
Pλ

For every term A there is unique long βη-normal form B such that
A =βη B.

ATPHOL’06-[4] – p.127

c©Benzmüller, 2006

Rem.: βη-Head Normal Form
HO

L

AT
Pλ

Instead of terms in long βη-normal form we often use in practice
terms in βη-head normal form.

ATPHOL’06-[4] – p.128

c©Benzmüller, 2006

Rem.: βη-Head Normal Form
HO

L

AT
Pλ

Instead of terms in long βη-normal form we often use in practice
terms in βη-head normal form. Definition is similar to long
βη-normal, but we do not require the embedded terms Ai

γ i to be in
normal form.

ATPHOL’06-[4] – p.128

c©Benzmüller, 2006

Notation
HO

L

AT
Pλ

! A↓β is the β-normal form of A.

ATPHOL’06-[4] – p.129

c©Benzmüller, 2006

Notation
HO

L

AT
Pλ

! A↓β is the β-normal form of A.
! A↓η is the η-normal form of A.

ATPHOL’06-[4] – p.129

c©Benzmüller, 2006

Notation
HO

L

AT
Pλ

! A↓β is the β-normal form of A.
! A↓η is the η-normal form of A.
! A↓ is the βη-normal form of A.

ATPHOL’06-[4] – p.129

c©Benzmüller, 2006

Notation
HO

L

AT
Pλ

! A↓β is the β-normal form of A.
! A↓η is the η-normal form of A.
! A↓ is the βη-normal form of A.
! A6 is the long βη-normal form of A.

ATPHOL’06-[4] – p.129

c©Benzmüller, 2006

HO
L

AT
Pλ

HO
L

AT
Pλ

Semantics: Σ-Evaluations

ATPHOL’06-[5] – p.130

c©Benzmüller, 2006

Ex.: An Interesting Applicative Structure
HO

L

AT
Pλ

Dα := {Aα ∈ Λα|A is closed}.

! Is Dα non-empty for all α?

ATPHOL’06-[5] – p.131

c©Benzmüller, 2006

Ex.: An Interesting Applicative Structure
HO

L

AT
Pλ

Dα := {Aα ∈ Λα|A is closed}.

! Is Dα non-empty for all α?
! If Cι #= ∅ and Co #= ∅ , then ∀α ∈ T .Λα #= ∅.

ATPHOL’06-[5] – p.131

c©Benzmüller, 2006

Ex.: An Interesting Applicative Structure
HO

L

AT
Pλ

Dα := {Aα ∈ Λα|A is closed}.

! Is Dα non-empty for all α?
! If Cι #= ∅ and Co #= ∅ , then ∀α ∈ T .Λα #= ∅.
! Is Dαβ a set of functions? (ie. Dαβ ⊆ (Dα)Dβ ?) — No!

ATPHOL’06-[5] – p.131

c©Benzmüller, 2006

Ex.: An Interesting Applicative Structure
HO

L

AT
Pλ

Dα := {Aα ∈ Λα|A is closed}.

! Is Dα non-empty for all α?
! If Cι #= ∅ and Co #= ∅ , then ∀α ∈ T .Λα #= ∅.
! Is Dαβ a set of functions? (ie. Dαβ ⊆ (Dα)Dβ ?) — No!
! Is (λxι x) ∈ Dιι? — Yes!

ATPHOL’06-[5] – p.131

c©Benzmüller, 2006

Ex.: An Interesting Applicative Structure
HO

L

AT
Pλ

Dα := {Aα ∈ Λα|A is closed}.

! Is Dα non-empty for all α?
! If Cι #= ∅ and Co #= ∅ , then ∀α ∈ T .Λα #= ∅.
! Is Dαβ a set of functions? (ie. Dαβ ⊆ (Dα)Dβ ?) — No!
! Is (λxι x) ∈ Dιι? — Yes!
! D = (Dα)α∈T is not a frame!

ATPHOL’06-[5] – p.131

c©Benzmüller, 2006

Ex.: An Interesting Applicative Structure
HO

L

AT
Pλ

Dα := {Aα ∈ Λα|A is closed}.

! Is Dα non-empty for all α?
! If Cι #= ∅ and Co #= ∅ , then ∀α ∈ T .Λα #= ∅.
! Is Dαβ a set of functions? (ie. Dαβ ⊆ (Dα)Dβ ?) — No!
! Is (λxι x) ∈ Dιι? — Yes!
! D = (Dα)α∈T is not a frame!
! It requires a specific application operator @ : Dαβ × Dβ → Dα

ATPHOL’06-[5] – p.131

c©Benzmüller, 2006

Ex.: An Interesting Applicative Structure
HO

L

AT
Pλ

Dα := {Aα ∈ Λα|A is closed}.

! Is Dα non-empty for all α?
! If Cι #= ∅ and Co #= ∅ , then ∀α ∈ T .Λα #= ∅.
! Is Dαβ a set of functions? (ie. Dαβ ⊆ (Dα)Dβ ?) — No!
! Is (λxι x) ∈ Dιι? — Yes!
! D = (Dα)α∈T is not a frame!
! It requires a specific application operator @ : Dαβ × Dβ → Dα

! If Λα is non-empty for all α ∈ T , then < D,@ > is an applicative
structure.

ATPHOL’06-[5] – p.131

c©Benzmüller, 2006

Ex.: Interpretation of Terms
HO

L

AT
Pλ

Syntax Semantics < D,@ >

(λxι. x)

ATPHOL’06-[5] – p.132

c©Benzmüller, 2006

Ex.: Interpretation of Terms
HO

L

AT
Pλ

Syntax Semantics < D,@ >

(λxι. x) (λxι. x)

ATPHOL’06-[5] – p.132

c©Benzmüller, 2006

Ex.: Interpretation of Terms
HO

L

AT
Pλ

Syntax Semantics < D,@ >

(λxι. x) (λxι. x) ∈ Dιι

ATPHOL’06-[5] – p.132

c©Benzmüller, 2006

Ex.: Interpretation of Terms
HO

L

AT
Pλ

Syntax Semantics < D,@ >

(λxι. x) (λxι. x) ∈ Dιι

yι

ATPHOL’06-[5] – p.132

c©Benzmüller, 2006

Ex.: Interpretation of Terms
HO

L

AT
Pλ

Syntax Semantics < D,@ >

(λxι. x) (λxι. x) ∈ Dιι

yι ϕ(y)

ATPHOL’06-[5] – p.132

c©Benzmüller, 2006

Ex.: Interpretation of Terms
HO

L

AT
Pλ

Syntax Semantics < D,@ >

(λxι. x) (λxι. x) ∈ Dιι

yι ϕ(y) ∈ Dι

ATPHOL’06-[5] – p.132

c©Benzmüller, 2006

Ex.: Interpretation of Terms
HO

L

AT
Pλ

Syntax Semantics < D,@ >

(λxι. x) (λxι. x) ∈ Dιι

yι ϕ(y) ∈ Dι

aι ∈ C

ATPHOL’06-[5] – p.132

c©Benzmüller, 2006

Ex.: Interpretation of Terms
HO

L

AT
Pλ

Syntax Semantics < D,@ >

(λxι. x) (λxι. x) ∈ Dιι

yι ϕ(y) ∈ Dι

aι ∈ C a

ATPHOL’06-[5] – p.132

c©Benzmüller, 2006

Ex.: Interpretation of Terms
HO

L

AT
Pλ

Syntax Semantics < D,@ >

(λxι. x) (λxι. x) ∈ Dιι

yι ϕ(y) ∈ Dι

aι ∈ C a ∈ Dι

ATPHOL’06-[5] – p.132

c©Benzmüller, 2006

Ex.: Interpretation of Terms
HO

L

AT
Pλ

Syntax Semantics < D,@ >

(λxι. x) (λxι. x) ∈ Dιι

yι ϕ(y) ∈ Dι

aι ∈ C a ∈ Dι

(λxι. x)aι

ATPHOL’06-[5] – p.132

c©Benzmüller, 2006

Ex.: Interpretation of Terms
HO

L

AT
Pλ

Syntax Semantics < D,@ >

(λxι. x) (λxι. x) ∈ Dιι

yι ϕ(y) ∈ Dι

aι ∈ C a ∈ Dι

(λxι. x)aι (λxι. x)@aι

ATPHOL’06-[5] – p.132

c©Benzmüller, 2006

Ex.: Interpretation of Terms
HO

L

AT
Pλ

Syntax Semantics < D,@ >

(λxι. x) (λxι. x) ∈ Dιι

yι ϕ(y) ∈ Dι

aι ∈ C a ∈ Dι

(λxι. x)aι (λxι. x)@aι ∈ Dι

ATPHOL’06-[5] – p.132

c©Benzmüller, 2006

Ex.: Interpretation of Terms
HO

L

AT
Pλ

Syntax Semantics < D,@ >

(λxι. x) (λxι. x) ∈ Dιι

yι ϕ(y) ∈ Dι

aι ∈ C a ∈ Dι

(λxι. x)aι (λxι. x)@aι ∈ Dι

Remark: The variable yι is a non-closed well-formed formula of
type ι. We need an assignment ϕα : Vα → Dα to give it a meaning.

ATPHOL’06-[5] – p.132

c©Benzmüller, 2006

Ex.: Interesting Applicative Structures
HO

L

AT
Pλ

! Let Dα ↓β := {Aα ∈ Λα|A is closed and A is in β-normal form}

ATPHOL’06-[5] – p.133

c©Benzmüller, 2006

Ex.: Interesting Applicative Structures
HO

L

AT
Pλ

! Let Dα ↓β := {Aα ∈ Λα|A is closed and A is in β-normal form}

! Let D := (Dα ↓β)α∈T

ATPHOL’06-[5] – p.133

c©Benzmüller, 2006

Ex.: Interesting Applicative Structures
HO

L

AT
Pλ

! Let Dα ↓β := {Aα ∈ Λα|A is closed and A is in β-normal form}

! Let D := (Dα ↓β)α∈T

! Let @β
γδ : Dγδ × Dδ → Dγ be defined by

Fγδ@
β
γδGδ = (FG) ↓β

for all Fγδ ∈ Dγδ and Gδ ∈ Dδ.

ATPHOL’06-[5] – p.133

c©Benzmüller, 2006

Ex.: Interesting Applicative Structures
HO

L

AT
Pλ

! Let Dα ↓β := {Aα ∈ Λα|A is closed and A is in β-normal form}

! Let D := (Dα ↓β)α∈T

! Let @β
γδ : Dγδ × Dδ → Dγ be defined by

Fγδ@
β
γδGδ = (FG) ↓β

for all Fγδ ∈ Dγδ and Gδ ∈ Dδ.

! @β = (@β
γδ)γδ∈T

ATPHOL’06-[5] – p.133

c©Benzmüller, 2006

Ex.: Interesting Applicative Structures
HO

L

AT
Pλ

! Let Dα ↓β := {Aα ∈ Λα|A is closed and A is in β-normal form}

! Let D := (Dα ↓β)α∈T

! Let @β
γδ : Dγδ × Dδ → Dγ be defined by

Fγδ@
β
γδGδ = (FG) ↓β

for all Fγδ ∈ Dγδ and Gδ ∈ Dδ.

! @β = (@β
γδ)γδ∈T

Claim: If Cι #= ∅ and Co #= ∅ (i.e., at least one constant for each base

type is given), then (D,@β) is an applicative structure.

ATPHOL’06-[5] – p.133

c©Benzmüller, 2006

Ex.: Interesting Applicative Structures
HO

L

AT
Pλ

Proof:
! Is Dα ↓β nonempty for all α ∈ T ?

ATPHOL’06-[5] – p.134

c©Benzmüller, 2006

Ex.: Interesting Applicative Structures
HO

L

AT
Pλ

Proof:
! Is Dα ↓β nonempty for all α ∈ T ?
! Yes! This follows since Cι #= ∅ and C" #= ∅ .

ATPHOL’06-[5] – p.134

c©Benzmüller, 2006

Ex.: Interesting Applicative Structures
HO

L

AT
Pλ

Proof:
! Is Dα ↓β nonempty for all α ∈ T ?
! Yes! This follows since Cι #= ∅ and C" #= ∅ .

! Is Fγδ@
β
γδGδ ∈ Dγ ↓β?

ATPHOL’06-[5] – p.134

c©Benzmüller, 2006

Ex.: Interesting Applicative Structures
HO

L

AT
Pλ

Proof:
! Is Dα ↓β nonempty for all α ∈ T ?
! Yes! This follows since Cι #= ∅ and C" #= ∅ .

! Is Fγδ@
β
γδGδ ∈ Dγ ↓β?

! Let’s check: Fγδ@
β
γδGδ = (FG) ↓β∈ Dγ ↓β

ATPHOL’06-[5] – p.134

c©Benzmüller, 2006

Ex.: Interesting Applicative Structures
HO

L

AT
Pλ

! Let Dα ↓βη:= {Aα ∈ Λα|A is closed and A is in βη-normal form}

ATPHOL’06-[5] – p.135

c©Benzmüller, 2006

Ex.: Interesting Applicative Structures
HO

L

AT
Pλ

! Let Dα ↓βη:= {Aα ∈ Λα|A is closed and A is in βη-normal form}

! Let D := (Dα ↓βη)α∈T

ATPHOL’06-[5] – p.135

c©Benzmüller, 2006

Ex.: Interesting Applicative Structures
HO

L

AT
Pλ

! Let Dα ↓βη:= {Aα ∈ Λα|A is closed and A is in βη-normal form}

! Let D := (Dα ↓βη)α∈T

! Let @βη
γδ : Dγδ × Dδ → Dγ be defined by

Fγδ@
βη
γδGδ = (FG) ↓

for all Fγδ ∈ Dγδ and Gδ ∈ Dδ.

ATPHOL’06-[5] – p.135

c©Benzmüller, 2006

Ex.: Interesting Applicative Structures
HO

L

AT
Pλ

! Let Dα ↓βη:= {Aα ∈ Λα|A is closed and A is in βη-normal form}

! Let D := (Dα ↓βη)α∈T

! Let @βη
γδ : Dγδ × Dδ → Dγ be defined by

Fγδ@
βη
γδGδ = (FG) ↓

for all Fγδ ∈ Dγδ and Gδ ∈ Dδ.

! @βη = (@βη
γδ)γδ∈T

ATPHOL’06-[5] – p.135

c©Benzmüller, 2006

Ex.: Interesting Applicative Structures
HO

L

AT
Pλ

! Let Dα ↓βη:= {Aα ∈ Λα|A is closed and A is in βη-normal form}

! Let D := (Dα ↓βη)α∈T

! Let @βη
γδ : Dγδ × Dδ → Dγ be defined by

Fγδ@
βη
γδGδ = (FG) ↓

for all Fγδ ∈ Dγδ and Gδ ∈ Dδ.

! @βη = (@βη
γδ)γδ∈T

Claim: If Cι #= ∅ and Co #= ∅ (i.e., at least one constant for each base

type is given), then (D,@βη) is an applicative structure.

ATPHOL’06-[5] – p.135

c©Benzmüller, 2006

Ex.: Interesting Applicative Structures
HO

L

AT
Pλ

Proof:
! . . . analogous . . .

ATPHOL’06-[5] – p.136

c©Benzmüller, 2006

Def.: Variable Assignment
HO

L

AT
Pλ

Let A := (D,@) be an applicative structure.

ATPHOL’06-[5] – p.137

c©Benzmüller, 2006

Def.: Variable Assignment
HO

L

AT
Pλ

Let A := (D,@) be an applicative structure.

A typed function ϕ:V −→ D := (ϕα:Vα −→ Dα)α∈T is called a
variable assignment into A.

ATPHOL’06-[5] – p.137

c©Benzmüller, 2006

Def.: Variable Assignment
HO

L

AT
Pλ

Let A := (D,@) be an applicative structure.

A typed function ϕ:V −→ D := (ϕα:Vα −→ Dα)α∈T is called a
variable assignment into A.

Given a variable assignment ϕ, variable Xα, and value a ∈ Dα,

ATPHOL’06-[5] – p.137

c©Benzmüller, 2006

Def.: Variable Assignment
HO

L

AT
Pλ

Let A := (D,@) be an applicative structure.

A typed function ϕ:V −→ D := (ϕα:Vα −→ Dα)α∈T is called a
variable assignment into A.

Given a variable assignment ϕ, variable Xα, and value a ∈ Dα, we
use ϕ, [a/X] to denote the variable assignment with

ATPHOL’06-[5] – p.137

c©Benzmüller, 2006

Def.: Variable Assignment
HO

L

AT
Pλ

Let A := (D,@) be an applicative structure.

A typed function ϕ:V −→ D := (ϕα:Vα −→ Dα)α∈T is called a
variable assignment into A.

Given a variable assignment ϕ, variable Xα, and value a ∈ Dα, we
use ϕ, [a/X] to denote the variable assignment with

(ϕ, [a/X])(X) = a

ATPHOL’06-[5] – p.137

c©Benzmüller, 2006

Def.: Variable Assignment
HO

L

AT
Pλ

Let A := (D,@) be an applicative structure.

A typed function ϕ:V −→ D := (ϕα:Vα −→ Dα)α∈T is called a
variable assignment into A.

Given a variable assignment ϕ, variable Xα, and value a ∈ Dα, we
use ϕ, [a/X] to denote the variable assignment with

(ϕ, [a/X])(X) = a

and
(ϕ, [a/X])(Y) = ϕ(Y)

for variables Y other than X.

ATPHOL’06-[5] – p.137

c©Benzmüller, 2006

Some Assumptions
HO

L

AT
Pλ

From now on, we assume the signature Σα = (V , C) to be infinite
for each type α.

ATPHOL’06-[5] – p.138

c©Benzmüller, 2006

Some Assumptions
HO

L

AT
Pλ

From now on, we assume the signature Σα = (V , C) to be infinite
for each type α. Furthermore, we assume there is a particular
cardinal ℵs such that Σα has cardinality ℵs for every type α.

ATPHOL’06-[5] – p.138

c©Benzmüller, 2006

Some Assumptions
HO

L

AT
Pλ

From now on, we assume the signature Σα = (V , C) to be infinite
for each type α. Furthermore, we assume there is a particular
cardinal ℵs such that Σα has cardinality ℵs for every type α. Since
V is countable, this implies wffα(Σ) := Λα and
cwffα(Σ) := {A ∈ Λα|Aclosed} have cardinality ℵs for each type α.

ATPHOL’06-[5] – p.138

c©Benzmüller, 2006

Some Assumptions
HO

L

AT
Pλ

From now on, we assume the signature Σα = (V , C) to be infinite
for each type α. Furthermore, we assume there is a particular
cardinal ℵs such that Σα has cardinality ℵs for every type α. Since
V is countable, this implies wffα(Σ) := Λα and
cwffα(Σ) := {A ∈ Λα|Aclosed} have cardinality ℵs for each type α.
Also, whether or not primitive equality is included in the signature,
there can only be finitely many logical constants in Σα for each
particular type α.

ATPHOL’06-[5] – p.138

c©Benzmüller, 2006

Some Assumptions
HO

L

AT
Pλ

From now on, we assume the signature Σα = (V , C) to be infinite
for each type α. Furthermore, we assume there is a particular
cardinal ℵs such that Σα has cardinality ℵs for every type α. Since
V is countable, this implies wffα(Σ) := Λα and
cwffα(Σ) := {A ∈ Λα|Aclosed} have cardinality ℵs for each type α.
Also, whether or not primitive equality is included in the signature,
there can only be finitely many logical constants in Σα for each
particular type α. Thus, the cardinality of the set of parameters in
Σα is also ℵs. In the countable case, ℵs is ℵ0.

ATPHOL’06-[5] – p.138

c©Benzmüller, 2006

Σ-Evaluations
HO

L

AT
Pλ

Let Σ be a signature.

ATPHOL’06-[5] – p.139

c©Benzmüller, 2006

Σ-Evaluations
HO

L

AT
Pλ

Let Σ be a signature. We build on the notion of applicative
structures to define Σ-evaluations, where the evaluation function is
assumed to respect application and β-conversion.

ATPHOL’06-[5] – p.139

c©Benzmüller, 2006

Σ-Evaluations
HO

L

AT
Pλ

Let Σ be a signature. We build on the notion of applicative
structures to define Σ-evaluations, where the evaluation function is
assumed to respect application and β-conversion.

In such models, a function is not uniquely determined by its
behavior on all possible arguments.

ATPHOL’06-[5] – p.139

c©Benzmüller, 2006

Σ-Evaluations
HO

L

AT
Pλ

Let Σ be a signature. We build on the notion of applicative
structures to define Σ-evaluations, where the evaluation function is
assumed to respect application and β-conversion.

In such models, a function is not uniquely determined by its
behavior on all possible arguments.

Such models can be constructed, for example, by labeling for
functions (e.g., a green and a red version of a function f) in order to
differentiate between them, even though they are functionally
equivalent.

ATPHOL’06-[5] – p.139

c©Benzmüller, 2006

Σ-Evaluations
HO

L

AT
Pλ

Let E :FT (V ;D) −→ FT (wff(Σ),D) be a total function, where
FT (V ;D) is the set of variable assignments and FT (wff(Σ),D) is
the set of typed functions mapping terms into objects in D.

ATPHOL’06-[5] – p.140

c©Benzmüller, 2006

Σ-Evaluations
HO

L

AT
Pλ

Let E :FT (V ;D) −→ FT (wff(Σ),D) be a total function, where
FT (V ;D) is the set of variable assignments and FT (wff(Σ),D) is
the set of typed functions mapping terms into objects in D. We will
write the argument of E as a subscript. So, for each assignment ϕ,
we have a typed function

Eϕ:wff(Σ) −→ D

ATPHOL’06-[5] – p.140

c©Benzmüller, 2006

Σ-Evaluations
HO

L

AT
Pλ

Let E :FT (V ;D) −→ FT (wff(Σ),D) be a total function, where
FT (V ;D) is the set of variable assignments and FT (wff(Σ),D) is
the set of typed functions mapping terms into objects in D. We will
write the argument of E as a subscript. So, for each assignment ϕ,
we have a typed function

Eϕ:wff(Σ) −→ D

What properties shall E fulfill?

ATPHOL’06-[5] – p.140

c©Benzmüller, 2006

Def.: Evaluation Function
HO

L

AT
Pλ

E is called an evaluation function for an applicative structure
A = (D,@)

ATPHOL’06-[5] – p.141

c©Benzmüller, 2006

Def.: Evaluation Function
HO

L

AT
Pλ

E is called an evaluation function for an applicative structure
A = (D,@) if for any assignments ϕ and ψ into A, we have

ATPHOL’06-[5] – p.141

c©Benzmüller, 2006

Def.: Evaluation Function
HO

L

AT
Pλ

E is called an evaluation function for an applicative structure
A = (D,@) if for any assignments ϕ and ψ into A, we have

1. Eϕ|V = ϕ

ATPHOL’06-[5] – p.141

c©Benzmüller, 2006

Def.: Evaluation Function
HO

L

AT
Pλ

E is called an evaluation function for an applicative structure
A = (D,@) if for any assignments ϕ and ψ into A, we have

1. Eϕ|V = ϕ

2. Eϕ(FA) = Eϕ(F)@Eϕ(A) for any F ∈ wffα→β(Σ) and
A ∈ wffα(Σ) and types α and β.

ATPHOL’06-[5] – p.141

c©Benzmüller, 2006

Def.: Evaluation Function
HO

L

AT
Pλ

E is called an evaluation function for an applicative structure
A = (D,@) if for any assignments ϕ and ψ into A, we have

1. Eϕ|V = ϕ

2. Eϕ(FA) = Eϕ(F)@Eϕ(A) for any F ∈ wffα→β(Σ) and
A ∈ wffα(Σ) and types α and β.

3. Eϕ(A) = Eψ(A) for any type α and A ∈ wffα(Σ), whenever ϕ
and ψ coincide on FV(A).

ATPHOL’06-[5] – p.141

c©Benzmüller, 2006

Def.: Evaluation Function
HO

L

AT
Pλ

E is called an evaluation function for an applicative structure
A = (D,@) if for any assignments ϕ and ψ into A, we have

1. Eϕ|V = ϕ

2. Eϕ(FA) = Eϕ(F)@Eϕ(A) for any F ∈ wffα→β(Σ) and
A ∈ wffα(Σ) and types α and β.

3. Eϕ(A) = Eψ(A) for any type α and A ∈ wffα(Σ), whenever ϕ
and ψ coincide on FV(A).

4. Eϕ(A) = Eϕ(A↓β) for all A ∈ wffα(Σ).

ATPHOL’06-[5] – p.141

c©Benzmüller, 2006

Def.: Σ-Evaluation
HO

L

AT
Pλ

We call J := (D,@, E) a Σ-evaluation if (D,@) is an applicative
structure and E is an evaluation function for (D,@). We call
Eϕ(Aα) ∈ Dα the denotation of Aα in J for ϕ.

ATPHOL’06-[5] – p.142

c©Benzmüller, 2006

Def.: Σ-Evaluation
HO

L

AT
Pλ

We call J := (D,@, E) a Σ-evaluation if (D,@) is an applicative
structure and E is an evaluation function for (D,@). We call
Eϕ(Aα) ∈ Dα the denotation of Aα in J for ϕ.

Remark: since E is a function, the denotation in J is unique.
However, for a given applicative structure A, there may be many
possible evaluation functions.

ATPHOL’06-[5] – p.142

c©Benzmüller, 2006

Def.: Σ-Evaluation
HO

L

AT
Pλ

We call J := (D,@, E) a Σ-evaluation if (D,@) is an applicative
structure and E is an evaluation function for (D,@). We call
Eϕ(Aα) ∈ Dα the denotation of Aα in J for ϕ.

Remark: since E is a function, the denotation in J is unique.
However, for a given applicative structure A, there may be many
possible evaluation functions.

If A is a closed formula, then Eϕ(A) is independent of ϕ, since
Free(A) = ∅. In these cases we sometimes drop the reference to ϕ
from Eϕ(A) and simply write E(A).

ATPHOL’06-[5] – p.142

c©Benzmüller, 2006

Def.: Functional/Full/Standard Σ-Eval.
HO

L

AT
Pλ

We call a Σ-evaluation J := (D,@, E) functional [full, standard] if
the applicative structure (D,@) is functional [full, standard].

ATPHOL’06-[5] – p.143

c©Benzmüller, 2006

Def.: Functional/Full/Standard Σ-Eval.
HO

L

AT
Pλ

We call a Σ-evaluation J := (D,@, E) functional [full, standard] if
the applicative structure (D,@) is functional [full, standard].

We say J is a Σ-evaluation over a frame if (D,@) is a frame.

ATPHOL’06-[5] – p.143

c©Benzmüller, 2006

What is the Idea?
HO

L

AT
Pλ

Σ-evaluations generalize Σ-evaluations over frames, which are the
basis for Henkin models, to the non-functional case.

ATPHOL’06-[5] – p.144

c©Benzmüller, 2006

What is the Idea?
HO

L

AT
Pλ

Σ-evaluations generalize Σ-evaluations over frames, which are the
basis for Henkin models, to the non-functional case.

The existence of an evaluation function that meets the conditions
as presented seems to be the weakest situation where one would
like to speak of a model.

ATPHOL’06-[5] – p.144

c©Benzmüller, 2006

What is the Idea?
HO

L

AT
Pλ

Σ-evaluations generalize Σ-evaluations over frames, which are the
basis for Henkin models, to the non-functional case.

The existence of an evaluation function that meets the conditions
as presented seems to be the weakest situation where one would
like to speak of a model.

We cannot in general assume the evaluation function is uniquely
determined by its values on constants as this requires functionality.

ATPHOL’06-[5] – p.144

c©Benzmüller, 2006

What is the Idea?
HO

L

AT
Pλ

Σ-evaluations generalize Σ-evaluations over frames, which are the
basis for Henkin models, to the non-functional case.

The existence of an evaluation function that meets the conditions
as presented seems to be the weakest situation where one would
like to speak of a model.

We cannot in general assume the evaluation function is uniquely
determined by its values on constants as this requires functionality.
Example: two evaluation functions E and E ′ on the same
applicative structure may agree on all constants, but give a different
value to the term (λXι X).

ATPHOL’06-[5] – p.144

c©Benzmüller, 2006

Lemma: Σ-Evaluations respect β-Equality
HO

L

AT
Pλ

Let J := (D,@, E) be a Σ-evaluation and A=βB. For all
assignments ϕ into (D,@), we have

.

ATPHOL’06-[5] – p.145

c©Benzmüller, 2006

Lemma: Σ-Evaluations respect β-Equality
HO

L

AT
Pλ

Let J := (D,@, E) be a Σ-evaluation and A=βB. For all
assignments ϕ into (D,@), we have

Eϕ(A) = = Eϕ(B)

.

ATPHOL’06-[5] – p.145

c©Benzmüller, 2006

Lemma: Σ-Evaluations respect β-Equality
HO

L

AT
Pλ

Let J := (D,@, E) be a Σ-evaluation and A=βB. For all
assignments ϕ into (D,@), we have

Eϕ(A) = Eϕ(A↓β) Eϕ(B↓β) = Eϕ(B)

.

ATPHOL’06-[5] – p.145

c©Benzmüller, 2006

Lemma: Σ-Evaluations respect β-Equality
HO

L

AT
Pλ

Let J := (D,@, E) be a Σ-evaluation and A=βB. For all
assignments ϕ into (D,@), we have

Eϕ(A) = Eϕ(A↓β) = Eϕ(B↓β) = Eϕ(B)

.

ATPHOL’06-[5] – p.145

c©Benzmüller, 2006

Thm.: Substitution-Value Lemma
HO

L

AT
Pλ

Let J := (D,@, E) be a Σ-evaluation and ϕ be an assignment into
J .

ATPHOL’06-[5] – p.146

c©Benzmüller, 2006

Thm.: Substitution-Value Lemma
HO

L

AT
Pλ

Let J := (D,@, E) be a Σ-evaluation and ϕ be an assignment into
J . For any types α and β, variables Xβ, and formulae A ∈ wffα(Σ)

and B ∈ wffβ(Σ), we have

ATPHOL’06-[5] – p.146

c©Benzmüller, 2006

Thm.: Substitution-Value Lemma
HO

L

AT
Pλ

Let J := (D,@, E) be a Σ-evaluation and ϕ be an assignment into
J . For any types α and β, variables Xβ, and formulae A ∈ wffα(Σ)

and B ∈ wffβ(Σ), we have

Eϕ,[Eϕ(B)/X](A) = Eϕ([B/X]A)

.

ATPHOL’06-[5] – p.146

c©Benzmüller, 2006

Prf.: Substitution-Value Lemma
HO

L

AT
Pλ

Proof:

.

ATPHOL’06-[5] – p.147

c©Benzmüller, 2006

Prf.: Substitution-Value Lemma
HO

L

AT
Pλ

Proof: Using the fact that E respects β-equality and the other
properties of E , we can compute

.

ATPHOL’06-[5] – p.147

c©Benzmüller, 2006

Prf.: Substitution-Value Lemma
HO

L

AT
Pλ

Proof: Using the fact that E respects β-equality and the other
properties of E , we can compute

Eϕ,[Eϕ(B)/X](A) =

.

ATPHOL’06-[5] – p.147

c©Benzmüller, 2006

Prf.: Substitution-Value Lemma
HO

L

AT
Pλ

Proof: Using the fact that E respects β-equality and the other
properties of E , we can compute

Eϕ,[Eϕ(B)/X](A) = Eϕ,[Eϕ(B)/X]((λX A)X)

.

ATPHOL’06-[5] – p.147

c©Benzmüller, 2006

Prf.: Substitution-Value Lemma
HO

L

AT
Pλ

Proof: Using the fact that E respects β-equality and the other
properties of E , we can compute

Eϕ,[Eϕ(B)/X](A) = Eϕ,[Eϕ(B)/X]((λX A)X)

= Eϕ,[Eϕ(B)/X](λX A)@Eϕ,[Eϕ(B)/X](X)

.

ATPHOL’06-[5] – p.147

c©Benzmüller, 2006

Prf.: Substitution-Value Lemma
HO

L

AT
Pλ

Proof: Using the fact that E respects β-equality and the other
properties of E , we can compute

Eϕ,[Eϕ(B)/X](A) = Eϕ,[Eϕ(B)/X]((λX A)X)

= Eϕ,[Eϕ(B)/X](λX A)@Eϕ,[Eϕ(B)/X](X)

= Eϕ(λX A)@Eϕ(B)

.

ATPHOL’06-[5] – p.147

c©Benzmüller, 2006

Prf.: Substitution-Value Lemma
HO

L

AT
Pλ

Proof: Using the fact that E respects β-equality and the other
properties of E , we can compute

Eϕ,[Eϕ(B)/X](A) = Eϕ,[Eϕ(B)/X]((λX A)X)

= Eϕ,[Eϕ(B)/X](λX A)@Eϕ,[Eϕ(B)/X](X)

= Eϕ(λX A)@Eϕ(B)

= Eϕ((λX A)B)

.

ATPHOL’06-[5] – p.147

c©Benzmüller, 2006

Prf.: Substitution-Value Lemma
HO

L

AT
Pλ

Proof: Using the fact that E respects β-equality and the other
properties of E , we can compute

Eϕ,[Eϕ(B)/X](A) = Eϕ,[Eϕ(B)/X]((λX A)X)

= Eϕ,[Eϕ(B)/X](λX A)@Eϕ,[Eϕ(B)/X](X)

= Eϕ(λX A)@Eϕ(B)

= Eϕ((λX A)B)

= Eϕ([B/X]A).

ATPHOL’06-[5] – p.147

c©Benzmüller, 2006

Weaker Notions of Functionality
HO

L

AT
Pλ

We will consider two weaker notions of functionality. These forms
are often discussed in the literature (cf. [HindleySeldin86]).

ATPHOL’06-[5] – p.148

c©Benzmüller, 2006

Weaker Notions of Functionality
HO

L

AT
Pλ

We will consider two weaker notions of functionality. These forms
are often discussed in the literature (cf. [HindleySeldin86]).

! η-functionality simply means the evaluation respects
η-conversion.

ATPHOL’06-[5] – p.148

c©Benzmüller, 2006

Weaker Notions of Functionality
HO

L

AT
Pλ

We will consider two weaker notions of functionality. These forms
are often discussed in the literature (cf. [HindleySeldin86]).

! η-functionality simply means the evaluation respects
η-conversion.

! ξ-functionality means we have functionality (only) with respect
to λ-abstractions.

ATPHOL’06-[5] – p.148

c©Benzmüller, 2006

Def.: η-Functional
HO

L

AT
Pλ

Let J = (D,@, E) be a Σ-evaluation.

ATPHOL’06-[5] – p.149

c©Benzmüller, 2006

Def.: η-Functional
HO

L

AT
Pλ

Let J = (D,@, E) be a Σ-evaluation.
We say J is η-functional if

ATPHOL’06-[5] – p.149

c©Benzmüller, 2006

Def.: η-Functional
HO

L

AT
Pλ

Let J = (D,@, E) be a Σ-evaluation.
We say J is η-functional if

Eϕ(A) = Eϕ(A↓βη)

for any type α, formula A ∈ wffα(Σ), and assignment ϕ.

ATPHOL’06-[5] – p.149

c©Benzmüller, 2006

Def.: ξ-Functional
HO

L

AT
Pλ

Let J = (D,@, E) be a Σ-evaluation.

ATPHOL’06-[5] – p.150

c©Benzmüller, 2006

Def.: ξ-Functional
HO

L

AT
Pλ

Let J = (D,@, E) be a Σ-evaluation. We say J is ξ-functional if

ATPHOL’06-[5] – p.150

c©Benzmüller, 2006

Def.: ξ-Functional
HO

L

AT
Pλ

Let J = (D,@, E) be a Σ-evaluation. We say J is ξ-functional if
for all α,β ∈ T , M,N ∈ wffβ(Σ), assignments ϕ, and variables Xα,

ATPHOL’06-[5] – p.150

c©Benzmüller, 2006

Def.: ξ-Functional
HO

L

AT
Pλ

Let J = (D,@, E) be a Σ-evaluation. We say J is ξ-functional if
for all α,β ∈ T , M,N ∈ wffβ(Σ), assignments ϕ, and variables Xα,

Eϕ(λXα Mβ) = Eϕ(λXα Nβ)

ATPHOL’06-[5] – p.150

c©Benzmüller, 2006

Def.: ξ-Functional
HO

L

AT
Pλ

Let J = (D,@, E) be a Σ-evaluation. We say J is ξ-functional if
for all α,β ∈ T , M,N ∈ wffβ(Σ), assignments ϕ, and variables Xα,

Eϕ(λXα Mβ) = Eϕ(λXα Nβ)

whenever
Eϕ,[a/X](M) = Eϕ,[a/X](N)

for every a ∈ Dα.

ATPHOL’06-[5] – p.150

c©Benzmüller, 2006

Lemma: Functionality and η
HO

L

AT
Pλ

Let J := (D,@, E) be a functional Σ-evaluation.

ATPHOL’06-[5] – p.151

c©Benzmüller, 2006

Lemma: Functionality and η
HO

L

AT
Pλ

Let J := (D,@, E) be a functional Σ-evaluation.
1. For any assignment ϕ into J and F ∈ wffα→β(Σ) where

Xα /∈ Free(F), we have

ATPHOL’06-[5] – p.151

c©Benzmüller, 2006

Lemma: Functionality and η
HO

L

AT
Pλ

Let J := (D,@, E) be a functional Σ-evaluation.
1. For any assignment ϕ into J and F ∈ wffα→β(Σ) where

Xα /∈ Free(F), we have

Eϕ(λXα FX) = Eϕ(F)

ATPHOL’06-[5] – p.151

c©Benzmüller, 2006

Lemma: Functionality and η
HO

L

AT
Pλ

Let J := (D,@, E) be a functional Σ-evaluation.
1. For any assignment ϕ into J and F ∈ wffα→β(Σ) where

Xα /∈ Free(F), we have

Eϕ(λXα FX) = Eϕ(F)

2. If a formula A η-reduces to B in one step, then for any
assignment ϕ into J , we have

ATPHOL’06-[5] – p.151

c©Benzmüller, 2006

Lemma: Functionality and η
HO

L

AT
Pλ

Let J := (D,@, E) be a functional Σ-evaluation.
1. For any assignment ϕ into J and F ∈ wffα→β(Σ) where

Xα /∈ Free(F), we have

Eϕ(λXα FX) = Eϕ(F)

2. If a formula A η-reduces to B in one step, then for any
assignment ϕ into J , we have

Eϕ(A) = Eϕ(B)

ATPHOL’06-[5] – p.151

c©Benzmüller, 2006

Lemma: Functionality and η
HO

L

AT
Pλ

Let J := (D,@, E) be a functional Σ-evaluation.
1. For any assignment ϕ into J and F ∈ wffα→β(Σ) where

Xα /∈ Free(F), we have

Eϕ(λXα FX) = Eϕ(F)

2. If a formula A η-reduces to B in one step, then for any
assignment ϕ into J , we have

Eϕ(A) = Eϕ(B)

Proof: Exercise
ATPHOL’06-[5] – p.151

c©Benzmüller, 2006

Lemma: Functionality and η+ξ
HO

L

AT
Pλ

Let J := (D,@, E) be a Σ-evaluation.

ATPHOL’06-[5] – p.152

c©Benzmüller, 2006

Lemma: Functionality and η+ξ
HO

L

AT
Pλ

Let J := (D,@, E) be a Σ-evaluation. Then J is functional iff it is
both η-functional and ξ-functional.

ATPHOL’06-[5] – p.152

c©Benzmüller, 2006

Lemma: Functionality and η+ξ
HO

L

AT
Pλ

Let J := (D,@, E) be a Σ-evaluation. Then J is functional iff it is
both η-functional and ξ-functional.

Proof: Exercise

ATPHOL’06-[5] – p.152

c©Benzmüller, 2006

Logical Constants in Signature
HO

L

AT
Pλ

Let Σ := (V , C) be a signature.

ATPHOL’06-[5] – p.153

c©Benzmüller, 2006

Logical Constants in Signature
HO

L

AT
Pλ

Let Σ := (V , C) be a signature.

The following logical constants may or may not be in the set C of
constants:

ATPHOL’06-[5] – p.153

c©Benzmüller, 2006

Logical Constants in Signature
HO

L

AT
Pλ

Let Σ := (V , C) be a signature.

The following logical constants may or may not be in the set C of
constants:

.o, ⊥o, ¬oo, ∨ooo, ∧ooo, ⊃ooo, ⇔ooo

ATPHOL’06-[5] – p.153

c©Benzmüller, 2006

Logical Constants in Signature
HO

L

AT
Pλ

Let Σ := (V , C) be a signature.

The following logical constants may or may not be in the set C of
constants:

.o, ⊥o, ¬oo, ∨ooo, ∧ooo, ⊃ooo, ⇔ooo

Παo(oα)(Π
αFoα ∼ ∀xαFx), Σα

o(oα)(Σ
αFoα ∼ ∃xαFx)

ATPHOL’06-[5] – p.153

c©Benzmüller, 2006

Logical Constants in Signature
HO

L

AT
Pλ

Let Σ := (V , C) be a signature.

The following logical constants may or may not be in the set C of
constants:

.o, ⊥o, ¬oo, ∨ooo, ∧ooo, ⊃ooo, ⇔ooo

Παo(oα)(Π
αFoα ∼ ∀xαFx), Σα

o(oα)(Σ
αFoα ∼ ∃xαFx)

=α
oαα

ATPHOL’06-[5] – p.153

c©Benzmüller, 2006

Logical Constants in Signature
HO

L

AT
Pλ

Let Σ := (V , C) be a signature.

The following logical constants may or may not be in the set C of
constants:

.o, ⊥o, ¬oo, ∨ooo, ∧ooo, ⊃ooo, ⇔ooo

Παo(oα)(Π
αFoα ∼ ∀xαFx), Σα

o(oα)(Σ
αFoα ∼ ∃xαFx)

=α
oαα

for all α ∈ T

ATPHOL’06-[5] – p.153

c©Benzmüller, 2006

Once More: Cantor’s Theorem
HO

L

AT
Pλ

For any set A,

|A| < |P(A)|

ATPHOL’06-[5] – p.154

c©Benzmüller, 2006

Once More: Cantor’s Theorem
HO

L

AT
Pλ

For any set A,

|A| < |P(A)|

i.e., ¬∃g : A→ P(A) with g surjective.

ATPHOL’06-[5] – p.154

c©Benzmüller, 2006

Once More: Cantor’s Theorem
HO

L

AT
Pλ

Assume the set A is associated with ι.

ATPHOL’06-[5] – p.155

c©Benzmüller, 2006

Once More: Cantor’s Theorem
HO

L

AT
Pλ

Assume the set A is associated with ι. Then P(A) has type oι, i.e.
the type of "sets" (or characteristic functions) over ι.

ATPHOL’06-[5] – p.155

c©Benzmüller, 2006

Once More: Cantor’s Theorem
HO

L

AT
Pλ

Assume the set A is associated with ι. Then P(A) has type oι, i.e.
the type of "sets" (or characteristic functions) over ι.

Doι

ATPHOL’06-[5] – p.155

c©Benzmüller, 2006

Once More: Cantor’s Theorem
HO

L

AT
Pλ

Assume the set A is associated with ι. Then P(A) has type oι, i.e.
the type of "sets" (or characteristic functions) over ι.

Doι = DDι

o

ATPHOL’06-[5] – p.155

c©Benzmüller, 2006

Once More: Cantor’s Theorem
HO

L

AT
Pλ

Assume the set A is associated with ι. Then P(A) has type oι, i.e.
the type of "sets" (or characteristic functions) over ι.

Doι = DDι

o

= {⊥,.}Dι

ATPHOL’06-[5] – p.155

c©Benzmüller, 2006

Once More: Cantor’s Theorem
HO

L

AT
Pλ

Assume the set A is associated with ι. Then P(A) has type oι, i.e.
the type of "sets" (or characteristic functions) over ι.

Doι = DDι

o

= {⊥,.}Dι

= {f| f : Dι → {⊥,.} }

ATPHOL’06-[5] – p.155

c©Benzmüller, 2006

Once More: Cantor’s Theorem
HO

L

AT
Pλ

Assume the set A is associated with ι. Then P(A) has type oι, i.e.
the type of "sets" (or characteristic functions) over ι.

Doι = DDι

o

= {⊥,.}Dι

= {f| f : Dι → {⊥,.} }
∼= { X | X ⊆ Dι }

ATPHOL’06-[5] – p.155

c©Benzmüller, 2006

Once More: Cantor’s Theorem
HO

L

AT
Pλ

Assume the set A is associated with ι. Then P(A) has type oι, i.e.
the type of "sets" (or characteristic functions) over ι.

Doι = DDι

o

= {⊥,.}Dι

= {f| f : Dι → {⊥,.} }
∼= { X | X ⊆ Dι }

= P(Dι)

ATPHOL’06-[5] – p.155

c©Benzmüller, 2006

Once More: Cantor’s Theorem
HO

L

AT
Pλ

We can now formulate Cantor’s Theorem with typed terms (as seen
before):

ATPHOL’06-[5] – p.156

c©Benzmüller, 2006

Once More: Cantor’s Theorem
HO

L

AT
Pλ

We can now formulate Cantor’s Theorem with typed terms (as seen
before):

¬∃goιι∀foι∃xι : gx = f

ATPHOL’06-[5] – p.156

c©Benzmüller, 2006

Once More: Cantor’s Theorem
HO

L

AT
Pλ

We can now formulate Cantor’s Theorem with typed terms (as seen
before):

¬∃goιι∀foι∃xι : gx = f

which is shorthand for:

ATPHOL’06-[5] – p.156

c©Benzmüller, 2006

Once More: Cantor’s Theorem
HO

L

AT
Pλ

We can now formulate Cantor’s Theorem with typed terms (as seen
before):

¬∃goιι∀foι∃xι : gx = f

which is shorthand for:

¬ooΣ
oιι
o(o(oιι))

(

λgoιι.Π
oι
o(o(oι))

(

λfoι.Σ
ι
o(oι)

(

λxι. =oι
o(oι)(oι) (gx) f

)))

ATPHOL’06-[5] – p.156

c©Benzmüller, 2006

Once More: Cantor’s Theorem
HO

L

AT
Pλ

We can now formulate Cantor’s Theorem with typed terms (as seen
before):

¬∃goιι∀foι∃xι : gx = f

which is shorthand for:

¬ooΣ
oιι
o(o(oιι))

(

λgoιι.Π
oι
o(o(oι))

(

λfoι.Σ
ι
o(oι)

(

λxι. =oι
o(oι)(oι) (gx) f

)))

Note: for this term to be in the set cwffα(Σ), the constants
¬oo, Σoιι

o(o(oιι)), Πoι
o(o(oι)), Σι and =oι have to be in the set C.

ATPHOL’06-[5] – p.156

c©Benzmüller, 2006

Once More: Cantor’s Theorem
HO

L

AT
Pλ

Proof:

ATPHOL’06-[5] – p.157

c©Benzmüller, 2006

Once More: Cantor’s Theorem
HO

L

AT
Pλ

Proof: Assume such a function g exists.

ATPHOL’06-[5] – p.157

c©Benzmüller, 2006

Once More: Cantor’s Theorem
HO

L

AT
Pλ

Proof: Assume such a function g exists.
Let f = {x | x #∈ gx} that is f = (λxι.¬gxx).

ATPHOL’06-[5] – p.157

c©Benzmüller, 2006

Once More: Cantor’s Theorem
HO

L

AT
Pλ

Proof: Assume such a function g exists.
Let f = {x | x #∈ gx} that is f = (λxι.¬gxx).
g is surjective,

ATPHOL’06-[5] – p.157

c©Benzmüller, 2006

Once More: Cantor’s Theorem
HO

L

AT
Pλ

Proof: Assume such a function g exists.
Let f = {x | x #∈ gx} that is f = (λxι.¬gxx).
g is surjective, hence

(∃yι : gy = [λx.¬gxx])

ATPHOL’06-[5] – p.157

c©Benzmüller, 2006

Once More: Cantor’s Theorem
HO

L

AT
Pλ

Proof: Assume such a function g exists.
Let f = {x | x #∈ gx} that is f = (λxι.¬gxx).
g is surjective, hence

(∃yι : gy = [λx.¬gxx])

hence
(gyy⇔ ¬gyy)

ATPHOL’06-[5] – p.157

c©Benzmüller, 2006

Once More: Cantor’s Theorem
HO

L

AT
Pλ

Proof: Assume such a function g exists.
Let f = {x | x #∈ gx} that is f = (λxι.¬gxx).
g is surjective, hence

(∃yι : gy = [λx.¬gxx])

hence
(gyy⇔ ¬gyy)

Contradiction!

ATPHOL’06-[5] – p.157

c©Benzmüller, 2006

Once More: Cantor’s Theorem
HO

L

AT
Pλ

Proof: Assume such a function g exists.
Let f = {x | x #∈ gx} that is f = (λxι.¬gxx).
g is surjective, hence

(∃yι : gy = [λx.¬gxx])

hence
(gyy⇔ ¬gyy)

Contradiction!

Note that the proof uses ¬.

ATPHOL’06-[5] – p.157

c©Benzmüller, 2006

HO
L

AT
Pλ

HO
L

AT
Pλ

Semantics: Σ-Models

ATPHOL’06-[6] – p.158

c©Benzmüller, 2006

Def.: Properties of Logical Constants
HO

L

AT
Pλ

Let (D,@) be an applicative structure and let v : Do → {T, F} be a
function (for given T #= F).

ATPHOL’06-[6] – p.159

c©Benzmüller, 2006

Def.: Properties of Logical Constants
HO

L

AT
Pλ

Let (D,@) be an applicative structure and let v : Do → {T, F} be a
function (for given T #= F). For each logical constant cβ and for
a ∈ Dβ , we define the proposition Lc(()a) with respect to v:

ATPHOL’06-[6] – p.159

c©Benzmüller, 2006

Def.: Properties of Logical Constants
HO

L

AT
Pλ

Let (D,@) be an applicative structure and let v : Do → {T, F} be a
function (for given T #= F). For each logical constant cβ and for
a ∈ Dβ , we define the proposition Lc(()a) with respect to v:

c

ATPHOL’06-[6] – p.159

c©Benzmüller, 2006

Def.: Properties of Logical Constants
HO

L

AT
Pλ

Let (D,@) be an applicative structure and let v : Do → {T, F} be a
function (for given T #= F). For each logical constant cβ and for
a ∈ Dβ , we define the proposition Lc(()a) with respect to v:

c β

ATPHOL’06-[6] – p.159

c©Benzmüller, 2006

Def.: Properties of Logical Constants
HO

L

AT
Pλ

Let (D,@) be an applicative structure and let v : Do → {T, F} be a
function (for given T #= F). For each logical constant cβ and for
a ∈ Dβ , we define the proposition Lc(()a) with respect to v:

c β Lc(()a) holds when

ATPHOL’06-[6] – p.159

c©Benzmüller, 2006

Def.: Properties of Logical Constants
HO

L

AT
Pλ

Let (D,@) be an applicative structure and let v : Do → {T, F} be a
function (for given T #= F). For each logical constant cβ and for
a ∈ Dβ , we define the proposition Lc(()a) with respect to v:

c β Lc(()a) holds when

%

ATPHOL’06-[6] – p.159

c©Benzmüller, 2006

Def.: Properties of Logical Constants
HO

L

AT
Pλ

Let (D,@) be an applicative structure and let v : Do → {T, F} be a
function (for given T #= F). For each logical constant cβ and for
a ∈ Dβ , we define the proposition Lc(()a) with respect to v:

c β Lc(()a) holds when

% o

ATPHOL’06-[6] – p.159

c©Benzmüller, 2006

Def.: Properties of Logical Constants
HO

L

AT
Pλ

Let (D,@) be an applicative structure and let v : Do → {T, F} be a
function (for given T #= F). For each logical constant cβ and for
a ∈ Dβ , we define the proposition Lc(()a) with respect to v:

c β Lc(()a) holds when

% o v(a) = T

ATPHOL’06-[6] – p.159

c©Benzmüller, 2006

Def.: Properties of Logical Constants
HO

L

AT
Pλ

Let (D,@) be an applicative structure and let v : Do → {T, F} be a
function (for given T #= F). For each logical constant cβ and for
a ∈ Dβ , we define the proposition Lc(()a) with respect to v:

c β Lc(()a) holds when

% o v(a) = T

⊥

ATPHOL’06-[6] – p.159

c©Benzmüller, 2006

Def.: Properties of Logical Constants
HO

L

AT
Pλ

Let (D,@) be an applicative structure and let v : Do → {T, F} be a
function (for given T #= F). For each logical constant cβ and for
a ∈ Dβ , we define the proposition Lc(()a) with respect to v:

c β Lc(()a) holds when

% o v(a) = T

⊥ o

ATPHOL’06-[6] – p.159

c©Benzmüller, 2006

Def.: Properties of Logical Constants
HO

L

AT
Pλ

Let (D,@) be an applicative structure and let v : Do → {T, F} be a
function (for given T #= F). For each logical constant cβ and for
a ∈ Dβ , we define the proposition Lc(()a) with respect to v:

c β Lc(()a) holds when

% o v(a) = T

⊥ o v(a) = F

ATPHOL’06-[6] – p.159

c©Benzmüller, 2006

Def.: Properties of Logical Constants
HO

L

AT
Pλ

Let (D,@) be an applicative structure and let v : Do → {T, F} be a
function (for given T #= F). For each logical constant cβ and for
a ∈ Dβ , we define the proposition Lc(()a) with respect to v:

c β Lc(()a) holds when

% o v(a) = T

⊥ o v(a) = F

¬

ATPHOL’06-[6] – p.159

c©Benzmüller, 2006

Def.: Properties of Logical Constants
HO

L

AT
Pλ

Let (D,@) be an applicative structure and let v : Do → {T, F} be a
function (for given T #= F). For each logical constant cβ and for
a ∈ Dβ , we define the proposition Lc(()a) with respect to v:

c β Lc(()a) holds when

% o v(a) = T

⊥ o v(a) = F

¬ oo

ATPHOL’06-[6] – p.159

c©Benzmüller, 2006

Def.: Properties of Logical Constants
HO

L

AT
Pλ

Let (D,@) be an applicative structure and let v : Do → {T, F} be a
function (for given T #= F). For each logical constant cβ and for
a ∈ Dβ , we define the proposition Lc(()a) with respect to v:

c β Lc(()a) holds when

% o v(a) = T

⊥ o v(a) = F

¬ oo v(a@b) = T iff v(b) = F ∀b ∈ Do

ATPHOL’06-[6] – p.159

c©Benzmüller, 2006

Def.: Properties of Logical Constants
HO

L

AT
Pλ

Let (D,@) be an applicative structure and let v : Do → {T, F} be a
function (for given T #= F). For each logical constant cβ and for
a ∈ Dβ , we define the proposition Lc(()a) with respect to v:

c β Lc(()a) holds when

% o v(a) = T

⊥ o v(a) = F

¬ oo v(a@b) = T iff v(b) = F ∀b ∈ Do

∨ ooo

ATPHOL’06-[6] – p.159

c©Benzmüller, 2006

Def.: Properties of Logical Constants
HO

L

AT
Pλ

Let (D,@) be an applicative structure and let v : Do → {T, F} be a
function (for given T #= F). For each logical constant cβ and for
a ∈ Dβ , we define the proposition Lc(()a) with respect to v:

c β Lc(()a) holds when

% o v(a) = T

⊥ o v(a) = F

¬ oo v(a@b) = T iff v(b) = F ∀b ∈ Do

∨ ooo v(a@b@c) = T iff v(b) = T or v(c) = T ∀b, c ∈ Do

ATPHOL’06-[6] – p.159

c©Benzmüller, 2006

Def.: Properties of Logical Constants
HO

L

AT
Pλ

Let (D,@) be an applicative structure and let v : Do → {T, F} be a
function (for given T #= F). For each logical constant cβ and for
a ∈ Dβ , we define the proposition Lc(()a) with respect to v:

c β Lc(()a) holds when

% o v(a) = T

⊥ o v(a) = F

¬ oo v(a@b) = T iff v(b) = F ∀b ∈ Do

∨ ooo v(a@b@c) = T iff v(b) = T or v(c) = T ∀b, c ∈ Do

ATPHOL’06-[6] – p.159

c©Benzmüller, 2006

Def.: Properties of Logical Constants
HO

L

AT
Pλ

Let (D,@) be an applicative structure and let v : Do → {T, F} be a
function (for given T #= F). For each logical constant cβ and for
a ∈ Dβ , we define the proposition Lc(()a) with respect to v:

c β Lc(()a) holds when

% o v(a) = T

⊥ o v(a) = F

¬ oo v(a@b) = T iff v(b) = F ∀b ∈ Do

∨ ooo v(a@b@c) = T iff v(b) = T or v(c) = T ∀b, c ∈ Do

∧

ATPHOL’06-[6] – p.159

c©Benzmüller, 2006

Def.: Properties of Logical Constants
HO

L

AT
Pλ

Let (D,@) be an applicative structure and let v : Do → {T, F} be a
function (for given T #= F). For each logical constant cβ and for
a ∈ Dβ , we define the proposition Lc(()a) with respect to v:

c β Lc(()a) holds when

% o v(a) = T

⊥ o v(a) = F

¬ oo v(a@b) = T iff v(b) = F ∀b ∈ Do

∨ ooo v(a@b@c) = T iff v(b) = T or v(c) = T ∀b, c ∈ Do

∧ ooo

ATPHOL’06-[6] – p.159

c©Benzmüller, 2006

Def.: Properties of Logical Constants
HO

L

AT
Pλ

Let (D,@) be an applicative structure and let v : Do → {T, F} be a
function (for given T #= F). For each logical constant cβ and for
a ∈ Dβ , we define the proposition Lc(()a) with respect to v:

c β Lc(()a) holds when

% o v(a) = T

⊥ o v(a) = F

¬ oo v(a@b) = T iff v(b) = F ∀b ∈ Do

∨ ooo v(a@b@c) = T iff v(b) = T or v(c) = T ∀b, c ∈ Do

∧ ooo v(a@b@c) = T iff v(b) = T and v(c) = T ∀b, c ∈ Do

ATPHOL’06-[6] – p.159

c©Benzmüller, 2006

Def.: Properties of Logical Constants
HO

L

AT
Pλ

Let (D,@) be an applicative structure and let v : Do → {T, F} be a
function (for given T #= F). For each logical constant cβ and for
a ∈ Dβ , we define the proposition Lc(()a) with respect to v:

c β Lc(()a) holds when

% o v(a) = T

⊥ o v(a) = F

¬ oo v(a@b) = T iff v(b) = F ∀b ∈ Do

∨ ooo v(a@b@c) = T iff v(b) = T or v(c) = T ∀b, c ∈ Do

∧ ooo v(a@b@c) = T iff v(b) = T and v(c) = T ∀b, c ∈ Do

⊃

ATPHOL’06-[6] – p.159

c©Benzmüller, 2006

Def.: Properties of Logical Constants
HO

L

AT
Pλ

Let (D,@) be an applicative structure and let v : Do → {T, F} be a
function (for given T #= F). For each logical constant cβ and for
a ∈ Dβ , we define the proposition Lc(()a) with respect to v:

c β Lc(()a) holds when

% o v(a) = T

⊥ o v(a) = F

¬ oo v(a@b) = T iff v(b) = F ∀b ∈ Do

∨ ooo v(a@b@c) = T iff v(b) = T or v(c) = T ∀b, c ∈ Do

∧ ooo v(a@b@c) = T iff v(b) = T and v(c) = T ∀b, c ∈ Do

⊃ ooo

ATPHOL’06-[6] – p.159

c©Benzmüller, 2006

Def.: Properties of Logical Constants
HO

L

AT
Pλ

Let (D,@) be an applicative structure and let v : Do → {T, F} be a
function (for given T #= F). For each logical constant cβ and for
a ∈ Dβ , we define the proposition Lc(()a) with respect to v:

c β Lc(()a) holds when

% o v(a) = T

⊥ o v(a) = F

¬ oo v(a@b) = T iff v(b) = F ∀b ∈ Do

∨ ooo v(a@b@c) = T iff v(b) = T or v(c) = T ∀b, c ∈ Do

∧ ooo v(a@b@c) = T iff v(b) = T and v(c) = T ∀b, c ∈ Do

⊃ ooo v(a@b@c) = T iff v(b) = F or v(c) = T ∀b, c ∈ Do

ATPHOL’06-[6] – p.159

c©Benzmüller, 2006

Def.: Properties of Logical Constants
HO

L

AT
Pλ

Let (D,@) be an applicative structure and let v : Do → {T, F} be a
function (for given T #= F). For each logical constant cβ and for
a ∈ Dβ , we define the proposition Lc(()a) with respect to v:

c β Lc(()a) holds when

% o v(a) = T

⊥ o v(a) = F

¬ oo v(a@b) = T iff v(b) = F ∀b ∈ Do

∨ ooo v(a@b@c) = T iff v(b) = T or v(c) = T ∀b, c ∈ Do

∧ ooo v(a@b@c) = T iff v(b) = T and v(c) = T ∀b, c ∈ Do

⊃ ooo v(a@b@c) = T iff v(b) = F or v(c) = T ∀b, c ∈ Do

⇔

ATPHOL’06-[6] – p.159

c©Benzmüller, 2006

Def.: Properties of Logical Constants
HO

L

AT
Pλ

Let (D,@) be an applicative structure and let v : Do → {T, F} be a
function (for given T #= F). For each logical constant cβ and for
a ∈ Dβ , we define the proposition Lc(()a) with respect to v:

c β Lc(()a) holds when

% o v(a) = T

⊥ o v(a) = F

¬ oo v(a@b) = T iff v(b) = F ∀b ∈ Do

∨ ooo v(a@b@c) = T iff v(b) = T or v(c) = T ∀b, c ∈ Do

∧ ooo v(a@b@c) = T iff v(b) = T and v(c) = T ∀b, c ∈ Do

⊃ ooo v(a@b@c) = T iff v(b) = F or v(c) = T ∀b, c ∈ Do

⇔ ooo

ATPHOL’06-[6] – p.159

c©Benzmüller, 2006

Def.: Properties of Logical Constants
HO

L

AT
Pλ

Let (D,@) be an applicative structure and let v : Do → {T, F} be a
function (for given T #= F). For each logical constant cβ and for
a ∈ Dβ , we define the proposition Lc(()a) with respect to v:

c β Lc(()a) holds when

% o v(a) = T

⊥ o v(a) = F

¬ oo v(a@b) = T iff v(b) = F ∀b ∈ Do

∨ ooo v(a@b@c) = T iff v(b) = T or v(c) = T ∀b, c ∈ Do

∧ ooo v(a@b@c) = T iff v(b) = T and v(c) = T ∀b, c ∈ Do

⊃ ooo v(a@b@c) = T iff v(b) = F or v(c) = T ∀b, c ∈ Do

⇔ ooo v(a@b@c) = T iff v(b) = v(c) ∀b, c ∈ Do

ATPHOL’06-[6] – p.159

c©Benzmüller, 2006

Def.: Properties of Logical Constants
HO

L

AT
Pλ

Let (D,@) be an applicative structure and let v : Do → {T, F} be a
function (for given T #= F). For each logical constant cβ and for
a ∈ Dβ , we define the proposition Lc(()a) with respect to v:

c β Lc(()a) holds when

% o v(a) = T

⊥ o v(a) = F

¬ oo v(a@b) = T iff v(b) = F ∀b ∈ Do

∨ ooo v(a@b@c) = T iff v(b) = T or v(c) = T ∀b, c ∈ Do

∧ ooo v(a@b@c) = T iff v(b) = T and v(c) = T ∀b, c ∈ Do

⊃ ooo v(a@b@c) = T iff v(b) = F or v(c) = T ∀b, c ∈ Do

⇔ ooo v(a@b@c) = T iff v(b) = v(c) ∀b, c ∈ Do

=α

ATPHOL’06-[6] – p.159

c©Benzmüller, 2006

Def.: Properties of Logical Constants
HO

L

AT
Pλ

Let (D,@) be an applicative structure and let v : Do → {T, F} be a
function (for given T #= F). For each logical constant cβ and for
a ∈ Dβ , we define the proposition Lc(()a) with respect to v:

c β Lc(()a) holds when

% o v(a) = T

⊥ o v(a) = F

¬ oo v(a@b) = T iff v(b) = F ∀b ∈ Do

∨ ooo v(a@b@c) = T iff v(b) = T or v(c) = T ∀b, c ∈ Do

∧ ooo v(a@b@c) = T iff v(b) = T and v(c) = T ∀b, c ∈ Do

⊃ ooo v(a@b@c) = T iff v(b) = F or v(c) = T ∀b, c ∈ Do

⇔ ooo v(a@b@c) = T iff v(b) = v(c) ∀b, c ∈ Do

=α oαα

ATPHOL’06-[6] – p.159

c©Benzmüller, 2006

Def.: Properties of Logical Constants
HO

L

AT
Pλ

Let (D,@) be an applicative structure and let v : Do → {T, F} be a
function (for given T #= F). For each logical constant cβ and for
a ∈ Dβ , we define the proposition Lc(()a) with respect to v:

c β Lc(()a) holds when

% o v(a) = T

⊥ o v(a) = F

¬ oo v(a@b) = T iff v(b) = F ∀b ∈ Do

∨ ooo v(a@b@c) = T iff v(b) = T or v(c) = T ∀b, c ∈ Do

∧ ooo v(a@b@c) = T iff v(b) = T and v(c) = T ∀b, c ∈ Do

⊃ ooo v(a@b@c) = T iff v(b) = F or v(c) = T ∀b, c ∈ Do

⇔ ooo v(a@b@c) = T iff v(b) = v(c) ∀b, c ∈ Do

=α oαα v(a@b@c) = T iff b = c ∀b, c ∈ Do

ATPHOL’06-[6] – p.159

c©Benzmüller, 2006

Def.: Properties of Logical Constants
HO

L

AT
Pλ

Let (D,@) be an applicative structure and let v : Do → {T, F} be a
function (for given T #= F). For each logical constant cβ and for
a ∈ Dβ , we define the proposition Lc(()a) with respect to v:

c β Lc(()a) holds when

% o v(a) = T

⊥ o v(a) = F

¬ oo v(a@b) = T iff v(b) = F ∀b ∈ Do

∨ ooo v(a@b@c) = T iff v(b) = T or v(c) = T ∀b, c ∈ Do

∧ ooo v(a@b@c) = T iff v(b) = T and v(c) = T ∀b, c ∈ Do

⊃ ooo v(a@b@c) = T iff v(b) = F or v(c) = T ∀b, c ∈ Do

⇔ ooo v(a@b@c) = T iff v(b) = v(c) ∀b, c ∈ Do

=α oαα v(a@b@c) = T iff b = c ∀b, c ∈ Do

Πα

ATPHOL’06-[6] – p.159

c©Benzmüller, 2006

Def.: Properties of Logical Constants
HO

L

AT
Pλ

Let (D,@) be an applicative structure and let v : Do → {T, F} be a
function (for given T #= F). For each logical constant cβ and for
a ∈ Dβ , we define the proposition Lc(()a) with respect to v:

c β Lc(()a) holds when

% o v(a) = T

⊥ o v(a) = F

¬ oo v(a@b) = T iff v(b) = F ∀b ∈ Do

∨ ooo v(a@b@c) = T iff v(b) = T or v(c) = T ∀b, c ∈ Do

∧ ooo v(a@b@c) = T iff v(b) = T and v(c) = T ∀b, c ∈ Do

⊃ ooo v(a@b@c) = T iff v(b) = F or v(c) = T ∀b, c ∈ Do

⇔ ooo v(a@b@c) = T iff v(b) = v(c) ∀b, c ∈ Do

=α oαα v(a@b@c) = T iff b = c ∀b, c ∈ Do

Πα o(oα)

ATPHOL’06-[6] – p.159

c©Benzmüller, 2006

Def.: Properties of Logical Constants
HO

L

AT
Pλ

Let (D,@) be an applicative structure and let v : Do → {T, F} be a
function (for given T #= F). For each logical constant cβ and for
a ∈ Dβ , we define the proposition Lc(()a) with respect to v:

c β Lc(()a) holds when

% o v(a) = T

⊥ o v(a) = F

¬ oo v(a@b) = T iff v(b) = F ∀b ∈ Do

∨ ooo v(a@b@c) = T iff v(b) = T or v(c) = T ∀b, c ∈ Do

∧ ooo v(a@b@c) = T iff v(b) = T and v(c) = T ∀b, c ∈ Do

⊃ ooo v(a@b@c) = T iff v(b) = F or v(c) = T ∀b, c ∈ Do

⇔ ooo v(a@b@c) = T iff v(b) = v(c) ∀b, c ∈ Do

=α oαα v(a@b@c) = T iff b = c ∀b, c ∈ Do

Πα o(oα) v(a@f) = T iff ∀b ∈ Dα : v(f@b) = T ∀f ∈ Doα

ATPHOL’06-[6] – p.159

c©Benzmüller, 2006

Def.: Properties of Logical Constants
HO

L

AT
Pλ

Let (D,@) be an applicative structure and let v : Do → {T, F} be a
function (for given T #= F). For each logical constant cβ and for
a ∈ Dβ , we define the proposition Lc(()a) with respect to v:

c β Lc(()a) holds when

% o v(a) = T

⊥ o v(a) = F

¬ oo v(a@b) = T iff v(b) = F ∀b ∈ Do

∨ ooo v(a@b@c) = T iff v(b) = T or v(c) = T ∀b, c ∈ Do

∧ ooo v(a@b@c) = T iff v(b) = T and v(c) = T ∀b, c ∈ Do

⊃ ooo v(a@b@c) = T iff v(b) = F or v(c) = T ∀b, c ∈ Do

⇔ ooo v(a@b@c) = T iff v(b) = v(c) ∀b, c ∈ Do

=α oαα v(a@b@c) = T iff b = c ∀b, c ∈ Do

Πα o(oα) v(a@f) = T iff ∀b ∈ Dα : v(f@b) = T ∀f ∈ Doα

Σα

ATPHOL’06-[6] – p.159

c©Benzmüller, 2006

Def.: Properties of Logical Constants
HO

L

AT
Pλ

Let (D,@) be an applicative structure and let v : Do → {T, F} be a
function (for given T #= F). For each logical constant cβ and for
a ∈ Dβ , we define the proposition Lc(()a) with respect to v:

c β Lc(()a) holds when

% o v(a) = T

⊥ o v(a) = F

¬ oo v(a@b) = T iff v(b) = F ∀b ∈ Do

∨ ooo v(a@b@c) = T iff v(b) = T or v(c) = T ∀b, c ∈ Do

∧ ooo v(a@b@c) = T iff v(b) = T and v(c) = T ∀b, c ∈ Do

⊃ ooo v(a@b@c) = T iff v(b) = F or v(c) = T ∀b, c ∈ Do

⇔ ooo v(a@b@c) = T iff v(b) = v(c) ∀b, c ∈ Do

=α oαα v(a@b@c) = T iff b = c ∀b, c ∈ Do

Πα o(oα) v(a@f) = T iff ∀b ∈ Dα : v(f@b) = T ∀f ∈ Doα

Σα o(oα)

ATPHOL’06-[6] – p.159

c©Benzmüller, 2006

Def.: Properties of Logical Constants
HO

L

AT
Pλ

Let (D,@) be an applicative structure and let v : Do → {T, F} be a
function (for given T #= F). For each logical constant cβ and for
a ∈ Dβ , we define the proposition Lc(()a) with respect to v:

c β Lc(()a) holds when

% o v(a) = T

⊥ o v(a) = F

¬ oo v(a@b) = T iff v(b) = F ∀b ∈ Do

∨ ooo v(a@b@c) = T iff v(b) = T or v(c) = T ∀b, c ∈ Do

∧ ooo v(a@b@c) = T iff v(b) = T and v(c) = T ∀b, c ∈ Do

⊃ ooo v(a@b@c) = T iff v(b) = F or v(c) = T ∀b, c ∈ Do

⇔ ooo v(a@b@c) = T iff v(b) = v(c) ∀b, c ∈ Do

=α oαα v(a@b@c) = T iff b = c ∀b, c ∈ Do

Πα o(oα) v(a@f) = T iff ∀b ∈ Dα : v(f@b) = T ∀f ∈ Doα

Σα o(oα) v(a@f) = T iff ∃b ∈ Dα : v(f@b) = T ∀f ∈ Doα

ATPHOL’06-[6] – p.159

c©Benzmüller, 2006

Def.: Σ-Valuation
HO

L

AT
Pλ

Let J := (D,@, E) be a Σ-evaluation and v : Do → {T, F}.

ATPHOL’06-[6] – p.160

c©Benzmüller, 2006

Def.: Σ-Valuation
HO

L

AT
Pλ

Let J := (D,@, E) be a Σ-evaluation and v : Do → {T, F}. We say

v is a Σ-valuation w.r.t J if

ATPHOL’06-[6] – p.160

c©Benzmüller, 2006

Def.: Σ-Valuation
HO

L

AT
Pλ

Let J := (D,@, E) be a Σ-evaluation and v : Do → {T, F}. We say

v is a Σ-valuation w.r.t J if Lc((E(c))) holds w.r.t v for each logical

constant c ∈ Σ.

ATPHOL’06-[6] – p.160

c©Benzmüller, 2006

Def.: Σ-Model
HO

L

AT
Pλ

Let J := (D,@, E) be a Σ-evaluation and let v : Do → {T, F} be a
Σ-valuation w.r.t J

ATPHOL’06-[6] – p.161

c©Benzmüller, 2006

Def.: Σ-Model
HO

L

AT
Pλ

Let J := (D,@, E) be a Σ-evaluation and let v : Do → {T, F} be a
Σ-valuation w.r.t J

We say M = (D,@, E , v) is a Σ-model.

ATPHOL’06-[6] – p.161

c©Benzmüller, 2006

Def.: Σ-Model
HO

L

AT
Pλ

Let J := (D,@, E) be a Σ-evaluation and let v : Do → {T, F} be a
Σ-valuation w.r.t J

We say M = (D,@, E , v) is a Σ-model.

If (D,@, E) is functional (full, standard), we say M is functional (full,
standard).

ATPHOL’06-[6] – p.161

c©Benzmüller, 2006

Def.: Σ-Model
HO

L

AT
Pλ

Let J := (D,@, E) be a Σ-evaluation and let v : Do → {T, F} be a
Σ-valuation w.r.t J

We say M = (D,@, E , v) is a Σ-model.

If (D,@, E) is functional (full, standard), we say M is functional (full,
standard).

If (D,@, E) is η-functional, we say M is η-functional.

ATPHOL’06-[6] – p.161

c©Benzmüller, 2006

Def.: Σ-Model
HO

L

AT
Pλ

Let J := (D,@, E) be a Σ-evaluation and let v : Do → {T, F} be a
Σ-valuation w.r.t J

We say M = (D,@, E , v) is a Σ-model.

If (D,@, E) is functional (full, standard), we say M is functional (full,
standard).

If (D,@, E) is η-functional, we say M is η-functional.

If (D,@, E) is ξ-functional, we say M is ξ-functional.

ATPHOL’06-[6] – p.161

c©Benzmüller, 2006

Some Conventions: Equality
HO

L

AT
Pλ

Some important conventions:
! = denotes primitive equality

ATPHOL’06-[6] – p.162

c©Benzmüller, 2006

Some Conventions: Equality
HO

L

AT
Pλ

Some important conventions:
! = denotes primitive equality
!

.
= denotes Leibniz equality: Aα

.
=α

Bα := ∀Poα (PA)⇒ (PB)

ATPHOL’06-[6] – p.162

c©Benzmüller, 2006

Some Conventions: Equality
HO

L

AT
Pλ

Some important conventions:
! = denotes primitive equality
!

.
= denotes Leibniz equality: Aα

.
=α

Bα := ∀Poα (PA)⇒ (PB)

!
..
= . . . other definition of equality (e.g., see [Andrews02])

ATPHOL’06-[6] – p.162

c©Benzmüller, 2006

Some Conventions: Equality
HO

L

AT
Pλ

Some important conventions:
! = denotes primitive equality
!

.
= denotes Leibniz equality: Aα

.
=α

Bα := ∀Poα (PA)⇒ (PB)

!
..
= . . . other definition of equality (e.g., see [Andrews02])

We use ∗= in the following to refer to any of the above

ATPHOL’06-[6] – p.162

c©Benzmüller, 2006

Def.: Properties f, b, η, ξ
HO

L

AT
Pλ

Let M = (D,@, E , v) be a C-model. We say, M has property

ATPHOL’06-[6] – p.163

c©Benzmüller, 2006

Def.: Properties f, b, η, ξ
HO

L

AT
Pλ

Let M = (D,@, E , v) be a C-model. We say, M has property
η if M is η-functional (respectively (D,@, E) is η-functional)

ATPHOL’06-[6] – p.163

c©Benzmüller, 2006

Def.: Properties f, b, η, ξ
HO

L

AT
Pλ

Let M = (D,@, E , v) be a C-model. We say, M has property
η if M is η-functional (respectively (D,@, E) is η-functional)
ξ if M is ξ-functional (respectively (D,@, E) is ξ-functional)

ATPHOL’06-[6] – p.163

c©Benzmüller, 2006

Def.: Properties f, b, η, ξ
HO

L

AT
Pλ

Let M = (D,@, E , v) be a C-model. We say, M has property
η if M is η-functional (respectively (D,@, E) is η-functional)
ξ if M is ξ-functional (respectively (D,@, E) is ξ-functional)
f if M is functional (respectively (D,@, E) is functional)

ATPHOL’06-[6] – p.163

c©Benzmüller, 2006

Def.: Properties f, b, η, ξ
HO

L

AT
Pλ

Let M = (D,@, E , v) be a C-model. We say, M has property
η if M is η-functional (respectively (D,@, E) is η-functional)
ξ if M is ξ-functional (respectively (D,@, E) is ξ-functional)
f if M is functional (respectively (D,@, E) is functional)
b if v is injective.

ATPHOL’06-[6] – p.163

c©Benzmüller, 2006

Def.: Properties f, b, η, ξ
HO

L

AT
Pλ

Let M = (D,@, E , v) be a C-model. We say, M has property
η if M is η-functional (respectively (D,@, E) is η-functional)
ξ if M is ξ-functional (respectively (D,@, E) is ξ-functional)
f if M is functional (respectively (D,@, E) is functional)
b if v is injective.

Note: In the [JSC04]-paper, b is defined as Do = {T, F}, but here we are using the

injectivity criterion, because we are varying the signature. If the signature is too

sparse, we could have a Do with two elements which both valuate via v to T. Another ill

case would be Do with just one element.

ATPHOL’06-[6] – p.163

c©Benzmüller, 2006

Def.: Properties f, b, η, ξ
HO

L

AT
Pλ

Let M = (D,@, E , v) be a C-model. We say, M has property
η if M is η-functional (respectively (D,@, E) is η-functional)
ξ if M is ξ-functional (respectively (D,@, E) is ξ-functional)
f if M is functional (respectively (D,@, E) is functional)
b if v is injective.
q if for all α ∈ T there is some q ∈ Doαα such that L=α(q).

ATPHOL’06-[6] – p.163

c©Benzmüller, 2006

Def.: Properties f, b, η, ξ
HO

L

AT
Pλ

Let M = (D,@, E , v) be a C-model. We say, M has property
η if M is η-functional (respectively (D,@, E) is η-functional)
ξ if M is ξ-functional (respectively (D,@, E) is ξ-functional)
f if M is functional (respectively (D,@, E) is functional)
b if v is injective.
q if for all α ∈ T there is some q ∈ Doαα such that L=α(q).

Note: This basically says that for each type α the identity relation over α is already

present in the model. If we require =oαα∈ C with L=α (Eϕ(=oαα)), then this property

is automatically ensured, but not for weaker signatures. See [Andrew71] for a detailed

discussion of property q. Andrews constructs a Henkin model where Leibniz equality
.
= does not evaluate to the intended identity relation. This is resolved by property q.

ATPHOL’06-[6] – p.163

c©Benzmüller, 2006

Lemma: Surjective v
HO

L

AT
Pλ

Let C be a signature and M = (D,@, E , v) be a C-model.

ATPHOL’06-[6] – p.164

c©Benzmüller, 2006

Lemma: Surjective v
HO

L

AT
Pλ

Let C be a signature and M = (D,@, E , v) be a C-model.
If T, F ∈ C or ¬ ∈ C then v is surjective.

ATPHOL’06-[6] – p.164

c©Benzmüller, 2006

Lemma: Surjective v
HO

L

AT
Pλ

Let C be a signature and M = (D,@, E , v) be a C-model.
If T, F ∈ C or ¬ ∈ C then v is surjective.

Proof: Exercise.

ATPHOL’06-[6] – p.164

c©Benzmüller, 2006

Thm.: Property b
HO

L

AT
Pλ

Let C be a signature and M = (D,@, E , v) be a C-model.

ATPHOL’06-[6] – p.165

c©Benzmüller, 2006

Thm.: Property b
HO

L

AT
Pλ

Let C be a signature and M = (D,@, E , v) be a C-model.
Suppose T, F ∈ C or ¬ ∈ C.

ATPHOL’06-[6] – p.165

c©Benzmüller, 2006

Thm.: Property b
HO

L

AT
Pλ

Let C be a signature and M = (D,@, E , v) be a C-model.
Suppose T, F ∈ C or ¬ ∈ C.
Then M satisfies property b iff |Do| = 2.

ATPHOL’06-[6] – p.165

c©Benzmüller, 2006

Thm.: Property b
HO

L

AT
Pλ

Let C be a signature and M = (D,@, E , v) be a C-model.
Suppose T, F ∈ C or ¬ ∈ C.
Then M satisfies property b iff |Do| = 2.

Proof: Exercise.

ATPHOL’06-[6] – p.165

c©Benzmüller, 2006

HO
L

AT
Pλ

HO
L

AT
Pλ

Semantics: HOL-CUBE

ATPHOL’06-[7] – p.166

c©Benzmüller, 2006

Def. (Reminder): Σ-Model
HO

L

AT
Pλ

Let J := (D,@, E) be a Σ-evaluation and let v : Do → {T, F} be a
Σ-valuation w.r.t J

ATPHOL’06-[7] – p.167

c©Benzmüller, 2006

Def. (Reminder): Σ-Model
HO

L

AT
Pλ

Let J := (D,@, E) be a Σ-evaluation and let v : Do → {T, F} be a
Σ-valuation w.r.t J

We say M = (D,@, E , v) is a Σ-model.

ATPHOL’06-[7] – p.167

c©Benzmüller, 2006

Def. (Reminder): Σ-Model
HO

L

AT
Pλ

Let J := (D,@, E) be a Σ-evaluation and let v : Do → {T, F} be a
Σ-valuation w.r.t J

We say M = (D,@, E , v) is a Σ-model.

If (D,@, E) is functional (full, standard), we say M is functional (full,
standard).

ATPHOL’06-[7] – p.167

c©Benzmüller, 2006

Def. (Reminder): Σ-Model
HO

L

AT
Pλ

Let J := (D,@, E) be a Σ-evaluation and let v : Do → {T, F} be a
Σ-valuation w.r.t J

We say M = (D,@, E , v) is a Σ-model.

If (D,@, E) is functional (full, standard), we say M is functional (full,
standard).

If (D,@, E) is η-functional, we say M is η-functional.

ATPHOL’06-[7] – p.167

c©Benzmüller, 2006

Def. (Reminder): Σ-Model
HO

L

AT
Pλ

Let J := (D,@, E) be a Σ-evaluation and let v : Do → {T, F} be a
Σ-valuation w.r.t J

We say M = (D,@, E , v) is a Σ-model.

If (D,@, E) is functional (full, standard), we say M is functional (full,
standard).

If (D,@, E) is η-functional, we say M is η-functional.

If (D,@, E) is ξ-functional, we say M is ξ-functional.

ATPHOL’06-[7] – p.167

c©Benzmüller, 2006

Def. (Reminder): Properties f, b, η, ξ
HO

L

AT
Pλ

Let M = (D,@, E , v) be a C-model. We say, M has property

ATPHOL’06-[7] – p.168

c©Benzmüller, 2006

Def. (Reminder): Properties f, b, η, ξ
HO

L

AT
Pλ

Let M = (D,@, E , v) be a C-model. We say, M has property
η if M is η-functional (respectively (D,@, E) is η-functional)

ATPHOL’06-[7] – p.168

c©Benzmüller, 2006

Def. (Reminder): Properties f, b, η, ξ
HO

L

AT
Pλ

Let M = (D,@, E , v) be a C-model. We say, M has property
η if M is η-functional (respectively (D,@, E) is η-functional)
ξ if M is ξ-functional (respectively (D,@, E) is ξ-functional)

ATPHOL’06-[7] – p.168

c©Benzmüller, 2006

Def. (Reminder): Properties f, b, η, ξ
HO

L

AT
Pλ

Let M = (D,@, E , v) be a C-model. We say, M has property
η if M is η-functional (respectively (D,@, E) is η-functional)
ξ if M is ξ-functional (respectively (D,@, E) is ξ-functional)
f if M is functional (respectively (D,@, E) is functional)

ATPHOL’06-[7] – p.168

c©Benzmüller, 2006

Def. (Reminder): Properties f, b, η, ξ
HO

L

AT
Pλ

Let M = (D,@, E , v) be a C-model. We say, M has property
η if M is η-functional (respectively (D,@, E) is η-functional)
ξ if M is ξ-functional (respectively (D,@, E) is ξ-functional)
f if M is functional (respectively (D,@, E) is functional)
b if v is injective.

ATPHOL’06-[7] – p.168

c©Benzmüller, 2006

Def. (Reminder): Properties f, b, η, ξ
HO

L

AT
Pλ

Let M = (D,@, E , v) be a C-model. We say, M has property
η if M is η-functional (respectively (D,@, E) is η-functional)
ξ if M is ξ-functional (respectively (D,@, E) is ξ-functional)
f if M is functional (respectively (D,@, E) is functional)
b if v is injective.
q if for all α ∈ T there is some q ∈ Doαα such that L=α(q).

ATPHOL’06-[7] – p.168

c©Benzmüller, 2006

Def. (Reminder): Different Model Classes
HO

L

AT
Pλ

We denote the class of C-models by Mβ(Σ).

ATPHOL’06-[7] – p.169

c©Benzmüller, 2006

Def. (Reminder): Different Model Classes
HO

L

AT
Pλ

We denote the class of C-models by Mβ(Σ). We obtain a hierarchy
of subclasses of Mβ(Σ) by adding the properties ξ, η, f, b.

ATPHOL’06-[7] – p.169

c©Benzmüller, 2006

Def. (Reminder): Different Model Classes
HO

L

AT
Pλ

We denote the class of C-models by Mβ(Σ). We obtain a hierarchy
of subclasses of Mβ(Σ) by adding the properties ξ, η, f, b. Thus we
obtain

ATPHOL’06-[7] – p.169

c©Benzmüller, 2006

Def. (Reminder): Different Model Classes
HO

L

AT
Pλ

We denote the class of C-models by Mβ(Σ). We obtain a hierarchy
of subclasses of Mβ(Σ) by adding the properties ξ, η, f, b. Thus we
obtain

! Mβη(Σ)

ATPHOL’06-[7] – p.169

c©Benzmüller, 2006

Def. (Reminder): Different Model Classes
HO

L

AT
Pλ

We denote the class of C-models by Mβ(Σ). We obtain a hierarchy
of subclasses of Mβ(Σ) by adding the properties ξ, η, f, b. Thus we
obtain

! Mβη(Σ)

! Mβξ(Σ)

ATPHOL’06-[7] – p.169

c©Benzmüller, 2006

Def. (Reminder): Different Model Classes
HO

L

AT
Pλ

We denote the class of C-models by Mβ(Σ). We obtain a hierarchy
of subclasses of Mβ(Σ) by adding the properties ξ, η, f, b. Thus we
obtain

! Mβη(Σ)

! Mβξ(Σ)

! Mβf(Σ)

ATPHOL’06-[7] – p.169

c©Benzmüller, 2006

Def. (Reminder): Different Model Classes
HO

L

AT
Pλ

We denote the class of C-models by Mβ(Σ). We obtain a hierarchy
of subclasses of Mβ(Σ) by adding the properties ξ, η, f, b. Thus we
obtain

! Mβη(Σ)

! Mβξ(Σ)

! Mβf(Σ)

! Mβb(Σ)

ATPHOL’06-[7] – p.169

c©Benzmüller, 2006

Def. (Reminder): Different Model Classes
HO

L

AT
Pλ

We denote the class of C-models by Mβ(Σ). We obtain a hierarchy
of subclasses of Mβ(Σ) by adding the properties ξ, η, f, b. Thus we
obtain

! Mβη(Σ)

! Mβξ(Σ)

! Mβf(Σ)

! Mβb(Σ)

! Mβηb(Σ)

ATPHOL’06-[7] – p.169

c©Benzmüller, 2006

Def. (Reminder): Different Model Classes
HO

L

AT
Pλ

We denote the class of C-models by Mβ(Σ). We obtain a hierarchy
of subclasses of Mβ(Σ) by adding the properties ξ, η, f, b. Thus we
obtain

! Mβη(Σ)

! Mβξ(Σ)

! Mβf(Σ)

! Mβb(Σ)

! Mβηb(Σ)

! Mβξb(Σ)

ATPHOL’06-[7] – p.169

c©Benzmüller, 2006

Def. (Reminder): Different Model Classes
HO

L

AT
Pλ

We denote the class of C-models by Mβ(Σ). We obtain a hierarchy
of subclasses of Mβ(Σ) by adding the properties ξ, η, f, b. Thus we
obtain

! Mβη(Σ)

! Mβξ(Σ)

! Mβf(Σ)

! Mβb(Σ)

! Mβηb(Σ)

! Mβξb(Σ)

! Mβfb(Σ)

ATPHOL’06-[7] – p.169

c©Benzmüller, 2006

Def.: Satisfies, models, and |=
HO

L

AT
Pλ

Let M = (D,@, E , v) be a Σ-model and let ϕ be an assignment into
M.

ATPHOL’06-[7] – p.170

c©Benzmüller, 2006

Def.: Satisfies, models, and |=
HO

L

AT
Pλ

Let M = (D,@, E , v) be a Σ-model and let ϕ be an assignment into
M.

We say ϕ satisfies a formula A ∈ wffo(Σ) in M (we write M |=ϕ A)
if υ(Eϕ(A)) = T.

ATPHOL’06-[7] – p.170

c©Benzmüller, 2006

Def.: Satisfies, models, and |=
HO

L

AT
Pλ

Let M = (D,@, E , v) be a Σ-model and let ϕ be an assignment into
M.

We say ϕ satisfies a formula A ∈ wffo(Σ) in M (we write M |=ϕ A)
if υ(Eϕ(A)) = T.

We say that A is valid in M (and write M |= A) if M |=ϕ A for all
assignments ϕ.

ATPHOL’06-[7] – p.170

c©Benzmüller, 2006

Def.: Satisfies, models, and |=
HO

L

AT
Pλ

Let M = (D,@, E , v) be a Σ-model and let ϕ be an assignment into
M.

We say ϕ satisfies a formula A ∈ wffo(Σ) in M (we write M |=ϕ A)
if υ(Eϕ(A)) = T.

We say that A is valid in M (and write M |= A) if M |=ϕ A for all
assignments ϕ. When A ∈ cwffo(Σ), we drop the reference to the
assignment and use the notation M |= A.

ATPHOL’06-[7] – p.170

c©Benzmüller, 2006

Def.: Satisfies, models, and |=
HO

L

AT
Pλ

Let M = (D,@, E , v) be a Σ-model and let ϕ be an assignment into
M.

We say ϕ satisfies a formula A ∈ wffo(Σ) in M (we write M |=ϕ A)
if υ(Eϕ(A)) = T.

We say that A is valid in M (and write M |= A) if M |=ϕ A for all
assignments ϕ. When A ∈ cwffo(Σ), we drop the reference to the
assignment and use the notation M |= A.

Finally, we say that M is a Σ-model for a set Φ ⊆ cwffo(Σ) (we write
M |= Φ) if M |= A for all A ∈ Φ.

ATPHOL’06-[7] – p.170

c©Benzmüller, 2006

Semantics: HOL-CUBE
HO

L

AT
Pλ

ST(Σ)

Mβfb(Σ) . H(Σ)

Mβηb(Σ)Mβξb(Σ)Mβf(Σ)

Mβξ(Σ) Mβη(Σ) Mβb(Σ)

Mβ(Σ)

ξ

η

η

ηξ

f

ξ

f

b

b

b

b

ξη

full

Landscape of HOL model classes
[Kohlhase-PhD-94]
[Benzmüller-PhD-99]
[Brown-PhD-04]

[Benzm.BrownKohlhase-JSL-04]

ATPHOL’06-[7] – p.171

c©Benzmüller, 2006

Semantics: HOL-CUBE
HO

L

AT
Pλ

ST(Σ)

Mβfb(Σ) . H(Σ)

Mβηb(Σ)Mβξb(Σ)Mβf(Σ)

Mβξ(Σ) Mβη(Σ) Mβb(Σ)

Mβ(Σ)

ξ

η

η

ηξ

f

ξ

f

b

b

b

b

ξη

full

Landscape of HOL model classes
[Kohlhase-PhD-94]
[Benzmüller-PhD-99]
[Brown-PhD-04]

[Benzm.BrownKohlhase-JSL-04]

Mβ(Σ) model class for Σ-fragment of
elementary type theory

ATPHOL’06-[7] – p.171

c©Benzmüller, 2006

Semantics: HOL-CUBE
HO

L

AT
Pλ

ST(Σ)

Mβfb(Σ) . H(Σ)

Mβηb(Σ)Mβξb(Σ)Mβf(Σ)

Mβξ(Σ) Mβη(Σ) Mβb(Σ)

Mβ(Σ)

ξ

η

η

ηξ

f

ξ

f

b

b

b

b

ξη

full

Landscape of HOL model classes
[Kohlhase-PhD-94]
[Benzmüller-PhD-99]
[Brown-PhD-04]

[Benzm.BrownKohlhase-JSL-04]

Mβ(Σ) model class for Σ-fragment of
elementary type theory

Mβfb(Σ) model class for Σ-fragment of
extensional type theory (Henkin models)

ATPHOL’06-[7] – p.171

c©Benzmüller, 2006

Semantics: HOL-CUBE
HO

L

AT
Pλ

ST(Σ)

Mβfb(Σ) . H(Σ)

Mβηb(Σ)Mβξb(Σ)Mβf(Σ)

Mβξ(Σ) Mβη(Σ) Mβb(Σ)

Mβ(Σ)

ξ

η

η

ηξ

f

ξ

f

b

b

b

b

ξη

full

β: models support β-equality
q: models provide identity relations

∀α : id ∈ Dα→α→o

ATPHOL’06-[7] – p.172

c©Benzmüller, 2006

Semantics: HOL-CUBE
HO

L

AT
Pλ

ST(Σ)

Mβfb(Σ) . H(Σ)

Mβηb(Σ)Mβξb(Σ)Mβf(Σ)

Mβξ(Σ) Mβη(Σ) Mβb(Σ)

Mβ(Σ)

ξ

η

η

ηξ

f

ξ

f

b

b

b

b

ξη

full

β: models support β-equality
q: models provide identity relations

∀α : id ∈ Dα→α→o

! [Andrews72]: without property q

Leibniz equality .
= not necessarily

evaluates to identity relation even
in Henkin semantics (H(Σ))

ATPHOL’06-[7] – p.172

c©Benzmüller, 2006

Standard Models and Henkin Models
HO

L

AT
Pλ

Leon Henkin generalized the class of admissible domains for
functional types.

ATPHOL’06-[7] – p.173

c©Benzmüller, 2006

Standard Models and Henkin Models
HO

L

AT
Pλ

Leon Henkin generalized the class of admissible domains for
functional types.

Instead of requiring Dαβ (and thus in particular, Doι) to be the full
set of functions (predicates), it is sufficient to require that Dαβ has
enough members that any well-formed formula can be evaluated
(in other words, the domains of function types are rich enough to
satisfy comprehension).

ATPHOL’06-[7] – p.173

c©Benzmüller, 2006

Standard Models and Henkin Models
HO

L

AT
Pλ

Leon Henkin generalized the class of admissible domains for
functional types.

Instead of requiring Dαβ (and thus in particular, Doι) to be the full
set of functions (predicates), it is sufficient to require that Dαβ has
enough members that any well-formed formula can be evaluated
(in other words, the domains of function types are rich enough to
satisfy comprehension).

Note that with this generalized notion of a model, there are fewer
formulae that are valid in all models (intuitively, for any given formula
there are more possibilities for counter-models).

ATPHOL’06-[7] – p.173

c©Benzmüller, 2006

Standard Models and Henkin Models
HO

L

AT
Pλ

standard-
models

Henkin-

semantics
Henkin-
valid in

formulas
models

formulas
valid in

standard-
semantics

ATPHOL’06-[7] – p.174

c©Benzmüller, 2006

Standard Models and Henkin Models
HO

L

AT
Pλ

The generalization to Henkin models restricts the set of valid formu-
lae sufficiently so that all of them can be proven by a Hilbert-style
calculus [Henkin50].

ATPHOL’06-[7] – p.175

c©Benzmüller, 2006

Standard Models and Henkin Models
HO

L

AT
Pλ

The generalization to Henkin models restricts the set of valid formu-
lae sufficiently so that all of them can be proven by a Hilbert-style
calculus [Henkin50].
Of course our HOL-CUBE is not complete here; we can axiomati-
cally require the existence of particular (classes of) functions, e.g.,
by assuming the description or choice operators.

ATPHOL’06-[7] – p.175

c©Benzmüller, 2006

Standard Models and Henkin Models
HO

L

AT
Pλ

The generalization to Henkin models restricts the set of valid formu-
lae sufficiently so that all of them can be proven by a Hilbert-style
calculus [Henkin50].
Of course our HOL-CUBE is not complete here; we can axiomati-
cally require the existence of particular (classes of) functions, e.g.,
by assuming the description or choice operators.
We will not pursue this here; for a detailed discussion of the se-
mantic issues raised by the presence of these logical constants see
[Andrews72].

ATPHOL’06-[7] – p.175

c©Benzmüller, 2006

Standard Models and Henkin Models
HO

L

AT
Pλ

The generalization to Henkin models restricts the set of valid formu-
lae sufficiently so that all of them can be proven by a Hilbert-style
calculus [Henkin50].
Of course our HOL-CUBE is not complete here; we can axiomati-
cally require the existence of particular (classes of) functions, e.g.,
by assuming the description or choice operators.
We will not pursue this here; for a detailed discussion of the se-
mantic issues raised by the presence of these logical constants see
[Andrews72].
Note that even though we can consider model classes with richer
and richer function spaces, we can never reach standard models
where function spaces are full while maintaining complete (recur-
sively axiomatizable) calculi.

ATPHOL’06-[7] – p.175

c©Benzmüller, 2006

Standard Models and Henkin Models
HO

L

AT
Pλ

standard-
models

Henkin-

semantics
Henkin-
valid in

formulas
models

formulas
valid in

standard-
semantics

ATPHOL’06-[7] – p.176

c©Benzmüller, 2006

Standard Models and Henkin Models
HO

L

AT
Pλ

standard-
models

Henkin-

semantics
Henkin-
valid in

formulas
models

formulas
valid in

standard-
semantics

What has been our motivation for further generalization of Henkin
semantics with respect to Boolean and functional extensionality?

ATPHOL’06-[7] – p.176

c©Benzmüller, 2006

Models without Functional Extensionality
HO

L

AT
Pλ

Motivation: modeling programs as (higher-order) functions
! We might be interested in intensional properties like run-time

complexity.

ATPHOL’06-[7] – p.177

c©Benzmüller, 2006

Models without Functional Extensionality
HO

L

AT
Pλ

Motivation: modeling programs as (higher-order) functions
! We might be interested in intensional properties like run-time

complexity.
! I := λX X and L := λX rev(rev(X)), where rev is the self-inverse

function.

ATPHOL’06-[7] – p.177

c©Benzmüller, 2006

Models without Functional Extensionality
HO

L

AT
Pλ

Motivation: modeling programs as (higher-order) functions
! We might be interested in intensional properties like run-time

complexity.
! I := λX X and L := λX rev(rev(X)), where rev is the self-inverse

function.
! The identity function has constant complexity, the function rev

is linear in the length of its argument.

ATPHOL’06-[7] – p.177

c©Benzmüller, 2006

Models without Functional Extensionality
HO

L

AT
Pλ

How do we account for models without functional extensionality?
! We have generalized the notion of domains at function types

and evaluation functions.

ATPHOL’06-[7] – p.178

c©Benzmüller, 2006

Models without Functional Extensionality
HO

L

AT
Pλ

How do we account for models without functional extensionality?
! We have generalized the notion of domains at function types

and evaluation functions.
! The usual construction already uses sets of (extensional)

functions for the domains of function type and the property of
functionality to construct values for λ-terms.

ATPHOL’06-[7] – p.178

c©Benzmüller, 2006

Models without Functional Extensionality
HO

L

AT
Pλ

How do we account for models without functional extensionality?
! We have generalized the notion of domains at function types

and evaluation functions.
! The usual construction already uses sets of (extensional)

functions for the domains of function type and the property of
functionality to construct values for λ-terms.

! We build on the notion of applicative structures to define
Σ-evaluations, where the evaluation function is assumed to
respect application and β-conversion.

ATPHOL’06-[7] – p.178

c©Benzmüller, 2006

Models without Functional Extensionality
HO

L

AT
Pλ

How do we account for models without functional extensionality?
! We have generalized the notion of domains at function types

and evaluation functions.
! The usual construction already uses sets of (extensional)

functions for the domains of function type and the property of
functionality to construct values for λ-terms.

! We build on the notion of applicative structures to define
Σ-evaluations, where the evaluation function is assumed to
respect application and β-conversion.

! In such models, a function is not uniquely determined by its
behavior on all possible arguments.

ATPHOL’06-[7] – p.178

c©Benzmüller, 2006

Semantics: HOL-CUBE
HO

L

AT
Pλ

ST(Σ)

Mβfb(Σ) . H(Σ)

Mβηb(Σ)Mβξb(Σ)Mβf(Σ)

Mβξ(Σ) Mβη(Σ) Mβb(Σ)

Mβ(Σ)

ξ

η

η

ηξ

f

ξ

f

b

b

b

b

ξη

full

f: models are functional

∀f, g ∈ Dβα :

f = g iff f@a = g@a (∀a ∈ Dα)

ATPHOL’06-[7] – p.179

c©Benzmüller, 2006

Models without η- or ξ-Functionality
HO

L

AT
Pλ

Motivation: in standard literature functional extensionality is often is
discussed in terms of

ATPHOL’06-[7] – p.180

c©Benzmüller, 2006

Models without η- or ξ-Functionality
HO

L

AT
Pλ

Motivation: in standard literature functional extensionality is often is
discussed in terms of

! ξ-functionality

ATPHOL’06-[7] – p.180

c©Benzmüller, 2006

Models without η- or ξ-Functionality
HO

L

AT
Pλ

Motivation: in standard literature functional extensionality is often is
discussed in terms of

! ξ-functionality
! η-functionality

ATPHOL’06-[7] – p.180

c©Benzmüller, 2006

Models without η- or ξ-Functionality
HO

L

AT
Pλ

Motivation: in standard literature functional extensionality is often is
discussed in terms of

! ξ-functionality
! η-functionality
! Therefore, we integrated these two cases in our landscape.

ATPHOL’06-[7] – p.180

c©Benzmüller, 2006

Semantics: HOL-CUBE
HO

L

AT
Pλ

ST(Σ)

Mβfb(Σ) . H(Σ)

Mβηb(Σ)Mβξb(Σ)Mβf(Σ)

Mβξ(Σ) Mβη(Σ) Mβb(Σ)

Mβ(Σ)

ξ

η

η

ηξ

f

ξ

f

b

b

b

b

ξη

full

η: models are η-functional

Eϕ(A) = Eϕ(A ↓βη)

ATPHOL’06-[7] – p.181

c©Benzmüller, 2006

Semantics: HOL-CUBE
HO

L

AT
Pλ

ST(Σ)

Mβfb(Σ) . H(Σ)

Mβηb(Σ)Mβξb(Σ)Mβf(Σ)

Mβξ(Σ) Mβη(Σ) Mβb(Σ)

Mβ(Σ)

ξ

η

η

ηξ

f

ξ

f

b

b

b

b

ξη

full

ξ: models are ξ-functional

Eϕ(λXα Mβ) = Eϕ(λXα Nβ) iff
Eϕ,[a/X](M) = Eϕ,[a/X](N) (∀a ∈ Dα)

ATPHOL’06-[7] – p.182

c©Benzmüller, 2006

Models without Boolean Extensionality
HO

L

AT
Pλ

Motivation: Semantics of natural language

ATPHOL’06-[7] – p.183

c©Benzmüller, 2006

Models without Boolean Extensionality
HO

L

AT
Pλ

Motivation: Semantics of natural language
! We may not want to commit to a logic where the sentence

“John believes that Phil is a woodchuck”

ATPHOL’06-[7] – p.183

c©Benzmüller, 2006

Models without Boolean Extensionality
HO

L

AT
Pλ

Motivation: Semantics of natural language
! We may not want to commit to a logic where the sentence

“John believes that Phil is a woodchuck” automatically entails
“John believes that Phil is a groundhog”

ATPHOL’06-[7] – p.183

c©Benzmüller, 2006

Models without Boolean Extensionality
HO

L

AT
Pλ

Motivation: Semantics of natural language
! We may not want to commit to a logic where the sentence

“John believes that Phil is a woodchuck” automatically entails
“John believes that Phil is a groundhog” since John might not
know that “woodchuck” is just another word for “groundhog”.

ATPHOL’06-[7] – p.183

c©Benzmüller, 2006

Models without Boolean Extensionality
HO

L

AT
Pλ

Motivation: Semantics of natural language
! We may not want to commit to a logic where the sentence

“John believes that Phil is a woodchuck” automatically entails
“John believes that Phil is a groundhog” since John might not
know that “woodchuck” is just another word for “groundhog”.

! However, Boolean extensionality does just that: whenever two
propositions are equivalent, they must be equal, and can be
substituted for each other.

ATPHOL’06-[7] – p.183

c©Benzmüller, 2006

Models without Boolean Extensionality
HO

L

AT
Pλ

Motivation: Semantics of natural language
! We may not want to commit to a logic where the sentence

“John believes that Phil is a woodchuck” automatically entails
“John believes that Phil is a groundhog” since John might not
know that “woodchuck” is just another word for “groundhog”.

! However, Boolean extensionality does just that: whenever two
propositions are equivalent, they must be equal, and can be
substituted for each other.

! Another example: obvious(O) and obvious(F) where
O := 2 + 2 = 4 and F := ∀n > 2 xn + yn = zn ⇒ x = y = z = 0

should not be equivalent, even if their arguments are.

ATPHOL’06-[7] – p.183

c©Benzmüller, 2006

Models without Boolean Extensionality
HO

L

AT
Pλ

Motivation: Semantics of natural language
! We may not want to commit to a logic where the sentence

“John believes that Phil is a woodchuck” automatically entails
“John believes that Phil is a groundhog” since John might not
know that “woodchuck” is just another word for “groundhog”.

! However, Boolean extensionality does just that: whenever two
propositions are equivalent, they must be equal, and can be
substituted for each other.

! Another example: obvious(O) and obvious(F) where
O := 2 + 2 = 4 and F := ∀n > 2 xn + yn = zn ⇒ x = y = z = 0

should not be equivalent, even if their arguments are.
! Such phenomena have been studied under the heading of

“hyper-intensional semantics” in theoretical semantics.

ATPHOL’06-[7] – p.183

c©Benzmüller, 2006

Models without Boolean Extensionality
HO

L

AT
Pλ

How do we account for models without Boolean extensionality?
! We have weakened the assumption that Do = {T, F}, since this

entails that the values of O and F are identical.

ATPHOL’06-[7] – p.184

c©Benzmüller, 2006

Models without Boolean Extensionality
HO

L

AT
Pλ

How do we account for models without Boolean extensionality?
! We have weakened the assumption that Do = {T, F}, since this

entails that the values of O and F are identical.
! In our Σ-models without property b we only insist that there is a

division of the truth values into “good” and “bad” ones, which
we express by insisting on the existence of a valuation υ of Do,
i.e., a function υ:Do → {T, F} that is coordinated with the
interpretations of the logical constants ¬, ∨, and Πα (for each
type α).

ATPHOL’06-[7] – p.184

c©Benzmüller, 2006

Models without Boolean Extensionality
HO

L

AT
Pλ

How do we account for models without Boolean extensionality?
! We have weakened the assumption that Do = {T, F}, since this

entails that the values of O and F are identical.
! In our Σ-models without property b we only insist that there is a

division of the truth values into “good” and “bad” ones, which
we express by insisting on the existence of a valuation υ of Do,
i.e., a function υ:Do → {T, F} that is coordinated with the
interpretations of the logical constants ¬, ∨, and Πα (for each
type α).

! Notion of validity: we call a sentence A valid in such a model if
υ(a) = T, where a ∈ Do is the denotation of the sentence A.

ATPHOL’06-[7] – p.184

c©Benzmüller, 2006

Semantics: HOL-CUBE
HO

L

AT
Pλ

ST(Σ)

Mβfb(Σ) . H(Σ)

Mβηb(Σ)Mβξb(Σ)Mβf(Σ)

Mβξ(Σ) Mβη(Σ) Mβb(Σ)

Mβ(Σ)

ξ

η

η

ηξ

f

ξ

f

b

b

b

b

ξη

full

b: models are Boolean extensional

v is injective

ATPHOL’06-[7] – p.185

c©Benzmüller, 2006

Semantics: HOL-CUBE
HO

L

AT
Pλ

ST(Σ)

Mβfb(Σ) . H(Σ)

Mβηb(Σ)Mβξb(Σ)Mβf(Σ)

Mβξ(Σ) Mβη(Σ) Mβb(Σ)

Mβ(Σ)

ξ

η

η

ηξ

f

ξ

f

b

b

b

b

ξη

full

b: models are Boolean extensional

v is injective

If Σ contains sufficiently many logical
constants:

Do = {⊥,%}

ATPHOL’06-[7] – p.185

c©Benzmüller, 2006

HO
L

AT
Pλ

HO
L

AT
Pλ

Semantics and Theorem
Proving: Test Problems for

Theorem Provers

ATPHOL’06-[7] – p.186

c©Benzmüller, 2006

Test Problems for Theorem Provers
HO

L

AT
Pλ

! Test problems for FOL theorem provers

ATPHOL’06-[7] – p.187

c©Benzmüller, 2006

Test Problems for Theorem Provers
HO

L

AT
Pλ

! Test problems for FOL theorem provers
" [McCharenOverbeekWos76], [WilsonMinker79],

[Pelletier86], etc.

ATPHOL’06-[7] – p.187

c©Benzmüller, 2006

Test Problems for Theorem Provers
HO

L

AT
Pλ

! Test problems for FOL theorem provers
" [McCharenOverbeekWos76], [WilsonMinker79],

[Pelletier86], etc.
" TPTP [PelletierSutcliffeSuttner02]

ATPHOL’06-[7] – p.187

c©Benzmüller, 2006

Test Problems for Theorem Provers
HO

L

AT
Pλ

! Test problems for FOL theorem provers
" [McCharenOverbeekWos76], [WilsonMinker79],

[Pelletier86], etc.
" TPTP [PelletierSutcliffeSuttner02]
" significantly fostered the development of FOL ATPs

ATPHOL’06-[7] – p.187

c©Benzmüller, 2006

Test Problems for Theorem Provers
HO

L

AT
Pλ

! Test problems for FOL theorem provers
" [McCharenOverbeekWos76], [WilsonMinker79],

[Pelletier86], etc.
" TPTP [PelletierSutcliffeSuttner02]
" significantly fostered the development of FOL ATPs

! Test problems for HOL theorem provers

ATPHOL’06-[7] – p.187

c©Benzmüller, 2006

Test Problems for Theorem Provers
HO

L

AT
Pλ

! Test problems for FOL theorem provers
" [McCharenOverbeekWos76], [WilsonMinker79],

[Pelletier86], etc.
" TPTP [PelletierSutcliffeSuttner02]
" significantly fostered the development of FOL ATPs

! Test problems for HOL theorem provers
" common library missing

ATPHOL’06-[7] – p.187

c©Benzmüller, 2006

Test Problems for Theorem Provers
HO

L

AT
Pλ

! Test problems for FOL theorem provers
" [McCharenOverbeekWos76], [WilsonMinker79],

[Pelletier86], etc.
" TPTP [PelletierSutcliffeSuttner02]
" significantly fostered the development of FOL ATPs

! Test problems for HOL theorem provers
" common library missing

! Following slides: example problems from our paper
[TPHOLS-05]

ATPHOL’06-[7] – p.187

c©Benzmüller, 2006

Test Problems for Theorem Provers
HO

L

AT
Pλ

! Test problems for FOL theorem provers
" [McCharenOverbeekWos76], [WilsonMinker79],

[Pelletier86], etc.
" TPTP [PelletierSutcliffeSuttner02]
" significantly fostered the development of FOL ATPs

! Test problems for HOL theorem provers
" common library missing

! Following slides: example problems from our paper
[TPHOLS-05]

! Are we proposing challenging HOL benchmark problems?

ATPHOL’06-[7] – p.187

c©Benzmüller, 2006

Test Problems for Theorem Provers
HO

L

AT
Pλ

! Test problems for FOL theorem provers
" [McCharenOverbeekWos76], [WilsonMinker79],

[Pelletier86], etc.
" TPTP [PelletierSutcliffeSuttner02]
" significantly fostered the development of FOL ATPs

! Test problems for HOL theorem provers
" common library missing

! Following slides: example problems from our paper
[TPHOLS-05]

! Are we proposing challenging HOL benchmark problems?
" No!!!

ATPHOL’06-[7] – p.187

c©Benzmüller, 2006

Test Problems for Theorem Provers
HO

L

AT
Pλ

! Examples are simple

ATPHOL’06-[7] – p.188

c©Benzmüller, 2006

Test Problems for Theorem Provers
HO

L

AT
Pλ

! Examples are simple
" highlight the essence of some semantical or technical point

ATPHOL’06-[7] – p.188

c©Benzmüller, 2006

Test Problems for Theorem Provers
HO

L

AT
Pλ

! Examples are simple
" highlight the essence of some semantical or technical point
" easy to understand and easy to encode

ATPHOL’06-[7] – p.188

c©Benzmüller, 2006

Test Problems for Theorem Provers
HO

L

AT
Pλ

! Examples are simple
" highlight the essence of some semantical or technical point
" easy to understand and easy to encode
" relevant for both: automated and interactive TP

ATPHOL’06-[7] – p.188

c©Benzmüller, 2006

Test Problems for Theorem Provers
HO

L

AT
Pλ

! Examples are simple
" highlight the essence of some semantical or technical point
" easy to understand and easy to encode
" relevant for both: automated and interactive TP

! Examples are structured

ATPHOL’06-[7] – p.188

c©Benzmüller, 2006

Test Problems for Theorem Provers
HO

L

AT
Pλ

! Examples are simple
" highlight the essence of some semantical or technical point
" easy to understand and easy to encode
" relevant for both: automated and interactive TP

! Examples are structured
" quick indicators for completeness and soundness wrt to

HOL model classes from [Benzm.BrownKohlhase-JSL-04]

ATPHOL’06-[7] – p.188

c©Benzmüller, 2006

Test Problems for Theorem Provers
HO

L

AT
Pλ

! Examples are simple
" highlight the essence of some semantical or technical point
" easy to understand and easy to encode
" relevant for both: automated and interactive TP

! Examples are structured
" quick indicators for completeness and soundness wrt to

HOL model classes from [Benzm.BrownKohlhase-JSL-04]
" shall precede formal soundness / completeness analysis

ATPHOL’06-[7] – p.188

c©Benzmüller, 2006

Test Problems for Theorem Provers
HO

L

AT
Pλ

! Examples are simple
" highlight the essence of some semantical or technical point
" easy to understand and easy to encode
" relevant for both: automated and interactive TP

! Examples are structured
" quick indicators for completeness and soundness wrt to

HOL model classes from [Benzm.BrownKohlhase-JSL-04]
" shall precede formal soundness / completeness analysis
" many are collected from experience with LEO and TPS

ATPHOL’06-[7] – p.188

c©Benzmüller, 2006

Test Problems for Theorem Provers
HO

L

AT
Pλ

! Examples are simple
" highlight the essence of some semantical or technical point
" easy to understand and easy to encode
" relevant for both: automated and interactive TP

! Examples are structured
" quick indicators for completeness and soundness wrt to

HOL model classes from [Benzm.BrownKohlhase-JSL-04]
" shall precede formal soundness / completeness analysis
" many are collected from experience with LEO and TPS

! (Some more challenging examples are also added in
[TPHOLS-05])

ATPHOL’06-[7] – p.188

c©Benzmüller, 2006

Remark: Signature
HO

L

AT
Pλ

Unless stated otherwise we assume on the following slides that our
signature Σ contains the following logical connectives:

{.,⊥,¬,∧,∨,⊃,⇔} ∪ {Πα,Σα,=α}

(less logical connectives are possible)

ATPHOL’06-[7] – p.189

c©Benzmüller, 2006

HOL-Problems: β
HO

L

AT
Pλ

ST(Σ)

Mβfb(Σ) . H(Σ)

Mβηb(Σ)Mβξb(Σ)Mβf(Σ)

Mβξ(Σ) Mβη(Σ) Mβb(Σ)

Mβ(Σ)

ξ

η

η

ηξ

f

ξ

f

b

b

b

b

ξη

full

∗

= is equivalence relation

! ∀Xα X
∗

= X

! ∀Xα, Yα X
∗

= Y ⊃ Y
∗

= X

! ∀Xα, Yα, Zα (X
∗

= Y ∧Y
∗

= Z) ⊃ X
∗

= Z

ATPHOL’06-[7] – p.190

c©Benzmüller, 2006

HOL-Problems: β
HO

L

AT
Pλ

ST(Σ)

Mβfb(Σ) . H(Σ)

Mβηb(Σ)Mβξb(Σ)Mβf(Σ)

Mβξ(Σ) Mβη(Σ) Mβb(Σ)

Mβ(Σ)

ξ

η

η

ηξ

f

ξ

f

b

b

b

b

ξη

full

∗

= is equivalence relation

! ∀Xα X
∗

= X

! ∀Xα, Yα X
∗

= Y ⊃ Y
∗

= X

! ∀Xα, Yα, Zα (X
∗

= Y ∧Y
∗

= Z) ⊃ X
∗

= Z

∗

= is congruence relation

! ∀Xα, Yα, Fαα X
∗

= Y ⊃ (FX)
∗

= (FY)

! ∀Xα, Yα, Poα X
∗

= Y ∧ (PX) ⊃ (PY)

ATPHOL’06-[7] – p.190

c©Benzmüller, 2006

HOL-Problems: β
HO

L

AT
Pλ

ST(Σ)

Mβfb(Σ) . H(Σ)

Mβηb(Σ)Mβξb(Σ)Mβf(Σ)

Mβξ(Σ) Mβη(Σ) Mβb(Σ)

Mβ(Σ)

ξ

η

η

ηξ

f

ξ

f

b

b

b

b

ξη

full

∗

= is equivalence relation

! ∀Xα X
∗

= X

! ∀Xα, Yα X
∗

= Y ⊃ Y
∗

= X

! ∀Xα, Yα, Zα (X
∗

= Y ∧Y
∗

= Z) ⊃ X
∗

= Z

∗

= is congruence relation

! ∀Xα, Yα, Fαα X
∗

= Y ⊃ (FX)
∗

= (FY)

! ∀Xα, Yα, Poα X
∗

= Y ∧ (PX) ⊃ (PY)

Trivial directions of Boolean and functional exten-
sionality

! ∀Ao, Bo A
∗

= B ⊃ (A⇔ B)

! ∀Fβα, Gβα F
∗

= G ⊃ (∀Xα FX
∗

= GX)

ATPHOL’06-[7] – p.190

c©Benzmüller, 2006

HOL-Problems: b
HO

L

AT
Pλ

ST(Σ)

Mβfb(Σ) . H(Σ)

Mβηb(Σ)Mβξb(Σ)Mβf(Σ)

Mβξ(Σ) Mβη(Σ) Mβb(Σ)

Mβ(Σ)

ξ

η

η

ηξ

f

ξ

f

b

b

b

b

ξη

full

Non-trivial direction of Boolean extensionality

! ∀Ao, Bo (A⇔ B) ⊃ A
∗

= B

ATPHOL’06-[7] – p.191

c©Benzmüller, 2006

HOL-Problems: f
HO

L

AT
Pλ

ST(Σ)

Mβfb(Σ) . H(Σ)

Mβηb(Σ)Mβξb(Σ)Mβf(Σ)

Mβξ(Σ) Mβη(Σ) Mβb(Σ)

Mβ(Σ)

ξ

η

η

ηξ

f

ξ

f

b

b

b

b

ξη

full

Non-trivial direct. of functional extensionality

! ∀Fβα, Gβα (∀Xα FX
∗

= GX) ⊃ F
∗

= G

ATPHOL’06-[7] – p.192

c©Benzmüller, 2006

HOL-Problems: η
HO

L

AT
Pλ

ST(Σ)

Mβfb(Σ) . H(Σ)

Mβηb(Σ)Mβξb(Σ)Mβf(Σ)

Mβξ(Σ) Mβη(Σ) Mβb(Σ)

Mβ(Σ)

ξ

η

η

ηξ

f

ξ

f

b

b

b

b

ξη

full

Example requiring property η

! (po(ιι)(λXι fιιX)) ⊃ (p f)

ATPHOL’06-[7] – p.193

c©Benzmüller, 2006

HOL-Problems: ξ
HO

L

AT
Pλ

ST(Σ)

Mβfb(Σ) . H(Σ)

Mβηb(Σ)Mβξb(Σ)Mβf(Σ)

Mβξ(Σ) Mβη(Σ) Mβb(Σ)

Mβ(Σ)

ξ

η

η

ηξ

f

ξ

f

b

b

b

b

ξη

full

Example requiring property ξ (and q!)

! (∀Xι (fιιX)
∗

= X) ∧ po(ιι)(λXι X)

⊃ p(λXι fX)

ATPHOL’06-[7] – p.194

c©Benzmüller, 2006

HOL-Problems: f
HO

L

AT
Pλ

ST(Σ)

Mβfb(Σ) . H(Σ)

Mβηb(Σ)Mβξb(Σ)Mβf(Σ)

Mβξ(Σ) Mβη(Σ) Mβb(Σ)

Mβ(Σ)

ξ

η

η

ηξ

f

ξ

f

b

b

b

b

ξη

full

Example requiring property f (and q!)

! (∀Xι (fιιX)
∗

= X) ∧ po(ιι)(λXι X)

⊃ (p f)

ATPHOL’06-[7] – p.195

c©Benzmüller, 2006

HOL-Problems: b
HO

L

AT
Pλ

ST(Σ)

Mβfb(Σ) . H(Σ)

Mβηb(Σ)Mβξb(Σ)Mβf(Σ)

Mβξ(Σ) Mβη(Σ) Mβb(Σ)

Mβ(Σ)

ξ

η

η

ηξ

f

ξ

f

b

b

b

b

ξη

full

Examples requiring property b

! (poo ao) ∧ (p bo)⇒ (p (a ∧ b))

! ¬(a
∗

= ¬a) (in particular ¬(a = ¬a))

! (hιo((h%)
∗

= (h⊥)))
∗

= (h⊥)

ATPHOL’06-[7] – p.196

c©Benzmüller, 2006

HOL-Problems: Other Examples
HO

L

AT
Pλ

ST(Σ)

Mβfb(Σ) . H(Σ)

Mβηb(Σ)Mβξb(Σ)Mβf(Σ)

Mβξ(Σ) Mβη(Σ) Mβb(Σ)

Mβ(Σ)

ξ

η

η

ηξ

f

ξ

f

b

b

b

b

ξη

full

Playing with DeMorgan’s Law:

! ∀X, Y X ∧ Y ⇔ ¬(¬X ∨ ¬Y)

’Ok’ for all model classes

ATPHOL’06-[7] – p.197

c©Benzmüller, 2006

HOL-Problems: DeMorgan’s Law
HO

L

AT
Pλ

ST(Σ)

Mβfb(Σ) . H(Σ)

Mβηb(Σ)Mβξb(Σ)Mβf(Σ)

Mβξ(Σ) Mβη(Σ) Mβb(Σ)

Mβ(Σ)

ξ

η

η

ηξ

f

ξ

f

b

b

b

b

ξη

full

Playing with DeMorgan’s Law:

! ∀X, Y X ∧ Y ⇔ ¬(¬X ∨ ¬Y)

! ∀X, Y X ∧ Y
∗

= ¬(¬X ∨ ¬Y)

requires b

ATPHOL’06-[7] – p.198

c©Benzmüller, 2006

HOL-Problems: DeMorgan’s Law
HO

L

AT
Pλ

ST(Σ)

Mβfb(Σ) . H(Σ)

Mβηb(Σ)Mβξb(Σ)Mβf(Σ)

Mβξ(Σ) Mβη(Σ) Mβb(Σ)

Mβ(Σ)

ξ

η

η

ηξ

f

ξ

f

b

b

b

b

ξη

full

Playing with DeMorgan’s Law:

! ∀X, Y X ∧ Y ⇔ ¬(¬X ∨ ¬Y)

! ∀X, Y X ∧ Y
∗

= ¬(¬X ∨ ¬Y)

! (λUλV U ∧ V)
∗

= (λXλY ¬(¬X ∨ ¬Y))

requires b and ξ

ATPHOL’06-[7] – p.199

c©Benzmüller, 2006

HOL-Problems: DeMorgan’s Law
HO

L

AT
Pλ

ST(Σ)

Mβfb(Σ) . H(Σ)

Mβηb(Σ)Mβξb(Σ)Mβf(Σ)

Mβξ(Σ) Mβη(Σ) Mβb(Σ)

Mβ(Σ)

ξ

η

η

ηξ

f

ξ

f

b

b

b

b

ξη

full

Playing with DeMorgan’s Law:

! ∀X, Y X ∧ Y ⇔ ¬(¬X ∨ ¬Y)

! ∀X, Y X ∧ Y
∗

= ¬(¬X ∨ ¬Y)

! (λUλV U ∧ V)
∗

= (λXλY ¬(¬X ∨ ¬Y))

! ∧
∗

= (λXλY ¬(¬X ∨ ¬Y))

requires b and f

ATPHOL’06-[7] – p.200

c©Benzmüller, 2006

HOL-Problems: Set Comprehension
HO

L

AT
Pλ

ST(Σ)

Mβfb(Σ) . H(Σ)

Mβηb(Σ)Mβξb(Σ)Mβf(Σ)

Mβξ(Σ) Mβη(Σ) Mβb(Σ)

Mβ(Σ)

ξ

η

η

ηξ

f

ξ

f

b

b

b

b

ξη

full

Set comprehension

! big challenge for automation

! [Benzm.BrownKohlhase-Draft-05] set
instantiations can be used to simulate
cut-rule if one of the following axioms
is given: comprehension, induction,
extensionality, choice, description

! dependend on logical constants in Σ

ATPHOL’06-[7] – p.201

c©Benzmüller, 2006

HOL-Problems: Set Comprehension
HO

L

AT
Pλ

ST(Σ)

Mβfb(Σ) . H(Σ)

Mβηb(Σ)Mβξb(Σ)Mβf(Σ)

Mβξ(Σ) Mβη(Σ) Mβb(Σ)

Mβ(Σ)

ξ

η

η

ηξ

f

ξ

f

b

b

b

b

ξη

full

Set comprehension

! big challenge for automation

! [Benzm.BrownKohlhase-Draft-05] set
instantiations can be used to simulate
cut-rule if one of the following axioms
is given: comprehension, induction,
extensionality, choice, description

! dependend on logical constants in Σ

On the following slides emphasis on:

! signature Σ varying

! no property q assumed

ATPHOL’06-[7] – p.201

c©Benzmüller, 2006

HOL-Problems: Set Comprehension
HO

L

AT
Pλ

ST(Σ)

Mβfb(Σ) . H(Σ)

Mβηb(Σ)Mβξb(Σ)Mβf(Σ)

Mβξ(Σ) Mβη(Σ) Mβb(Σ)

Mβ(Σ)

ξ

η

η

ηξ

f

ξ

f

b

b

b

b

ξη

full

Set comprehension

! big challenge for automation

! [Benzm.BrownKohlhase-Draft-05] set
instantiations can be used to simulate
cut-rule if one of the following axioms
is given: comprehension, induction,
extensionality, choice, description

! dependend on logical constants in Σ

On the following slides emphasis on:

! signature Σ varying

! no property q assumed

External vs. internal logical constants

! if ¬ /∈ Σ:
¬ refers to ’external’ symbol
M |= ¬A means M 1|= A

ATPHOL’06-[7] – p.201

c©Benzmüller, 2006

HOL-Problems: Set Comprehension
HO

L

AT
Pλ

ST(Σ)

Mβfb(Σ) . H(Σ)

Mβηb(Σ)Mβξb(Σ)Mβf(Σ)

Mβξ(Σ) Mβη(Σ) Mβb(Σ)

Mβ(Σ)

ξ

η

η

ηξ

f

ξ

f

b

b

b

b

ξη

full

Set comprehension

! ∃Noo∀Po NP⇔ ¬P

" if ¬ ∈ Σ or {⊥,⊃} ⊆ Σ or
{⊥,⇔} ⊆ Σ

" e.g.: Noo ←− λXo ¬X

e.g.: Noo ←− λXo X ⊃ ⊥

ATPHOL’06-[7] – p.202

c©Benzmüller, 2006

HOL-Problems: Set Comprehension
HO

L

AT
Pλ

ST(Σ)

Mβfb(Σ) . H(Σ)

Mβηb(Σ)Mβξb(Σ)Mβf(Σ)

Mβξ(Σ) Mβη(Σ) Mβb(Σ)

Mβ(Σ)

ξ

η

η

ηξ

f

ξ

f

b

b

b

b

ξη

full

Set comprehension

! ∃Noo∀Po NP⇔ ¬P

" if ¬ /∈ Σ and
{⊥,⊃} 1⊆ Σ or {⊥,⇔} 1⊆ Σ

ATPHOL’06-[7] – p.203

c©Benzmüller, 2006

HOL-Problems: Set Comprehension
HO

L

AT
Pλ

ST(Σ)

Mβfb(Σ) . H(Σ)

Mβηb(Σ)Mβξb(Σ)Mβf(Σ)

Mβξ(Σ) Mβη(Σ) Mβb(Σ)

Mβ(Σ)

ξ

η

η

ηξ

f

ξ

f

b

b

b

b

ξη

full

Set comprehension

! ∃Noo∀Po NP⇔ ¬P

" if ¬ /∈ Σ and
{⊥,⊃} 1⊆ Σ or {⊥,⇔} 1⊆ Σ

Other examples from [Brown-PhD-04]

! Surjective Cantor Theorem

! Injective Cantor Theorem

ATPHOL’06-[7] – p.203

c©Benzmüller, 2006

HO
L

AT
Pλ

HO
L

AT
Pλ

Semantics: Examples of
Σ-Models

ATPHOL’06-[7] – p.204

c©Benzmüller, 2006

Examples of Σ-Models
HO

L

AT
Pλ

We now sketch the construction of models in the model classes
M∗(Σ) to demonstrate concretely how properties for Boolean,
strong and weak functional extensionality can fail.

ATPHOL’06-[7] – p.205

c©Benzmüller, 2006

Examples of Σ-Models
HO

L

AT
Pλ

We now sketch the construction of models in the model classes
M∗(Σ) to demonstrate concretely how properties for Boolean,
strong and weak functional extensionality can fail.

We need this to show that the inclusions of the model classes in our
landscape are proper, and we indeed need all of them.

ATPHOL’06-[7] – p.205

c©Benzmüller, 2006

Ex.: Singleton Model
HO

L

AT
Pλ

! We choose (D,@) as the full frame with Do := {T, F} and
Dι := {∗}.

ATPHOL’06-[7] – p.206

c©Benzmüller, 2006

Ex.: Singleton Model
HO

L

AT
Pλ

! We choose (D,@) as the full frame with Do := {T, F} and
Dι := {∗}.

! Easy to define an evaluation function E for this frame by
induction on terms, using functions to interpret λ-abstractions.

ATPHOL’06-[7] – p.206

c©Benzmüller, 2006

Ex.: Singleton Model
HO

L

AT
Pλ

! We choose (D,@) as the full frame with Do := {T, F} and
Dι := {∗}.

! Easy to define an evaluation function E for this frame by
induction on terms, using functions to interpret λ-abstractions.

! The identity function υ:Do −→ {T, F} is a valuation, assuming
the logical constants are interpreted in the standard way.

ATPHOL’06-[7] – p.206

c©Benzmüller, 2006

Ex.: Singleton Model
HO

L

AT
Pλ

! We choose (D,@) as the full frame with Do := {T, F} and
Dι := {∗}.

! Easy to define an evaluation function E for this frame by
induction on terms, using functions to interpret λ-abstractions.

! The identity function υ:Do −→ {T, F} is a valuation, assuming
the logical constants are interpreted in the standard way.

! Thus, Mβfb := (D,@, E , υ) defines a Σ-model.

ATPHOL’06-[7] – p.206

c©Benzmüller, 2006

Ex.: Singleton Model
HO

L

AT
Pλ

! We choose (D,@) as the full frame with Do := {T, F} and
Dι := {∗}.

! Easy to define an evaluation function E for this frame by
induction on terms, using functions to interpret λ-abstractions.

! The identity function υ:Do −→ {T, F} is a valuation, assuming
the logical constants are interpreted in the standard way.

! Thus, Mβfb := (D,@, E , υ) defines a Σ-model.
! This model satisfies properties b, f (hence η and ξ) and q

(since the frame is full).

ATPHOL’06-[7] – p.206

c©Benzmüller, 2006

Ex.: Singleton Model
HO

L

AT
Pλ

! We choose (D,@) as the full frame with Do := {T, F} and
Dι := {∗}.

! Easy to define an evaluation function E for this frame by
induction on terms, using functions to interpret λ-abstractions.

! The identity function υ:Do −→ {T, F} is a valuation, assuming
the logical constants are interpreted in the standard way.

! Thus, Mβfb := (D,@, E , υ) defines a Σ-model.
! This model satisfies properties b, f (hence η and ξ) and q

(since the frame is full).
! So, Mβfb ∈ ST(Σ) ⊆ H(Σ) ⊆Mβfb(Σ) ⊆

ATPHOL’06-[7] – p.206

c©Benzmüller, 2006

Ex.: Singleton Model
HO

L

AT
Pλ

ST(Σ)

Mβfb(Σ) < H(Σ)

Mβηb(Σ)Mβξb(Σ)Mβf(Σ)

Mβξ(Σ) Mβη(Σ) Mβb(Σ)

Mβ(Σ)

ξ

η

η

ηξ

f

ξ

f

b

b

b

b

ξη

full

ATPHOL’06-[7] – p.207

c©Benzmüller, 2006

Ex.: Model without Boolean Extensionality
HO

L

AT
Pλ

! Assume Σ contains only the connectives ¬,∨,Πα; other
connectives defined as usual, e.g., ∀X,Y X ∧ Y ⇔ ¬(¬X ∨ ¬Y).

ATPHOL’06-[7] – p.208

c©Benzmüller, 2006

Ex.: Model without Boolean Extensionality
HO

L

AT
Pλ

! Assume Σ contains only the connectives ¬,∨,Πα; other
connectives defined as usual, e.g., ∀X,Y X ∧ Y ⇔ ¬(¬X ∨ ¬Y).

! Choose (D,@) as full frame with Do = {a, b, c} and Dι = {0, 1}.

ATPHOL’06-[7] – p.208

c©Benzmüller, 2006

Ex.: Model without Boolean Extensionality
HO

L

AT
Pλ

! Assume Σ contains only the connectives ¬,∨,Πα; other
connectives defined as usual, e.g., ∀X,Y X ∧ Y ⇔ ¬(¬X ∨ ¬Y).

! Choose (D,@) as full frame with Do = {a, b, c} and Dι = {0, 1}.
! We define evaluation function E for this frame by defining E(¬),

E(∨), and E(Πα):

E(¬) a b c

c c a

E(∨) a b c

a a a a

b a a a

c a a c

E(Πα)@f =

{

a, if f@g ∈ {a, b} for all g ∈ Dα

c, if f@g = c for some g ∈ Dα

ATPHOL’06-[7] – p.208

c©Benzmüller, 2006

Ex.: Model without Boolean Extensionality
HO

L

AT
Pλ

! Assume Σ contains only the connectives ¬,∨,Πα; other
connectives defined as usual, e.g., ∀X,Y X ∧ Y ⇔ ¬(¬X ∨ ¬Y).

! Choose (D,@) as full frame with Do = {a, b, c} and Dι = {0, 1}.
! We define evaluation function E for this frame by defining E(¬),

E(∨), and E(Πα):

E(¬) a b c

c c a

E(∨) a b c

a a a a

b a a a

c a a c

E(Πα)@f =

{

a, if f@g ∈ {a, b} for all g ∈ Dα

c, if f@g = c for some g ∈ Dα

! We can choose E(w) to be arbitrary for parameters w ∈ Σ.

ATPHOL’06-[7] – p.208

c©Benzmüller, 2006

Ex.: Model without Boolean Extensionality
HO

L

AT
Pλ

! Since (D,@) is a frame, hence functional, this uniquely
determines E on all formulae.

ATPHOL’06-[7] – p.209

c©Benzmüller, 2006

Ex.: Model without Boolean Extensionality
HO

L

AT
Pλ

! Since (D,@) is a frame, hence functional, this uniquely
determines E on all formulae.

! Since the frame is full, we are guaranteed that there will be
enough functions to interpret λ-abstractions.

ATPHOL’06-[7] – p.209

c©Benzmüller, 2006

Ex.: Model without Boolean Extensionality
HO

L

AT
Pλ

! Since (D,@) is a frame, hence functional, this uniquely
determines E on all formulae.

! Since the frame is full, we are guaranteed that there will be
enough functions to interpret λ-abstractions.

! Let υ:Do −→ {T, F} be defined by υ(a) := T, υ(b) := T and
υ(c) := F.

ATPHOL’06-[7] – p.209

c©Benzmüller, 2006

Ex.: Model without Boolean Extensionality
HO

L

AT
Pλ

! Since (D,@) is a frame, hence functional, this uniquely
determines E on all formulae.

! Since the frame is full, we are guaranteed that there will be
enough functions to interpret λ-abstractions.

! Let υ:Do −→ {T, F} be defined by υ(a) := T, υ(b) := T and
υ(c) := F.

! Easy to check that Mβf := (D,@, E , υ) is indeed a Σ-model.

ATPHOL’06-[7] – p.209

c©Benzmüller, 2006

Ex.: Model without Boolean Extensionality
HO

L

AT
Pλ

! Since (D,@) is a frame, hence functional, this uniquely
determines E on all formulae.

! Since the frame is full, we are guaranteed that there will be
enough functions to interpret λ-abstractions.

! Let υ:Do −→ {T, F} be defined by υ(a) := T, υ(b) := T and
υ(c) := F.

! Easy to check that Mβf := (D,@, E , υ) is indeed a Σ-model.
! Since Mβf is a model over a frame it satisfies property f.

ATPHOL’06-[7] – p.209

c©Benzmüller, 2006

Ex.: Model without Boolean Extensionality
HO

L

AT
Pλ

! Since (D,@) is a frame, hence functional, this uniquely
determines E on all formulae.

! Since the frame is full, we are guaranteed that there will be
enough functions to interpret λ-abstractions.

! Let υ:Do −→ {T, F} be defined by υ(a) := T, υ(b) := T and
υ(c) := F.

! Easy to check that Mβf := (D,@, E , υ) is indeed a Σ-model.
! Since Mβf is a model over a frame it satisfies property f.
! Since this frame is full, we know property q holds.

ATPHOL’06-[7] – p.209

c©Benzmüller, 2006

Ex.: Model without Boolean Extensionality
HO

L

AT
Pλ

! Since (D,@) is a frame, hence functional, this uniquely
determines E on all formulae.

! Since the frame is full, we are guaranteed that there will be
enough functions to interpret λ-abstractions.

! Let υ:Do −→ {T, F} be defined by υ(a) := T, υ(b) := T and
υ(c) := F.

! Easy to check that Mβf := (D,@, E , υ) is indeed a Σ-model.
! Since Mβf is a model over a frame it satisfies property f.
! Since this frame is full, we know property q holds.
! Clearly property b fails.

ATPHOL’06-[7] – p.209

c©Benzmüller, 2006

Ex.: Model without Boolean Extensionality
HO

L

AT
Pλ

! Since (D,@) is a frame, hence functional, this uniquely
determines E on all formulae.

! Since the frame is full, we are guaranteed that there will be
enough functions to interpret λ-abstractions.

! Let υ:Do −→ {T, F} be defined by υ(a) := T, υ(b) := T and
υ(c) := F.

! Easy to check that Mβf := (D,@, E , υ) is indeed a Σ-model.
! Since Mβf is a model over a frame it satisfies property f.
! Since this frame is full, we know property q holds.
! Clearly property b fails.
! So, Mβf ∈Mβf(Σ) \ Mβfb(Σ).

ATPHOL’06-[7] – p.209

c©Benzmüller, 2006

Ex.: Model without Boolean Extensionality
HO

L

AT
Pλ

ST(Σ)

Mβfb(Σ) < H(Σ)

Mβηb(Σ)Mβξb(Σ)Mβf(Σ)

Mβξ(Σ) Mβη(Σ) Mβb(Σ)

Mβ(Σ)

ξ

η

η

ηξ

f

ξ

f

b

b

b

b

ξη

full

ATPHOL’06-[7] – p.210

c©Benzmüller, 2006

Ex.: Model without Boolean Extensionality
HO

L

AT
Pλ

In the previous model one can easily verify, if d := Eϕ(Do) and
e := Eϕ(Eo), then the values Eϕ(D ∧E), Eϕ(D⇒ E), and
Eϕ(D⇔ E) are given by the following tables:

e:

E(D ∧E) a b c

d: a a a c

b a a c

c c c c

e:

E(D⇒ E) a b c

d: a a a c

b a a c

c a a a

e:

E(D⇔ E) a b c

d: a a a c

b a a c

c c c a

Now we show that one can properly model the
woodchuck/groundhog example.

ATPHOL’06-[7] – p.211

c©Benzmüller, 2006

Ex.: Groundhogs and Woodchucks
HO

L

AT
Pλ

! Let Mβf be given as above and suppose woodchuckι→o,
groundhogι→o, johnι, and philι are in the signature Σ.

ATPHOL’06-[7] – p.212

c©Benzmüller, 2006

Ex.: Groundhogs and Woodchucks
HO

L

AT
Pλ

! Let Mβf be given as above and suppose woodchuckι→o,
groundhogι→o, johnι, and philι are in the signature Σ.

! Let E(phil) := 0 and E(john) := 1.

ATPHOL’06-[7] – p.212

c©Benzmüller, 2006

Ex.: Groundhogs and Woodchucks
HO

L

AT
Pλ

! Let Mβf be given as above and suppose woodchuckι→o,
groundhogι→o, johnι, and philι are in the signature Σ.

! Let E(phil) := 0 and E(john) := 1.
! Let E(woodchuck) be the function w ∈ Dι→o with w(0) = b and

w(1) = c.

ATPHOL’06-[7] – p.212

c©Benzmüller, 2006

Ex.: Groundhogs and Woodchucks
HO

L

AT
Pλ

! Let Mβf be given as above and suppose woodchuckι→o,
groundhogι→o, johnι, and philι are in the signature Σ.

! Let E(phil) := 0 and E(john) := 1.
! Let E(woodchuck) be the function w ∈ Dι→o with w(0) = b and

w(1) = c.
! Let E(groundhog) be the function g ∈ Dι→o with g(0) = a and

g(1) = c.

ATPHOL’06-[7] – p.212

c©Benzmüller, 2006

Ex.: Groundhogs and Woodchucks
HO

L

AT
Pλ

! Let Mβf be given as above and suppose woodchuckι→o,
groundhogι→o, johnι, and philι are in the signature Σ.

! Let E(phil) := 0 and E(john) := 1.
! Let E(woodchuck) be the function w ∈ Dι→o with w(0) = b and

w(1) = c.
! Let E(groundhog) be the function g ∈ Dι→o with g(0) = a and

g(1) = c.
! One can show that the sentence
∀Xι (woodchuck X)⇔ (groundhog X) is valid.

ATPHOL’06-[7] – p.212

c©Benzmüller, 2006

Ex.: Groundhogs and Woodchucks
HO

L

AT
Pλ

! Let Mβf be given as above and suppose woodchuckι→o,
groundhogι→o, johnι, and philι are in the signature Σ.

! Let E(phil) := 0 and E(john) := 1.
! Let E(woodchuck) be the function w ∈ Dι→o with w(0) = b and

w(1) = c.
! Let E(groundhog) be the function g ∈ Dι→o with g(0) = a and

g(1) = c.
! One can show that the sentence
∀Xι (woodchuck X)⇔ (groundhog X) is valid.

! Also, E(woodchuck phil) = b and E(groundhog phil) = a, so the
propositions (woodchuck phil) and (groundhog phil) are valid.

ATPHOL’06-[7] – p.212

c©Benzmüller, 2006

Ex.: Groundhogs and Woodchucks
HO

L

AT
Pλ

! Suppose believeι→o→o ∈ Σ and E(believe) is the (Curried)
function bel ∈ Dι→o→o such that bel(1)(b) = b and
bel(1)(a) = bel(1)(c) = bel(0)(a) = bel(0)(b) = bel(0)(c) = c.

ATPHOL’06-[7] – p.213

c©Benzmüller, 2006

Ex.: Groundhogs and Woodchucks
HO

L

AT
Pλ

! Suppose believeι→o→o ∈ Σ and E(believe) is the (Curried)
function bel ∈ Dι→o→o such that bel(1)(b) = b and
bel(1)(a) = bel(1)(c) = bel(0)(a) = bel(0)(b) = bel(0)(c) = c.

! Intuitively, John believes propositions with value b, but not
those with value a or c.

ATPHOL’06-[7] – p.213

c©Benzmüller, 2006

Ex.: Groundhogs and Woodchucks
HO

L

AT
Pλ

! Suppose believeι→o→o ∈ Σ and E(believe) is the (Curried)
function bel ∈ Dι→o→o such that bel(1)(b) = b and
bel(1)(a) = bel(1)(c) = bel(0)(a) = bel(0)(b) = bel(0)(c) = c.

! Intuitively, John believes propositions with value b, but not
those with value a or c.

! So, believes john(woodchuck phil) is valid, while
believes john(groundhog phil) is not.

ATPHOL’06-[7] – p.213

c©Benzmüller, 2006

Generalizing the Previous Model
HO

L

AT
Pλ

As we have seen, Boolean extensionality fails when one has more
than two values in Do.

ATPHOL’06-[7] – p.214

c©Benzmüller, 2006

Generalizing the Previous Model
HO

L

AT
Pλ

As we have seen, Boolean extensionality fails when one has more
than two values in Do. We can generalize the construction defining
Do := {F} ∪ B, where B is any set with T ∈ B and F /∈ B.

ATPHOL’06-[7] – p.214

c©Benzmüller, 2006

Generalizing the Previous Model
HO

L

AT
Pλ

As we have seen, Boolean extensionality fails when one has more
than two values in Do. We can generalize the construction defining
Do := {F} ∪ B, where B is any set with T ∈ B and F /∈ B. The
model will satisfy Boolean extensionality iff B = {T}.

ATPHOL’06-[7] – p.214

c©Benzmüller, 2006

Generalizing the Previous Model
HO

L

AT
Pλ

As we have seen, Boolean extensionality fails when one has more
than two values in Do. We can generalize the construction defining
Do := {F} ∪ B, where B is any set with T ∈ B and F /∈ B. The
model will satisfy Boolean extensionality iff B = {T}. In this way,
we can easily construct models for the case with property b and the
case without property b simultaneously.

ATPHOL’06-[7] – p.214

c©Benzmüller, 2006

Generalizing the Previous Model
HO

L

AT
Pλ

As we have seen, Boolean extensionality fails when one has more
than two values in Do. We can generalize the construction defining
Do := {F} ∪ B, where B is any set with T ∈ B and F /∈ B. The
model will satisfy Boolean extensionality iff B = {T}. In this way,
we can easily construct models for the case with property b and the
case without property b simultaneously. We will use this idea to
parameterize the remaining model constructions by B.

ATPHOL’06-[7] – p.214

c©Benzmüller, 2006

Generalizing the Previous Model
HO

L

AT
Pλ

As we have seen, Boolean extensionality fails when one has more
than two values in Do. We can generalize the construction defining
Do := {F} ∪ B, where B is any set with T ∈ B and F /∈ B. The
model will satisfy Boolean extensionality iff B = {T}. In this way,
we can easily construct models for the case with property b and the
case without property b simultaneously. We will use this idea to
parameterize the remaining model constructions by B.

These semantic constructions are similar to those in multi-valued
logics.

ATPHOL’06-[7] – p.214

c©Benzmüller, 2006

Generalizing the Previous Model
HO

L

AT
Pλ

As we have seen, Boolean extensionality fails when one has more
than two values in Do. We can generalize the construction defining
Do := {F} ∪ B, where B is any set with T ∈ B and F /∈ B. The
model will satisfy Boolean extensionality iff B = {T}. In this way,
we can easily construct models for the case with property b and the
case without property b simultaneously. We will use this idea to
parameterize the remaining model constructions by B.

These semantic constructions are similar to those in multi-valued
logics. In contrast to these logics where the logical connectives
are adapted to talk about multiple truth values, in our setting we are
mainly interested in multiple truth values as diverse υ-pre-images of
T and F.

ATPHOL’06-[7] – p.214

c©Benzmüller, 2006

HO
L

AT
Pλ

HO
L

AT
Pλ

Semantics: Examples of
Σ-Models (Contd.)

ATPHOL’06-[8] – p.215

c©Benzmüller, 2006

Ex.: Models without Funct. Extensionality
HO

L

AT
Pλ

! Idea: attach distinguishing labels to functions without changing
their applicative behavior

ATPHOL’06-[8] – p.216

c©Benzmüller, 2006

Ex.: Models without Funct. Extensionality
HO

L

AT
Pλ

! Idea: attach distinguishing labels to functions without changing
their applicative behavior

! Let B be any set with T ∈ B and F /∈ B

ATPHOL’06-[8] – p.216

c©Benzmüller, 2006

Ex.: Models without Funct. Extensionality
HO

L

AT
Pλ

! Idea: attach distinguishing labels to functions without changing
their applicative behavior

! Let B be any set with T ∈ B and F /∈ B

! Let Do := {F} ∪ B and Dι := {∗}

ATPHOL’06-[8] – p.216

c©Benzmüller, 2006

Ex.: Models without Funct. Extensionality
HO

L

AT
Pλ

! Idea: attach distinguishing labels to functions without changing
their applicative behavior

! Let B be any set with T ∈ B and F /∈ B

! Let Do := {F} ∪ B and Dι := {∗}

! For each function type βα, let

Dβα := {(i, f) | i ∈ {0, 1} and f:Dα −→ Dβ}

ATPHOL’06-[8] – p.216

c©Benzmüller, 2006

Ex.: Models without Funct. Extensionality
HO

L

AT
Pλ

! Idea: attach distinguishing labels to functions without changing
their applicative behavior

! Let B be any set with T ∈ B and F /∈ B

! Let Do := {F} ∪ B and Dι := {∗}

! For each function type βα, let

Dβα := {(i, f) | i ∈ {0, 1} and f:Dα −→ Dβ}

! We define application by

(i, f)@a := f(a)

whenever (i, f) ∈ Dβα and a ∈ Dα

ATPHOL’06-[8] – p.216

c©Benzmüller, 2006

Ex.: Models without η and f
HO

L

AT
Pλ

! Easy to check that (D,@) is an applicative structure:

ATPHOL’06-[8] – p.217

c©Benzmüller, 2006

Ex.: Models without η and f
HO

L

AT
Pλ

! Easy to check that (D,@) is an applicative structure:
! Evaluation function defined by induction on terms

ATPHOL’06-[8] – p.217

c©Benzmüller, 2006

Ex.: Models without η and f
HO

L

AT
Pλ

! Easy to check that (D,@) is an applicative structure:
! Evaluation function defined by induction on terms

" E(¬) := (0, n) where n(b) := F for every b ∈ B and n(F) := T

ATPHOL’06-[8] – p.217

c©Benzmüller, 2006

Ex.: Models without η and f
HO

L

AT
Pλ

! Easy to check that (D,@) is an applicative structure:
! Evaluation function defined by induction on terms

" E(¬) := (0, n) where n(b) := F for every b ∈ B and n(F) := T

" E(∨) := (0, d) where
d(b) := (0, kT) for every b ∈ B and
d(F) := (0, id)

(kT is the constant T function)
(id is the identity function from Do to Do)

ATPHOL’06-[8] – p.217

c©Benzmüller, 2006

Ex.: Models without η and f
HO

L

AT
Pλ

! Easy to check that (D,@) is an applicative structure:
! Evaluation function defined by induction on terms

" E(¬) := (0, n) where n(b) := F for every b ∈ B and n(F) := T

" E(∨) := (0, d) where
d(b) := (0, kT) for every b ∈ B and
d(F) := (0, id)

(kT is the constant T function)
(id is the identity function from Do to Do)

" E(Πα) := (0,πα) where for each (i, f) ∈ Doα, πα((i, f)) := T if
f(a) ∈ B for all a ∈ Dα and πα(i, f) := F otherwise

ATPHOL’06-[8] – p.217

c©Benzmüller, 2006

Ex.: Models without η and f
HO

L

AT
Pλ

! Easy to check that (D,@) is an applicative structure:
! Evaluation function defined by induction on terms

" E(¬) := (0, n) where n(b) := F for every b ∈ B and n(F) := T

" E(∨) := (0, d) where
d(b) := (0, kT) for every b ∈ B and
d(F) := (0, id)

(kT is the constant T function)
(id is the identity function from Do to Do)

" E(Πα) := (0,πα) where for each (i, f) ∈ Doα, πα((i, f)) := T if
f(a) ∈ B for all a ∈ Dα and πα(i, f) := F otherwise

" qα := (0, qα) ∈ Doαα where qα(a) := (0, sa) and sa(b) := T if
a = b and sa(b) := F otherwise

ATPHOL’06-[8] – p.217

c©Benzmüller, 2006

Ex.: Models without η and f
HO

L

AT
Pλ

! Easy to check that (D,@) is an applicative structure:
! Evaluation function defined by induction on terms

" E(¬) := (0, n) where n(b) := F for every b ∈ B and n(F) := T

" E(∨) := (0, d) where
d(b) := (0, kT) for every b ∈ B and
d(F) := (0, id)

(kT is the constant T function)
(id is the identity function from Do to Do)

" E(Πα) := (0,πα) where for each (i, f) ∈ Doα, πα((i, f)) := T if
f(a) ∈ B for all a ∈ Dα and πα(i, f) := F otherwise

" qα := (0, qα) ∈ Doαα where qα(a) := (0, sa) and sa(b) := T if
a = b and sa(b) := F otherwise

" E(w) ∈ Dα arbitrary for parameters w ∈ Σα.

ATPHOL’06-[8] – p.217

c©Benzmüller, 2006

Ex.: Models without η and f
HO

L

AT
Pλ

ATPHOL’06-[8] – p.218

c©Benzmüller, 2006

Ex.: Models without η and f
HO

L

AT
Pλ

" For variables, we define Eϕ(X) := ϕ(X)

ATPHOL’06-[8] – p.218

c©Benzmüller, 2006

Ex.: Models without η and f
HO

L

AT
Pλ

" For variables, we define Eϕ(X) := ϕ(X)

" For application, we define Eϕ(FA) := Eϕ(F)@Eϕ(A)

ATPHOL’06-[8] – p.218

c©Benzmüller, 2006

Ex.: Models without η and f
HO

L

AT
Pλ

" For variables, we define Eϕ(X) := ϕ(X)

" For application, we define Eϕ(FA) := Eϕ(F)@Eϕ(A)

" For λ-abstractions, we define Eϕ(λXα Bβ) := (0, f) where
f:Dα −→ Dβ is the function such that f(a) = Eϕ,[a/X](B) for
all a ∈ Dα

ATPHOL’06-[8] – p.218

c©Benzmüller, 2006

Ex.: Models without η and f
HO

L

AT
Pλ

" For variables, we define Eϕ(X) := ϕ(X)

" For application, we define Eϕ(FA) := Eϕ(F)@Eϕ(A)

" For λ-abstractions, we define Eϕ(λXα Bβ) := (0, f) where
f:Dα −→ Dβ is the function such that f(a) = Eϕ,[a/X](B) for
all a ∈ Dα

! With some work (which we omit), one can show that this E is
an evaluation function

ATPHOL’06-[8] – p.218

c©Benzmüller, 2006

Ex.: Models without η and f
HO

L

AT
Pλ

" For variables, we define Eϕ(X) := ϕ(X)

" For application, we define Eϕ(FA) := Eϕ(F)@Eϕ(A)

" For λ-abstractions, we define Eϕ(λXα Bβ) := (0, f) where
f:Dα −→ Dβ is the function such that f(a) = Eϕ,[a/X](B) for
all a ∈ Dα

! With some work (which we omit), one can show that this E is
an evaluation function

! Taking υ to be the function such that υ(b) := T for every b ∈ B
and υ(F) := F, one can easily show that this is a valuation

ATPHOL’06-[8] – p.218

c©Benzmüller, 2006

Ex.: Models without η and f
HO

L

AT
Pλ

" For variables, we define Eϕ(X) := ϕ(X)

" For application, we define Eϕ(FA) := Eϕ(F)@Eϕ(A)

" For λ-abstractions, we define Eϕ(λXα Bβ) := (0, f) where
f:Dα −→ Dβ is the function such that f(a) = Eϕ,[a/X](B) for
all a ∈ Dα

! With some work (which we omit), one can show that this E is
an evaluation function

! Taking υ to be the function such that υ(b) := T for every b ∈ B
and υ(F) := F, one can easily show that this is a valuation

! Hence, MB := (D,@, E , υ) is a Σ-model

ATPHOL’06-[8] – p.218

c©Benzmüller, 2006

Ex.: Models without η and f
HO

L

AT
Pλ

! The objects qα := (0, qα) witness property q for MB

ATPHOL’06-[8] – p.219

c©Benzmüller, 2006

Ex.: Models without η and f
HO

L

AT
Pλ

! The objects qα := (0, qα) witness property q for MB

! The objects (1, qα) also witness property q (so, in the
non-functional case such witnesses are not unique)

ATPHOL’06-[8] – p.219

c©Benzmüller, 2006

Ex.: Models without η and f
HO

L

AT
Pλ

! The objects qα := (0, qα) witness property q for MB

! The objects (1, qα) also witness property q (so, in the
non-functional case such witnesses are not unique)

! Hence, MB := (D,@, E , υ) is a Σ-model with property q

ATPHOL’06-[8] – p.219

c©Benzmüller, 2006

Ex.: Models without η and f
HO

L

AT
Pλ

! Property f fails for MB, since the applicative structure (D,@) is
not functional:

ATPHOL’06-[8] – p.220

c©Benzmüller, 2006

Ex.: Models without η and f
HO

L

AT
Pλ

! Property f fails for MB, since the applicative structure (D,@) is
not functional:

" Consider u:Dι −→ Dι.

ATPHOL’06-[8] – p.220

c©Benzmüller, 2006

Ex.: Models without η and f
HO

L

AT
Pλ

! Property f fails for MB, since the applicative structure (D,@) is
not functional:

" Consider u:Dι −→ Dι.
" For both (0, u), (1, u) ∈ Dιι we have

(i, u)@∗ = ∗

although (0, u) #= (1, u)

ATPHOL’06-[8] – p.220

c©Benzmüller, 2006

Ex.: Models without η and f
HO

L

AT
Pλ

! Does η hold?

ATPHOL’06-[8] – p.221

c©Benzmüller, 2006

Ex.: Models without η and f
HO

L

AT
Pλ

! Does η hold?
! No!

ATPHOL’06-[8] – p.221

c©Benzmüller, 2006

Ex.: Models without η and f
HO

L

AT
Pλ

! Does η hold?
! No!
! Compute, for example, E(λFβα F) and E(λFβα λXα FX)

ATPHOL’06-[8] – p.221

c©Benzmüller, 2006

Ex.: Models without η and f
HO

L

AT
Pλ

! Does η hold?
! No!
! Compute, for example, E(λFβα F) and E(λFβα λXα FX)

" E(λFβα F) = (0, id) where id is the identity function from Dβα

to Dβα

ATPHOL’06-[8] – p.221

c©Benzmüller, 2006

Ex.: Models without η and f
HO

L

AT
Pλ

! Does η hold?
! No!
! Compute, for example, E(λFβα F) and E(λFβα λXα FX)

" E(λFβα F) = (0, id) where id is the identity function from Dβα

to Dβα

" E(λFβα λXα FX) = (0, p) where p is the function from Dβα to
Dβα such that p((i, f)) = (0, f) for each f:Dα −→ Dβ

ATPHOL’06-[8] – p.221

c©Benzmüller, 2006

Ex.: Models without η and f
HO

L

AT
Pλ

! Does η hold?
! No!
! Compute, for example, E(λFβα F) and E(λFβα λXα FX)

" E(λFβα F) = (0, id) where id is the identity function from Dβα

to Dβα

" E(λFβα λXα FX) = (0, p) where p is the function from Dβα to
Dβα such that p((i, f)) = (0, f) for each f:Dα −→ Dβ

! Hence E(λFβα F) #= E(λFβα λXα FX)

ATPHOL’06-[8] – p.221

c©Benzmüller, 2006

Ex.: Models without η and f
HO

L

AT
Pλ

! Does ξ hold?

ATPHOL’06-[8] – p.222

c©Benzmüller, 2006

Ex.: Models without η and f
HO

L

AT
Pλ

! Does ξ hold?
! Yes!

ATPHOL’06-[8] – p.222

c©Benzmüller, 2006

Ex.: Models without η and f
HO

L

AT
Pλ

! Does ξ hold?
! Yes!
! If

Eϕ,[a/X](M) = Eϕ,[a/X](N)

for every a ∈ Dα, then

Eϕ(λXα M) = (0, f) = Eϕ(λX N)

where f(a) = Eϕ,[a/X](M) = Eϕ,[a/X](N) for every a ∈ Dα.

ATPHOL’06-[8] – p.222

c©Benzmüller, 2006

Ex.: Models without η and f
HO

L

AT
Pλ

! If B = {T}, then the model Mβξb := M{T} satisfies property b.

ATPHOL’06-[8] – p.223

c©Benzmüller, 2006

Ex.: Models without η and f
HO

L

AT
Pλ

! If B = {T}, then the model Mβξb := M{T} satisfies property b.
! So, we know Mβξb ∈Mβξb(Σ) \ Mβfb(Σ).

ATPHOL’06-[8] – p.223

c©Benzmüller, 2006

Ex.: Models without η and f
HO

L

AT
Pλ

! If B = {T}, then the model Mβξb := M{T} satisfies property b.
! So, we know Mβξb ∈Mβξb(Σ) \ Mβfb(Σ).
! On the other hand, if b is any value with b /∈ {T, F}, and

B = {T, b}, then the model Mβξ := M{T,b} does not satisfy
property b.

ATPHOL’06-[8] – p.223

c©Benzmüller, 2006

Ex.: Models without η and f
HO

L

AT
Pλ

! If B = {T}, then the model Mβξb := M{T} satisfies property b.
! So, we know Mβξb ∈Mβξb(Σ) \ Mβfb(Σ).
! On the other hand, if b is any value with b /∈ {T, F}, and

B = {T, b}, then the model Mβξ := M{T,b} does not satisfy
property b.

! In this case, we know Mβξ ∈Mβξ(Σ) \ (Mβf(Σ) ∪Mβξb(Σ)).

ATPHOL’06-[8] – p.223

c©Benzmüller, 2006

Ex.: Models without η and f
HO

L

AT
Pλ

ST(Σ)

Mβfb(Σ) < H(Σ)

Mβηb(Σ)Mβξb(Σ)Mβf(Σ)

Mβξ(Σ) Mβη(Σ) Mβb(Σ)

Mβ(Σ)

ξ

η

η

ηξ

f

ξ

f

b

b

b

b

ξη

full

ATPHOL’06-[8] – p.224

c©Benzmüller, 2006

Ex.: Models without η and f
HO

L

AT
Pλ

ST(Σ)

Mβfb(Σ) < H(Σ)

Mβηb(Σ)Mβξb(Σ)Mβf(Σ)

Mβξ(Σ) Mβη(Σ) Mβb(Σ)

Mβ(Σ)

ξ

η

η

ηξ

f

ξ

f

b

b

b

b

ξη

full

ATPHOL’06-[8] – p.225

c©Benzmüller, 2006

Ex.: Models without η and f
HO

L

AT
Pλ

! Let MB be the Σ-model (D,@, E , υ) as constructed before

ATPHOL’06-[8] – p.226

c©Benzmüller, 2006

Ex.: Models without η and f
HO

L

AT
Pλ

! Let MB be the Σ-model (D,@, E , υ) as constructed before
! Define an alternative evaluation function E ′ by induction:

ATPHOL’06-[8] – p.226

c©Benzmüller, 2006

Ex.: Models without η and f
HO

L

AT
Pλ

! Let MB be the Σ-model (D,@, E , υ) as constructed before
! Define an alternative evaluation function E ′ by induction:

" For all w ∈ Σ, let E ′(w) := E(w)

ATPHOL’06-[8] – p.226

c©Benzmüller, 2006

Ex.: Models without η and f
HO

L

AT
Pλ

! Let MB be the Σ-model (D,@, E , υ) as constructed before
! Define an alternative evaluation function E ′ by induction:

" For all w ∈ Σ, let E ′(w) := E(w)

" For variables we define E ′ϕ(X) := ϕ(X)

ATPHOL’06-[8] – p.226

c©Benzmüller, 2006

Ex.: Models without η and f
HO

L

AT
Pλ

! Let MB be the Σ-model (D,@, E , υ) as constructed before
! Define an alternative evaluation function E ′ by induction:

" For all w ∈ Σ, let E ′(w) := E(w)

" For variables we define E ′ϕ(X) := ϕ(X)

" We must define E ′ϕ(FA) := E ′ϕ(F)@E ′ϕ(A)

ATPHOL’06-[8] – p.226

c©Benzmüller, 2006

Ex.: Models without η and f
HO

L

AT
Pλ

! Let MB be the Σ-model (D,@, E , υ) as constructed before
! Define an alternative evaluation function E ′ by induction:

" For all w ∈ Σ, let E ′(w) := E(w)

" For variables we define E ′ϕ(X) := ϕ(X)

" We must define E ′ϕ(FA) := E ′ϕ(F)@E ′ϕ(A)

" We choose E ′ϕ(λXα Bβ) := (1, f) where f:Dα −→ Dβ is the
function such that f(a) = Eϕ,[a/X](B) for all a ∈ Dα

ATPHOL’06-[8] – p.226

c©Benzmüller, 2006

Ex.: Models without η and f
HO

L

AT
Pλ

! Let MB be the Σ-model (D,@, E , υ) as constructed before
! Define an alternative evaluation function E ′ by induction:

" For all w ∈ Σ, let E ′(w) := E(w)

" For variables we define E ′ϕ(X) := ϕ(X)

" We must define E ′ϕ(FA) := E ′ϕ(F)@E ′ϕ(A)

" We choose E ′ϕ(λXα Bβ) := (1, f) where f:Dα −→ Dβ is the
function such that f(a) = Eϕ,[a/X](B) for all a ∈ Dα

! E and E ′ agree on all constants, they are different though:

E(λXι X) = (0, id) #= (1, id) = E ′(λXι X)

where id : Dι −→ Dι is the identity function

ATPHOL’06-[8] – p.226

c©Benzmüller, 2006

Ex.: Models without η and f
HO

L

AT
Pλ

! Let MB be the Σ-model (D,@, E , υ) as constructed before
! Define an alternative evaluation function E ′ by induction:

" For all w ∈ Σ, let E ′(w) := E(w)

" For variables we define E ′ϕ(X) := ϕ(X)

" We must define E ′ϕ(FA) := E ′ϕ(F)@E ′ϕ(A)

" We choose E ′ϕ(λXα Bβ) := (1, f) where f:Dα −→ Dβ is the
function such that f(a) = Eϕ,[a/X](B) for all a ∈ Dα

! E and E ′ agree on all constants, they are different though:

E(λXι X) = (0, id) #= (1, id) = E ′(λXι X)

where id : Dι −→ Dι is the identity function
! Thus, in non-functional models evaluation functions are not

uniquely determined by their values on constants
ATPHOL’06-[8] – p.226

c©Benzmüller, 2006

Ex.: Models without ξ
HO

L

AT
Pλ

ST(Σ)

Mβfb(Σ) < H(Σ)

Mβηb(Σ)Mβξb(Σ)Mβf(Σ)

Mβξ(Σ) Mβη(Σ) Mβb(Σ)

Mβ(Σ)

ξ

η

η

ηξ

f

ξ

f

b

b

b

b

ξη

full

ATPHOL’06-[8] – p.227

c©Benzmüller, 2006

Ex.: Models without ξ
HO

L

AT
Pλ

ST(Σ)

Mβfb(Σ) < H(Σ)

Mβηb(Σ)Mβξb(Σ)Mβf(Σ)

Mβξ(Σ) Mβη(Σ) Mβb(Σ)

Mβ(Σ)

ξ

η

η

ηξ

f

ξ

f

b

b

b

b

ξη

full

Not here!

See [JSL-04]

ATPHOL’06-[8] – p.227

c©Benzmüller, 2006

Ex.: Models without ξ
HO

L

AT
Pλ

ST(Σ)

Mβfb(Σ) < H(Σ)

Mβηb(Σ)Mβξb(Σ)Mβf(Σ)

Mβξ(Σ) Mβη(Σ) Mβb(Σ)

Mβ(Σ)

ξ

η

η

ηξ

f

ξ

f

b

b

b

b

ξη

full

ATPHOL’06-[8] – p.228

c©Benzmüller, 2006

Ex.: Models without ξ
HO

L

AT
Pλ

ST(Σ)

Mβfb(Σ) < H(Σ)

Mβηb(Σ)Mβξb(Σ)Mβf(Σ)

Mβξ(Σ) Mβη(Σ) Mβb(Σ)

Mβ(Σ)

ξ

η

η

ηξ

f

ξ

f

b

b

b

b

ξη

full

Not here!

See [JSL-04]

ATPHOL’06-[8] – p.228

	
	Outline for Today
	Notion of Higher-Order Logic
	Notion of Higher-Order Logic
	Focus of the Lecture
	Focus of the Lecture
	Relevance and Applications
	
	Who am I?
	Who am I?
	Who am I?
	Who am I?
	Who are You?
	
	Before we start ldots
	Miscellaneous
	Lectures
	Exercises and Tutorials
	Examination
	
	
	History
	History (Cont'd)
	History (Cont'd)
	History (Cont'd)
	History (Cont'd)
	History (Cont'd)
	History (Cont'd)
	History (Cont'd)
	History (Cont'd)
	History (Cont'd)
	History HOL
	History HOL (Cont'd)
	History HOL (Cont'd)
	History (Cont'd)
	
	$lambda $-Calculus: Motivation
	$lambda $-Calculus: Motivation
	$lambda $-Calculus: $lambda $-terms
	$lambda $-Calculus: Set of $lambda $-expressions
	$lambda $-Calculus: Conventions
	$lambda $-Calculus: $ eta $-reduction
	$lambda $-Calculus: $ eta $-reduction
	$lambda $-Calculus: Currying
	$lambda $-Calculus: $alpha $-conversion
	$lambda $-Calculus: $eta $-reduction
	$lambda $-Calculus: $ eta eta $-equivalence
	$lambda $-Calculus: Normalforms
	$lambda $-Calculus: Normalforms
	$lambda $-Calculus: Iteration
	$lambda $-Calculus: Church Numerals
	$lambda $-Calculus: Church Numerals
	$lambda $-Calculus: Church Numerals
	$lambda $-Calculus: Sets
	$lambda $-Calculus: Sets
	$lambda $-Calculus: Sets
	$lambda $-Calculus: Sets
	$lambda $-Calculus: Russell's Paradox
	$lambda $-Calculus: Russell's Paradox
	$lambda $-Calculus: Nontermination
	Typed $lambda $-Calculus
	Typed $lambda $-Calculus: Typed Terms
	Typed $lambda $-Calculus: Typed Terms
	Typed $lambda $-Calculus: Typed Terms
	Typed $lambda $-Calculus: Assigning Types
	Typed $lambda $-Calculus: Assigning Types
	Typed $lambda $-Calculus: Assigning Types
	Typed $lambda $-Calculus: $ eta eta $
	
	Typed $lambda $-Calculus: Logical Constants
	HOL: Abbreviations
	HOL: Expressing Properties
	HOL: Expressing Properties
	HOL: Prefix Polymorphism
	HOL: Cantor's Theorem
	HOL: Standard Higher-Order Model
	HOL: Henkin-Style Model
	
	Def.: Types
	Ex.: Freely Generated
	Ex.: Freely Generated
	Ex.: Types
	Def.: Functions
	Ex.: Sets of Functions
	Ex.: Sets of Labelled Functions
	Def.: Frames
	Ex.: Frames
	Ex.: Frames (Contd.)
	Def.: Typed Applicative Structure
	Rem.: Currying
	Interesting Properties
	Def.: Functional Applicative Structures
	Def.: Full Applicative Structures
	Def.: Standard Applicative Structures
	Rem.: Frames and Applicative Structures
	Example: Full Functional Appl. Structure
	Def.: Homomorphic Appl. Structures
	Def.: Isomorphic Appl. Structures
	
	Def.: Untyped $lambda $-Calculus
	Simply Typed $lambda $-Calculus
	Notational Conventions
	Def.: Positions in $lambda $-Terms
	Def.: Position (Contd.)
	Def.: Replacement at Position
	Def.: Scope of $lambda $-Term
	Def.: Free and Bound Variables
	
	Def.: Substitution
	Ex.: Substitution
	Def.: $alpha $-Conversion
	Def.: $ eta $-Conversion
	Def.: $ eta $-Normal Form
	Thm.: Church-Rosser Property for $	woheadrightarrow _ eta $
	Ex.: Church-Rosser Property for $	woheadrightarrow _ eta $
	Termination
	Def.: $eta $-Conversion
	Def.: $eta $-Normal Form
	Thm.: Church-Rosser Property for $	woheadrightarrow _eta $
	Def.: $ eta eta $-Conversion
	Def.: $ eta eta $-Normal Form
	Thm.: Church-Rosser Property for $	woheadrightarrow _{ eta eta }$
	Thm.: Strong Church-Rosser Property
	Def.: Long $ eta eta $-Normal Form
	Ex.: Long $ eta eta $-Normal Form
	Thm.: Long $ eta eta $-Normal Form
	Rem.: $ eta eta $-Head Normal Form
	Notation
	
	Ex.: An Interesting Applicative Structure
	Ex.: Interpretation of Terms
	Ex.: Interesting Applicative Structures
	Ex.: Interesting Applicative Structures
	Ex.: Interesting Applicative Structures
	Ex.: Interesting Applicative Structures
	Def.: Variable Assignment
	Some Assumptions
	$Signat $-Evaluations
	$Signat $-Evaluations
	Def.: Evaluation Function
	Def.: $Signat $-Evaluation
	Def.: Functional/Full/Standard $Signat $-Eval.
	What is the Idea?
	Lemma: $Signat $-Evaluations respect $ eta $-Equality
	Thm.: {Substitution-Value Lemma}
	Prf.: {Substitution-Value Lemma}
	Weaker Notions of Functionality
	Def.: $eta $-Functional
	Def.: $xi $-Functional
	Lemma: Functionality and $eta $
	Lemma: Functionality and $eta $+$xi $
	Logical Constants in Signature
	Once More: Cantor's Theorem
	Once More: Cantor's Theorem
	Once More: Cantor's Theorem
	Once More: Cantor's Theorem
	
	Def.: Properties of Logical Constants
	Def.: $Signat $-Valuation
	Def.: $Signat $-Model
	Some Conventions: Equality
	Def.: Properties $f, b, eta , xi $
	Lemma: Surjective v
	Thm.: Property $propb $
	
	Def. (Reminder):
$Signat $-Model
	Def. (Reminder):
Properties $f, b, eta , xi $
	Def. (Reminder):
Different Model Classes
	Def.: Satisfies, models, and $models $
	Semantics: HOL-CUBE
	Semantics: HOL-CUBE
	Standard Models and Henkin Models
	Standard Models and Henkin Models
	Standard Models and Henkin Models
	Standard Models and Henkin Models
	Models without Functional Extensionality
	Models without Functional Extensionality
	Semantics: HOL-CUBE
	Models without $eta $- or $xi $-Functionality
	Semantics: HOL-CUBE
	Semantics: HOL-CUBE
	Models without Boolean Extensionality
	Models without Boolean Extensionality
	Semantics: HOL-CUBE
	
	Test Problems for Theorem Provers
	Test Problems for Theorem Provers
	Remark: Signature
	HOL-Problems: $ eta $
	HOL-Problems: $propb $
	HOL-Problems: $propf $
	HOL-Problems: $propeta $
	HOL-Problems: $propxi $
	HOL-Problems: $propf $
	HOL-Problems: $propb $
	HOL-Problems: Other Examples
	HOL-Problems: DeMorgan's Law
	HOL-Problems: DeMorgan's Law
	HOL-Problems: DeMorgan's Law
	HOL-Problems: Set Comprehension
	HOL-Problems: Set Comprehension
	HOL-Problems: Set Comprehension
	
	Examples of $Signat $-Models
	Ex.: Singleton Model
	Ex.: Singleton Model
	Ex.: Model without Boolean Extensionality
	Ex.: Model without Boolean Extensionality
	Ex.: Model without Boolean Extensionality
	Ex.: Model without Boolean Extensionality
	Ex.: Groundhogs and Woodchucks
	Ex.: Groundhogs and Woodchucks
	Generalizing the Previous Model
	
	Ex.: Models without Funct. Extensionality
	Ex.: Models without $propeta $ and $propf $
	Ex.: Models without $propeta $ and $propf $
	Ex.: Models without $propeta $ and $propf $
	Ex.: Models without $propeta $ and $propf $
	Ex.: Models without $propeta $ and $propf $
	Ex.: Models without $propeta $ and $propf $
	Ex.: Models without $propeta $ and $propf $
	Ex.: Models without $propeta $ and $propf $
	Ex.: Models without $propeta $ and $propf $
	Ex.: Models without $propeta $ and $propf $
	Ex.: Models without $propxi $
	Ex.: Models without $propxi $
	
	Short Reminder
	Reading
	Natural Deduction: Motivation
	Sequent Calculus: Motivation
	Sequent Calculus: Introduction
	Natural Deduction
	Natural Deduction Rules Ia
	Natural Deduction Rules IIa
	Natural Deduction Rules IIIa
	Natural Deduction
	Natural Deduction Proofs
	Natural Deduction with Contexts
	Natural Deduction with Contexts
	Natural Deduction with Contexts
	Natural Deduction with Contexts
	Natural Deduction Rules Ib
	Natural Deduction Rules IIb
	Natural Deduction Rules IIIb
	Intercalation
	Intercalating Natural Deductions
	ND Intercalation Rules I
	ND Intercalation Rules II
	ND Intercalation Rules III
	Intercalation and ND
	Example Proofs
	Soundness and Completeness
	From ND to Sequent Calculus
	Sequent Calculus Rules I
	Sequent Calculus Rules II
	Example Proof
	Sequent Calculus: Cut-rule
	Sequent Calculus
	Gentzen's Hauptsatz
	Applications of Cut-Elimination
	What have we done?
	Applications of Cut-Elimination
	Summary
	
	ND Calculi for HOL
	ND Calculi for HOL
	ND Calculi for HOL
	ND Calculi for HOL
	ND Calculi for HOL
	ND Calculi for HOL
	ND Calculi for HOL
	ND Calculi for HOL
	ND Calculi for HOL
	
	Completeness (of $allNdcalc $)
	
	Abstract Consistency: History
	Abstract Consistency: Idea
	Abstract Consistency: Idea
	Def.: Closed under Subsets / Compact
	Ex.: Closed under Subsets / Compact
	Lemma: Closed under Subsets / Compact
	Def.: Sufficiently $Signat $-Pure
	Abstract Consistency: Conventions
	Def.: Abstract Consistency Properties
	Def.: Abstract Consistency Properties
	Def.: Abstract Consistency Classes
	Abstract Consistency Classes
	Ex.: Abstract Consistency Class
	Rem.: Possible Generalization
	Def.: Saturated
	Ex.: Saturated
	Thm.: Model Existence Theorem
	Thm.: Model Existence for Henkin Models
	
	Def.: {	ermcolor $allNdcalc $}-Consistent/Inconsistent
	Lemma: Saturated $ACCstar $
	Lemma: Saturated $ACCstar $
	Lemma: Saturated $ACCstar $
	Lemma: Saturated $ACCstar $
	Thm.: Henkin's Theorem for $allNdcalc $
	Thm.: Completeness Theorem for $allNdcalc $
	Compactness
	
	Preliminaries and Notation
	Preliminaries and Notation
	Def.: General Bindings
	Def.: Literals
	Def.: Unification Constraints
	Def.: Clauses
	Def.: Clauses (contd.)
	Rem.: Skolemisation
	
	Andrews' Higher-Order Resolution $RES $
	Andrews' Higher-Order Resolution $RES $
	Andrews' Higher-Order Resolution $RES $
	Andrews' Higher-Order Resolution $RES $
	Andrews' Higher-Order Resolution $RES $
	Andrews' Higher-Order Resolution $RES $
	Andrews' Higher-Order Resolution $RES $
	Andrews' Higher-Order Resolution $RES $
	Andrews' Higher-Order Resolution $RES $
	Andrews' Higher-Order Resolution $RES $
	Example Proofs
	Example Proofs
	Example Proofs
	
	Huet's Constrained Resolution $CRES $
	Huet's Constrained Resolution $CRES $
	Huet's Constrained Resolution $CRES $
	Huet's Constrained Resolution $CRES $
	Huet's Constrained Resolution $CRES $
	Huet's Constrained Resolution $CRES $
	Huet's Constrained Resolution $CRES $
	Huet's Constrained Resolution $CRES $
	Huet's Constrained Resolution $CRES $
	Huet's Constrained Resolution $CRES $
	Huet's Constrained Resolution $CRES $
	Huet's Constrained Resolution $CRES $
	Huet's Constrained Resolution $CRES $
	Huet's Constrained Resolution $CRES $
	Huet's Constrained Resolution $CRES $
	Huet's Constrained Resolution $CRES $
	Huet's Constrained Resolution $CRES $
	Example Proofs
	Example Proofs
	Example Proofs
	
	Extensional HO Resolution $ERES $
	Extensional HO Resolution $ERES $
	Extensional HO Resolution $ERES $
	Extensional HO Resolution $ERES $
	Extensional HO Resolution $ERES $
	Extensional HO Resolution $ERES $
	Ex.: Extensional HO Resolution $ERES $
	Ex.: Extensional HO Resolution $ERES $
	Ex.: Extensional HO Resolution $ERES $
	
	Def.: Sequent Calculi
	Def.: Validity of Sequents
	Def.: k-Admissibility of Rules
	Def.: Sequent Calculus Rules
	Def.: Sequent Calculus Rules
	ACC for Sequent Calculi
	Def.: ACC for Sequent Calculi
	Lemma: Consequence of {	ermcolor $seqneginv $}
	Thm.: Sufficient Conditions for $accseq SEQCALC in ACCMODD $
	Thm.: Sufficient Condition for $accseq SEQCALC in ACCMODD $
	Thm.: Sufficient Condition for $accseq SEQCALC in ACCMODD $
	Thm.: Saturation and Cut
	Def.: Saturated Extension
	Ex.: ACC without Saturated Extension
	Existence of Saturated Extensions and Cut

