X
O
—

Types, Frames, and
Applicative Structures

e UNIVERSITAT
jlislijp DES

(©)Benzmiiller, 2006 5 SAARLANDES ATPHOL06-[3] - p.7

Def.: Types

Let 7 be the least set s.t:
oceT

Le T
Va,8€T :(aB)eT

(©Benzmiiller, 2006 ATPHOL'06-[3] — p.8

Def.: Types

Let 7 be the least set s.t:
oceT

Le T
Va,8€T :(aB)eT

We say that a € 7 is a simple type (or type).
() is called a function type.

(©Benzmiiller, 2006 ATPHOL'06-[3] - p.8

Def.: Types

Let 7 be the least set s.t:
oceT

Le T
Va,8€T :(aB)eT

We say that a € 7 is a simple type (or type).
() is called a function type.

The set 7 is defined inductively.

The set 7 is "freely generated".

(©Benzmiiller, 2006 ATPHOL'06-[3] - p.8

Ex.: Freely Generated

Consider the set N = {0,1,2...}.
0eN

(©Benzmiiller, 2006 ATPHOL'06-[3] — p.8

Ex.: Freely Generated

Consider the set N = {0,1,2...}.
0eN
Vn e N:s(n) € N.

(©Benzmiiller, 2006 ATPHOL'06-[3] — p.8

Ex.: Freely Generated

Consider the set N = {0,1,2...}.
0eN
Vn e N:s(n) € N.
Vn : 0 # s(n).

(©Benzmiiller, 2006 ATPHOL'06-[3] — p.8

Ex.: Freely Generated

Consider the set N = {0,1,2...}.
0eN
Vn e N:s(n) € N.
Vn : 0 # s(n).

Vm,n:s(m)=s(n) = m =n.

(©Benzmiiller, 2006 ATPHOL'06-[3] - p.8

Ex.: Freely Generated

Consider the set N = {0,1,2...}.
0eN
Vn e N:s(n) € N.

Vn : 0 # s(n).

Vm,n:s(m) =s(n) = m =n.

The set N is "freely generated".

(©Benzmiiller, 2006 ATPHOL'06-[3] - p.8

Ex.: Freely Generated

Consider the set N = {0,1,2...}.
0eN
Vn e N:s(n) € N.
Vn : 0 # s(n).

Vm,n:s(m) =s(n) = m =n.
The set N is "freely generated".

Contrast Nto Z=1{...,—1,0,1,...}.
Note that Z contains 0 and is closed under successor, but is not the
least such set.

&SP UNIVERSITAT

Gy oes

(©)Benzmiiller, 2006 =5/ SAARLANDES ATPHOL'06-[3] - p.8

Ex.: Freely Generated

The set 7 is "freely generated":

0F 1L

(©)Benzmiiller, 2006 ATPHOL06-[3] — p.8

Ex.: Freely Generated

The set 7 is "freely generated":
0F 1L
o 7# (o)

(©)Benzmiiller, 2006 ATPHOL06-[3] — p.8

Ex.: Freely Generated

The set 7 is "freely generated":
0F 1L
o 7# (o)
v # (af)

(©)Benzmiiller, 2006 ATPHOL06-[3] — p.8

Ex.: Freely Generated

The set 7 is "freely generated":
0F 1L
o 7# (o)
v # (af)
(af) = () > a=yAB=26

(©)Benzmiiller, 2006 ATPHOL06-[3] — p.8

Ex.: Types

(o) € T

A55PN UNIVERSITAT
jj DES

(©)Benzmiiller, 2006 SAARLANDES ATPHOL'06-[3] - p.8

Ex.: Types

(o) € T
(o(or)) € T

(©)Benzmiiller, 2006 ATPHOL06-[3] — p.8

Ex.: Types

(o) € T
(o(or)) € T
() €T

(©Benzmiiller, 2006

ATPHOL06-[3] — p.8

Ex.: Types

o) eT
o(o)) € T
w) eT

T

(
(
(
((oL)e) €

(©)Benzmiiller, 2006 ATPHOL06-[3] — p.8

Ex.: Types

o) eT
o(o)) € T
w) eT
(o)) € T

Is (oce) also a type?

(
(
(
(

(©)Benzmiiller, 2006 ATPHOL06-[3] — p.8

Ex.: Types

o) eT
o(o)) € T
w) eT
(o)) € T

Is (oue) also a type? —no

(
(
(
(

(©)Benzmiiller, 2006 ATPHOL06-[3] — p.8

Ex.: Types

o) eT
o(o)) € T
w) eT
(o)) € T

Is (oue) also a type? —no

(
(
(
(

But we can and will consider it shorthand by replacing missing
parenthesis, associating to the left: (o..) = ((oc)r) # (o(we)).

A55PN UNIVERSITAT

(©)Benzmiiller, 2006 5 SAARLANDES ATPHOL'06-[3] - p.8

Def.: Functions

Let A, B be sets.

AOORN UNIVERSITAT
i) oes

(©)Benzmiiller, 2006 5 SAARLANDES ATPHOL06-[3] — p.8

Def.: Functions

Let A, B be sets.
f: B — A :afunction from B to A.

(©Benzmiiller, 2006 ATPHOL'06-[3] — p.8

Def.: Functions

Let A, B be sets.
f: B — A :afunction from B to A.
AB: set of functions from B to A.

(©Benzmiiller, 2006 ATPHOL'06-[3] — p.8

Def.: Functions

Let A, B be sets.
f: B — A :afunction from B to A.
AB: set of functions from B to A.

Assume (only for the moment) that A, B are finite.

(©Benzmiiller, 2006 ATPHOL'06-[3] - p.8

Def.: Functions

Let A, B be sets.
f: B — A :afunction from B to A.
AB: set of functions from B to A.

Assume (only for the moment) that A, B are finite.
Let |A| = m, |B| = n. Then |AB| = m" = |A|BI,

ATPHOL06-[3] — p.8

(©Benzmiiller, 2006

Def.: Functions

Let A, B be sets.
f: B — A :afunction from B to A.
AB: set of functions from B to A.

Assume (only for the moment) that A, B are finite.
Let |A| = m, |B| = n. Then |AB| = m" = |A|BI,

Example:

&SP UNIVERSITAT

i u:"“ DES

(©)Benzmiiller, 2006 5 SAARLANDES ATPHOL06-[3] — p.8

Def.: Functions

Let A, B be sets.
f: B — A :afunction from B to A.
AB: set of functions from B to A.

Assume (only for the moment) that A, B are finite.
Let |A| = m, |B| = n. Then |AB| = m" = |A|BI,

Example:
f:{0,1,2} — {0,1}

&SP UNIVERSITAT

i u:"“ DES

(©)Benzmiiller, 2006 5 SAARLANDES ATPHOL06-[3] — p.8

Def.: Functions

Let A, B be sets.
f: B — A :afunction from B to A.
AB: set of functions from B to A.

Assume (only for the moment) that A, B are finite.
Let |A| = m, |B| = n. Then |AB| = m" = |A|BI,

Example:
f:{0,1,2} — {0,1}
f(0),f(1),f(2) € {0,1}

(©Benzmiiller, 2006 ATPHOL'06-[3] - p.8

Def.: Functions

Let A, B be sets.
f: B — A :afunction from B to A.
AB: set of functions from B to A.

Assume (only for the moment) that A, B are finite.
Let |A| = m, |B| = n. Then |AB| = m" = |A|BI,

Example:
f:{0,1,2} — {0,1}
f(0),f(1),f(2) € {0,1}
A=1{0,1},B={0,1,2}

(©Benzmiiller, 2006 ATPHOL'06-[3] — p.8

Def.: Functions

Let A, B be sets.
f: B — A :afunction from B to A.
AB: set of functions from B to A.

Assume (only for the moment) that A, B are finite.
Let |A| = m, |B| = n. Then |AB| = m" = |A|BI,

Example:
f:{0,1,2} — {0,1}
f(0),f(1),f(2) € {0,1}
A=1{0,1},B ={0,1,2}
AB|=2.2.2=23=3

(©Benzmiiller, 2006 ATPHOL'06-[3] - p.8

Ex.: Sets of Functions

LetF = {f:B — Al¥x,y € B:x <y = f(x) < f(y)} C AB,

(©)Benzmiiller, 2006 ATPHOL06-[3] — p.8

Ex.: Sets of Functions

LetF = {f:B — Al¥x,y € B:x <y = f(x) < f(y)} C AB,

F| =7

(©)Benzmiiller, 2006 ATPHOL06-[3] — p.8

Ex.: Sets of Functions

LetF = {f: B — AlVx,y € B:x <y = f(x) <f(y)} C AB.

F| =7
AB | f(0) | f(1) | f(2)
fo€P 1 0 10169 Consider:
SUE R - g : x = 0,y = 1,x < vy, but
¢F | O 1 0 c
x) > f(y) = F.
o 1 1 11 (x) = f(y) =g ¢
gé¢F 1 0 0
¢ F 1 0 1
¢ F 1 1 0
KieF 1 1 1
G ?ﬁm §gVERSITATS ATPHOL06-[3] — p.8
(©Benzmii ller, 2006 AARLANDE p

Ex.: Sets of Functions

LetF = {f: B — AlVx,y € B:x <y = f(x) <f(y)} C AB.

F| =7
A® | £(0) | f(1) | f(2)
Ko e F 0 0 0 Consider-
eF| O 0 1 g : x = 0,y = 1,x . but
ol f(x) = fy) =>g¢F
X s |
cF 0] 1 > . .
g¢F 1 0 5
F| =4
¢ F 1 0 1
¢ F 1] 5
Ki€F 1] 1
AEER UNIVERSITAT
(©Benzmiiller, 2006 sl IS)E%«RLANDES -

Ex.: Sets of Labelled Functions

C = {red, blue, green}

(©Benzmiiller, 2006 ATPHOL'06-[3] — p.8

Ex.: Sets of Labelled Functions

C = {red, blue, green}

Fc ={(c,f)lce C,f € F}

(©Benzmiiller, 2006 ATPHOL'06-[3] — p.8

Ex.: Sets of Labelled Functions

C = {red, blue, green}

Fc ={(c,f)lce C,f € F}

Fc|=3-4=12

(©Benzmiiller, 2006 ATPHOL'06-[3] — p.8

Def.: Frames

A frame is a family (D,).c7 Of nonempty sets s.t:

AOORN UNIVERSITAT
i) oes

(©)Benzmiiller, 2006 5 SAARLANDES ATPHOL06-[3] - p.8

Def.: Frames

A frame is a family (D,).c7 Of nonempty sets s.t:

(©Benzmiiller, 2006

Yo, 3€ T : Dyg C DY

AOORN UNIVERSITAT
i) oes
5 SAARLANDES

ATPHOL06-[3] — p.8

Def.: Frames

A frame is a family (D,).c7 Of nonempty sets s.t:
Yo, 3€ T : Dyg C DY

A Frame is called standard if

(©Benzmiiller, 2006 ATPHOL'06-[3] - p.8

Def.: Frames

A frame is a family (D,).c7 Of nonempty sets s.t:
Yo, 3€ T : Dyg C DY
A Frame is called standard if

Dos =DY? Va,BeT

(©Benzmiiller, 2006 ATPHOL'06-[3] - p.8

Ex.: Frames

Do={1,T}

A55PN UNIVERSITAT
IS DES

(©)Benzmiiller, 2006 SAARLANDES ATPHOL06-[3] - p.8

Ex.: Frames

Do={1,T}

D, = {1}

e UNIVERSITAT
i) oes

(©)Benzmiiller, 2006 5 SAARLANDES ATPHOL06-[3] - p.8

Ex.: Frames

Do={1,T}
DL — {1}

Daﬁ = Dq

e UNIVERSITAT
i) oes

(©)Benzmiiller, 2006 5 SAARLANDES ATPHOL06-[3] - p.8

Ex.: Frames

Do={1,T}
D, = {1}
Daﬁ — Dgﬁ

D: the standard frame with D, = { L, T}, D; = {1}

(©)Benzmiiller, 2006 ATPHOL06-[3] — p.8

Ex.: Frames (Contd.)

Consider the set Dy(,,)((0(10)))- IS the set empty?

(©)Benzmiiller, 2006 ATPHOL06-[3] — p.8

Ex.: Frames (Contd.)

Consider the set Dy (,)((0(10)))- IS the set empty? — no!

(©)Benzmiiller, 2006 ATPHOL06-[3] — p.8

Ex.: Frames (Contd.)

Consider the set Dy (,)((0(10)))- IS the set empty? — no!

Claim: Ya € T : D, # 0.

(©)Benzmiiller, 2006 ATPHOL06-[3] — p.8

Ex.: Frames (Contd.)

Consider the set Dy (,)((0(10)))- IS the set empty? — no!

Claim: Ya € T : D, # 0.
Proof: induction on type.

(©)Benzmiiller, 2006 ATPHOL06-[3] — p.8

Ex.: Frames (Contd.)

Consider the set Dy (,)((0(10)))- IS the set empty? — no!

Claim: Ya € T : D, # 0.
Proof: induction on type.

Base: Do = {L, T} £ 0,D; = {1} # 0.

(©)Benzmiiller, 2006 ATPHOL06-[3] — p.8

Ex.: Frames (Contd.)

Consider the set Dy,,)((0(10)))- IS the set empty? — no!

Claim: Ya € T : D, # 0.
Proof: induction on type.

Base: Do = {1, T} # 0,D; = {1} +# 0.
Step: Assume D, # 0 A Dg # (). Want to show: D,z # 0.

(©)Benzmiiller, 2006 ATPHOL06-[3] — p.8

Ex.: Frames (Contd.)

Consider the set Dy,,)((0(10)))- IS the set empty? — no!

Claim: Ya € T : D, # 0.
Proof: induction on type.

Base: Do = {L, T} £ 0,D; = {1} # 0.

Step: Assume D, # 0 A Dg # (). Want to show: D,z # 0.
Since D, # () = da € D,,

(©)Benzmiiller, 2006 ATPHOL06-[3] — p.8

Ex.: Frames (Contd.)

Consider the set Dy,,)((0(10)))- IS the set empty? — no!

Claim: Ya € T : D, # 0.
Proof: induction on type.

Base: Do = {L, T} £ 0,D; = {1} # 0.

Step: Assume D, # 0 A Dg # (). Want to show: D,z # 0.
Since D, #) = Ja € D,, hence K, € D,3.

(©)Benzmiiller, 2006 ATPHOL06-[3] — p.8

Ex.: Frames (Contd.)

Consider the set Dy,,)((0(10)))- IS the set empty? — no!

Claim: Ya € T : D, # 0.
Proof: induction on type.
Base: Do = {L, T} #0,D; = {1} #£ 0.

Step: Assume D, # 0 A Dg # (). Want to show: D,z # 0.
Since D, #) = Ja € D,, hence K, € D,3.

(Here K, is the constant function which always returns a. We
will often use this notation for constant functions.)

A55PN UNIVERSITAT
mm%ﬂéﬁm DES
“=5) SAARLANDES ATPHOL06-[3] - p.8

(©)Benzmiiller, 2006

Def.: Typed Applicative Structure

A (typed) applicative structure is a tupel

(©Benzmiiller, 2006 ATPHOL'06-[3] — p.9

Def.: Typed Applicative Structure

A (typed) applicative structure is a tupel
(D, @)

where

(©Benzmiiller, 2006 ATPHOL'06-[3] — p.9

Def.: Typed Applicative Structure

A (typed) applicative structure is a tupel
(D, @)

where

D := (Da)act is a family of nonempty sets

(©Benzmiiller, 2006

ATPHOL06-[3] — p.9

Def.: Typed Applicative Structure

A (typed) applicative structure is a tupel
(D, @)

where
D := (D4)aeT is a family of nonempty sets
Q = (@Ozﬁ : Daﬁ X Dﬁ —> Da)a,ﬁET

(©Benzmiiller, 2006 ATPHOL'06-[3] - p.9

Def.: Typed Applicative Structure

A (typed) applicative structure is a tupel
(D, @)

where
D := (D4)aeT is a family of nonempty sets
Q = (@Ozﬁ : Daﬁ X Dﬁ —> Da)Oé,ﬁe’]'

Usually we write f@b for @*(f,b) when f € D,g A b € Dg

(©Benzmiiller, 2006 ATPHOL'06-[3] - p.9

Rem.: Currying

The application operator @ in an applicative structure is an ab-

stract version of function application.

AOORN UNIVERSITAT
mmﬁj‘::“mm DES
24 SAARLANDES ATPHOL06-[3] - p.9

(©Benzmiiller, 2006

Rem.: Currying

The application operator @ in an applicative structure is an abstract
version of function application. It is no restriction to exclusively use
a binary application operator, which corresponds to unary function

application,

AOORN UNIVERSITAT
mmﬁ‘ﬁu,mwﬁ DES
24 SAARLANDES ATPHOL06-[3] - p.9

(©)Benzmiiller, 2006

Rem.: Currying

The application operator @ in an applicative structure is an abstract
version of function application. It is no restriction to exclusively use
a binary application operator, which corresponds to unary function
application, since we can define higher-arity application operators
from the binary one by setting f@(al,...,a") = (... (f@al)... @a")
(“Currying”).

AOORN UNIVERSITAT
24 SAARLANDES ATPHOL06-[3] - p.9

(©)Benzmiiller, 2006

Interesting Properties

Let D be a frame.

(©)Benzmiiller, 2006 ATPHOL06-[3] — p.9

Interesting Properties

Let D be a frame.

Vf,g €Dus (VbeDg:f(b)=gb))=f=g

(©)Benzmiiller, 2006 ATPHOL06-[3] — p.9

Interesting Properties

Let D be a frame.

Vf,g €Dus (VbeDg:f(b)=gb))=f=g

Let (D, @) be an applicative structure. Consider the property:

(©)Benzmiiller, 2006 ATPHOL06-[3] — p.9

Interesting Properties

Let D be a frame.

Vf,g €Dus (VbeDg:f(b)=gb))=f=g

Let (D, @) be an applicative structure. Consider the property:

Vi,g € Dog (Vb€ Dg:f@b=gQb)=f=g.

(©)Benzmiiller, 2006 ATPHOL06-[3] — p.9

Def.: Functional Applicative Structures

Given an applicative structure (D, @).

(©)Benzmiiller, 2006 ATPHOL06-[3] — p.9

Def.: Functional Applicative Structures

Given an applicative structure (D, @). We say that (D, @) is
functional if

(©)Benzmiiller, 2006 ATPHOL06-[3] — p.9

Def.: Functional Applicative Structures

Given an applicative structure (D, @). We say that (D, @) is
functional if

Vo, € T :Vf,g € Dog(Vb € Dy : fGb = g@b) = f =g

(©)Benzmiiller, 2006 ATPHOL06-[3] — p.9

Def.: Full Applicative Structures

Given an applicative structure (D, @).

(©Benzmiiller, 2006 ATPHOL'06-[3] - p.9

Def.: Full Applicative Structures

Given an applicative structure (D, @). We say that (D, @) is full if

(©Benzmiiller, 2006 ATPHOL'06-[3] - p.9

Def.: Full Applicative Structures

Given an applicative structure (D, @). We say that (D, @) is full if

Vo, Vh:Dg— D, 3f € Dysvbe Dg: f@b = h(b)

(©Benzmiiller, 2006 ATPHOL'06-[3] — p.9

Def.: Standard Applicative Structures

An applicative structure A := (D, @) is called standard if

(©)Benzmiiller, 2006 ATPHOL06-[3] — p.9

Def.: Standard Applicative Structures

An applicative structure A := (D, @) is called standard if
it is a frame structure (i.e. @ is function application) where D is
standard.

(©)Benzmiiller, 2006 ATPHOL06-[3] — p.9

Def.: Standard Applicative Structures

An applicative structure A := (D, @) is called standard if

it is a frame structure (i.e. @ is function application) where D is
standard.

Note that the definitions of functional, full, and standard impose re-

strictions on the domains for function types only.

A55PN UNIVERSITAT
mm%ﬂ};ﬁm DES
“=5) SAARLANDES ATPHOL06-[3] - p.9

(©)Benzmiiller, 2006

Rem.: Frames and Applicative Structures _|

It is easy to show that every frame is functional.

(©Benzmiiller, 2006 ATPHOL'06-[3] — p.9

Rem.: Frames and Applicative Structures _|

It is easy to show that every frame is functional.

Furthermore, an applicative structure is standard iff it is a full frame.

A55PN UNIVERSITAT

(©)Benzmiiller, 2006 5 SAARLANDES ATPHOL06-[3] — p.9

Example: Full Functional Appl. Structure _|

Let D, = {1} Va

A55PN UNIVERSITAT
m“éf‘..d‘::“%m DES
24 SAARLANDES ATPHOL06-[3] - p.9

(©Benzmiiller, 2006

Example: Full Functional Appl. Structure _|

Let D, = {1} Va

Letf@b =1 VfcD,3 VbeDg

(©Benzmiiller, 2006 ATPHOL'06-[3] - p.9

Example: Full Functional Appl. Structure _

Let D, = {1} Va
Letf@b =1 VfcD,3 VbeDg

(D, @) is a full functional applicative structure, but it is not a frame.

(©Benzmiiller, 2006 ATPHOL'06-[3] - p.9

Example: Full Functional Appl. Structure _

Let D, = {1} Va
Letf@b =1 VfcD,3 VbeDg

(D, @) is a full functional applicative structure, but it is not a frame.

1 € Do but 1 ¢ DP> = Do, ¢ D2

(©Benzmiiller, 2006 ATPHOL'06-[3] — p.9

Def.: Homomorphic Appl. Structures

Let (D!, @) and (D?, @2) are applicative structures.

(©)Benzmiiller, 2006 ATPHOL06-[3] — p.9

=
@)
=

N
v.

Def.: Homomorphic Appl. Structures

Let (D!, @!) and (D?, @2?) are applicative structures. We say that «
is a homomorphism from (D!, @) to (D?, @2) if

(©)Benzmiiller, 2006 ATPHOL06-[3] — p.9

=
@)
=

N
v.

Def.: Homomorphic Appl. Structures

Let (D!, @!) and (D?, @2?) are applicative structures. We say that «
is a homomorphism from (D!, @) to (D?, @2) if

Ko : DL — D2 VaeT

(©)Benzmiiller, 2006 ATPHOL06-[3] — p.9

=
@)
=

N
v.

Def.: Homomorphic Appl. Structures

Let (D!, @!) and (D?, @2?) are applicative structures. We say that «
is a homomorphism from (D!, @) to (D?, @2) if

Ko : DL — D2 VaeT
Va,3 €T, VfeDS; VbeDg:

k(f)@%k(b) = k(f@'b)

(©)Benzmiiller, 2006 ATPHOL06-[3] — p.9

Def.: Isomorphic Appl. Structures

We say that (D!, @!) and (D?, @2) are isomorphic if Ji, | s.t:

(©)Benzmiiller, 2006 ATPHOL06-[3] — p.9

Def.: Isomorphic Appl. Structures

We say that (D!, @!) and (D?, @2) are isomorphic if Ji, | s.t:

i is @ homomorphism from (D!, @!) to (D?, @2)

(©)Benzmiiller, 2006 ATPHOL06-[3] — p.9

Def.: Isomorphic Appl. Structures

We say that (D!, @!) and (D?, @2) are isomorphic if Ji, | s.t:
i is @ homomorphism from (D!, @!) to (D?, @2)

j is a homomorphism from (D?, @2) to (D!, @)

(©)Benzmiiller, 2006 ATPHOL06-[3] — p.9

Def.: Isomorphic Appl. Structures

We say that (D!, @!) and (D?, @2) are isomorphic if Ji, | s.t:
i is @ homomorphism from (D!, @!) to (D?, @2)
j is a homomorphism from (D?, @2) to (D!, @)

i and j are inverses (i.e i(j(a%)) = a% and j(i(al)) = a?).

(©)Benzmiiller, 2006 ATPHOL06-[3] — p.9

X
O
—

Simply Typed \-Calculus

e UNIVERSITAT
jlislijp DES

(©)Benzmiiller, 2006 5 SAARLANDES ATPHOL'06-[3] — p.10!

Def.: Untyped M\-Calculus

Let >~ = (V,C) be a signature where

(©)Benzmiiller, 2006 ATPHOL06-[3] — p.10

Def.: Untyped M\-Calculus

Let >~ = (V,C) be a signature where

Y — countably infinite set of variables

(©)Benzmiiller, 2006 ATPHOL06-[3] — p.10

Def.: Untyped M\-Calculus

Let >~ = (V,C) be a signature where
Y — countably infinite set of variables

C — possibly empty set of constants

(©Benzmiiller, 2006

ATPHOL06-[3] — p.10

Def.: Untyped M\-Calculus

Let >~ = (V,C) be a signature where
Y — countably infinite set of variables
C — possibly empty set of constants

We define the set A = wify- (%) to be the smallest set s.t:

&SP UNIVERSITAT

i u:m DES

(©)Benzmiiller, 2006 5 SAARLANDES ATPHOL06-[3] - p.10

Def.: Untyped M\-Calculus

Let >~ = (V,C) be a signature where
Y — countably infinite set of variables
C — possibly empty set of constants

We define the set A = wify- (%) to be the smallest set s.t:

x €V thenx € A

&SP UNIVERSITAT

i u:m DES

(©)Benzmiiller, 2006 5 SAARLANDES ATPHOL06-[3] - p.10

Def.: Untyped M\-Calculus

Let >~ = (V,C) be a signature where
Y — countably infinite set of variables
C — possibly empty set of constants

We define the set A = wify- (%) to be the smallest set s.t:

x €V thenx € A

ccCthenceA

&SP UNIVERSITAT

i u:m DES

(©)Benzmiiller, 2006 5 SAARLANDES ATPHOL06-[3] - p.10

Def.: Untyped M\-Calculus

Let >~ = (V,C) be a signature where
Y — countably infinite set of variables
C — possibly empty set of constants

We define the set A = wify- (%) to be the smallest set s.t:

x € Vthenx & A
ccCthenceA
Ae N BeAthen (AB) e A

&SP UNIVERSITAT

i u:m DES

(©)Benzmiiller, 2006 5 SAARLANDES ATPHOL'06-[3] - p.10

Def.: Untyped M\-Calculus

Let >~ = (V,C) be a signature where
Y — countably infinite set of variables
C — possibly empty set of constants

We define the set A = wify- (%) to be the smallest set s.t:

x € Vthenxe A
ceCthenceA
Ae N BeAthen (AB) e A
x €V, A e Nthen (Ax.A) € A

&SP UNIVERSITAT

lilip oes

(©)Benzmiiller, 2006 " SAARLANDES ATPHOL'06-[3] - p.10

Simply Typed A-Calculus

Let X = (V*,C“) be a signature where

(©)Benzmiiller, 2006 ATPHOL06-[3] — p.10

Simply Typed A-Calculus

Let X = (V*,C“) be a signature where

V* = |J V., — countably infinite sets of variables
aeT

(©)Benzmiiller, 2006 ATPHOL06-[3] — p.10

Simply Typed A-Calculus

Let X = (V*,C“) be a signature where

V* = |J V., — countably infinite sets of variables
acT

C* = |J C, — possibly empty sets of constants
acT

(©)Benzmiiller, 2006 ATPHOL06-[3] — p.10

Simply Typed A-Calculus

Let X = (V*,C“) be a signature where

V¢ = |J V. — countably infinite sets of variables
acT

C* = |J C, — possibly empty sets of constants
acT

We define the set A* = wifs (X)), = (J A, to be the smallest set s.t:
acT

&SP UNIVERSITAT

i u:m DES

(©Benzmiiller, 2006 215V SAARLANDES ATPHOL06-[3] - p.10:

Simply Typed A-Calculus

Let X = (V*,C“) be a signature where

V¢ = |J V. — countably infinite sets of variables
acT

C* = |J C, — possibly empty sets of constants
acT

We define the set A* = wifs (X)), = (J A, to be the smallest set s.t:
acT

X, € V, then x, € A,

&SP UNIVERSITAT

i u:m DES

(©Benzmiiller, 2006 215V SAARLANDES ATPHOL06-[3] - p.10:

Simply Typed A-Calculus

Let X = (V*,C“) be a signature where

V¢ = |J V. — countably infinite sets of variables
acT

C* = |J C, — possibly empty sets of constants
acT

We define the set A* = wifs (X)), = (J A, to be the smallest set s.t:
acT

X, € V, then x, € A,

c, € C, thenc, € A,

&SP UNIVERSITAT

i u:m DES

(©Benzmiiller, 2006 215V SAARLANDES ATPHOL06-[3] - p.10:

Simply Typed A-Calculus

Let X = (V*,C“) be a signature where

V¢ = |J V. — countably infinite sets of variables
acT

C* = |J C, — possibly empty sets of constants
acT

We define the set A* = wifs (X)), = (J A, to be the smallest set s.t:
acT

X, € V, then x, € A,
c, € C, thenc, € A,
Aag c /\aﬁ, Bﬁ ~ /\5 then (A B) AW

&SP UNIVERSITAT

i u:m DES

(©Benzmiiller, 2006 215V SAARLANDES ATPHOL06-[3] - p.10:

Simply Typed A-Calculus

Let X = (V*,C“) be a signature where

V* = |J V., — countably infinite sets of variables
acT

C* = |J C, — possibly empty sets of constants
acT

We define the set A* = wifs (X)), = (J A, to be the smallest set s.t:
acT

Xy €V, then x, € A,

c, € C, thenc, € A,

Aas € Nopg, Bg € Agthen (AB) € A,

Xa € Vo s Ag € Ng then (Ax,.Ag)ga € N

(©)Benzmiiller, 2006 ATPHOL06-[3] — p.10

Notational Conventions

brackets may be avoided: ABC ~~ ((AB) ()

(©)Benzmiiller, 2006 ATPHOL06-[3] — p.10

Notational Conventions

brackets may be avoided: ABC ~~ ((AB) ()

Ax,.Ao, B, C, — dots as far to the right as is consistent:
((Ax,.A0,B,)C,)

(©)Benzmiiller, 2006 ATPHOL06-[3] — p.10

Notational Conventions

brackets may be avoided: ABC ~~ ((AB) ()

Ax,.Ao, B, C, — dots as far to the right as is consistent:
((Ax,.A0,B,)C,)

AX, YA~ (Ax.(Ay.A))

(©)Benzmiiller, 2006 ATPHOL06-[3] — p.10

Notational Conventions

brackets may be avoided: ABC ~~ ((AB) ()

Ax,.Ao, B, C, — dots as far to the right as is consistent:
((Ax,.A0,B,)C,)

AX, YA~ (Ax.(Ay.A))
AXTA s (A1 (o (A A) L)

(©)Benzmiiller, 2006 ATPHOL06-[3] — p.10

Notational Conventions

brackets may be avoided: ABC ~~ ((AB) ()

Ax,.Ao, B, C, — dots as far to the right as is consistent:
((Ax,.A0,B,)C,)

AX, YA~ (Ax.(Ay.A))
AXTA s (A1 (o (A A) L)

AX.A — n is not important

(©)Benzmiiller, 2006 ATPHOL06-[3] — p.10

Notational Conventions

brackets may be avoided: ABC ~~ ((AB) ()

Ax,.Ao, B, C, — dots as far to the right as is consistent:
((Ax,.A0,B,)C,)

AX, YA~ (Ax.(Ay.A))

AXTA ~ (AX1.(- .- (Axp A) L))
AX.A — n is not important
(fFA") ~ (... (FAY) AZ) ... A")

(©)Benzmiiller, 2006 ATPHOL06-[3] — p.10

Def.: Positions in \-Terms

Consider the following term:

(Axx)((Ay.y)(Az.2)))

(©)Benzmiiller, 2006 ATPHOL06-[3] — p.10

Def.: Positions in \-Terms

Consider the following term:

(Axx)((Ay.y)(Az.2)))

The position [212] points to the red y in

(Axx)((Ay.y)(Az.2)))

(©)Benzmiiller, 2006 ATPHOL06-[3] — p.10

Def.: Positions in \-Terms

Consider the following term:

(Axx)((Ay.y)(Az.2)))

The position [212] points to the red y in

(Axx)((Ay.y)(Az.2)))

... Graphics on Blackboard ...

(©)Benzmiiller, 2006 ATPHOL06-[3] — p.10

Def.: Position (Contd.)

The expression
AP

refers to the subterm of A at position p.

(©)Benzmiiller, 2006 ATPHOL06-[3] — p.10

Def.: Position (Contd.)

The expression
AP

refers to the subterm of A at position p.

Example: Consider T := ((Ax.x)((Ay.y)(Az.2)))

(©Benzmiiller, 2006

ATPHOL06-[3] - p.10!

Def.: Position (Contd.)

The expression
AP

refers to the subterm of A at position p.

Example: Consider T := ((Ax.x)((Ay.y)(Az.2)))

T[212] =Y

(©Benzmiiller, 2006

ATPHOL06-[3] - p.10!

Def.: Replacement at Position

Replacement of A, in A by a term B is denoted as

ABJ

(©)Benzmiiller, 2006 ATPHOL06-[3] — p.10

Def.: Replacement at Position

Replacement of A, in A by a term B is denoted as
AlBlp

Example:
T x)]212) = ((Axx)((Ay.(fx))(Az.2)))

(©)Benzmiiller, 2006 ATPHOL06-[3] — p.10

Def.: Scope of \-Term

(Ax.A) : We say that A is in the scope of A-binder that binds x.

(©)Benzmiiller, 2006 ATPHOL06-[3] — p.10

Def.: Free and Bound Variables

An occurrence of a variable x in a term A is called bound if it is in
the scope of a A\-binder that binds x.

(©)Benzmiiller, 2006 ATPHOL06-[3] — p.10

Def.: Free and Bound Variables

An occurrence of a variable x in a term A is called bound if it is in
the scope of a A\-binder that binds x.

Otherwise it is called free.

(©)Benzmiiller, 2006 ATPHOL06-[3] — p.10

Def.: Free and Bound Variables

An occurrence of a variable x in a term A is called bound if it is in
the scope of a A\-binder that binds x.

Otherwise it is called free.

We denote the set of all free variables in a A\-term as FV(A).

(©)Benzmiiller, 2006 ATPHOL06-[3] — p.10

X
O
—

Syntax: Simply Typed
A-Calculus (Contd.)

e UNIVERSITAT
jlislijp DES

(© Benzmiller, 2006 & SAARLANDES ATPHOL06-[4] - p.10

Def.: Substitution

Substitution is a map

(©)Benzmiiller, 2006 ATPHOL06-[4] — p.11

Def.: Substitution

Substitution is a map

[A/x] : N — A (untyped)

(©)Benzmiiller, 2006 ATPHOL06-[4] — p.11

Def.: Substitution

Substitution is a map

[A/x] : N — A (untyped)
[Aa/xa] : Ao — Mg (typed)

(©)Benzmiiller, 2006 ATPHOL06-[4] — p.11

Def.: Substitution

Substitution is a map

[A/x] : N — A (untyped)
Aa/Xa] : Ao — Ao (typed)
and is defined as follows:

(©)Benzmiiller, 2006 ATPHOL06-[4] — p.11

Def.: Substitution

Substitution is a map

[A/x] : N — A (untyped)
Aa/Xa] : Ao — Ao (typed)
and is defined as follows:

1. [No/Xa]Xa = Ng

(©)Benzmiiller, 2006 ATPHOL06-[4] — p.11

Def.: Substitution

Substitution is a map

[A/x] : N — A (untyped)
Aa/Xa] : Ao — Ao (typed)
and is defined as follows:
1. [No/Xa]Xa = Ng
2. [Na/xa]aﬁ = ag if ag # Xo N\ ag € V@ UCﬁ

(©)Benzmiiller, 2006 ATPHOL06-[4] — p.11

Def.: Substitution

Substitution is a map

[A/x] : N — A (untyped)
Aa/Xa] : Ao — Ao (typed)
and is defined as follows:
1. [No/Xa]Xa = Ng
2. :Na/xa:aﬁ = ag if ag # Xo N\ ag € V@ UCﬁ
3. :Na/xa:(AaaBﬁ) = ([Na/xa]A)([Na/xa]B)

(©)Benzmiiller, 2006 ATPHOL06-[4] — p.11

Def.: Substitution

Substitution is a map

[A/x] : N — A (untyped)
Aa/Xa] : Ao — Ao (typed)
and is defined as follows:
:Na/xa:xa = Ng
:Na/xa:aﬁ = ag if ag # Xo N\ ag € V@ U C@
:Na/xa:(AaaBﬁ) = ([Na/xa]A)([Na/xa]B)
N /Xal W Ay) = (AxaAy)

> W o~

(©)Benzmiiller, 2006 ATPHOL06-[4] — p.11

Def.: Substitution

Substitution is a map

and is defined as follows:

o &~ w0 b =

(©Benzmiiller, 2006

Na/Xa]
Na/Xa]
- (Aaa Bﬁ) —

Na/Xa]

| (Axq-Ay)

Na/Xa]

[(Ayg-Ay) =

- a/xa_

xa#yﬁA(ws%FV

Xa:Na

Aa/Xa] : N — Ao

A/X] A — A

agzagifag#xaA35€V5U65

([Na/xa]A)([Na/xa]B)

(
(
(No

Ao Ay
W%

(untyped)
(typed)

ATPHOL06-[4] - p.111

Def.: Substitution

Substitution is a map

[A/x] : N — A (untyped)
[Aa/xa] : Ao — Mg (typed)

and is defined as follows:

Na/Xa

o &~ w0 b =

- a/xa

xa#yﬁA(ws%FV

Na/Xa]
Na/Xa]

Na/Xa]

Xo = Ng

ag = agifag # x4 Nag € VgUCg
[(AaaBg) = ([Na/xa]A)([Na/xa]B)
[(Axa-Ay) = (AxaAy)

Cus) = Qv Vol

) Vxa & FV(A))

6. [No/xal(Wa-Ay) = (Az5.[Na/xal[25/y5]A5) if xa # ya/
(yg € FV(Ng) Axq € FV(A,)) and z is a fresh’ variable.

(©Benzmiiller, 2006

ATPHOL06-[4] - p.111

Ex.: Substitution

ly/x](Ay.x) — the occurrence of x is free
#+ (A\y.y) — if we replace x with y, the variable y becomes
bound.

(©)Benzmiiller, 2006 ATPHOL06-[4] — p.11

Ex.: Substitution

ly/x](Ay.x) — the occurrence of x is free
#+ (Ay.y) — if we replace x with y, the variable y becomes

bound.

ly/x](Ay.x) — the occurrence of x is free
= (Az[y/x][z/y]x) — we need a fresh variable

= (Az.y) — the occurrence of y is free

AOORN UNIVERSITAT
) E‘ﬁu}{,"% W’"‘ DES
5 SAARLANDES

(©)Benzmiiller, 2006 ATPHOL06-[4] — p.11

Ex.: Substitution

ly/x](Ay.x) — the occurrence of x is free
#+ (A\y.y) — if we replace x with y, the variable y becomes

bound.

y/x|(Ay.x) — the occurrence of x is free
= (Az|y/x||z/y]x) — we need a fresh variable
= (Az.y) — the occurrence of y is free

Further Examples on Blackboard

(©)Benzmiiller, 2006 ATPHOL06-[4] — p.11

Ex.: Substitution

ly/x](Ay.x) — the occurrence of x is free
#+ (A\y.y) — if we replace x with y, the variable y becomes

bound.

y/x|(Ay.x) — the occurrence of x is free
= (Az|y/x||z/y]x) — we need a fresh variable
= (Az.y) — the occurrence of y is free

Further Examples on Blackboard

Claim: [N/x]A = Aif x ¢ FV(A)
Proof: Induction on A

(©)Benzmiiller, 2006 ATPHOL06-[4] — p.11

Def.: a-Conversion

A M| —q [Ay. y/x]M]
wherey ¢ FV(M)

(©)Benzmiiller, 2006 ATPHOL06-[4] — p.11

Def.: a-Conversion

AxM] =4 [Ay. [y/x]M]
wherey ¢ FV(M)

A="B

if A can be converted to B by renaming the bound variables. We
read A =, B as A is a-equal to B.

(©)Benzmiiller, 2006 ATPHOL06-[4] — p.11

Def.: a-Conversion

AxM] =4 [Ay. [y/x]M]
wherey ¢ FV(M)

A="B

if A can be converted to B by renaming the bound variables. We
read A =, B as A is a-equal to B.

From now on (\y.y) = (Az. z), that is, we will say that two terms are
simply equal, if they are a-equal. Two terms are equal means that
two terms are a-convertable.

AOORN UNIVERSITAT
mmﬁ‘ﬁu,mwﬁ DES
5 SAARLANDES ATPHOL06-[4] — p.11:

(©)Benzmiiller, 2006

=
@)
=

N
v.

Def.: 5-Conversion

A (-redex is a term ((Ax. A)B). The g-reduct of this redex is [B/x]A.

(©)Benzmiiller, 2006 ATPHOL06-[4] — p.11

=
@)
=

N
v.

Def.: 5-Conversion

A (-redex is a term ((Ax. A)B). The g-reduct of this redex is [B/x]A.

We say M —3 N, le. g-reduces in 1 step, if

M = P[(Ax.A)B],
N = P[B/xA],

(©)Benzmiiller, 2006 ATPHOL06-[4] — p.11

Def.: 5-Conversion

A (-redex is a term ((Ax. A)B). The g-reduct of this redex is [B/x]A.

We say M —3 N, le. g-reduces in 1 step, if

M = P[(Ax.A)B],
N = P[B/xA],

We say M — 5 N, ie. 3-reduces in several steps, if IM!, ... M" for
n > 1such that M = M and N = M" and M' —5 M+,

(©)Benzmiiller, 2006 ATPHOL06-[4] — p.11

Def.: 5-Normal Form

A term is called g-normal if it contains no G-redexes.

(©)Benzmiiller, 2006 ATPHOL06-[4] — p.11

Def.: 5-Normal Form

A term is called g-normal if it contains no G-redexes.

Any term that does not contain A-abstractions is 5-normal.

A55PN UNIVERSITAT
IS DES
5 SAARLANDES ATPHOL06-[4] — p.11.

(©Benzmiiller, 2006

Def.: 5-Normal Form

A term is called g-normal if it contains no 3-redexes.

Any term that does not contain A-abstractions is 5-normal.

A term is called 5-head normal if the head term of its outermost
application can not be further reduced.

&SP UNIVERSITAT

i u:m DES

(©)Benzmiiller, 2006 5 SAARLANDES ATPHOL06-[4] - p.11-

Def.: 5-Normal Form

A term is called g-normal if it contains no 3-redexes.

Any term that does not contain A-abstractions is 5-normal.

A term is called 5-head normal if the head term of its outermost
application can not be further reduced.

Any term that does not contain A-abstractions is #-head normal.

AOORN UNIVERSITAT
mmﬁ‘ﬁu,mwﬁ DES
5 SAARLANDES ATPHOL06-[4] — p.11.

(©)Benzmiiller, 2006

Thm.: Church-Rosser Property for —

AOORN UNIVERSITAT
W'IE‘.,I]‘::“%WII DES
5 SAARLANDES ATPHOL06-[4] — p.11'

(©Benzmiiller, 2006

Thm.: Church-Rosser Property for —

If T, B-reduces in multiple steps with one strategy to L, and with
another strategy to R, then there exists a term B,, such that L, and
R. G-reduce in multiple steps to B,,.

A55PN UNIVERSITAT

(©)Benzmiiller, 2006 25y SAARLANDES ATPHOL06-[4] — p.11!

Thm.: Church-Rosser Property for —

If T, B-reduces in multiple steps with one strategy to L, and with
another strategy to R, then there exists a term B,, such that L, and
R. G-reduce in multiple steps to B,,.

Note that B, is not necessarily in normal form.

AOORN UNIVERSITAT
mmﬁ‘ﬁu,mwﬁ DES
5 SAARLANDES ATPHOL06-[4] — p.11

(©)Benzmiiller, 2006

Thm.: Church-Rosser Property for —

If T, B-reduces in multiple steps with one strategy to L, and with
another strategy to R, then there exists a term B,, such that L, and
R. G-reduce in multiple steps to B,,.

Note that B, is not necessarily in normal form.

The Church-Rosser Property for — 3 holds for A and A“.

AOORN UNIVERSITAT
mmﬁ‘ﬁu,mwﬁ DES
5 SAARLANDES ATPHOL06-[4] — p.11'

(©)Benzmiiller, 2006

Ex.: Church-Rosser Property for —

ﬁﬁ ﬁ\
s(02) (OF.0)g)a
N /
B
NK

(©)Benzmiiller, 2006 ATPHOL06-[4] — p.11

Termination

Do we always get a G-normal form as we apply 5-reduction?

AOORN UNIVERSITAT
IS DES
5 SAARLANDES ATPHOL06-[4] — p.11

(©Benzmiiller, 2006

Termination

Do we always get a G-normal form as we apply 5-reduction?

Typed Case: Forall A, there exists a unique (up to a-conversion)
B-normal term B such that A —3 B

AOORN UNIVERSITAT
IS DES
5 SAARLANDES ATPHOL06-[4] — p.11

(©Benzmiiller, 2006

Termination

Do we always get a G-normal form as we apply 5-reduction?

Typed Case: Forall A, there exists a unique (up to a-conversion)
B-normal term B such that A —3 B

Untyped Case: Consider the term w = (Ax. xx)

(AX. xx) (AX. xx) —% W

(©)Benzmiiller, 2006 ATPHOL06-[4] — p.11

Def.: n-Conversion

A n-redex is a term of the form (Axg. Fo5x) where x FV(F). The
n-reduct of this termis F.

(©)Benzmiiller, 2006 ATPHOL06-[4] — p.11

Def.: n-Conversion

A n-redex is a term of the form (Axg. Fo5x) where x FV(F). The
n-reduct of this termis F.

We say M —, N, ie. n-reduces in 1 step, if

M
N

P[(Axg. Fapx)lp
PIF]p

(©)Benzmiiller, 2006 ATPHOL06-[4] — p.11

Def.: n-Conversion

A n-redex is a term of the form (Axg. Fo5x) where x FV(F). The
n-reduct of this termis F.

We say M —, N, ie. n-reduces in 1 step, if

|\/| - P[()\Xﬁ. Faﬁx)]p
N = P[F]p
We say M —, N, ie. n-reduces in several steps, if IM*, ... M" for

n > 1suchthat M = M*and N = M" and M' —5 M'*1,

(©)Benzmiiller, 2006 ATPHOL06-[4] — p.11

Def.: 7»-Normal Form

A term is called n-normal if it contains no n-redexes.

AOORN UNIVERSITAT
i) oes

@ Benzmiiller, 2006 &Y SAARLANDES ATPHOL06-[4] — p.11!

Thm.: Church-Rosser Property for —,

AOORN UNIVERSITAT
W'IE‘.,I]‘::“%WII DES
57 SAARLANDES ATPHOL06-[4] — p.12

(©Benzmiiller, 2006

Thm.: Church-Rosser Property for —,

If T, n-reduces in multiple steps with one strategy to L, and with
another strategy to R, then there exists a term B,, such that L, and
R. n-reduce in multiple steps to B,.

&SP UNIVERSITAT

i u:m DES

(©)Benzmiiller, 2006 5 SAARLANDES ATPHOL'06-[4] — p.12

Thm.: Church-Rosser Property for —,

If T, n-reduces in multiple steps with one strategy to L, and with
another strategy to R, then there exists a term B, such that L, and

R. n-reduce in multiple steps to B,.

The Church-Rosser Property for —, holds for A and A“.

AOORN UNIVERSITAT
mmﬁ‘ﬁu,mwﬁ DES
57 SAARLANDES ATPHOL06-[4] — p.12

(©)Benzmiiller, 2006

Def.: 5n-Conversion

—pni=—p U —

N\ UNIVERSITAT
S

(©)Benzmiiller, 2006 SAARLANDES ATPHOL06-[4] — p.12

Def.: 5n-Conversion

—on=—p U=y

If M — 3, N we say M [n-reduces in 1 step to N.

(©)Benzmiiller, 2006 ATPHOL06-[4] — p.12

Def.: 5n-Conversion

—pn=—g U —y

If M — 3, N we say M [n-reduces in 1 step to N.

We say M — 3, N, ie. n-reduces in several steps, if IM*, ... M" for

n > 1suchthatM = M and N = M" and M' — 5, M+,

(©Benzmiiller, 2006

ATPHOL06-[4] - p.12

Def.: 5n-Normal Form

A term is gn-normal if it contains no g-redexes and no n-redexes.

(©)Benzmiiller, 2006 ATPHOL06-[4] — p.12

Thm.: Church-Rosser Property for —;,

AOORN UNIVERSITAT
) E‘.,d‘::“% W’I‘ DES
i) SAARLANDES ATPHOL06-[4] — p.12

(©Benzmiiller, 2006

Thm.: Church-Rosser Property for —;,

If T, Bn-reduces in multiple steps with one strategy to L., and with
another strategy to R, then there exists a term B,, such that L, and
R, On-reduce in multiple steps to B,,.

&SP UNIVERSITAT

i u:m DES

(©)Benzmiiller, 2006 25y SAARLANDES ATPHOL06-[4] — p.12:

Thm.: Church-Rosser Property for —;,

If T, Bn-reduces in multiple steps with one strategy to L., and with
another strategy to R, then there exists a term B,, such that L, and
R, On-reduce in multiple steps to B,,.

The Church-Rosser Property for — 3, holds for A and A“.

AOORN UNIVERSITAT
) E‘ﬁu}{,"% W’"‘ DES
“=5) SAARLANDES ATPHOL06-[4] — p.12

(©)Benzmiiller, 2006

Thm.: Strong Church-Rosser Property

In A* (simply typed A-calculus) the relations — 3 and — g, have the
strong Church Rosser property:

(©)Benzmiiller, 2006 ATPHOL06-[4] — p.12

Thm.: Strong Church-Rosser Property

In A* (simply typed A-calculus) the relations — 3 and — g, have the
strong Church Rosser property: for very term A, there exists a
unique (up to a-renaming) G-normal resp. Gn-normal term B such

that A; —3 B resp. A, —3, B-.

ATPHOL06-[4] — p.12:

(©Benzmiiller, 2006

Def.: Long 3n-Normal Form

Letn>0,a',....,a" € 7, and 3 € {o,.}. Aterm A of type
(B,a",...,at)isin long Bn-normal form if it is of form

1 1
)\Xal c. Xgn.(hﬁfym...fylA,yl c. A,r?m)

for a variable or constant hz.~ .1, m > 0 and long sn-normal forms
1
Avl’ oy Al

(©)Benzmiiller, 2006 ATPHOL06-[4] — p.12

Def.: Long 3n-Normal Form

Letn>0,a',....,a" € 7, and 3 € {o,.}. Aterm A of type
(B,a",...,at)isin long Bn-normal form if it is of form

1 1
)\Xal c. Xgén.(hﬁfymmfylA,yl c. A,Tm)

for a variable or constant hz.~ .1, m > 0 and long sn-normal forms
A%l, ...,ATl.. Note that this is an inductive definition; the base case

IS when m = 0.

(©)Benzmiiller, 2006 ATPHOL06-[4] — p.12

Def.: Long 3n-Normal Form

Letn>0,a',....,a" € 7, and 3 € {o,.}. Aterm A of type
(B,a",...,at)isin long Bn-normal form if it is of form

1 1
)\Xal c. Xgén.(hﬁfym_._fylA,yl c. A,Tm)

for a variable or constant hz.~ .1, m > 0 and long sn-normal forms

A%l, ...,ATl.. Note that this is an inductive definition; the base case

is when m = 0. Note that if Ax".(hA™) is in long Bn-normal form
then (hAM) is of base type.

&SP UNIVERSITAT

i u:m DES

(© Benzmiller, 2006 25/ SAARLANDES ATPHOL06-[4] — p.12!

Ex.: Long Gn-Normal Form

Consider the 3n-normal term f,,).

fL(LL)
T??
)\WLL. (fL<LL)WLL)
T??
Aw,, . (f(Ax,. w,, X))

(©)Benzmiiller, 2006 ATPHOL06-[4] — p.12

Thm.: Long 5n-Normal Form

For every term A there is unique long gn-normal form B such that
A =1 B.

(©)Benzmiiller, 2006 ATPHOL06-[4] — p.12

Rem.: Sn-Head Normal Form

Instead of terms in long Bn-normal form we often use in practice
terms in gn-head normal form.

AOORN UNIVERSITAT
) E‘.,d‘::“% W’I‘ DES
“=5) SAARLANDES ATPHOL06-[4] — p.12

(©Benzmiiller, 2006

Rem.: Sn-Head Normal Form

Instead of terms in long Bn-normal form we often use in practice
terms in Gn-head normal form. Definition is similar to long
Bn-normal, but we do not require the embedded terms Ai,yi to be in
normal form.

&SP UNIVERSITAT

i u:m DES

(© Benzmiller, 2006 =55 SAARLANDES ATPHOL06-[4] — p.12

Notation

Al is the B-normal form of A.

AOORN UNIVERSITAT
i) oes

(©)Benzmiiller, 2006 25y SAARLANDES ATPHOL06-[4] — p.12!

Notation

Al is the B-normal form of A.

Al, is the n-normal form of A.

AOORN UNIVERSITAT
i) oes

(©)Benzmiiller, 2006 25y SAARLANDES ATPHOL06-[4] — p.12!

Notation

Al is the B-normal form of A.

Al, is the n-normal form of A.

A| is the Bn-normal form of A.

AOORN UNIVERSITAT
) E‘.,d‘::“% W’"‘ DES
5 SAARLANDES

(©Benzmiiller, 2006

ATPHOL06-[4] — p.12!

Notation

| g is the g-normal form of A.
| i1s the n-normal form of A.

| is the Bn-normal form of A.

> > > P

| is the long Bn-normal form of A.

AOORN UNIVERSITAT
mmﬁj‘::“mm DES
“=5) SAARLANDES ATPHOL06-[4] — p.12

(©Benzmiiller, 2006

X
O
—

Semantics: > -Evaluations

e UNIVERSITAT
jlislijp DES

(©)Benzmiiller, 2006 5 SAARLANDES ATPHOL06-[5] — p.13!

Ex.: An Interesting Applicative Structure

Do := {Aq € Ao Alis closed}.

Is D, non-empty for all a?

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.13

Ex.: An Interesting Applicative Structure

Do := {Aq € Ao Alis closed}.

Is D, non-empty for all a?
IfC, A0 and C, # 0, thenVa € T.A, # 0.

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.13

Ex.: An Interesting Applicative Structure

Do := {Aq € Ao Alis closed}.

Is D, non-empty for all a?
IfC, A0 and C, # 0, thenVa € T.A, # 0.

Is D,z a set of functions? (ie. D5 C (D,)"??) — No!

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.13

Ex.: An Interesting Applicative Structure

Do := {Aq € Ao Alis closed}.

Is D, non-empty for all a?

IfC, A0 and C, # 0, thenVa € T.A, # 0.

Is D,z a set of functions? (ie. D5 C (D,)"??) — No!
Is (Ax,x) € D,,? — Yes!

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.13

Ex.: An Interesting Applicative Structure

Do := {Aq € Ao Alis closed}.

Is D, non-empty for all a?

IfC, A0 and C, # 0, thenVa € T.A, # 0.

Is D,z a set of functions? (ie. D5 C (D,)"??) — No!
Is (Ax,x) € D,,? — Yes!

D = (Dq)aeT is NOt a frame!

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.13

Ex.: An Interesting Applicative Structure

Do := {Aq € Ao Alis closed}.

Is D, non-empty for all a?

IfC, A#0and C, # 0, thenVa € T.A\, # 0.

Is D,z a set of functions? (ie. D5 C (D,)"??) — No!
Is (Ax,x) € D,,? — Yes!

D = (Da)acr is not a frame!

It requires a specific application operator @ : D3 x Dg — D,

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.13

Ex.: An Interesting Applicative Structure

Do := {Aq € Ao Alis closed}.

Is D, non-empty for all a?

IfC, A#0and C, # 0, thenVa € T.A\, # 0.

Is D,z a set of functions? (ie. D,s C (D,)”??) — No!

Is (Ax,x) € D,,? — Yes!

D = (Dq)aeT is NOt a frame!

It requires a specific application operator @ : D3 x Dg — D,

If A, is non-empty for all « € 7, then < D, @ > is an applicative
structure.

A55PN UNIVERSITAT
mm%ﬂéﬁm DES
24 SAARLANDES ATPHOL06-[5] - p.13

(©)Benzmiiller, 2006

EXx.: Interpretation of Terms

Syntax Semantics < D,Q@ >
(Ax,.X)

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.13

EXx.: Interpretation of Terms

Syntax Semantics < D,Q@ >
(Ax,.X) (Ax,. %)

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.13

EXx.: Interpretation of Terms

Syntax Semantics < D,Q@ >
(AX,.X) (Ax,.X) e D,

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.13

EXx.: Interpretation of Terms

Syntax Semantics < D,Q@ >
(AX,.X) (Ax,.X) e D,
Ye

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.13

EXx.: Interpretation of Terms

Syntax Semantics < D,Q@ >
(AX,.X) (Ax,.X) e D,
Y. p(y)

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.13

EXx.: Interpretation of Terms

Syntax Semantics < D,Q@ >
(AX,.X) (Ax,.X) c D,
Y. P(y) c D,

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.13

EXx.: Interpretation of Terms

Syntax Semantics < D,Q@ >
(AX,.X) (Ax,.X) e D,

Y, o(y) e D,
a, € C

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.13

EXx.: Interpretation of Terms

Syntax Semantics < D,Q@ >
(AX,.X) (Ax,.X) e D,

Y. ©(y) e D,
a, € C a

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.13

EXx.: Interpretation of Terms

Syntax Semantics < D,Q@ >
(AX,.X) (Ax,.X) e D,

Y. o(y) e D,
a, € C a c D,

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.13

EXx.: Interpretation of Terms

Syntax Semantics < D,Q@ >
(AX,.X) (Ax,.X) e D,

Y. ©(y) e D,
a, € C a c D,
(Ax,.X)a,

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.13

EXx.: Interpretation of Terms

Syntax Semantics < D,Q@ >
(Ax,.X) (Ax,. %) D,
i o(y) €D,
a, € C a c D,
(Ax,.X)a, (Ax,.x)@a,

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.13

EXx.: Interpretation of Terms

Syntax Semantics < D,Q@ >
(Ax,.X) (Ax,. %) D,
i o(y) €D,
a, € C a c D,
(Ax,.X)a, (Ax,.x)@a, € D,

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.13

Ex.: Interpretation of Terms

Syntax Semantics < D,Q@ >
(AX,.X) (Ax,.X) c D,
i o(y) €D,
a, € C a c D,
(Ax,.x)a, (Ax,.x)@a, c D,

Remark: The variable y, is a non-closed well-formed formula of
type .. We need an assignment ¢, : V, — D, to give it a meaning.

&SP UNIVERSITAT

i u:m DES

(©Benzmiiller, 2006 215V SAARLANDES ATPHOL06-[5] — p.13:

Ex.: Interesting Applicative Structures |

Let D, |g:= {An € Ay|Alisclosed and A is in 3-normal form }

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.13

Ex.: Interesting Applicative Structures |

Let D, |g:= {An € Ay|Alisclosed and A is in 3-normal form }
Let D := (Do |8)acT

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.13

Ex.: Interesting Applicative Structures |

Let D, |g:= {An € Ay|Alisclosed and A is in 3-normal form }
Let D := (Do |8)acT
Let @55 : D,s x Ds — D, be defined by

Fl6@05Gs = (FG) |y

forall F,s € Dys and G5 € Dy.

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.13

Ex.: Interesting Applicative Structures |

Let D, |g:= {An € Ay|Alisclosed and A is in 3-normal form }
Let D := (Do |8)acT
Let @55 : D,s x Ds — D, be defined by

Fl6@05Gs = (FG) |y

forall F,s € Dys and G5 € Dy.

Qf = (@55)7567

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.13

Ex.: Interesting Applicative Structures

Let D, |g:= {An € Ay|Alisclosed and A is in 3-normal form }
Let D := (Do |8)acT
Let @55 : D5 x Ds — D, be defined by

Fl6@05Gs = (FG) |y

forall F,s € Dys and G5 € Dy.

Qf = (@55)7567

Claim: If C, #) and C, # 0 (i.e., at least one constant for each base

type is given), then (D, @”) is an applicative structure.

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.13

Ex.: Interesting Applicative Structures |

Proof:

Is D, |g nonempty for all o« € 77

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.13

Ex.: Interesting Applicative Structures

Proof:
Is D, |g nonempty for all o« € 77
Yes! This follows since C, # 0 and C, # 0 .

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.13

Ex.: Interesting Applicative Structures

Proof:
Is D, |g nonempty for all o« € 77
Yes! This follows since C, # 0 and C, # 0 .

Is F 5@ :Gs € Dy |57

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.13

Ex.: Interesting Applicative Structures

Proof:
Is D, |g nonempty for all o« € 77
Yes! This follows since C, # 0 and C, # 0 .

Is F 5@ :Gs € Dy |57

Let’s check: ny(g@g(SG(g — (F G) lﬁE D,y lﬁ

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.13

Ex.: Interesting Applicative Structures |

Let Dy, | g:= {Aa € Ao| Alis closed and A is in 37n-normal form }

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.13

Ex.: Interesting Applicative Structures |

Let Dy, | g:= {Aa € Ao| Alis closed and A is in 37n-normal form }
Let D := (Do 1gn)acT

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.13

Ex.: Interesting Applicative Structures |

Let Dy, | g:= {Aa € Ao| Alis closed and A is in 37n-normal form }

Let D := (D, lﬁn)aeT
Let @fg : D.,s x Ds — D be defined by

F6@01Gs = (FG) |

forall F,s € Dys and G5 € Dy.

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.13

Ex.: Interesting Applicative Structures |

Let Dy, | g:= {Aa € Ao| Alis closed and A is in 37n-normal form }

Let D := (D, lﬁn)aeT
Let @fg : D.,s x Ds — D be defined by

F6@01Gs = (FG) |

forall F,s € Dys and G5 € Dy.

@ = (@07) ser

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.13

Ex.: Interesting Applicative Structures

Let Dy, | g:= {Aa € Ao| Alis closed and A is in 37n-normal form }

Let D := (D, lﬁn)aeT
Let @fg : D.,s x Ds — D be defined by

F6@01Gs = (FG) |

forall F,s € Dys and G5 € Dy.

@ = (@07) ser

Claim: If C, #) and C, # 0 (i.e., at least one constant for each base

type is given), then (D, @°7) is an applicative structure.

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.13

Ex.: Interesting Applicative Structures |

Proof:

...analogous ...

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.13

Def.: Variable Assignment

Let A := (D, @) be an applicative structure.

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.13

Def.: Variable Assignment

Let A := (D, @) be an applicative structure.

A typed function o:V — D := (¢,: Vo — Dy)act is called a
variable assignment into A.

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.13

Def.: Variable Assignment

Let A := (D, @) be an applicative structure.

A typed function o:V — D := (¢,: Vo — Dy)act is called a
variable assignment into A.

Given a variable assignment o, variable X, and value a € D,

ATPHOL06-[5] — p.13

(©Benzmiiller, 2006

Def.: Variable Assignment

Let A := (D, @) be an applicative structure.

A typed function o:V — D := (¢,: Vo — Dy)act is called a
variable assignment into A.

Given a variable assignment o, variable X, and value a € D, we
use p, |a/X| to denote the variable assignment with

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.13

Def.: Variable Assignment

Let A := (D, @) be an applicative structure.

A typed function o:V — D := (¢,: Vo — Dy)act is called a
variable assignment into A.

Given a variable assignment o, variable X, and value a € D, we
use p, |a/X| to denote the variable assignment with

(0, [a/X])(X) = a

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.13

Def.: Variable Assignment

Let A := (D, @) be an applicative structure.

A typed function o:V — D := (¢,: Vo — Dy)act is called a
variable assignment into A.

Given a variable assignment o, variable X, and value a € D, we
use p, |a/X| to denote the variable assignment with

(0, [a/X])(X) = a

and
(0, [a/X])(Y) = ¢(Y)

for variables Y other than X.

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.13

Some Assumptions

From now on, we assume the signature >, = (V,C) to be infinite
for each type «.

A55PN UNIVERSITAT
YWIE‘..I]‘::“%W"I DES
“=5) SAARLANDES ATPHOL06-[5] - p.13

(©Benzmiiller, 2006

Some Assumptions

From now on, we assume the signature >, = (V,C) to be infinite
for each type a. Furthermore, we assume there is a particular
cardinal Ny such that ¥, has cardinality X for every type a.

A55PN UNIVERSITAT
mm%ﬂ};ﬁm DES
“=5) SAARLANDES ATPHOL06-[5] - p.13

(©)Benzmiiller, 2006

Some Assumptions

From now on, we assume the signature >, = (V,C) to be infinite
for each type a. Furthermore, we assume there is a particular
cardinal ¥ such that >, has cardinality X, for every type a. Since
V is countable, this implies wif,(¥) := A“ and

cwif, (X)) := {A € N\“|Aclosed} have cardinality ¥, for each type «a.

SGORY UNIVERSITAT

““m DES
25 SAARLANDES ATPHOL06-[5] - p.13

(©)Benzmiiller, 2006

Some Assumptions

From now on, we assume the signature >, = (V,C) to be infinite
for each type a. Furthermore, we assume there is a particular
cardinal ¥ such that >, has cardinality X, for every type a. Since
V is countable, this implies wif,(¥) := A“ and

cwif, (X)) := {A € N\“|Aclosed} have cardinality ¥, for each type «a.
Also, whether or not primitive equality is included in the signature,
there can only be finitely many logical constants in X, for each

particular type «.

AOORN UNIVERSITAT
57 SAARLANDES ATPHOL06-[5] - p.13

(©)Benzmiiller, 2006

Some Assumptions

From now on, we assume the signature >, = (V,C) to be infinite
for each type a. Furthermore, we assume there is a particular
cardinal ¥ such that >, has cardinality X, for every type a. Since
V is countable, this implies wif,(¥) := A“ and

cwif, (X)) := {A € N\“|Aclosed} have cardinality ¥, for each type «a.
Also, whether or not primitive equality is included in the signature,
there can only be finitely many logical constants in X, for each
particular type «. Thus, the cardinality of the set of parameters in
> . Is also N.. In the countable case, N. IS Ny.

AOORN UNIVERSITAT
57 SAARLANDES ATPHOL06-[5] - p.13

(©)Benzmiiller, 2006

> =Evaluations

Let 2 be a signature.

AOORN UNIVERSITAT
i) oes

(©Benzmiiller, 2006 215V SAARLANDES ATPHOL06-[5] - p.13!

> -Evaluations

Let > be a signature. We build on the notion of applicative
structures to define > -evaluations, where the evaluation function is
assumed to respect application and (3-conversion.

AOORN UNIVERSITAT
i) oes

(©Benzmiiller, 2006 215V SAARLANDES ATPHOL06-[5] - p.13!

> =Evaluations

Let > be a signature. We build on the notion of applicative
structures to define > -evaluations, where the evaluation function is
assumed to respect application and (3-conversion.

In such models, a function is not uniquely determined by its
behavior on all possible arguments.

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.13

> -Evaluations

Let > be a signature. We build on the notion of applicative
structures to define > -evaluations, where the evaluation function is
assumed to respect application and (3-conversion.

In such models, a function is not uniquely determined by its
behavior on all possible arguments.

Such models can be constructed, for example, by labeling for
functions (e.g., a green and a red version of a function f) in order to
differentiate between them, even though they are functionally
equivalent.

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.13

> -Evaluations

Let £&: F7(V; D) — Fr(wif(X),D) be a total function, where
Fr(V;D) is the set of variable assignments and Fr(wff(X), D) is
the set of typed functions mapping terms into objects in D.

&SP UNIVERSITAT

i u:m DES

(©)Benzmiiller, 2006 5 SAARLANDES ATPHOL'06-[5] — p. 14

> -Evaluations

Let £&: F7(V; D) — Fr(wif(X),D) be a total function, where
Fr(V;D) is the set of variable assignments and F7(wff(¥X), D) is
the set of typed functions mapping terms into objects in D. We will
write the argument of £ as a subscript. So, for each assignment ¢,

we have a typed function

Ep wif(X) — D

AOORN UNIVERSITAT
) E‘ﬁu}{,"% W’"‘ DES
5 SAARLANDES

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.14

> -Evaluations

Let £&: F7(V; D) — Fr(wif(X),D) be a total function, where
Fr(V;D) is the set of variable assignments and F7(wff(¥X), D) is
the set of typed functions mapping terms into objects in D. We will
write the argument of £ as a subscript. So, for each assignment ¢,

we have a typed function
Ep wif(X) — D

What properties shall £ fulfill?

&SP UNIVERSITAT

i oes
s ATPHOL06-[5] — p.14

(©Benzmiiller, 2006

Def.: Evaluation Function

& is called an evaluation function for an applicative structure
A= (D,Q)

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.14

Def.: Evaluation Function

& is called an evaluation function for an applicative structure
A = (D, Q) if for any assignments ¢ and ¢ into .4, we have

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.14

Def.: Evaluation Function

& is called an evaluation function for an applicative structure
A = (D, Q) if for any assignments ¢ and ¢ into .4, we have

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.14

Def.: Evaluation Function

& is called an evaluation function for an applicative structure
A = (D, Q) if for any assignments ¢ and ¢ into .4, we have

() = E,(F)Q&,(A) for any F € wrff,_,3(X) and
A € wff,(X) and types « and (.

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.14

Def.: Evaluation Function

£ is called an evaluation function for an applicative structure
A = (D, Q) if for any assignments ¢ and ¢ into .4, we have

2. E,(FA) =E&,(F)Q&E,(A) for any F € wff,_.3(X) and
A € wif,(X) and types « and 3.

3. E,(A) =&y (A) for any type a and A € wff,(X), whenever ¢
and v coincide on FV(A).

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.14

Def.: Evaluation Function

£ is called an evaluation function for an applicative structure
A = (D, Q) if for any assignments ¢ and ¢ into .4, we have
2. E,(FA) =E&,(F)Q&E,(A) for any F € wff,_.3(X) and
A € wif,(X) and types « and 3.

3. E,(A) =&y (A) for any type a and A € wff,(X), whenever ¢
and v coincide on FV(A).

4. E,(A) = EL(Aly) forall A € wif, ().

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.14

Def.: > -Evaluation

We call 7 := (D, Q,) a X-evaluation if (D, @) is an applicative
structure and £ is an evaluation function for (D, @). We call
E,(Ay) € D, the denotation of A, in J for .

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.14

Def.: > -Evaluation

We call 7 := (D, @,) a ~-evaluation if (D, @) is an applicative
structure and £ is an evaluation function for (D, @). We call
E,(Ay) € D, the denotation of A, in J for .

Remark: since £ is a function, the denotation in 7 is unique.

However, for a given applicative structure A, there may be many
possible evaluation functions.

AOORN UNIVERSITAT
IS DES
5 SAARLANDES ATPHOL06-[5] — p.14

(©)Benzmiiller, 2006

Def.: > -Evaluation

We call 7 := (D, @,) a ~-evaluation if (D, @) is an applicative
structure and £ is an evaluation function for (D, @). We call
E,(Ay) € D, the denotation of A, in J for .

Remark: since £ is a function, the denotation in 7 is unique.

However, for a given applicative structure A, there may be many
possible evaluation functions.

If A is a closed formula, then £,(A) is independent of ¢, since

Free(A) = (). In these cases we sometimes drop the reference to ¢
from £,(A) and simply write £(A).

AOORN UNIVERSITAT
IS DES
5 SAARLANDES ATPHOL06-[5] — p.14

(©)Benzmiiller, 2006

Def.: Functional/Full/Standard > -Eval. _

We call a X-evaluation J := (D, @, £) functional [full, standard] if
the applicative structure (D, @) is functional [full, standard].

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.14

Def.: Functional/Full/Standard > -Eval. _

We call a X-evaluation J := (D, @, £) functional [full, standard] if
the applicative structure (D, @) is functional [full, standard].

We say J is a >-evaluation over a frame if (D, @) is a frame.

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.14

What is the Idea?

> -evaluations generalize > -evaluations over frames, which are the
basis for Henkin models, to the non-functional case.

N\ UNIVERSITAT
S

(©)Benzmiiller, 2006 SAARLANDES ATPHOL06-[5] — p.14-

What is the Idea?

> -evaluations generalize > -evaluations over frames, which are the
basis for Henkin models, to the non-functional case.

The existence of an evaluation function that meets the conditions
as presented seems to be the weakest situation where one would
like to speak of a model.

AOORN UNIVERSITAT
IS DES
5 SAARLANDES ATPHOL06-[5] — p.14

(©Benzmiiller, 2006

What is the Idea?

> -evaluations generalize > -evaluations over frames, which are the
basis for Henkin models, to the non-functional case.

The existence of an evaluation function that meets the conditions
as presented seems to be the weakest situation where one would
like to speak of a model.

We cannot in general assume the evaluation function is uniquely
determined by its values on constants as this requires functionality.

AOORN UNIVERSITAT
IS DES
5 SAARLANDES ATPHOL06-[5] — p.14

(©)Benzmiiller, 2006

What is the Idea?

> -evaluations generalize > -evaluations over frames, which are the
basis for Henkin models, to the non-functional case.

The existence of an evaluation function that meets the conditions
as presented seems to be the weakest situation where one would
like to speak of a model.

We cannot in general assume the evaluation function is uniquely
determined by its values on constants as this requires functionality.
Example: two evaluation functions £ and £’ on the same
applicative structure may agree on all constants, but give a different
value to the term (AX,.X).

AOORN UNIVERSITAT
IS DES
5 SAARLANDES ATPHOL06-[5] — p.14

(©)Benzmiiller, 2006

Lemma: 2 -Evaluations respect 5-Equality _

Let 7 := (D, @, £) be a X-evaluation and A=3B. For all
assignments ¢ into (D, @), we have

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.14

Lemma: 2 -Evaluations respect 5-Equality _

Let 7 := (D, @, £) be a X-evaluation and A=3B. For all
assignments ¢ into (D, @), we have

Ep(A) = = &4(B)

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.14

Lemma: 2 -Evaluations respect 5-Equality _

Let 7 := (D, @, £) be a X-evaluation and A=3B. For all
assignments ¢ into (D, @), we have

Eo(A) = E,(Alg) Ep(Blg) = Ep(B)

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.14

Lemma: 2 -Evaluations respect 5-Equality _

Let 7 := (D, @, £) be a X-evaluation and A=3B. For all
assignments ¢ into (D, @), we have

Eq(A) = E,(Aly) = E,(Bly) = £,(B)

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.14

Thm.: Substitution-Value Lemma

Let 7 .= (D, Q, &) be a -evaluation and ¢ be an assignment into
J.

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.14

Thm.: Substitution-Value Lemma

Let 7 .= (D, Q, &) be a -evaluation and ¢ be an assignment into
J. For any types a and 3, variables X3, and formulae A € wrf, (X)
and B € wff3(X), we have

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.14

Thm.: Substitution-Value Lemma

Let 7 .= (D, Q, &) be a -evaluation and ¢ be an assignment into
J. For any types a and 3, variables X3, and formulae A € wrf, (X)
and B € wff3(X), we have

Eoe.B) /x| (A) = EL(|B/X]A)

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.14

Prf.: Substitution-Value Lemma

Proof:

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.14

Prf.: Substitution-Value Lemma

Proof: Using the fact that £ respects -equality and the other
properties of £, we can compute

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.14

Prf.: Substitution-Value Lemma

Proof: Using the fact that £ respects -equality and the other
properties of £, we can compute

Eple.B)/X|(A) =

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.14

Prf.: Substitution-Value Lemma

Proof: Using the fact that £ respects -equality and the other
properties of £, we can compute

Eole,ByxI(A) = E,le,)/x(AXKA)X)

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.14

Prf.: Substitution-Value Lemma

Proof: Using the fact that £ respects -equality and the other
properties of £, we can compute

Eole,ByxI(A) = E,le,)/x(AXKA)X)
= &y le,B)/X|(AKA)QE, 1o (B)/x] (X)

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.14

Prf.: Substitution-Value Lemma

Proof: Using the fact that £ respects -equality and the other
properties of £, we can compute

Eole,ByxI(A) = E,le,)/x(AXKA)X)
= &y le,B)/X|(AKA)QE, 1o (B)/x] (X)
= £, (0\X.A)Q&,(B)

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.14

Prf.: Substitution-Value Lemma

Proof: Using the fact that £ respects -equality and the other
properties of £, we can compute

Eole,ByxI(A) = E,le,)/x(AXKA)X)
= &y e, (B)/X|(AKA)QE, 1o (B)/x](X)
= £, (0\X.A)Q&,(B)
— 5¢((AXA))

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.14

Prf.: Substitution-Value Lemma

Proof: Using the fact that £ respects -equality and the other
properties of £, we can compute

Eole.BX(A) = & e,)X ((AKA)X)
= o le,B)/X|AKA)AE, e (B)/x] (X)
= £, (0\X.A)Q&,(B)
— 5¢((AXA))
= &y([B/X]A).

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.14

Weaker Notions of Functionality

We will consider two weaker notions of functionality. These forms
are often discussed in the literature (cf. [HindleySeldin86]).

AOORN UNIVERSITAT
mmﬁ‘ﬁu,mwﬁ DES
24 SAARLANDES ATPHOL06-[5] — p.14

(©)Benzmiiller, 2006

Weaker Notions of Functionality

We will consider two weaker notions of functionality. These forms
are often discussed in the literature (cf. [HindleySeldin86]).

n-functionality simply means the evaluation respects
n-conversion.

AOORN UNIVERSITAT
mmﬁ‘ﬁu,mwﬁ DES
24 SAARLANDES ATPHOL06-[5] — p.14

(©)Benzmiiller, 2006

Weaker Notions of Functionality

We will consider two weaker notions of functionality. These forms
are often discussed in the literature (cf. [HindleySeldin86]).

n-functionality simply means the evaluation respects
n-conversion.

¢-functionality means we have functionality (only) with respect
to A-abstractions.

AOORN UNIVERSITAT
mmﬁlﬁu‘mm DES
=5 SAARLANDES ATPHOL06-[5] - p.14

(©)Benzmiiller, 2006

Def.: n-Functional

Let 7 = (D, @,) be a X-evaluation.

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.14

Def.: n-Functional

Let 7 = (D, @,) be a X-evaluation.
We say 7 is n-functional if

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.14

Def.: n-Functional

Let 7 = (D, @,) be a X-evaluation.
We say 7 is n-functional if

Ep(A) = Ep(Alg,)

for any type «, formula A € wff,(X), and assignment ¢.

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.14

Def.: £-Functional

Let 7 = (D, @,) be a X-evaluation.

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.15

Def.: £-Functional

Let 7 = (D, @,) be a X-evaluation. We say J is ¢-functional if

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.15

Def.: £-Functional

Let 7 = (D, @,) be a X-evaluation. We say J is ¢-functional if
forall o, 3 € 7, M, N € wifg(X), assignments ¢, and variables X,,

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.15

Def.: £-Functional

Let 7 = (D, @,) be a X-evaluation. We say J is ¢-functional if
forall o, 3 € 7, M, N € wifg(X), assignments ¢, and variables X,,

Eo(AXawMp) = E,(AXaeNp)

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.15

Def.: £-Functional

Let 7 = (D, @,) be a X-evaluation. We say J is ¢-functional if
forall o, 3 € 7, M, N € wifg(X), assignments ¢, and variables X,,

Eo(MKaeMg) = E,(AX0eN)

whenever
Epla/x] (M) = &, 12/x7(N)

for every a € D,,.

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.15

Lemma: Functionality and 7

Let 7 .= (D, @, &) be a functional X-evaluation.

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.15

Lemma: Functionality and 7

Let 7 .= (D, @, &) be a functional X-evaluation.

1. For any assignment ¢ into J and F € wff,_.3(X) where
Xao ¢ Free(F), we have

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.15

Lemma: Functionality and 7

Let 7 .= (D, @, &) be a functional X-evaluation.

1. For any assignment ¢ into J and F € wff,_.3(X) where
Xao ¢ Free(F), we have

E, (MK FX) = E,(F)

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.15

Lemma: Functionality and 7

Let 7 .= (D, @, &) be a functional X-evaluation.
1. For any assignment ¢ into J and F € wff,_.3(X) where
Xao ¢ Free(F), we have

E, (MK FX) = E,(F)

2. If a formula A n-reduces to B in one step, then for any
assignment ¢ into 7, we have

A55PN UNIVERSITAT
mm%ﬂéﬁm DES
24 SAARLANDES ATPHOL06-[5] - p.15

(©)Benzmiiller, 2006

Lemma: Functionality and 7

Let 7 .= (D, @, &) be a functional X-evaluation.
1. For any assignment ¢ into J and F € wff,_.3(X) where
Xao ¢ Free(F), we have

E, (MK FX) = E,(F)

2. If a formula A n-reduces to B in one step, then for any
assignment ¢ into 7, we have

A55PN UNIVERSITAT
mm%ﬂéﬁm DES
24 SAARLANDES ATPHOL06-[5] - p.15

(©)Benzmiiller, 2006

Lemma: Functionality and 7

Let 7 .= (D, @, &) be a functional X-evaluation.

1. For any assignment ¢ into J and F € wff,_.3(X) where
Xao ¢ Free(F), we have

E, (MK FX) = E,(F)

2. If a formula A n-reduces to B in one step, then for any
assignment ¢ into 7, we have

Proof: Exercise

A55PN UNIVERSITAT
mm%ﬂéﬁm DES
24 SAARLANDES ATPHOL06-[5] - p.15

(©)Benzmiiller, 2006

Lemma: Functionality and n+¢

Let 7 .= (D, @, &) be a X-evaluation.

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.15

Lemma: Functionality and n+¢

Let 7 := (D, @,) be a L-evaluation. Then 7 is functional iff it is
both n-functional and £-functional.

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.15

Lemma: Functionality and n+¢

Let 7 := (D, @,) be a L-evaluation. Then 7 is functional iff it is
both n-functional and £-functional.

Proof: Exercise

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.15

Logical Constants in Signature

Let X := (V,C) be a signature.

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.15

Logical Constants in Signature

Let X := (V,C) be a signature.

The following logical constants may or may not be in the set C of
constants:

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.15

Logical Constants in Signature

Let X := (V,C) be a signature.

The following logical constants may or may not be in the set C of
constants:

To; J—o» 100 vooo; /\0007 o005 <000

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.15

Logical Constants in Signature

Let X := (V,C) be a signature.

The following logical constants may or may not be in the set C of
constants:

Tm J—o» 100 vooo; /\0007 o005 <000

n§<oa)(|_|a|:oa ~ VXQFX), Z§<0a)(ZaFoa ~ ElXaFX)

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.15

Logical Constants in Signature

Let X := (V,C) be a signature.

The following logical constants may or may not be in the set C of
constants:

Tm J—o» 100 vooo; /\0007 o005 <000

n§<oa)(|_|a|:oa ~ VXQFX), Z§<0a)(ZaFoa ~ ElXaFX)

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.15

Logical Constants in Signature

Let X := (V,C) be a signature.

The following logical constants may or may not be in the set C of
constants:

Tm J—o» 100 vooo; /\0007 o005 <000

n§<oa)(|_|a|:oa ~ VXQFX), Z§<0a)(ZaFoa ~ ElXaFX)

forall o € T

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.15

Once More: Cantor’s Theorem

For any set A,

Al <IP(A)

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.15

Once More: Cantor’s Theorem

For any set A,

Al <IP(A)

i.e., -dg : A — P(A) with g surjective.

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.15

Once More: Cantor’s Theorem

Assume the set A is associated with ..

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.15

Once More: Cantor’s Theorem

Assume the set A is associated with .. Then P(A) has type o, i.e.
the type of "sets" (or characteristic functions) over «.

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.15

Once More: Cantor’s Theorem

Assume the set A is associated with .. Then P(A) has type o, i.e.
the type of "sets" (or characteristic functions) over «.

Do,

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.15

Once More: Cantor’s Theorem

Assume the set A is associated with .. Then P(A) has type o, i.e.
the type of "sets" (or characteristic functions) over «.

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.15

Once More: Cantor’s Theorem

Assume the set A is associated with .. Then P(A) has type o, i.e.
the type of "sets" (or characteristic functions) over «.

D,, = DY
— {J—vT}DL

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.15

Once More: Cantor’s Theorem

Assume the set A is associated with .. Then P(A) has type o, i.e.
the type of "sets" (or characteristic functions) over «.

D,, = DY
— {J—vT}DL
= {f|f:D, - {L, T}}

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.15

Once More: Cantor’s Theorem

Assume the set A is associated with .. Then P(A) has type o, i.e.
the type of "sets" (or characteristic functions) over «.

D,, = D2

_ (1, TD
{flf:D, = {L, T}}
{X|XCcD, }

10

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.15

Once More: Cantor’s Theorem

Assume the set A is associated with .. Then P(A) has type o, i.e.
the type of "sets" (or characteristic functions) over «.

Do, = Dg"

_ {J_)T}DL
{flf:D, = {L, T}}
{X|XCD }
= P(D.)

10

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.15

X
@)
=

N
v.

Once More: Cantor’s Theorem

We can now formulate Cantor’s Theorem with typed terms (as seen
before):

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.15

X
@)
=

N
v.

Once More: Cantor’s Theorem

We can now formulate Cantor’s Theorem with typed terms (as seen
before):

—3go, Vo, X, : gx = f

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.15

X
@)
=

N
v.

Once More: Cantor’s Theorem

We can now formulate Cantor’s Theorem with typed terms (as seen
before):

—3go, Vo, X, : gx = f

which is shorthand for:

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.15

X
@)
=

N
v.

Once More: Cantor’s Theorem

We can now formulate Cantor’s Theorem with typed terms (as seen
before):

—3go, Vo, X, : gx = f

which is shorthand for:

oo Z{o(on (Aou Mifaton) (Mot Tior) (W fonen) @)))

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.15

N
v.

Once More: Cantor’s Theorem

We can now formulate Cantor’s Theorem with typed terms (as seen
before):

—3go, Vo, X, : gx = f

which is shorthand for:

oo Tlor) (Mo Meloton) (MorTogan (M- =fonyon @)

Note: for this term to be in the set cwff, (X), the constants
150, Zgzg (010))’ I‘Igzo(m)), >“ and =° have to be in the set C.

(©)Benzmiiller, 2006 " SAARLANDES ATPHOL06-[5] — p.15!

Once More: Cantor’s Theorem

Proof:

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.15

Once More: Cantor’s Theorem

Proof: Assume such a function g exists.

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.15

Once More: Cantor’s Theorem

Proof: Assume such a function g exists.
Let f = {x | x &€ gx} that is f = (\x,.—gxx).

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.15

Once More: Cantor’s Theorem

Proof: Assume such a function g exists.
Let f = {x | x € gx} thatis f = (\x,.—gxx).
g IS surjective,

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.15

Once More: Cantor’s Theorem

Proof: Assume such a function g exists.
Let f = {x | x € gx} thatis f = (\x,.—gxx).
g IS surjective, hence

(Jy. : gy = [Ax.—gxx])

(©Benzmiiller, 2006

ATPHOL06-[5] — p.15

Once More: Cantor’s Theorem

Proof: Assume such a function g exists.
Let f = {x | x € gx} thatis f = (\x,.—gxx).
g IS surjective, hence

(Jy. : gy = [Ax.—gxx])

hence
(gyy < —gyy)

(©Benzmiiller, 2006

ATPHOL06-[5] — p.15

Once More: Cantor’s Theorem

Proof: Assume such a function g exists.
Let f = {x | x € gx} thatis f = (\x,.—gxx).
g IS surjective, hence

(Jy. : gy = [Ax.—gxx])

hence
(gyy < —gyy)

Contradiction!

(©Benzmiiller, 2006

ATPHOL06-[5] — p.15

Once More: Cantor’s Theorem

Proof: Assume such a function g exists.
Let f = {x | x € gx} thatis f = (\x,.—gxx).
g IS surjective, hence

(Jy. : gy = [Ax.—gxx])

hence
(gyy < —gyy)

Contradiction!

Note that the proof uses —.

(©)Benzmiiller, 2006 ATPHOL06-[5] — p.15

X
O
—

Semantics: > -Models

e UNIVERSITAT
jlislijp DES

(©)Benzmiiller, 2006 ‘x5 SAARLANDES ATPHOL06-[6] — p.15

Def.: Properties of Logical Constants

Let (D, @) be an applicative structure and letv: D, — {T,F} be a
function (for given T # F).

(©)Benzmiiller, 2006 ATPHOL06-[6] — p.15

Def.: Properties of Logical Constants

Let (D, @) be an applicative structure and letv: D, — {T,F} be a
function (for given T # F). For each logical constant c3 and for
a € Dg, we define the proposition £.(()a) with respect to v:

A55PN UNIVERSITAT

(© Benzmiiller, 2006 &Y SAARLANDES ATPHOL06-[6] — p.15!

Def.: Properties of Logical Constants

Let (D, @) be an applicative structure and letv: D, — {T,F} be a
function (for given T # F). For each logical constant c3 and for
a € Dg, we define the proposition £.(()a) with respect to v:

A55PN UNIVERSITAT

(© Benzmiiller, 2006 &Y SAARLANDES ATPHOL06-[6] — p.15!

Def.: Properties of Logical Constants

Let (D, @) be an applicative structure and letv: D, — {T,F} be a
function (for given T # F). For each logical constant c3 and for
a € Dg, we define the proposition £.(()a) with respect to v:

A55PN UNIVERSITAT

(© Benzmiiller, 2006 &Y SAARLANDES ATPHOL06-[6] — p.15!

Def.: Properties of Logical Constants

Let (D, @) be an applicative structure and letv: D, — {T,F} be a
function (for given T # F). For each logical constant c3 and for
a € Dg, we define the proposition £.(()a) with respect to v:

C 6] £.(()a) holds when

A55PN UNIVERSITAT

(© Benzmiiller, 2006 &Y SAARLANDES ATPHOL06-[6] — p.15!

Def.: Properties of Logical Constants

Let (D, @) be an applicative structure and letv: D, — {T,F} be a
function (for given T # F). For each logical constant c3 and for
a € Dg, we define the proposition £.(()a) with respect to v:

C 6] £.(()a) holds when

A55PN UNIVERSITAT

(© Benzmiiller, 2006 &Y SAARLANDES ATPHOL06-[6] — p.15!

Def.: Properties of Logical Constants

Let (D, @) be an applicative structure and letv: D, — {T,F} be a
function (for given T # F). For each logical constant c3 and for
a € Dg, we define the proposition £.(()a) with respect to v:

C 6] £.(()a) holds when

A55PN UNIVERSITAT

(© Benzmiiller, 2006 &Y SAARLANDES ATPHOL06-[6] — p.15!

Def.: Properties of Logical Constants

Let (D, @) be an applicative structure and letv: D, — {T,F} be a
function (for given T # F). For each logical constant c3 and for
a € Dg, we define the proposition £.(()a) with respect to v:

C 6] £.(()a) holds when

T o v(ia) =T

A55PN UNIVERSITAT

(© Benzmiiller, 2006 &Y SAARLANDES ATPHOL06-[6] — p.15!

Def.: Properties of Logical Constants

Let (D, @) be an applicative structure and letv: D, — {T,F} be a
function (for given T # F). For each logical constant c3 and for
a € Dg, we define the proposition £.(()a) with respect to v:

C 6] £.(()a) holds when

_|
o

v(ia) =T

A55PN UNIVERSITAT

(© Benzmiiller, 2006 &Y SAARLANDES ATPHOL06-[6] — p.15!

Def.: Properties of Logical Constants

Let (D, @) be an applicative structure and letv: D, — {T,F} be a
function (for given T # F). For each logical constant c3 and for
a € Dg, we define the proposition £.(()a) with respect to v:

C 6] £.(()a) holds when
T o v(ia) =T
L o

A55PN UNIVERSITAT

(© Benzmiiller, 2006 &Y SAARLANDES ATPHOL06-[6] — p.15!

Def.: Properties of Logical Constants

Let (D, @) be an applicative structure and letv: D, — {T,F} be a
function (for given T # F). For each logical constant c3 and for
a € Dg, we define the proposition £.(()a) with respect to v:

C 16, £.(()a) holds when
T o v(ia) =T
1 o v(a) =F

A55PN UNIVERSITAT

(© Benzmiiller, 2006 &Y SAARLANDES ATPHOL06-[6] — p.15!

Def.: Properties of Logical Constants

Let (D, @) be an applicative structure and letv: D, — {T,F} be a
function (for given T # F). For each logical constant c3 and for
a € Dg, we define the proposition £.(()a) with respect to v:

C 16, £.(()a) holds when
T o v(ia) =T
1 o v(a) =F

]

A55PN UNIVERSITAT

(© Benzmiiller, 2006 &Y SAARLANDES ATPHOL06-[6] — p.15!

Def.: Properties of Logical Constants

Let (D, @) be an applicative structure and letv: D, — {T,F} be a
function (for given T # F). For each logical constant c3 and for
a € Dg, we define the proposition £.(()a) with respect to v:

C ¢ £c(()a) holds when
T o v(ia) =T

1 o v(a) =F

= 00

A55PN UNIVERSITAT

(© Benzmiiller, 2006 &Y SAARLANDES ATPHOL06-[6] — p.15!

Def.: Properties of Logical Constants

Let (D, @) be an applicative structure and letv: D, — {T,F} be a
function (for given T # F). For each logical constant c3 and for
a € Dg, we define the proposition £.(()a) with respect to v:

C ¢ £c(()a) holds when

T o v(ia) =T

1 o v(a) =F

- 00 v(a@b) =T iff v(b) =F Vb € D,

A55PN UNIVERSITAT
E2S) SAARLANDES ATPHOL06-[6] — p.15!

(©Benzmiiller, 2006

Def.: Properties of Logical Constants

Let (D, @) be an applicative structure and letv: D, — {T,F} be a
function (for given T # F). For each logical constant c3 and for
a € Dg, we define the proposition £.(()a) with respect to v:

C ¢ £c(()a) holds when

T o v(ia) =T

1 o v(a) =F
00 v(a@b) =T iff v(b) =F Vb € D,
000

A55PN UNIVERSITAT

(©Benzmiiller, 2006 215V SAARLANDES ATPHOL06-[6] — p.15!

Def.: Properties of Logical Constants

Let (D, @) be an applicative structure and letv: D, — {T,F} be a
function (for given T # F). For each logical constant c3 and for
a € Dg, we define the proposition £.(()a) with respect to v:

C ¢ £c(()a) holds when
T o v(ia) =T
1 o v(a) =F
00 v(a@b) =T iff v(b) =F Vb € D,
000 v(a@b@c) =T iff v(b) =T or v(c) =T Vb,c € D,

A55PN UNIVERSITAT
E2S) SAARLANDES ATPHOL06-[6] — p.15!

(©Benzmiiller, 2006

Def.: Properties of Logical Constants

Let (D, @) be an applicative structure and letv: D, — {T,F} be a
function (for given T # F). For each logical constant c3 and for
a € Dg, we define the proposition £.(()a) with respect to v:

C ¢ £c(()a) holds when
T o v(ia) =T
1 o v(a) =F
00 v(a@b) =T iff v(b) =F Vb € D,
000 v(a@b@c) =T iff v(b) =T or v(c) =T Vb,c € D,

A55PN UNIVERSITAT
E2S) SAARLANDES ATPHOL06-[6] — p.15!

(©Benzmiiller, 2006

Def.: Properties of Logical Constants

Let (D, @) be an applicative structure and letv: D, — {T,F} be a
function (for given T # F). For each logical constant c3 and for
a € Dg, we define the proposition £.(()a) with respect to v:

C ¢ £c(()a) holds when

T o v(ia) =T

1 o v(a) =F

- 00 v(a@b) =T iff v(b) =F Vb € D,

v 000 v(a@b@c) =T iff v(b) =T or v(c) =T Vb,c € D,
N

A55PN UNIVERSITAT
E2S) SAARLANDES ATPHOL06-[6] — p.15!

(©Benzmiiller, 2006

Def.: Properties of Logical Constants

Let (D, @) be an applicative structure and letv: D, — {T,F} be a
function (for given T # F). For each logical constant c3 and for
a € Dg, we define the proposition £.(()a) with respect to v:

C ¢ £c(()a) holds when

T o v(ia) =T

1 o v(a) =F

- 00 v(a@b) =T iff v(b) =F Vb € D,

v 000 v(a@b@c) =T iff v(b) =T or v(c) =T Vb,c € D,
A 000

&SP UNIVERSITAT

i u:m DES

(©Benzmiiller, 2006 215V SAARLANDES ATPHOL06-[6] — p.15!

Def.: Properties of Logical Constants

Let (D, @) be an applicative structure and letv: D, — {T,F} be a
function (for given T # F). For each logical constant c3 and for
a € Dg, we define the proposition £.(()a) with respect to v:

C 16 £c(()a) holds when

T o) v(ia) =T

L o) v(a) =F

- 00 v(a@b) =T iff v(b) =F Vb € D,

\Y% 000 v(a@b@Qc) =T iff v(b) =T or v(c) =T Vb,c € D,
A 000 v(a@b@c) =T iff v(b)=T and v(c) =T Vb,c € D,

(©Benzmiiller, 2006

&SP UNIVERSITAT

.u

L DES

ATPHOL06-[6] — p.15!

Def.: Properties of Logical Constants

Let (D, @) be an applicative structure and letv: D, — {T,F} be a
function (for given T # F). For each logical constant c3 and for
a € Dg, we define the proposition £.(()a) with respect to v:

C 16 £c(()a) holds when

T o) v(ia) =T

L o) v(a) =F

- 00 v(a@b) =T iff v(b) =F Vb € D,

\Y% 000 v(a@b@Qc) =T iff v(b) =T or v(c) =T Vb,c € D,
A 000 v(a@b@c) =T iff v(b)=T and v(c) =T Vb,c € D,
D)

(©Benzmiiller, 2006

&SP UNIVERSITAT

lilip oes

ATPHOL06-[6] — p.15!

Def.: Properties of Logical Constants

Let (D, @) be an applicative structure and letv: D, — {T,F} be a
function (for given T # F). For each logical constant c3 and for
a € Dg, we define the proposition £.(()a) with respect to v:

C 16 £c(()a) holds when

T o) v(ia) =T

L o) v(a) =F

- 00 v(a@b) =T iff v(b) =F Vb € D,

\Y% 000 v(a@b@Qc) =T iff v(b) =T or v(c) =T Vb,c € D,
A 000 v(a@b@c) =T iff v(b)=T and v(c) =T Vb,c € D,
D) 000

(©Benzmiiller, 2006

&SP UNIVERSITAT

lilip oes

ATPHOL06-[6] — p.15!

Def.: Properties of Logical Constants

Let (D, @) be an applicative structure and letv: D, — {T,F} be a
function (for given T # F). For each logical constant c3 and for
a € Dg, we define the proposition £.(()a) with respect to v:

C 16 £c(()a) holds when

T o) v(ia) =T

L o) v(a) =F

- 00 v(a@b) =T iff v(b) =F Vb € D,

\Y% 000 v(a@b@Qc) =T iff v(b) =T or v(c) =T Vb,c € D,
A 000 v(a@b@c) =T iff v(b)=T and v(c) =T Vb,c € D,
D 000 v(a@b@c) =T iff v(b)=F or v(c) =T Vb,c € D,

(©Benzmiiller, 2006

ATPHOL06-[6] — p.15!

Def.: Properties of Logical Constants

Let (D, @) be an applicative structure and letv: D, — {T,F} be a
function (for given T # F). For each logical constant c3 and for
a € Dg, we define the proposition £.(()a) with respect to v:

C 16 £c(()a) holds when

T o) v(ia) =T

L o) v(a) =F

- 00 v(a@b) =T iff v(b) =F Vb € D,

\Y% 000 v(a@b@Qc) =T iff v(b) =T or v(c) =T Vb,c € D,
A 000 v(a@b@c) =T iff v(b)=T and v(c) =T Vb,c € D,
D 000 v(a@b@c) =T iff v(b)=F or v(c) =T Vb,c € D,
=

(©Benzmiiller, 2006

ATPHOL06-[6] — p.15!

Def.: Properties of Logical Constants

Let (D, @) be an applicative structure and letv: D, — {T,F} be a
function (for given T # F). For each logical constant c3 and for
a € Dg, we define the proposition £.(()a) with respect to v:

C 16 £c(()a) holds when

T o) v(ia) =T

L o) v(a) =F

- 00 v(a@b) =T iff v(b) =F Vb € D,

\Y% 000 v(a@b@Qc) =T iff v(b) =T or v(c) =T Vb,c € D,
A 000 v(a@b@c) =T iff v(b)=T and v(c) =T Vb,c € D,
D 000 v(a@b@c) =T iff v(b)=F or v(c) =T Vb,c € D,
&= 000

(©Benzmiiller, 2006

. SAARLANDES ATPHOL06-[6] — p.15!

Def.: Properties of Logical Constants

Let (D, @) be an applicative structure and letv: D, — {T,F} be a
function (for given T # F). For each logical constant c3 and for
a € Dg, we define the proposition £.(()a) with respect to v:

C 16 £c(()a) holds when

T o) v(ia) =T

L o) v(a) =F

- 00 v(a@b) =T iff v(b) =F Vb € D,

V 000 v(a@b@c) =T iff v(b) =T or v(c) =T Vb,c € D,
A 000 v(a@b@c) =T iff v(b)=T and v(c) =T Vb,c € D,
D 000 v(a@b@c) =T iff v(b)=F or v(c) =T Vb,c € D,
& 000 v(a@b@c) =T iff v(b) =v(c) Vb,c € D,

(©Benzmiiller, 2006) SAARLANDES ATPHOL06-[6] — p.15!

Def.: Properties of Logical Constants

Let (D, @) be an applicative structure and letv: D, — {T,F} be a
function (for given T # F). For each logical constant c3 and for
a € Dg, we define the proposition £.(()a) with respect to v:

C 16 £c(()a) holds when

T o) v(ia) =T

L o) v(a) =F

- 00 v(a@b) =T iff v(b) =F Vb € D,

V 000 v(a@b@c) =T iff v(b) =T or v(c) =T Vb,c € D,
A 000 v(a@b@c) =T iff v(b)=T and v(c) =T Vb,c € D,
D 000 v(a@b@c) =T iff v(b)=F or v(c) =T Vb,c € D,
& 000 v(a@b@c) =T iff v(b) =v(c) Vb,c € D,

(©Benzmiiller, 2006) SAARLANDES ATPHOL06-[6] — p.15!

Def.: Properties of Logical Constants

Let (D, @) be an applicative structure and letv: D, — {T,F} be a
function (for given T # F). For each logical constant c3 and for
a € Dg, we define the proposition £.(()a) with respect to v:

C 16 £c(()a) holds when

T o) v(ia) =T

L o) v(a) =F

- 00 v(a@b) =T iff v(b) =F Vb € D,

V 000 v(a@b@c) =T iff v(b) =T or v(c) =T Vb,c € D,
A 000 v(a@b@c) =T iff v(b)=T and v(c) =T Vb,c € D,
D 000 v(a@b@c) =T iff v(b)=F or v(c) =T Vb,c € D,
& 000 v(a@b@c) =T iff v(b) =v(c) Vb,c € D,

= oa

(©Benzmiiller, 2006

ATPHOL06-[6] — p.15!

Def.: Properties of Logical Constants

Let (D, @) be an applicative structure and letv: D, — {T,F} be a
function (for given T # F). For each logical constant c3 and for
a € Dg, we define the proposition £.(()a) with respect to v:

C 16 £c(()a) holds when

T o) v(ia) =T

L o) v(a) =F

- 00 v(a@b) =T iff v(b) =F Vb € D,

V 000 v(a@b@c) =T iff v(b) =T or v(c) =T Vb,c € D,
A 000 v(a@b@c) =T iff v(b)=T and v(c) =T Vb,c € D,
D 000 v(a@b@c) =T iff v(b)=F or v(c) =T Vb,c € D,
& 000 v(a@b@c) =T iff v(b) =v(c) Vb,c € D,

= o v(a@b@c) =T iff b=c Vb,ce D,

(©Benzmiiller, 2006

ATPHOL06-[6] — p.15!

Def.: Properties of Logical Constants

Let (D, @) be an applicative structure and letv: D, — {T,F} be a
function (for given T # F). For each logical constant c3 and for
a € Dg, we define the proposition £.(()a) with respect to v:

C 16 £c(()a) holds when

T o) v(ia) =T

L o) v(a) =F

- 00 v(a@b) =T iff v(b) =F Vb € D,

V 000 v(a@b@c) =T iff v(b) =T or v(c) =T Vb,c € D,
A 000 v(a@b@c) =T iff v(b)=T and v(c) =T Vb,c € D,
D 000 v(a@b@c) =T iff v(b)=F or v(c) =T Vb,c € D,
& 000 v(a@b@c) =T iff v(b) =v(c) Vb,c € D,

= o v(a@b@c) =T iff b=c Vb,ce D,

e

(©Benzmiiller, 2006

ATPHOL06-[6] — p.15!

Def.: Properties of Logical Constants

Let (D, @) be an applicative structure and letv: D, — {T,F} be a
function (for given T # F). For each logical constant c3 and for
a € Dg, we define the proposition £.(()a) with respect to v:

C 16 £c(()a) holds when

T o) v(ia) =T

L o) v(a) =F

- 00 v(a@b) =T iff v(b) =F Vb € D,

V 000 v(a@b@c) =T iff v(b) =T or v(c) =T Vb,c € D,
A 000 v(a@b@c) =T iff v(b)=T and v(c) =T Vb,c € D,
D 000 v(a@b@c) =T iff v(b)=F or v(c) =T Vb,c € D,
& 000 v(a@b@c) =T iff v(b) =v(c) Vb,c € D,

= o v(a@b@c) =T iff b=c Vb,ce D,

e o(oq)

(©Benzmiiller, 2006

ATPHOL06-[6] — p.15!

Def.: Properties of Logical Constants

Let (D, @) be an applicative structure and letv: D, — {T,F} be a
function (for given T # F). For each logical constant c3 and for
a € Dg, we define the proposition £.(()a) with respect to v:

C 16 £c(()a) holds when

T o) v(ia) =T

L o) v(a) =F

- 00 v(a@b) =T iff v(b) =F Vb € D,

V 000 v(a@b@c) =T iff v(b) =T or v(c) =T Vb, c € Ds
A 000 v(a@b@c) =T iff v(b)=T and v(c) =T Vb,c € D,
D 000 v(a@b@c) =T iff v(b)=F or v(c) =T Vb,c € D,
& 000 v(a@b@c) =T iff v(b) =v(c) Vb,c € D,

= o v(a@b@c) =T iff b=c Vb,ce D,

e o(oa) v(a@f) =T iff Vb € Dy : v(f@b) =T Vf € Don

(©Benzmiiller, 2006

i}

%‘b@é ()

""' DES

UNIVERSITAT
SAARLANDES

ATPHOL06-[6] — p.15!

Def.: Properties of Logical Constants

Let (D, @) be an applicative structure and letv: D, — {T,F} be a
function (for given T # F). For each logical constant c3 and for
a € Dg, we define the proposition £.(()a) with respect to v:

C B £c(()a) holds when

T o v(ia) =T

1 o v(a) =F

- 00 v(a@b) =T iff v(b) =F Vb € D,

v 000 v(a@b@c) =T iff v(b) =T or v(c) =T Vb,c € D,
A 000 v(a@b@c) =T iff v(b) =T and v(c) =T Vb,c € D,
D 000 v(a@b@c) =T iff v(b) =F or v(c) =T Vb,c € D,
& 000 v(a@b@c) =T iff v(b) =v(c) Vb,c € Dq

=% | oa« v(a@b@c) =T iff b=c Vb,c e D,

N | o(ow) v(a@f) =T iff Vb € Dy : v(f@b) =T Vf € Doq
yo

A55PN UNIVERSITAT
ot E‘..d‘::“% mu"l D E S
“=5) SAARLANDES ATPHOL06-[6] — p.15!

(©Benzmiiller, 2006

Def.: Properties of Logical Constants

Let (D, @) be an applicative structure and letv: D, — {T,F} be a
function (for given T # F). For each logical constant c3 and for
a € Dg, we define the proposition £.(()a) with respect to v:

C 16 £c(()a) holds when

T o) v(ia) =T

L o) v(a) =F

- 00 v(a@b) =T iff v(b) =F Vb € D,

V 000 v(a@b@c) =T iff v(b) =T or v(c) =T Vb,c € Dq
A 000 v(a@b@c) =T iff v(b) =T and v(c) =T Vb,c € D,
D 000 v(a@b@c) =T iff v(b) =F or v(c) =T Vb,c € D,
& 000 v(a@b@c) =T iff v(b) =v(c) Vb,c € D,

=% | oa« v(a@b@Q@c) =T iff b=c Vb,c e D,

N® | o(oa) | v(a@f) =T iff Vb € Dy @ v(f@b) =T Vf € Don
> | o(ow)

A55PN UNIVERSITAT
ot E‘..d‘::“% mu"l D E S
“=5) SAARLANDES ATPHOL06-[6] — p.15!

(©Benzmiiller, 2006

Def.: Properties of Logical Constants

Let (D, @) be an applicative structure and letv: D, — {T,F} be a
function (for given T # F). For each logical constant c3 and for
a € Dg, we define the proposition £.(()a) with respect to v:

C 16 £c(()a) holds when

T o) v(ia) =T

L o) v(a) =F

- 00 v(a@b) =T iff v(b) =F Vb € D,

V 000 v(a@b@c) =T iff v(b) =T or v(c) =T Vb,c € Dq
A 000 v(a@b@c) =T iff v(b) =T and v(c) =T Vb,c € D,
D 000 v(a@b@c) =T iff v(b) =F or v(c) =T Vb,c € D,
& 000 v(a@b@c) =T iff v(b) =v(c) Vb,c € D,

=% | oa« v(a@b@Q@c) =T iff b=c Vb,c e D,

N® | o(oa) | v(a@f) =T iff Vb € Dy @ v(f@b) =T Vf € Don
Y* | o(oa) | v(a@f) =T iff 3b € Dy @ v(f@b) =T Vf € Doq

(©Benzmiiller, 2006) SAARLANDES ATPHOL06-[6] — p.15!

Def.: 2 -Valuation

Let 7 := (D,@, &) be a -evaluationand v : D, — {T,F}.

(©)Benzmiiller, 2006 ATPHOL06-[6] — p.16

=
@)
=

Def.: > -Valuation &

Let 7 := (D, @, &) be a X-evaluation and v : D, — {T,F}. We say

v is a X-valuation w.r.t 7 if

(©)Benzmiiller, 2006 ATPHOL06-[6] — p.16

Def.: 2 -Valuation

Let 7 := (D, @, &) be a X-evaluation and v : D, — {T,F}. We say
v is a X-valuation w.rt 7 if £.((£(c))) holds w.r.t v for each logical

constantc € ..

(©)Benzmiiller, 2006 ATPHOL06-[6] — p.16

Def.: > -Model

Let 7 := (D, @,) be a X-evaluation and letv: D, — {T,F} be a
2 -valuation w.r.t 7

(©)Benzmiiller, 2006 ATPHOL06-[6] — p.16

Def.: > -Model

Let 7 := (D, @,) be a X-evaluation and letv: D, — {T,F} be a
2 -valuation w.r.t 7

We say M = (D, @, £,v) is a X-model.

(©)Benzmiiller, 2006 ATPHOL06-[6] — p.16

Def.: > -Model

Let 7 := (D, @,) be a X-evaluation and letv: D, — {T,F} be a
2 -valuation w.r.t 7

We say M = (D, @, £,v) is a X-model.

If (D, @, &) is functional (full, standard), we say M is functional (full,
standard).

(©)Benzmiiller, 2006 ATPHOL06-[6] — p.16

Def.: > -Model

Let 7 := (D, @,) be a X-evaluation and letv: D, — {T,F} be a
2 -valuation w.r.t 7

We say M = (D, @, £,v) is a X-model.

If (D, @, &) is functional (full, standard), we say M is functional (full,
standard).

If (D, @, &) is n-functional, we say M is n-functional.

(©)Benzmiiller, 2006 ATPHOL06-[6] — p.16

Def.: > -Model

Let 7 := (D, @,) be a X-evaluation and letv: D, — {T,F} be a
2 -valuation w.r.t 7

We say M = (D, @, £,v) is a X-model.

If (D, @, &) is functional (full, standard), we say M is functional (full,
standard).

If (D, @, &) is n-functional, we say M is n-functional.

If (D, @, &) is &-functional, we say M is £-functional.

(©)Benzmiiller, 2006 ATPHOL06-[6] — p.16

Some Conventions: Equality

Some important conventions:

= denotes primitive equality

(©)Benzmiiller, 2006 ATPHOL06-[6] — p.16

Some Conventions: Equality

Some important conventions:
= denotes primitive equality
= denotes Leibniz equality: A, = B, := VPy..(PA) = (PB)

(©)Benzmiiller, 2006 ATPHOL06-[6] — p.16

Some Conventions: Equality

Some important conventions:
= denotes primitive equality
= denotes Leibniz equality: A, = B, := VPy..(PA) = (PB)

= ... other definition of equality (e.g., see [Andrews02])

(©)Benzmiiller, 2006 ATPHOL06-[6] — p.16

Some Conventions: Equality

Some important conventions:
= denotes primitive equality
= denotes Leibniz equality: A, = B, := VPy..(PA) = (PB)

= ... other definition of equality (e.g., see [Andrews02])

We use = in the following to refer to any of the above

(©)Benzmiiller, 2006 ATPHOL06-[6] — p.16

Def.: Properties f. b, 7, £

Let M = (D, @, &,v) be aC-model. We say, M has property

(©)Benzmiiller, 2006 ATPHOL06-[6] — p.16

Def.: Properties f. b, 7, £

Let M = (D, @, &,v) be aC-model. We say, M has property

n if M is np-functional (respectively (D, @, £) is n-functional)

(©)Benzmiiller, 2006 ATPHOL06-[6] — p.16

Def.: Properties f. b, 7, £

Let M = (D, @, &,v) be aC-model. We say, M has property
n if M is np-functional (respectively (D, @, £) is n-functional)

¢ if M is &-functional (respectively (D, @, £) is &-functional)

A55PN UNIVERSITAT

(©Benzmiiller, 2006 215V SAARLANDES ATPHOL06-[6] — p.16:

Def.: Properties f. b, 7, £

Let M = (D, @, &,v) be aC-model. We say, M has property
n if M is np-functional (respectively (D, @, £) is n-functional)
¢ if M is &-functional (respectively (D, @, £) is &-functional)

f if M is functional (respectively (D, @, £) is functional)

A55PN UNIVERSITAT
ot %ﬂ"{i W’"‘ DES
“=5) SAARLANDES ATPHOL06-[6] — p.16:

(©)Benzmiiller, 2006

Def.: Properties f. b, 7, £

Let M = (D, @, &,v) be aC-model. We say, M has property
n if M is np-functional (respectively (D, @, £) is n-functional)
¢ if M is &-functional (respectively (D, @, £) is &-functional)
f if M is functional (respectively (D, @, £) is functional)

b if v is injective.

A55PN UNIVERSITAT
ot %ﬂ"{i W’"‘ DES
“=5) SAARLANDES ATPHOL06-[6] — p.16:

(©)Benzmiiller, 2006

Def.: Properties f. b, 7, £

Let M = (D, @, &,v) be aC-model. We say, M has property
n if M is np-functional (respectively (D, @, £) is n-functional)
¢ if M is &-functional (respectively (D, @, £) is &-functional)
f if M is functional (respectively (D, @, £) is functional)
b if v is injective.
Note: In the [JSCO04]-paper, b is defined as D, = {T, F}, but here we are using the
injectivity criterion, because we are varying the signature. If the signature is too

sparse, we could have a D, with two elements which both valuate via v to T. Another ill

case would be D, with just one element.

N\ UNIVERSITAT

S
(©Benzmiiller, 2006 SAARLANDES ATPHOL06-[6] — p.16:

Def.: Properties f. b, 7, £

Let M = (D, @, &,v) be aC-model. We say, M has property
n if M is np-functional (respectively (D, @, £) is n-functional)
¢ if M is &-functional (respectively (D, @, £) is &-functional)
f if M is functional (respectively (D, @, £) is functional)

b if v is injective.

q if for all « € 7 there is some q € Do, Such that £_.(q).

A55PN UNIVERSITAT
ot E'E:ﬂ":".“f‘:"ii W’"‘ DES
“=5) SAARLANDES ATPHOL06-[6] — p.16:

(©)Benzmiiller, 2006

Def.: Properties f. b, 7, £

Let M = (D, @, &,v) be aC-model. We say, M has property
n if M is np-functional (respectively (D, @, £) is n-functional)

if M is ¢£-functional (respectively (D, @, &) is £-functional)

e AR

if M is functional (respectively (D, @, &) is functional)

o8

if v is injective.

q if for all « € 7 there is some q € Dy, SUch that £_.(q).

Note: This basically says that for each type « the identity relation over « is already
present in the model. If we require =g € C With £-a (£, (=oaa)), then this property
is automatically ensured, but not for weaker signatures. See [Andrew71] for a detailed

discussion of property q. Andrews constructs a Henkin model where Leibniz equality

= does not evaluate to the intended identity relation. This is resolved by property q.

e UNIVERSITAT
[l LD DES
J SAARLANDES ATPHOL06-[6] — p.16:

(©Benzmiiller, 2006

Lemma: Surjective v

Let C be a signature and M = (D, @, £,v) be a C-model.

(©)Benzmiiller, 2006 ATPHOL06-[6] — p.16

Lemma: Surjective v

Let C be a signature and M = (D, @, £,v) be a C-model.
If T,F € C or = € C then v is surjective.

(©)Benzmiiller, 2006 ATPHOL06-[6] — p.16

Lemma: Surjective v

Let C be a signature and M = (D, @, £,v) be a C-model.
If T,F € C or = € C then v is surjective.

Proof: Exercise.

(©)Benzmiiller, 2006 ATPHOL06-[6] — p.16

Thm.: Property b

Let C be a signature and M = (D, @, £,v) be a C-model.

(©)Benzmiiller, 2006 ATPHOL06-[6] — p.16

Thm.: Property b

Let C be a signature and M = (D, @, £,v) be a C-model.
Suppose T.F € C or = € C.

(©)Benzmiiller, 2006 ATPHOL06-[6] — p.16

Thm.: Property b

Let C be a signature and M = (D, @, £,v) be a C-model.
Suppose T.F € C or = € C.
Then M satisfies property b iff |D,| = 2.

(©)Benzmiiller, 2006 ATPHOL06-[6] — p.16

Thm.: Property b

Let C be a signature and M = (D, @, £,v) be a C-model.
Suppose T.F € C or = € C.
Then M satisfies property b iff |D,| = 2.

Proof: Exercise.

(©)Benzmiiller, 2006 ATPHOL06-[6] — p.16

X
O
—

Semantics: HOL-CUBE

e UNIVERSITAT
jlislijp DES

(©)Benzmiiller, 2006 5 SAARLANDES ATPHOL'06-[7] — p. 161

Def. (Reminder): > -Model

Let 7 := (D, @,) be a X-evaluation and letv: D, — {T,F} be a
2 -valuation w.r.t 7

(©)Benzmiiller, 2006 ATPHOL06-[7] — p.16

Def. (Reminder): > -Model

Let 7 := (D, @,) be a X-evaluation and letv: D, — {T,F} be a
2 -valuation w.r.t 7

We say M = (D, @, £,v) is a X-model.

(©)Benzmiiller, 2006 ATPHOL06-[7] — p.16

Def. (Reminder): > -Model

Let 7 := (D, @,) be a X-evaluation and letv: D, — {T,F} be a
2 -valuation w.r.t 7

We say M = (D, @, £,v) is a X-model.

If (D, @, &) is functional (full, standard), we say M is functional (full,
standard).

(©)Benzmiiller, 2006 ATPHOL06-[7] — p.16

Def. (Reminder): > -Model

Let 7 := (D, @,) be a X-evaluation and letv: D, — {T,F} be a
2 -valuation w.r.t 7

We say M = (D, @, £,v) is a X-model.

If (D, @, &) is functional (full, standard), we say M is functional (full,
standard).

If (D, @, &) is n-functional, we say M is n-functional.

(©)Benzmiiller, 2006 ATPHOL06-[7] — p.16

Def. (Reminder): > -Model

Let 7 := (D, @,) be a X-evaluation and letv: D, — {T,F} be a
2 -valuation w.r.t 7

We say M = (D, @, £,v) is a X-model.

If (D, @, &) is functional (full, standard), we say M is functional (full,
standard).

If (D, @, &) is n-functional, we say M is n-functional.

If (D, @, &) is &-functional, we say M is £-functional.

(©)Benzmiiller, 2006 ATPHOL06-[7] — p.16

Def. (Reminder): Properties f,b. n, &

Let M = (D, @, &,v) be aC-model. We say, M has property

(©)Benzmiiller, 2006 ATPHOL06-[7] — p.16

Def. (Reminder): Properties f,b. n, &

Let M = (D, @, &,v) be aC-model. We say, M has property

n if M is np-functional (respectively (D, @, £) is n-functional)

(©)Benzmiiller, 2006 ATPHOL06-[7] — p.16

Def. (Reminder): Properties f,b. n, &

Let M = (D, @, &,v) be aC-model. We say, M has property
n if M is np-functional (respectively (D, @, £) is n-functional)

¢ if M is &-functional (respectively (D, @, £) is &-functional)

A55PN UNIVERSITAT

(©Benzmiiller, 2006 215V SAARLANDES ATPHOL06-[7] - p.16:

Def. (Reminder): Properties f,b. n, &

Let M = (D, @, &,v) be aC-model. We say, M has property
n if M is np-functional (respectively (D, @, £) is n-functional)
¢ if M is &-functional (respectively (D, @, £) is &-functional)

f if M is functional (respectively (D, @, £) is functional)

A55PN UNIVERSITAT
mm%ﬂéﬁm DES
“=5) SAARLANDES ATPHOL06-[7] — p.16

(©)Benzmiiller, 2006

Def. (Reminder): Properties f,b. n, &

Let M = (D, @, &,v) be aC-model. We say, M has property
n if M is np-functional (respectively (D, @, £) is n-functional)
¢ if M is &-functional (respectively (D, @, £) is &-functional)
f if M is functional (respectively (D, @, £) is functional)

b if v is injective.

A55PN UNIVERSITAT
mm%ﬂéﬁm DES
“=5) SAARLANDES ATPHOL06-[7] — p.16

(©)Benzmiiller, 2006

Def. (Reminder): Properties f,b. n, &

Let M = (D, @, &,v) be aC-model. We say, M has property
n if M is np-functional (respectively (D, @, £) is n-functional)
¢ if M is &-functional (respectively (D, @, £) is &-functional)
f if M is functional (respectively (D, @, £) is functional)

b if v is injective.

q if for all « € 7 there is some q € Do, Such that £_.(q).

A55PN UNIVERSITAT
mm%ﬂ};ﬁm DES
“=5) SAARLANDES ATPHOL06-[7] — p.16

(©)Benzmiiller, 2006

Def. (Reminder): Different Model Classes __

We denote the class of C-models by Miz(%).

A55PN UNIVERSITAT
ot E‘..d‘::“% W’"‘ DES
“=5) SAARLANDES ATPHOL06-[7] — p.16

(©Benzmiiller, 2006

Def. (Reminder): Different Model Classes __

We denote the class of C-models by M13(3x). We obtain a hierarchy
of subclasses of 9iz(%) by adding the properties ¢, 7, f, b.

(©)Benzmiiller, 2006 ATPHOL06-[7] — p.16

Def. (Reminder): Different Model Classes __

We denote the class of C-models by M13(3x). We obtain a hierarchy
of subclasses of 9iz(%) by adding the properties ¢, n,f,b. Thus we
obtain

(©)Benzmiiller, 2006 ATPHOL06-[7] — p.16

Def. (Reminder): Different Model Classes __

We denote the class of C-models by M13(3x). We obtain a hierarchy
of subclasses of 9iz(%) by adding the properties ¢, n,f,b. Thus we
obtain

mﬁn(z)

(©)Benzmiiller, 2006 ATPHOL06-[7] - p.16

Def. (Reminder): Different Model Classes __

We denote the class of C-models by M13(3x). We obtain a hierarchy
of subclasses of 9iz(%) by adding the properties ¢, n,f,b. Thus we
obtain

mﬁn(z)
Mge(X)

(©)Benzmiiller, 2006 ATPHOL06-[7] - p.16

Def. (Reminder): Different Model Classes __

We denote the class of C-models by M13(3x). We obtain a hierarchy
of subclasses of 9iz(%) by adding the properties ¢, n,f,b. Thus we
obtain

(©)Benzmiiller, 2006 ATPHOL06-[7] - p.16

Def. (Reminder): Different Model Classes __

We denote the class of C-models by M13(3x). We obtain a hierarchy
of subclasses of 9iz(%) by adding the properties ¢, n,f,b. Thus we
obtain

n(X)
e(X)
i(2)
b(2)

S

(©)Benzmiiller, 2006 ATPHOL06-[7] — p.16

Def. (Reminder): Different Model Classes __

We denote the class of C-models by M13(3x). We obtain a hierarchy
of subclasses of 9iz(%) by adding the properties ¢, n,f,b. Thus we
obtain

(©)Benzmiiller, 2006 ATPHOL06-[7] — p.16

Def. (Reminder): Different Model Classes __

We denote the class of C-models by Miz(X).

We obtain a hierarchy

of subclasses of 9iz(%) by adding the properties ¢, n,f,b. Thus we

obtain

(©Benzmiiller, 2006

ATPHOL06-[7] - p.16!

Def. (Reminder): Different Model Classes __

We denote the class of C-models by Miz(X).

We obtain a hierarchy

of subclasses of 9iz(%) by adding the properties ¢, n,f,b. Thus we

obtain

(©Benzmiiller, 2006

ATPHOL06-[7] - p.16!

Def.: Satisfies, models, and —

Let M = (D, @, &,v) be a X-model and let ¢ be an assignment into
M.

(©)Benzmiiller, 2006 ATPHOL06-[7] - p.17

Def.: Satisfies, models, and —

Let M = (D, @, &,v) be a X-model and let ¢ be an assignment into
M.

We say ¢ satisfies a formula A € wff,(X) in M (we write M |=, A)
if v(E,(A)) =T.

(©)Benzmiiller, 2006 ATPHOL06-[7] - p.17

Def.: Satisfies, models, and —

Let M = (D, @, &,v) be a X-model and let ¢ be an assignment into
M.

We say ¢ satisfies a formula A € wff,(X) in M (we write M =, A)
if v(E,(A)) =T.

We say that A is valid in M (and write M = A) if M =, A for all
assignments o.

(©)Benzmiiller, 2006 ATPHOL06-[7] - p.17

Def.: Satisfies, models, and —

Let M = (D, @, &,v) be a X-model and let ¢ be an assignment into
M.

We say ¢ satisfies a formula A € wff,(X) in M (we write M =, A)
if v(E,(A)) =T.

We say that A is valid in M (and write M = A) if M =, A for all
assignments ¢. When A € cwff,(¥), we drop the reference to the
assignment and use the notation M = A.

&SP UNIVERSITAT

flij) DEs
(©)Benzmiiller, 2006 2l SAARLANDES ATPHOL06-[7] - p.17!

Def.: Satisfies, models, and —

Let M = (D, @, &,v) be a X-model and let ¢ be an assignment into
M.

We say ¢ satisfies a formula A € wff,(X) in M (we write M =, A)
if v(E,(A)) =T.

We say that A is valid in M (and write M = A) if M =, A for all
assignments ¢. When A € cwff,(¥), we drop the reference to the
assignment and use the notation M = A.

Finally, we say that M is a >-model for a set ® C cwff,(X) (we write
MED)IfME Aforall A € o.

&SP UNIVERSITAT

i u:m DES

(©)Benzmiiller, 2006 5 SAARLANDES ATPHOL'06-[7] - p.17!

Semantics: HOL-CUBE

/ | Landscape of HOL model classes
:) \ [Kohlhase-PhD-94]
/ [Benzmiiller-PhD-99]

b
v * [Brown-PhD-04]

Mige () f My, (Z) gmﬁb (%) [Benzm.BrownKohlhase-JSL-04]
| d
n 3
b
Y A V
Mg (X) mﬁ&b (2) NMsne (X)
b
A V
ﬂﬁﬁﬂ, Z
fuII
v

AGER UNIVERSITAT
mu.iu:‘i% m DES
57 SAARLANDES ATPHOL06-[7] - p.17

(©)Benzmiiller, 2006

Semantics: HOL-CUBE

e | Landscape of HOL model classes
:) \ [Kohlhase-PhD-94]
/ [Benzmiiller-PhD-99]

b
v * [Brown-PhD-04]

Mige (2) f Mgy, (Z) gmﬁb (%) [Benzm.BrownKohlhase-JSL-04]
| e
| model class for 2 -fragment of
\ A V
Mgy (%) mﬁ&b (%) NMsne (X)
\ / .
N\7748
mﬁfh z) ~
fuII
\/

AGER UNIVERSITAT
mu.ﬁm m DES

(©)Benzmiiller, 2006 =5 SAARLANDES ATPHOL06-[7] — p.17

Semantics: HOL-CUBE

o Landscape of HOL model classes
£ n \ [Kohlhase-PhD-94]
/ [Benzmiiller-PhD-99]

b
v * [Brown-PhD-04]

Mg (X) f Mg, (T) M (T) [Benzm.BrownKohlhase-JSL-04]
| e oo 7/
| K model class for 2 -fragment of
Y "A Y
Mt (%) Mago (X) f Migno (X)

| S WETOMN model class for >-fragment of
\ n 3 extensional type theory (Henkin models)
N\7748

AOORN UNIVERSITAT
VMHIE‘:‘I“,“‘,J"‘:‘,"V".}W"I DES
5 SAARLANDES ATPHOL06-[7] — p.17

(©)Benzmiiller, 2006

Semantics: HOL-CUBE

(B: models support G-equality
g: models provide identity relations

AOORN UNIVERSITAT
VWIE‘:‘Iu,“‘d,"‘:"V".}W"I DES
“=5) SAARLANDES ATPHOL06-[7] — p.17.

(©)Benzmiiller, 2006

Semantics: HOL-CUBE

(B: models support G-equality
g: models provide identity relations

5(T
|
v /v "\

[Andrews72]: without property q
Leibniz equality = not necessarily
evaluates to identity relation even
in Henkin semantics (H(X))

AOORN UNIVERSITAT
VWIE‘:‘Iu,“‘d,"‘:"V".}W"I DES
“=5) SAARLANDES ATPHOL06-[7] — p.17.

(©)Benzmiiller, 2006

X
@)
=

Standard Models and Henkin Models &

Leon Henkin generalized the class of admissible domains for
functional types.

(©)Benzmiiller, 2006 ATPHOL06-[7] - p.17

Standard Models and Henkin Models &

Leon Henkin generalized the class of admissible domains for
functional types.

Instead of requiring D,z (and thus in particular, D,,) to be the full
set of functions (predicates), it is sufficient to require that D3 has
enough members that any well-formed formula can be evaluated
(in other words, the domains of function types are rich enough to
satisfy comprehension).

AOORN UNIVERSITAT
“=5) SAARLANDES ATPHOL06-[7] — p.17

(©)Benzmiiller, 2006

X
o
=

Standard Models and Henkin Models &

Leon Henkin generalized the class of admissible domains for
functional types.

Instead of requiring D,z (and thus in particular, D,,) to be the full
set of functions (predicates), it is sufficient to require that D3 has
enough members that any well-formed formula can be evaluated
(in other words, the domains of function types are rich enough to
satisfy comprehension).

Note that with this generalized notion of a model, there are fewer
formulae that are valid in all models (intuitively, for any given formula
there are more possibilities for counter-models).

AOORN UNIVERSITAT
) E‘:‘Iu,“‘,d"‘:‘,"v".} W’"‘ DES
“=5) SAARLANDES ATPHOL06-[7] — p.17

(©)Benzmiiller, 2006

Standard Models and Henkin Models

 <

. formulas
Henkin- formulas

standard- valid In Gl ln
models models standard- Henkin-

semantics semantics

e ———

AOORN UNIVERSITAT
) E‘ﬁu}{,"% W’"‘ DES

(©)Benzmiiller, 2006

&Y SAARLANDES ATPHOL06-[7] — p.17:

X
@)
=

Standard Models and Henkin Models &

The generalization to Henkin models restricts the set of valid formu-
lae sufficiently so that all of them can be proven by a Hilbert-style
calculus [Henkin50].

(©)Benzmiiller, 2006 ATPHOL06-[7] - p.17

Standard Models and Henkin Models &

The generalization to Henkin models restricts the set of valid formu-
lae sufficiently so that all of them can be proven by a Hilbert-style
calculus [Henkin50].

Of course our HOL-CUBE is not complete here; we can axiomati-
cally require the existence of particular (classes of) functions, e.g.,
by assuming the description or choice operators.

AOORN UNIVERSITAT
mmﬁ‘ﬁu,mwﬁ DES
57 SAARLANDES ATPHOL06-[7] — p.17

(©)Benzmiiller, 2006

Standard Models and Henkin Models &

The generalization to Henkin models restricts the set of valid formu-
lae sufficiently so that all of them can be proven by a Hilbert-style
calculus [Henkin50].

Of course our HOL-CUBE is not complete here; we can axiomati-
cally require the existence of particular (classes of) functions, e.g.,
by assuming the description or choice operators.

We will not pursue this here; for a detailed discussion of the se-
mantic issues raised by the presence of these logical constants see
[Andrews72].

AOORN UNIVERSITAT
mmﬁ‘ﬁu,mwﬁ DES
57 SAARLANDES ATPHOL06-[7] — p.17

(©)Benzmiiller, 2006

Standard Models and Henkin Models &

The generalization to Henkin models restricts the set of valid formu-
lae sufficiently so that all of them can be proven by a Hilbert-style
calculus [Henkin50].

Of course our HOL-CUBE is not complete here; we can axiomati-
cally require the existence of particular (classes of) functions, e.g.,
by assuming the description or choice operators.

We will not pursue this here; for a detailed discussion of the se-
mantic issues raised by the presence of these logical constants see
[Andrews72].

Note that even though we can consider model classes with richer
and richer function spaces, we can never reach standard models
where function spaces are full while maintaining complete (recur-
sively axiomatizable) calculi.

&SP UNIVERSITAT

EE u:"“ DES

(©Benzmiiller, 2006 5/ SAARLANDES ATPHOL06-[7] - p.17

Standard Models and Henkin Models

- —————

. formulas
Henkin- formulas

standard- valid In Gl ln
models models standard- Henkin-

semantics semantics

AOORN UNIVERSITAT
) E‘ﬁu}{,"% W’"‘ DES

(©)Benzmiiller, 2006

S40) S AARLANDES ATPHOL06-[7] — p.17

Standard Models and Henkin Models

- —————

_ formulas
Lhar e formulas

standard- valid in valid in
models models standard- Henkin-

semantics semantics

e ———

What has been our motivation for further generalization of Henkin
semantics with respect to Boolean and functional extensionality?

(©)Benzmiiller, 2006 ATPHOL06-[7] - p.17

Models without Functional Extensionality _

Motivation: modeling programs as (higher-order) functions

We might be interested in intensional properties like run-time
complexity.

AOORN UNIVERSITAT
mmﬁ‘ﬁu,mwﬁ DES
5 SAARLANDES ATPHOL06-[7] — p.17

(©)Benzmiiller, 2006

Models without Functional Extensionality _

Motivation: modeling programs as (higher-order) functions

We might be interested in intensional properties like run-time
complexity.

I:= MX.X and L := MX.rev(rev(X)), where rev is the self-inverse
function.

AOORN UNIVERSITAT
mmﬁ‘ﬁu,mwﬁ DES
5 SAARLANDES ATPHOL06-[7] — p.17

(©)Benzmiiller, 2006

Models without Functional Extensionality _

Motivation: modeling programs as (higher-order) functions
We might be interested in intensional properties like run-time
complexity.
I:= MX.X and L := MX.rev(rev(X)), where rev is the self-inverse
function.

The identity function has constant complexity, the function rev
is linear in the length of its argument.

AOORN UNIVERSITAT
mmﬁ‘ﬁu,mwﬁ DES
5 SAARLANDES ATPHOL06-[7] — p.17

(©)Benzmiiller, 2006

Models without Functional Extensionality _

How do we account for models without functional extensionality?

We have generalized the notion of domains at function types
and evaluation functions.

AOORN UNIVERSITAT
mmﬁ‘ﬁu,mwﬁ DES
57 SAARLANDES ATPHOL06-[7] — p.17

(©)Benzmiiller, 2006

Models without Functional Extensionality _

How do we account for models without functional extensionality?

We have generalized the notion of domains at function types
and evaluation functions.

The usual construction already uses sets of (extensional)
functions for the domains of function type and the property of
functionality to construct values for A-terms.

AOORN UNIVERSITAT
mmﬁlﬁu‘mm DES
57 SAARLANDES ATPHOL06-[7] — p.17

(©)Benzmiiller, 2006

Models without Functional Extensionality _

How do we account for models without functional extensionality?

We have generalized the notion of domains at function types
and evaluation functions.

The usual construction already uses sets of (extensional)
functions for the domains of function type and the property of
functionality to construct values for A-terms.

We build on the notion of applicative structures to define
> -evaluations, where the evaluation function is assumed to
respect application and #-conversion.

AOORN UNIVERSITAT
VMHIE‘:‘I“,“‘,J"‘:‘,"V".}W"I DES
57 SAARLANDES ATPHOL06-[7] — p.17

(©)Benzmiiller, 2006

Models without Functional Extensionality _

How do we account for models without functional extensionality?

We have generalized the notion of domains at function types
and evaluation functions.

The usual construction already uses sets of (extensional)
functions for the domains of function type and the property of
functionality to construct values for A-terms.

We build on the notion of applicative structures to define
> -evaluations, where the evaluation function is assumed to
respect application and #-conversion.

In such models, a function is not uniquely determined by its
behavior on all possible arguments.

AOORN UNIVERSITAT
VWIE‘:‘Iu,“‘d,"‘:"V".}W"I DES
57 SAARLANDES ATPHOL06-[7] — p.17

(©)Benzmiiller, 2006

Semantics: HOL-CUBE

(Z) f: models are functional

\ Vf,g € Dy :
/ v f =giff f{@a = gQ@a (Va € D)

Mge (X) Mgy, (X) mﬁb (¥)

P

mﬁf (Z Msep () ngnb

\"x W/

fmﬁfb

fuII

g UNIVERSITAT
jlislijp DES

(© Benzmiiller, 2006 =5) SAARLANDES ATPHOL06-[7] - p.17

X
@)
=

N
v.

Models without 7)- or ¢-Functionality

Motivation: in standard literature functional extensionality is often is
discussed in terms of

(©)Benzmiiller, 2006 ATPHOL06-[7] - p.18

X
@)
=

N
v.

Models without 7)- or ¢-Functionality

Motivation: in standard literature functional extensionality is often is
discussed in terms of

¢-functionality

&SP UNIVERSITAT

i u:m DES

(©)Benzmiiller, 2006 5 SAARLANDES ATPHOL'06-[7] — p.18!

X
@)
=

N
v.

Models without 7)- or ¢-Functionality

Motivation: in standard literature functional extensionality is often is
discussed in terms of

¢-functionality

n-functionality

&SP UNIVERSITAT

i u:m DES

(©)Benzmiiller, 2006 5 SAARLANDES ATPHOL'06-[7] — p.18!

X
@)
=

N
v.

Models without 7)- or ¢-Functionality

Motivation: in standard literature functional extensionality is often is
discussed in terms of

¢-functionality
n-functionality

Therefore, we integrated these two cases in our landscape.

AOORN UNIVERSITAT
mmﬁ‘ﬁu,mwﬁ DES
“=5) SAARLANDES ATPHOL06-[7] — p.18

(©)Benzmiiller, 2006

Semantics: HOL-CUBE
Mg (X)

n: models are n-functional

// v \ &P(A) — &P(A lﬁn)

Mg () imﬁn

P

fmﬁf (Z Maep (X) f

\"x W/

fmﬁfb

fuII

g UNIVERSITAT
i oes

(©)Benzmiiller, 2006 5 SAARLANDES ATPHOL06-[7] - p.18

Semantics: HOL-CUBE

(Z) &: models are £-functional
\ Eo(AXa Mg) Eo(AXa:Np) iff
/ v Eo,[a/X] (M) - a/x]() (Va € Dqy)

mﬁn z) imm, ()

u;, m UNIVERSITAT
) DEs

(©Benzmiiller, 2006 B OES s es oo

Models without Boolean Extensionality ___|

Motivation: Semantics of natural language

(©)Benzmiiller, 2006 ATPHOL06-[7] - p.18

Models without Boolean Extensionality ___|

Motivation: Semantics of natural language

We may not want to commit to a logic where the sentence
“John believes that Phil is a woodchuck”

(©)Benzmiiller, 2006 ATPHOL06-[7] - p.18

Models without Boolean Extensionality ___|

Motivation: Semantics of natural language

We may not want to commit to a logic where the sentence
“John believes that Phil is a woodchuck” automatically entails
“John believes that Phil is a groundhog”

(©)Benzmiiller, 2006 ATPHOL06-[7] - p.18

Models without Boolean Extensionality ___|

Motivation: Semantics of natural language

We may not want to commit to a logic where the sentence
“John believes that Phil is a woodchuck” automatically entails
“John believes that Phil is a groundhog” since John might not
know that “woodchuck” is just another word for “groundhog”.

(©)Benzmiiller, 2006 ATPHOL06-[7] - p.18

Models without Boolean Extensionality ___|

Motivation: Semantics of natural language

We may not want to commit to a logic where the sentence
“John believes that Phil is a woodchuck” automatically entails
“John believes that Phil is a groundhog” since John might not
know that “woodchuck” is just another word for “groundhog”.

However, Boolean extensionality does just that: whenever two
propositions are equivalent, they must be equal, and can be
substituted for each other.

(©)Benzmiiller, 2006 ATPHOL06-[7] - p.18

Models without Boolean Extensionality ___|

Motivation: Semantics of natural language

We may not want to commit to a logic where the sentence
“John believes that Phil is a woodchuck” automatically entails
“John believes that Phil is a groundhog” since John might not
know that “woodchuck” is just another word for “groundhog”.

However, Boolean extensionality does just that: whenever two
propositions are equivalent, they must be equal, and can be
substituted for each other.

Another example: obvious(O) and obvious(F') where
O=2+2=4andF =Vn>2x"+y"=2"=x=y=2z=0
should not be equivalent, even if their arguments are.

(©)Benzmiiller, 2006 ATPHOL06-[7] — p.18

Models without Boolean Extensionality ___|

Motivation: Semantics of natural language

We may not want to commit to a logic where the sentence
“John believes that Phil is a woodchuck” automatically entails
“John believes that Phil is a groundhog” since John might not
know that “woodchuck” is just another word for “groundhog”.

However, Boolean extensionality does just that: whenever two
propositions are equivalent, they must be equal, and can be
substituted for each other.

Another example: obvious(O) and obvious(F') where
O=2+2=4andF =Vn>2x"+y"=2"=x=y=2z=0
should not be equivalent, even if their arguments are.

Such phenomena have been studied under the heading of
“hyper-intensional semantics” in theoretical semantics.

(©)Benzmiiller, 2006 ATPHOL06-[7] - p.18

Models without Boolean Extensionality

How do we account for models without Boolean extensionality?

We have weakened the assumption that D, = {T,F}, since this
entails that the values of O and F are identical.

AOORN UNIVERSITAT
IS DES
5 SAARLANDES ATPHOL06-[7] — p.18

(©)Benzmiiller, 2006

Models without Boolean Extensionality

How do we account for models without Boolean extensionality?

We have weakened the assumption that D, = {T,F}, since this
entails that the values of O and F are identical.

In our > -models without property b we only insist that there is a
division of the truth values into “good” and “bad” ones, which
we express by insisting on the existence of a valuation v of D,
l.e., a function v: D, — {T,F} that is coordinated with the
interpretations of the logical constants —, v, and IN* (for each

type «).

AOORN UNIVERSITAT
5 SAARLANDES ATPHOL06-[7] — p.18

(©)Benzmiiller, 2006

Models without Boolean Extensionality

How do we account for models without Boolean extensionality?

We have weakened the assumption that D, = {T,F}, since this
entails that the values of O and F are identical.

In our > -models without property b we only insist that there is a
division of the truth values into “good” and “bad” ones, which
we express by insisting on the existence of a valuation v of D,
l.e., a function v: D, — {T,F} that is coordinated with the
interpretations of the logical constants —, v, and IN* (for each

type «).
Notion of validity: we call a sentence A valid in such a model if
v(a) = T, where a € D, is the denotation of the sentence A.

AOORN UNIVERSITAT
5 SAARLANDES ATPHOL06-[7] — p.18

(©)Benzmiiller, 2006

Semantics: HOL-CUBE

B(Z)

b: models are Boolean extensional

v is injective

S
(©)Benzmiiller, 2006 oA ATPHOL06-[7] - p.18

Semantics: HOL-CUBE

fmﬁs(

(©Benzmiiller, 2006

M3 (%)

//m: T

mﬁb (Z)

b: models are Boolean extensional

v is injective

If > contains sufficiently many logical

constants:

ATPHOL06-[7] - p.18:

(©Benzmiiller, 2006

X
O
—

Semantics and Theorem
Proving: Test Problems for
Theorem Provers

e UNIVERSITAT
jlislijp DES
5 SAARLANDES

ATPHOL06-[7] - p.18!

Test Problems for Theorem Provers

Test problems for FOL theorem provers

(©)Benzmiiller, 2006 ATPHOL06-[7] — p.18

Test Problems for Theorem Provers

Test problems for FOL theorem provers

[McCharenOverbeekWos76], [WilsonMinker79],
[Pelletier86], etc.

(©)Benzmiiller, 2006 ATPHOL06-[7] — p.18

Test Problems for Theorem Provers

Test problems for FOL theorem provers

[McCharenOverbeekWos76], [WilsonMinker79],
[Pelletier86], etc.

TPTP [PelletierSutcliffeSuttner02]

(©)Benzmiiller, 2006 ATPHOL06-[7] — p.18

Test Problems for Theorem Provers

Test problems for FOL theorem provers

(©Benzmiiller, 2006

[McCharenOverbeekWos76], [WilsonMinker79],
[Pelletier86], etc.

TPTP [PelletierSutcliffeSuttner02]
significantly fostered the development of FOL ATPs

A55PN UNIVERSITAT

ATPHOL06-[7] - p.18

Test Problems for Theorem Provers

Test problems for FOL theorem provers

[McCharenOverbeekWos76], [WilsonMinker79],
[Pelletier86], etc.

TPTP [PelletierSutcliffeSuttner02]
significantly fostered the development of FOL ATPs

Test problems for HOL theorem provers

(©Benzmiiller, 2006

ATPHOL06-[7] - p.18

Test Problems for Theorem Provers

Test problems for FOL theorem provers

[McCharenOverbeekWos76], [WilsonMinker79],
[Pelletier86], etc.

TPTP [PelletierSutcliffeSuttner02]
significantly fostered the development of FOL ATPs

Test problems for HOL theorem provers
common library missing

(©Benzmiiller, 2006

ATPHOL06-[7] - p.18

Test Problems for Theorem Provers

Test problems for FOL theorem provers

[McCharenOverbeekWos76], [WilsonMinker79],
[Pelletier86], etc.

TPTP [PelletierSutcliffeSuttner02]
significantly fostered the development of FOL ATPs

Test problems for HOL theorem provers
common library missing

Following slides: example problems from our paper
[TPHOLS-05]

(©Benzmiiller, 2006

ATPHOL06-[7] - p.18

Test Problems for Theorem Provers

Test problems for FOL theorem provers

[McCharenOverbeekWos76], [WilsonMinker79],
[Pelletier86], etc.

TPTP [PelletierSutcliffeSuttner02]
significantly fostered the development of FOL ATPs

Test problems for HOL theorem provers
common library missing

Following slides: example problems from our paper
[TPHOLS-05]

Are we proposing challenging HOL benchmark problems?

(©)Benzmiiller, 2006 ATPHOL06-[7] — p.18

Test Problems for Theorem Provers

Test problems for FOL theorem provers

[McCharenOverbeekWos76], [WilsonMinker79],
[Pelletier86], etc.

TPTP [PelletierSutcliffeSuttner02]
significantly fostered the development of FOL ATPs

Test problems for HOL theorem provers
common library missing

Following slides: example problems from our paper
[TPHOLS-05]

Are we proposing challenging HOL benchmark problems?
No!!!

(©)Benzmiiller, 2006 ATPHOL06-[7] — p.18

Test Problems for Theorem Provers

Examples are simple

(©)Benzmiiller, 2006 ATPHOL06-[7] - p.18

Test Problems for Theorem Provers

Examples are simple
highlight the essence of some semantical or technical point

(©)Benzmiiller, 2006 ATPHOL06-[7] - p.18

Test Problems for Theorem Provers

Examples are simple
highlight the essence of some semantical or technical point
easy to understand and easy to encode

(©)Benzmiiller, 2006 ATPHOL06-[7] - p.18

Test Problems for Theorem Provers

Examples are simple
highlight the essence of some semantical or technical point
easy to understand and easy to encode
relevant for both: automated and interactive TP

&SP UNIVERSITAT

i u:m DES

(©Benzmiiller, 2006 215V SAARLANDES ATPHOL06-[7] - p.18:

Test Problems for Theorem Provers

Examples are simple
highlight the essence of some semantical or technical point
easy to understand and easy to encode
relevant for both: automated and interactive TP

Examples are structured

(©)Benzmiiller, 2006 ATPHOL06-[7] - p.18

Test Problems for Theorem Provers

Examples are simple
highlight the essence of some semantical or technical point
easy to understand and easy to encode
relevant for both: automated and interactive TP

Examples are structured

quick indicators for completeness and soundness wrt to
HOL model classes from [Benzm.BrownKohlhase-JSL-04]

AOORN UNIVERSITAT
mmﬁ‘ﬁu,mwﬁ DES
“=5) SAARLANDES ATPHOL06-[7] — p.18

(©)Benzmiiller, 2006

Test Problems for Theorem Provers

Examples are simple
highlight the essence of some semantical or technical point
easy to understand and easy to encode
relevant for both: automated and interactive TP

Examples are structured

quick indicators for completeness and soundness wrt to
HOL model classes from [Benzm.BrownKohlhase-JSL-04]

shall precede formal soundness / completeness analysis

AOORN UNIVERSITAT
mmﬁ‘ﬁu,mwﬁ DES
57 SAARLANDES ATPHOL06-[7] - p.18

(©)Benzmiiller, 2006

Test Problems for Theorem Provers

Examples are simple
highlight the essence of some semantical or technical point
easy to understand and easy to encode
relevant for both: automated and interactive TP

Examples are structured

quick indicators for completeness and soundness wrt to
HOL model classes from [Benzm.BrownKohlhase-JSL-04]

shall precede formal soundness / completeness analysis
many are collected from experience with LEO and TPS

AOORN UNIVERSITAT
mmﬁlﬁu‘mm DES
57 SAARLANDES ATPHOL06-[7] - p.18

(©)Benzmiiller, 2006

Test Problems for Theorem Provers

Examples are simple
highlight the essence of some semantical or technical point
easy to understand and easy to encode
relevant for both: automated and interactive TP

Examples are structured

quick indicators for completeness and soundness wrt to
HOL model classes from [Benzm.BrownKohlhase-JSL-04]

shall precede formal soundness / completeness analysis
many are collected from experience with LEO and TPS

(Some more challenging examples are also added in
[TPHOLS-05])

AOORN UNIVERSITAT
mmﬁ‘ﬁu,mwﬁ DES
“=5) SAARLANDES ATPHOL06-[7] — p.18

(©)Benzmiiller, 2006

Remark: Signature

Unless stated otherwise we assume on the following slides that our
signature X contains the following logical connectives:

{T,L,~,A,V,D, U {N* X% =2}

(less logical connectives are possible)

A55PN UNIVERSITAT
mm%ﬂ};ﬁm DES
“=5) SAARLANDES ATPHOL06-[7] — p.18

(©)Benzmiiller, 2006

HOL-Problems: (3

- | = is equivalence relation
3 n " VX0 X = X
/ v 5 VXa,YaX ZY DY £ X

" YXo,Ya, Zae(X=YAY =Z) DX =

e UNIVERSITAT
jlislijp DES

(© Benzmiiller, 2006 =5/ SAARLANDES ATPHOL06-[7] — p.19

HOL-Problems: (3

Mg ())
/ | — is equivalence relation
¢ n \ 5 VXaX 2 X
/ v " A 5 VXa,YaX ZY DY ZX
NMse (T) i My, () " YXa,Ya,Za:(X=YAY =Z) DX =
N
§ / b § = is congruence relation

® YXa,Ya,FaaX =Y D (FX) = (FY)
® YXa, Ya, PoaX =Y A (PX) D (PY)

"uﬁﬁg UNIVERSITAT
jili=§p DES
(©Benzmiiller, 2006 =y SAARLANDES ATPHOL06-[7] — p.19

HOL-Problems:

* - - -
— is equivalence relation

VXa-X = X
VXa, YaX =Y DY = X
Migp () YXa, Yo, Za(X=YAY =2Z) DX =
.
n = is congruence relation
v ¥Xa, Yo, FaaX 2 Y S (FX) = (FY)

Xe, Yo, PoarX =
mﬁnb (Z) A Y A (PX) D) (PY)

Trivial directions of Boolean and functional exten

sionality
VAo, Bo-A =B D (A < B)
YF5a,Gga-F = G D (VXa.FX = GX)

#%@ﬁ UNIVERSITAT
jili=§p DES
(©Benzmiiller, 2006 =y SAARLANDES ATPHOL06-[7] — p.19

=
o
=

HOL-Problems: b &

/ | Non-trivial direction of Boolean extensionality
/ n \ VAo, Bou(A < B) DA X B
\ "X

GG UNIVERSITAT
&l DES
o SAARLANDES ATPHOL06-[7] - p.19

(©Benzmiiller, 2006

=
@)
=

HOL-Problems: f 3

/ | Non-trivial direct. of functional extensionality
/ n \ VF5a, Gaa-(¥Xa-FX = GX) DF = G
\ 'A

e UNIVERSITAT
jlislijp DES

(©Benzmiiller, 2006 215V SAARLANDES ATPHOL06-[7] - p.19:

HOL-Problems: 7

Example requiring property 7
(pO(LL) ()‘bebbx))) (p f)

e UNIVERSITAT
jlislijp DES

(©Benzmiiller, 2006 215V SAARLANDES ATPHOL06-[7] - p.19:

HOL-Problems: ¢

Example requiring property & (and ')

(VX (FLeX) = X) A Po(i0) (AXeX)
D p(AX,.fX)

GG UNIVERSITAT
&l DES
o SAARLANDES ATPHOL'06-[7] - p.19

(©Benzmiiller, 2006

HOL-Problems: §

Example requiring property § (and ¢!)
(VX (FLeX) = X) A Po(i1) (AXeX)
D (pf)

e UNIVERSITAT
i) oes

(©Benzmiiller, 2006 215V SAARLANDES ATPHOL06-[7] - p.19!

HOL-Problems: b

& / 7|7 \ Examples requiring property b
/ v N (Poo 20) A (p bo) = (p (a A b))

—(a=—a) (in particular ~(a = —a)

(hwo((hT) = (hL))) = (hl)

AEGR UNIVERSITAT
i D DES
{5/ SAARLANDES ATPHOL06-[7] - p.19

(©)Benzmiiller, 2006

HOL-Problems: Other Examples

e/ |
n Playing with DeMorgan’s Law:
/ v "A 5 VX YXAY & (=X V AY)

'Ok’ for all model classes

e UNIVERSITAT
jlislijp DES

(© Benzmiiller, 2006 =5/ SAARLANDES ATPHOL06-[7] — p.19

HOL-Problems: DeMorgan’s Law

Playing with DeMorgan’s Law:
VX, YXAY & —(=XV =Y)
VX, YXAY = =(=X V1Y)

requires b
e UNIVERSITAT
jili=§p DES
(©Benzmiiller, 2006 S SaRRLANDES ATPHOL06-[7] - p.19:

HOL-Problems: DeMorgan’s Law

Mg ()
/|
§ n \ Playing with DeMorgan’s Law:
//v "\ VX, YXAY & =(=X V =Y)
Mie () i M, (L) VX, Y. XAY = =(=X V AY)
. N . s (AUAV.U A V) = (AXAY.=(=X V Y))

requires b and &

e UNIVERSITAT
jlislijp DES

(©Benzmiiller, 2006 215V SAARLANDES ATPHOL06-[7] - p.19!

HOL-Problems: DeMorgan’s Law

Mg (X)
92 \
§ n
Playing with DeMorgan’s Law:
v £\
VX, YXAY & —(=XV Y)
Ve (X) J Mign (2) VX, Y XAY £ S(=X v =Y)
¢ - S ¢ - (AUAVLU A V) = (AXAY.=(=X V Y))

| |
n n
A = (AXAY.=(=X V =Y))
\ 'A \

requires b and §

e UNIVERSITAT
jili=§p DES
(©Benzmiiller, 2006 =y SAARLANDES ATPHOL06-[7] — p.20

HOL-Problems: Set Comprehension

Set comprehension

qu \ big challenge for automation
/ v b * [Benzm.BrownKohlhase-Draft-05] set

instantiations can be used to simulate

Mae (X) f May (%) Msp (%) cut-rule if one of the following axioms

is given: comprehension, induction,
extensionality, choice, description

| |
" U
v b* v dependend on logical constants in ¥
Mgy

AOORN UNIVERSITAT
mm;i‘:‘{“,“‘u,"::"v".}ml DES

2 SAARLANDES ATPHOL06-[7] — p.20

(©)Benzmiiller, 2006

HOL-Problems: Set Comprehension

Set comprehension

/ § 7|7 \ big challenge for automation

[Benzm.BrownKohlhase-Draft-05] set
instantiations can be used to simulate
cut-rule if one of the following axioms
IS given: comprehension, induction,
extensionality, choice, description

dependend on logical constants in &

On the following slides emphasis on:
signature X varying

no property g assumed

AOORN UNIVERSITAT
mu.ﬁm W.". DES

243 SAARLANDES ATPHOL06-[7] — p.20

(©)Benzmiiller, 2006

HOL-Problems: Set Comprehension

Mz (X) . i
et comprehension
/|
§ n big challenge for automation

/ v [Benzm.BrownKohlhase-Draft-05] set
instantiations can be used to simulate
Mg (%) f Mgy (2) cut-rule if one of the following axioms

: “ S is given: comprehension, induction,

extensionality, choice, description

dependend on logical constants in &

On the following slides emphasis on:
signature X varying
no property q assumed
External vs. internal logical constants
if = ¢ X:

MGl UNIVERSITAT

— refers to ’external’ symbol
M = —A means M £ A
iy es

243 SAARLANDES ATPHOL06-[7] — p.20

(©)Benzmiiller, 2006

HOL-Problems: Set Comprehension

Ms(X)
2N
v "\
Mige () f Mgy (2) Migo (2) Set comprehension
S S S

© dNooVPo.NP & —P
» ifmeXor{LlL,D}CXor
{Lie}rCx
» e.g.: Noo «— AXo—X
e.9.: Noo «— AXoX DO L

e UNIVERSITAT
jlislijp DES

(©Benzmiiller, 2006 &> SAARLANDES ATPHOL06-[7] - p.20

HOL-Problems: Set Comprehension

Ms(2)
</ \
v N |
Mg (X) f My, () Mo () Set comprehension
7~ N b yd ANgoVPo.NP < =P

if - ¢ ¥ and

|
; !
v b& v {L,D}ZYor{l, &} ZX

e UNIVERSITAT
jlislijp DES

(©Benzmiiller, 2006 215V SAARLANDES ATPHOL06-[7] — p.20:

HOL-Problems: Set Comprehension

M (%)
~
/ 7'7
/ \/ "\
Mg (X) f Mg, (L) Set comprehension

| : d N . S/ INoVPo.NP < —P

| g if -~ ¢ ¥ and
v v {LLDYZYXor{l, &} Zx
il imﬁnb (X) Other examples from [Brown-PhD-04]

Surjective Cantor Theorem

Injective Cantor Theorem

e UNIVERSITAT
jlislijp DES

(©Benzmiiller, 2006

SAARLANDES ATPHOL06-[7] — p.20:

X
O
—

Semantics: Examples of
> -Models

e UNIVERSITAT
jlislijp DES

(©)Benzmiiller, 2006 5 SAARLANDES ATPHOL06-[7] - p.20:

=
@)
=

N
v.

Examples of > -Models

We now sketch the construction of models in the model classes
M.(X) to demonstrate concretely how properties for Boolean,
strong and weak functional extensionality can fail.

A55PN UNIVERSITAT
ot E'E:ﬂ":".“f‘:"ii W’"‘ DES
“=5) SAARLANDES ATPHOL06-[7] — p.20!

(©)Benzmiiller, 2006

Examples of ¥-Models 3

We now sketch the construction of models in the model classes
M.(X) to demonstrate concretely how properties for Boolean,
strong and weak functional extensionality can fail.

We need this to show that the inclusions of the model classes in our
landscape are proper, and we indeed need all of them.

A55PN UNIVERSITAT
IS DES
57 SAARLANDES ATPHOL06-[7] - p.20

(©)Benzmiiller, 2006

Ex.: Singleton Model

We choose (D, @) as the full frame with D, := {T,F} and
D, .= {x}.

(©)Benzmiiller, 2006 ATPHOL06-[7] — p.20

Ex.: Singleton Model

We choose (D, @) as the full frame with D, := {T,F} and

D, .= {x}.

Easy to define an evaluation function £ for this frame by
induction on terms, using functions to interpret A-abstractions.

A55PN UNIVERSITAT
ot %ﬂ"{i W’"‘ DES
“=5) SAARLANDES ATPHOL06-[7] — p.20

(©)Benzmiiller, 2006

Ex.: Singleton Model

We choose (D, @) as the full frame with D, := {T,F} and

D, .= {x}.

Easy to define an evaluation function £ for this frame by
induction on terms, using functions to interpret A-abstractions.

The identity function v: D, — {T,F} is a valuation, assuming
the logical constants are interpreted in the standard way.

A55PN UNIVERSITAT
ot E'Eu'ﬂ“:".“?f':: W’"‘ DES
“=5) SAARLANDES ATPHOL06-[7] — p.20

(©)Benzmiiller, 2006

Ex.: Singleton Model

We choose (D, @) as the full frame with D, := {T,F} and

D, .= {x}.

Easy to define an evaluation function £ for this frame by
induction on terms, using functions to interpret A-abstractions.

The identity function v: D, — {T,F} is a valuation, assuming
the logical constants are interpreted in the standard way.

Thus, M .= (D, @, £, v) defines a ¥-model.

A55PN UNIVERSITAT
ot E'Eu'ﬂ“:".“?f':: W’"‘ DES
“=5) SAARLANDES ATPHOL06-[7] — p.20

(©)Benzmiiller, 2006

Ex.: Singleton Model

We choose (D, @) as the full frame with D, := {T,F} and

D, .= {x}.

Easy to define an evaluation function £ for this frame by
induction on terms, using functions to interpret A-abstractions.

The identity function v: D, — {T,F} is a valuation, assuming
the logical constants are interpreted in the standard way.

Thus, M .= (D, @, £, v) defines a ¥-model.

This model satisfies properties b, f (hence n and &) and g
(since the frame is full).

A55PN UNIVERSITAT
IS DES
“=5) SAARLANDES ATPHOL06-[7] — p.20

(©)Benzmiiller, 2006

Ex.: Singleton Model

We choose (D, @) as the full frame with D, := {T,F} and

D, .= {x}.

Easy to define an evaluation function £ for this frame by
induction on terms, using functions to interpret A-abstractions.

The identity function v: D, — {T,F} is a valuation, assuming
the logical constants are interpreted in the standard way.

Thus, M .= (D, @, £, v) defines a ¥-model.

This model satisfies properties b, f (hence n and &) and g
(since the frame is full).

So, MA € GZ(X) C H(Z) C Mgp(X) C

A55PN UNIVERSITAT
ot E'Eu'ﬂ“:".“?f':: W’"‘ DES
“=5) SAARLANDES ATPHOL06-[7] — p.20

(©)Benzmiiller, 2006

Ex.: Singleton Model

full

o
N
o
|
S
%)
o
|
o
I
o
<

Ex.: Model without Boolean Extensionality

Assume X contains only the connectives —, Vv, [1%; other
connectives defined as usual, e.g., VX, Y.XAY & —(=X V Y).

(©)Benzmiiller, 2006 ATPHOL06-[7] — p.20

Ex.: Model without Boolean Extensionality

Assume X contains only the connectives —, Vv, [1%; other
connectives defined as usual, e.g., VX, Y.XAY & —(=X V Y).

Choose (D, @) as full frame with D, = {a,b,c} and D, = {0, 1}.

(©)Benzmiiller, 2006 ATPHOL06-[7] — p.20

Ex.: Model without Boolean Extensionality

Assume X contains only the connectives —, Vv, [1%; other
connectives defined as usual, e.g., VX, Y.XAY & —(=X V Y).

Choose (D, @) as full frame with D, = {a,b,c} and D, = {0, 1}.

We define evaluation function £ for this frame by defining £(—),

E(V), and E(M): ey la b c
E(—)|a b c a |a a a
cC Cc a b |a a a
cC |a a c
£(N)af — { a, if f@g e {a,b} forallg € D,
c, if fQg = cforsomeg < D,

(©Benzmiiller, 2006

&SP UNIVERSITAT

iy DEs : |
SAARLANDES ATPHOL06-[7] — p.20

Ex.: Model without Boolean Extensionality .

Assume X contains only the connectives —, Vv, [1%; other
connectives defined as usual, e.g., VX, Y.XAY & —(=X V Y).

Choose (D, @) as full frame with D, = {a,b,c} and D, = {0, 1}.

We define evaluation function £ for this frame by defining £(—),

E(V), and E(M): ey la b c
E(—)|a b c a |a a a
cC Cc a b |a a a
cC |a a c
£(N)af — { a, if f@g e {a,b} forallg € D,
c, if fQg = cforsomeg < D,

We can choose £(w) to be arbitrary for parameters w € %..

AOORN UNIVERSITAT
) E‘ﬁu}{,"% W’"‘ DES
“=5) SAARLANDES ATPHOL06-[7] — p.20

(©)Benzmiiller, 2006

Ex.: Model without Boolean Extensionality

Since (D, @) is a frame, hence functional, this uniquely
determines £ on all formulae.

(©)Benzmiiller, 2006 ATPHOL06-[7] — p.20

Ex.: Model without Boolean Extensionality .

Since (D, @) is a frame, hence functional, this uniquely
determines £ on all formulae.

Since the frame is full, we are guaranteed that there will be
enough functions to interpret A-abstractions.

A55PN UNIVERSITAT
ot E'E:ﬂ":".“f‘:"ii W’"‘ DES
“=5) SAARLANDES ATPHOL06-[7] — p.20!

(©)Benzmiiller, 2006

Ex.: Model without Boolean Extensionality .

Since (D, @) is a frame, hence functional, this uniquely
determines £ on all formulae.

Since the frame is full, we are guaranteed that there will be
enough functions to interpret A-abstractions.

Let v: D, — {T,F} be defined by v(a) := T, v(b) := T and
v(c) :=F.

A55PN UNIVERSITAT
ot E'E:ﬂ":".“f‘:"ii W’"‘ DES
“=5) SAARLANDES ATPHOL06-[7] — p.20!

(©)Benzmiiller, 2006

Ex.: Model without Boolean Extensionality .

Since (D, @) is a frame, hence functional, this uniquely
determines £ on all formulae.

Since the frame is full, we are guaranteed that there will be
enough functions to interpret A-abstractions.

Let v: D, — {T,F} be defined by v(a) := T, v(b) := T and
v(c) :=F.

Easy to check that M°' .= (D, @, £,v) is indeed a X-model.

A55PN UNIVERSITAT
ot E'Eu'ﬂ“:".“?f':: W’"‘ DES
“=5) SAARLANDES ATPHOL06-[7] — p.20!

(©)Benzmiiller, 2006

Ex.: Model without Boolean Extensionality .

Since (D, @) is a frame, hence functional, this uniquely
determines £ on all formulae.

Since the frame is full, we are guaranteed that there will be
enough functions to interpret A-abstractions.

Let v: D, — {T,F} be defined by v(a) := T, v(b) := T and
v(c) :=F.

Easy to check that M°' .= (D, @, £,v) is indeed a X-model.

Since M is a model over a frame it satisfies property f.

A55PN UNIVERSITAT
ot E'Eu'ﬂ“:".“?f':: W’"‘ DES
“=5) SAARLANDES ATPHOL06-[7] — p.20!

(©)Benzmiiller, 2006

Ex.: Model without Boolean Extensionality .

Since (D, @) is a frame, hence functional, this uniquely
determines £ on all formulae.

Since the frame is full, we are guaranteed that there will be
enough functions to interpret A-abstractions.

Let v: D, — {T,F} be defined by v(a) := T, v(b) := T and
v(c) :=F.

Easy to check that M°' .= (D, @, £,v) is indeed a X-model.
Since M is a model over a frame it satisfies property f.

Since this frame is full, we know property g holds.

A55PN UNIVERSITAT
ot E'Eu'ﬂ“:".“?f':: W’"‘ DES
“=5) SAARLANDES ATPHOL06-[7] — p.20!

(©)Benzmiiller, 2006

Ex.: Model without Boolean Extensionality .

Since (D, @) is a frame, hence functional, this uniquely
determines £ on all formulae.

Since the frame is full, we are guaranteed that there will be
enough functions to interpret A-abstractions.

Let v: D, — {T,F} be defined by v(a) := T, v(b) := T and
v(c) :=F.

Easy to check that M°' .= (D, @, £,v) is indeed a X-model.
Since M is a model over a frame it satisfies property f.
Since this frame is full, we know property g holds.

Clearly property b fails.

A55PN UNIVERSITAT
ot E'Eu'ﬂ“:".“?f':: W’"‘ DES
“=5) SAARLANDES ATPHOL06-[7] — p.20!

(©)Benzmiiller, 2006

Ex.: Model without Boolean Extensionality .

Since (D, @) is a frame, hence functional, this uniquely
determines £ on all formulae.

Since the frame is full, we are guaranteed that there will be
enough functions to interpret A-abstractions.

Let v: D, — {T,F} be defined by v(a) := T, v(b) := T and
v(c) :=F.

Easy to check that M7 .= (D, @, £, v) is indeed a X-model.
Since M is a model over a frame it satisfies property f.
Since this frame is full, we know property g holds.

Clearly property b fails.

So, M7 € Mg;(X) \ Mipo (%)

A55PN UNIVERSITAT
ot E'Eu'ﬂ“:".“?f':: W’"‘ DES
“=5) SAARLANDES ATPHOL06-[7] — p.20!

(©)Benzmiiller, 2006

Ex.: Model without Boolean Extensionality

ATPHOL06-[7] - p.211

Ex.: Model without Boolean Extensionality

In the previous model one can easily verify, if d := £,(D,) and
e :=&,(E,), then the values £,(D AE), £,(D = E), and
£,(D < E) are given by the following tables:

e:
EMDAE)|a b ¢ ED=E) ED < E) b ¢
d aja a c d: a d: a a ¢
bla a c b b a c

clc c c C C cC a

Now we show that one can properly model the

woodchuck/groundhog example.

(©Benzmiiller, 2006

ATPHOL06-[7] — p.21

Ex.: Groundhogs and Woodchucks

Let M7 be given as above and suppose woodchuck,_,o,
groundhog, .., john,, and phil, are in the signature %..

(©)Benzmiiller, 2006 ATPHOL06-[7] — p.21

Ex.: Groundhogs and Woodchucks

Let M7 be given as above and suppose woodchuck,_,o,
groundhog, .., john,, and phil, are in the signature %..

Let £(phil) :== 0 and £(john) := 1.

(©)Benzmiiller, 2006 ATPHOL06-[7] — p.21

Ex.: Groundhogs and Woodchucks

Let M7 be given as above and suppose woodchuck,_,o,
groundhog, .., john,, and phil, are in the signature %..

Let £(phil) :== 0 and £(john) := 1.

Let £(woodchuck) be the function w € D,_,, with w(0) = b and
w(l) =c.

(©)Benzmiiller, 2006 ATPHOL06-[7] — p.21

Ex.: Groundhogs and Woodchucks

Let M7 be given as above and suppose woodchuck,_,o,
groundhog, .., john,, and phil, are in the signature %..

Let £(phil) :== 0 and £(john) := 1.

Let £(woodchuck) be the function w € D,_,, with w(0) = b and
w(l) =c.

Let £(groundhog) be the function g € D,_., with g(0) = a and
g(l) =c.

(©)Benzmiiller, 2006 ATPHOL06-[7] — p.21

Ex.: Groundhogs and Woodchucks

Let M7 be given as above and suppose woodchuck,_,o,
groundhog, .., john,, and phil, are in the signature %..

Let £(phil) :== 0 and £(john) := 1.
Let £(woodchuck) be the function w € D,_,, with w(0) = b and

w(l) =c.
Let £(groundhog) be the function g € D,_., with g(0) = a and
g(l) =c.

One can show that the sentence
VX,.(woodchuck X) < (groundhog X) is valid.

&SP UNIVERSITAT

Bl oes
(© Benzmiller, 2006 B SAARLANDES ATPHOL06-[7] - p.21

Ex.: Groundhogs and Woodchucks

Let M7 be given as above and suppose woodchuck,_,o,
groundhog, .., john,, and phil, are in the signature %..

Let £(phil) :== 0 and £(john) := 1.
Let £(woodchuck) be the function w € D,_,, with w(0) = b and

w(l) =c.
Let £(groundhog) be the function g € D,_., with g(0) = a and
g(l) =c.

One can show that the sentence
VX,.(woodchuck X) < (groundhog X) is valid.

Also, £(woodchuck phil) = b and £(groundhog phil) = a, so the
propositions (woodchuck phil) and (groundhog phil) are valid.

AOORN UNIVERSITAT
mmﬁ‘ﬁu,mwﬁ DES
“=5) SAARLANDES ATPHOL06-[7] — p.21:

(©)Benzmiiller, 2006

Ex.: Groundhogs and Woodchucks

Suppose believe, o, € X and &£(believe) is the (Curried)
function bel € D,_,,, such that bel(1)(b) = b and
bel(1)(a) = bel(1)(c) = bel(0)(a) = bel(0)(b) = bel(0)(c) = c.

(©)Benzmiiller, 2006 ATPHOL06-[7] — p.21

Ex.: Groundhogs and Woodchucks

Suppose believe, o, € X and &(believe) is the (Curried)
function bel € D,_,,, such that bel(1)(b) = b and
bel(1)(a) = bel(1)(c) = bel(0)(a) = bel(0)(b) = bel(0)(c) = c.

Intuitively, John believes propositions with value b, but not
those with value a or c.

A5 UNIVERSITAT

i) DEs
@Benzm[]ller, 2006 - SAARLANDES ATPHOL06-[7] — p.21.

Ex.: Groundhogs and Woodchucks

Suppose believe, o, € X and &£(believe) is the (Curried)
function bel € D,_,,, such that bel(1)(b) = b and

bel(1)(a) = bel(1)(c) = bel(0)(a) = bel(0)(b) = bel(0)(c) = c.
Intuitively, John believes propositions with value b, but not
those with value a or c.

S0, believes john(woodchuck phil) is valid, while
believes john(groundhog phil) is not.

oy @’éuﬂ. UNIVERSITAT
S

iy
it

@Benzmuller, 2006 &Y SAARLANDES ATPHOL06-[7] — p.21:

Generalizing the Previous Model

As we have seen, Boolean extensionality fails when one has more
than two values in D,.

AOORN UNIVERSITAT
IS DES
5 SAARLANDES ATPHOL06-[7] — p.21.

(©Benzmiiller, 2006

Generalizing the Previous Model

As we have seen, Boolean extensionality fails when one has more
than two values in D,. We can generalize the construction defining
D, :={F} U B, where Bis any setwith T € Band F ¢ B.

AOORN UNIVERSITAT
mmﬁ‘ﬁu,mwﬁ DES
5 SAARLANDES ATPHOL06-[7] — p.21.

(©)Benzmiiller, 2006

Generalizing the Previous Model

As we have seen, Boolean extensionality fails when one has more
than two values in D,. We can generalize the construction defining
D, :={F} U B, where B is any set with T € Band F ¢ 5. The
model will satisfy Boolean extensionality iff B = {T}.

AOORN UNIVERSITAT
mmﬁ‘ﬁu,mwﬁ DES
5 SAARLANDES ATPHOL06-[7] — p.21.

(©)Benzmiiller, 2006

Generalizing the Previous Model

As we have seen, Boolean extensionality fails when one has more
than two values in D,. We can generalize the construction defining
D, :={F} U B, where B is any set with T ¢ Band F ¢ B. The
model will satisfy Boolean extensionality iff 5 = {T}. In this way,
we can easily construct models for the case with property b and the
case without property b simultaneously.

AOORN UNIVERSITAT
mmﬁlﬁu‘mm DES
5 SAARLANDES ATPHOL06-[7] — p.21.

(©)Benzmiiller, 2006

Generalizing the Previous Model

As we have seen, Boolean extensionality fails when one has more
than two values in D,. We can generalize the construction defining
D, :={F} U B, where B is any set with T ¢ Band F ¢ B. The
model will satisfy Boolean extensionality iff 5 = {T}. In this way,
we can easily construct models for the case with property b and the
case without property b simultaneously. We will use this idea to
parameterize the remaining model constructions by 5.

AOORN UNIVERSITAT
5 SAARLANDES ATPHOL06-[7] — p.21.

(©)Benzmiiller, 2006

Generalizing the Previous Model

As we have seen, Boolean extensionality fails when one has more
than two values in D,. We can generalize the construction defining
D, :={F} U B, where B is any set with T ¢ Band F ¢ B. The
model will satisfy Boolean extensionality iff 5 = {T}. In this way,
we can easily construct models for the case with property b and the
case without property b simultaneously. We will use this idea to
parameterize the remaining model constructions by 5.

These semantic constructions are similar to those in multi-valued
logics.

AOORN UNIVERSITAT
5 SAARLANDES ATPHOL06-[7] — p.21.

(©)Benzmiiller, 2006

Generalizing the Previous Model

As we have seen, Boolean extensionality fails when one has more
than two values in D,. We can generalize the construction defining
D, :={F} U B, where B is any set with T ¢ Band F ¢ B. The
model will satisfy Boolean extensionality iff 5 = {T}. In this way,
we can easily construct models for the case with property b and the
case without property b simultaneously. We will use this idea to
parameterize the remaining model constructions by 5.

These semantic constructions are similar to those in multi-valued
logics. In contrast to these logics where the logical connectives
are adapted to talk about multiple truth values, in our setting we are
mainly interested in multiple truth values as diverse v-pre-images of
T and F.

AOORN UNIVERSITAT
VWIE‘:‘Iu,“‘d,"‘:"V".}W"I DES
5 SAARLANDES ATPHOL06-[7] — p.21.

(©)Benzmiiller, 2006

X
O
—

Semantics: Examples of
> -Models (Contd.)

e UNIVERSITAT
jlislijp DES

(©Benzmiiller, 2006 215V SAARLANDES ATPHOL06-[8] — p.21:

X
@)
=

N
v.

Ex.: Models without Funct. Extensionality _

|dea: attach distinguishing labels to functions without changing
their applicative behavior

(©)Benzmiiller, 2006 ATPHOL06-[8] — p.21

X
@)
=

N
v.

Ex.: Models without Funct. Extensionality _

|dea: attach distinguishing labels to functions without changing
their applicative behavior

Let Bbe any setwithTc BandF ¢ BB

A55PN UNIVERSITAT

(©)Benzmiiller, 2006 5 SAARLANDES ATPHOL06-[8] — p.211

X
@)
=

N
v.

Ex.: Models without Funct. Extensionality _

|dea: attach distinguishing labels to functions without changing
their applicative behavior

Let Bbe any setwithTc BandF ¢ BB
Let D, :={F}UBand D, .= {x}

A55PN UNIVERSITAT

Z4Y SAARLANDES ATPHOL06-(8] - p.21

(©Benzmiiller, 2006

X
@)
=

N
v.

Ex.: Models without Funct. Extensionality _

|dea: attach distinguishing labels to functions without changing
their applicative behavior

Let Bbe any setwithTc BandF ¢ BB
Let D, :={F}UBand D, .= {x}

For each function type Sa, let

Dﬁa = {(I,f) | | € {O, 1} and f: D, — 'Dﬁ}

A55PN UNIVERSITAT
Z4Y SAARLANDES ATPHOL06-(8] - p.21

(©Benzmiiller, 2006

X
@)
=

N
v.

Ex.: Models without Funct. Extensionality _

|dea: attach distinguishing labels to functions without changing
their applicative behavior

Let Bbe any setwithTc BandF ¢ BB
Let D, :={F}UBand D, .= {x}

For each function type Sa, let

Dﬁa = {(I,f) | | € {O, 1} and f: D, — 'Dﬁ}

We define application by
(i,f)Qa := f(a)

whenever (i,f) € Dg, and a € D,,

AOORN UNIVERSITAT
mmﬁ‘ﬁu,mwﬁ DES
24 SAARLANDES ATPHOL06-[8] — p.21

(©)Benzmiiller, 2006

Ex.: Models without 1 and

Easy to check that (D, @) is an applicative structure:

(©)Benzmiiller, 2006 ATPHOL06-[8] — p.21

Ex.: Models without 1 and

Easy to check that (D, @) is an applicative structure:

Evaluation function defined by induction on terms

(©)Benzmiiller, 2006 ATPHOL06-[8] — p.21

Ex.: Models without 1 and

Easy to check that (D, @) is an applicative structure:

Evaluation function defined by induction on terms
E(—) :=(0,n) where n(b) :=Fforeveryb € Band n(F) :=T

A55PN UNIVERSITAT

(©)Benzmiiller, 2006 5 SAARLANDES ATPHOL06-[8] — p.21

Ex.: Models without 1 and

Easy to check that (D, @) is an applicative structure:

Evaluation function defined by induction on terms
E(—) :=(0,n) where n(b) := F forevery b € Band n(F) :=T
E(V) := (0,d) where
d(b) := (0, k") for every b € B and
d(F) := (0,id)
(k! is the constant T function)
(id is the identity function from D, to D,)

AOORN UNIVERSITAT
mmﬁ‘ﬁu,mwﬁ DES
24 SAARLANDES ATPHOL06-[8] — p.21

(©)Benzmiiller, 2006

Ex.: Models without 1 and

Easy to check that (D, @) is an applicative structure:

Evaluation function defined by induction on terms
E(—) :=(0,n) where n(b) :=Fforeverybe Band n(F) :=T
E(V) := (0,d) where
d(b) := (0, k") for every b € B and
d(F) := (0,id)
(k! is the constant T function)
(id is the identity function from D, to D,)
E(N%) := (0,7) where for each (i,f) € Dy, 7*((i,f)) := T if
f(a) € Bforalla € D, and 7“(i,f) := F otherwise

AOORN UNIVERSITAT
) E‘ﬁu}{,"% W’"‘ DES

Z4Y SAARLANDES ATPHOL06-8] - p.21

(©)Benzmiiller, 2006

Ex.: Models without 1 and

Easy to check that (D, @) is an applicative structure:

Evaluation function defined by induction on terms
E(—) :=(0,n) where n(b) :=Fforeverybe Band n(F) :=T
E(V) := (0,d) where
d(b) := (0, k") for every b € B and
d(F) := (0,id)
(k! is the constant T function)
(id is the identity function from D, to D,)
E(N%) := (0,7) where for each (i,f) € Dy, 7*((i,f)) := T if
f(a) € Bforalla € D, and 7“(i,f) := F otherwise
q“ := (0,9%) € Doaa Where q*(a) := (0,s%) and s?(b) := T if
a = b and s?(b) := F otherwise

A55PN UNIVERSITAT
mm%ﬂ};ﬁm DES
24 SAARLANDES ATPHOL06-[8] — p.21

(©)Benzmiiller, 2006

Ex.: Models without 1 and

Easy to check that (D, @) is an applicative structure:

Evaluation function defined by induction on terms
E(—) :=(0,n) where n(b) :=Fforeverybe Band n(F) :=T
E(V) := (0,d) where
d(b) := (0, k") for every b € B and
d(F) := (0,id)
(k! is the constant T function)
(id is the identity function from D, to D,)
E(N%) := (0,7) where for each (i,f) € Dy, 7*((i,f)) := T if
f(a) € Bforall a € D, and (i, f) := F otherwise
q“ :=(0,9%) € Dona Where g*(a) := (0,s?) and s*(b) := T if
a = b and s?(b) := F otherwise
E(w) € D, arbitrary for parameters w € ¥,.

Aok UNIVERSITAT
gy PES

(©)Benzmiiller, 2006 SAARLANDES ATPHOL06-[8] — p.21'

Ex.: Models without 1 and

(©)Benzmiiller, 2006 ATPHOL06-[8] — p.21

Ex.: Models without 1 and

For variables, we define £,(X) := p(X)

(©)Benzmiiller, 2006 ATPHOL06-[8] — p.21

Ex.: Models without 1 and

For variables, we define £,(X) := p(X)
For application, we define £,(FA) := £, (F)Q&,(A)

(©)Benzmiiller, 2006 ATPHOL06-[8] — p.21

Ex.: Models without 1 and

For variables, we define £,(X) := p(X)
For application, we define £,(FA) := £, (F)Q&,(A)

For A-abstractions, we define £,(A\X,.Bg) := (O f) where
f: D, — Dg is the function such that f(a) = /x(B) for

alla € D,

L"u“..?ﬁwﬂ UNIVERSITAT
m\.".%mu. DES
@Benzm[]ller, 2006 i - d SAARLANDES ATPHOLO06-[8] — p.21:

Ex.: Models without 1 and

For variables, we define £,(X) := p(X)

For application, we define £,(FA) := £, (F)Q&,(A)

For A-abstractions, we define £,(A\X,.Bg) := (O f) where
f: D, — Dg is the function such that f(a) = /x(B) for
alla € D,

With some work (which we omit), one can show that this £ is
an evaluation function

AGER UNIVERSITAT
i 88 m DES

(©)Benzmiiller, 2006 25y SAARLANDES ATPHOL06-[8] — p.21:

Ex.: Models without 1 and

For variables, we define £,(X) := p(X)
For application, we define £,(FA) := £, (F)Q&,(A)
For A-abstractions, we define £,(A\X,.Bg) := (O f) where

f: D, — Dg is the function such that f(a) = /x(B) for
alla € D,

With some work (which we omit), one can show that this £ is
an evaluation function

Taking v to be the function such that v(b) := T for every b € B
and v(F) := F, one can easily show that this is a valuation

AGER UNIVERSITAT
i 88 m DES

(©Benzmiiller, 2006 25/ SAARLANDES ATPHOL06-[8] — p.21;

Ex.: Models without 1 and

For variables, we define £,(X) := p(X)
For application, we define £,(FA) := £, (F)Q&,(A)
For A-abstractions, we define £,(A\X,.Bg) := (O f) where

f: D, — Dg is the function such that f(a) = /x(B) for
alla € D,

With some work (which we omit), one can show that this £ is
an evaluation function

Taking v to be the function such that v(b) := T for every b € B
and v(F) := F, one can easily show that this is a valuation

Hence, M5 .= (D, @, £,v) is a ¥-model

AGER UNIVERSITAT
bl E‘“.r“:m m DES

(©)Benzmiiller, 2006 25y SAARLANDES ATPHOL06-[8] — p.21:

Ex.: Models without 1 and

The objects q* := (0, q*) witness property q for M5

(©)Benzmiiller, 2006 ATPHOL06-[8] — p.21

Ex.: Models without 1 and

The objects q* := (0, q*) witness property q for M5

The objects (1,q%) also witness property q (so, in the
non-functional case such witnesses are not unique)

AOORN UNIVERSITAT
) E‘ﬁu}{,"% W’"‘ DES
5 SAARLANDES

(©)Benzmiiller, 2006

ATPHOL06-[8] — p.21!

Ex.: Models without 1 and

The objects q* := (0, q*) witness property q for M5

The objects (1,q%) also witness property q (so, in the
non-functional case such witnesses are not unique)

Hence, M” := (D, @, £,v) is a ¥-model with property g

AOORN UNIVERSITAT
) E‘ﬁu}{,"% W’"‘ DES
5 SAARLANDES

(©)Benzmiiller, 2006

ATPHOL06-[8] — p.21!

X
@)
=

N
v.

Ex.: Models without 1 and

Property f fails for M5, since the applicative structure (D, @) is
not functional:

(©)Benzmiiller, 2006 ATPHOL06-[8] — p.22

X
@)
=

N
v.

Ex.: Models without 1 and

Property f fails for M5, since the applicative structure (D, @) is
not functional:

Consider u: D, — D,.

(©)Benzmiiller, 2006 ATPHOL06-[8] — p.22

X
@)
=

N
v.

Ex.: Models without 1 and

Property f fails for M5, since the applicative structure (D, @) is
not functional:

Consider u: D, — D,.
For both (0, u), (1,u) € D,, we have

(i, u)@x = %

although (0,u) # (1, u)

(©)Benzmiiller, 2006 ATPHOL06-[8] — p.22

Ex.: Models without 1 and

Does 1 hold?

(©)Benzmiiller, 2006 ATPHOL06-[8] — p.22

Ex.: Models without 1 and

Does 1 hold?
No!

(©)Benzmiiller, 2006 ATPHOL06-[8] — p.22

Ex.: Models without 1 and

Does 1 hold?
No!
Compute, for example, £(A\Fgz,.F) and £(AFgq-AX,.FX)

(©)Benzmiiller, 2006 ATPHOL06-[8] — p.22

Ex.: Models without 1 and

Does 1 hold?
No!

Compute, for example, £(A\Fgz,.F) and £(AFgq-AX,.FX)

E(AFga.F) = (0,id) where id is the identity function from Dg,,
to Dﬁa

(©)Benzmiiller, 2006 ATPHOL06-[8] — p.22

Ex.: Models without 1 and

Does 1 hold?
No!

Compute, for example, £(A\Fgz,.F) and £(AFgq-AX,.FX)
E(AFga.F) = (0,id) where id is the identity function from Dg,,
to Dﬁa

E(AF 3o AX0FX) = (0, p) where p is the function from Dg,, to
Dg, such that p((i,f)) = (0, f) for each f: D, — Dg

A5 UNIVERSITAT

(©Benzmiiller, 2006 25 SAARLANDES ATPHOL'06-[8] - p.22

Ex.: Models without 1 and

Does 1 hold?
No!

Compute, for example, £(A\Fgz,.F) and £(AFgq-AX,.FX)
E(AFga.F) = (0,id) where id is the identity function from Dg,,
to Dy,

E(AF 3o AX0FX) = (0, p) where p is the function from Dg,, to

Dg, such that p((i,f)) = (0, f) for each f: D, — Dg

Hence £(AFgq.F) # E(AF 50 AX0.FX)

A5 UNIVERSITAT

(©)Benzmiiller, 2006 SAARLANDES ATPHOL06-[8] — p.22

Ex.: Models without 1 and

Does ¢ hold?

(©)Benzmiiller, 2006 ATPHOL06-[8] — p.22

Ex.: Models without 1 and

Does ¢ hold?

Yes!

(©)Benzmiiller, 2006 ATPHOL06-[8] — p.22

Ex.: Models without 1 and

Does ¢ hold?
Yes!
If
Ep la/x](M) = &, 1a/x(N)

for every a € D,, then
Ep(AXp=M) = (0,f) = EL(AXN)

where f(a) — 5%[3/)(](1\/[) — 5§0,[a/x](N) for every a € D,.

(©)Benzmiiller, 2006 ATPHOL06-[8] — p.22

Ex.: Models without 1 and

If B = {T}, then the model M%® .= M{T} satisfies property b.

(©)Benzmiiller, 2006 ATPHOL06-[8] — p.22

Ex.: Models without 1 and

If B = {T}, then the model M%® .= M{T} satisfies property b.
So, we know MPE ¢ 9)?55[,(2) \mgf[,(Z).

(©)Benzmiiller, 2006 ATPHOL06-[8] — p.22

Ex.: Models without 1 and

If B = {T}, then the model M%® .= M{T} satisfies property b.
So, we know M™P € Mgep(T) \ M (T).

On the other hand, if b is any value with b ¢ {T,F}, and
B = {T, b}, then the model M%* = M1TP} does not satisfy

property b.

A55PN UNIVERSITAT

(©)Benzmiiller, 2006 ATPHOL06-[8] — p.22

Ex.: Models without 1 and

If B = {T}, then the model M%® .= M{T} satisfies property b.
So, we know M™P € Mgep(T) \ M (T).

On the other hand, if b is any value with b ¢ {T,F}, and
B = {T, b}, then the model M%* = M1TP} does not satisfy
property b.

In this case, we know M € Mge(X) \ (Mg5(T) U Mgep(X)).

A55PN UNIVERSITAT
E2S) SAARLANDES ATPHOL06-[8] — p.22

(©Benzmiiller, 2006

Ex.: Models without 1 and

full

[}
A
o
|
)
%)
o
|
o
T
o
<C

Ex.: Models without 1 and

Z
o
a
|
)
©
IS

Ex.: Models without 1 and

Let MPZ be the ¥-model (D, @, £, v) as constructed before

(©)Benzmiiller, 2006 ATPHOL06-[8] — p.22

Ex.: Models without 1 and

Let MPZ be the ¥-model (D, @, £, v) as constructed before

Define an alternative evaluation function £’ by induction:

(©)Benzmiiller, 2006 ATPHOL06-[8] — p.22

Ex.: Models without 1 and

Let MPZ be the ¥-model (D, @, £, v) as constructed before

Define an alternative evaluation function £’ by induction:
Forallw € ¥, let £'(w) := E(w)

(©)Benzmiiller, 2006 ATPHOL06-[8] — p.22

Ex.: Models without 1 and

Let MPZ be the ¥-model (D, @, £, v) as constructed before

Define an alternative evaluation function £’ by induction:
Forallw € ¥, let £'(w) := E(w)
For variables we define &£,(X) := ¢(X)

&SP UNIVERSITAT

i u:m DES

(©)Benzmiiller, 2006 5 SAARLANDES ATPHOL'06-[8] — p.22

Ex.: Models without 1 and

Let MPZ be the ¥-model (D, @, £, v) as constructed before

Define an alternative evaluation function £’ by induction:
Forallw € ¥, let £'(w) := E(w)
For variables we define &£,(X) := ¢(X)
We must define £,(FA) := £, (F)Q&(A)

A55PN UNIVERSITAT

(©)Benzmiiller, 2006 5 SAARLANDES ATPHOL'06-[8] — p.22

Ex.: Models without 1 and

Let MPZ be the ¥-model (D, @, £, v) as constructed before

Define an alternative evaluation function £’ by induction:
Forallw € ¥, let £'(w) := E(w)
For variables we define &£,(X) := ¢(X)
We must define £,(FA) := £, (F)Q&(A)
We choose & (A\X..Bg) = (1,f) where f: D, — Djg is the
function such that f(a) = &, 1, /x(B) for all a € D,

AOORN UNIVERSITAT

MWI DES
""""""" SAARLANDES ATPHOL06-[8] - p.22

(©)Benzmiiller, 2006

Ex.: Models without 1 and

Let MPZ be the ¥-model (D, @, £, v) as constructed before

Define an alternative evaluation function £’ by induction:
Forallw € ¥, let £'(w) := E(w)
For variables we define &£,(X) := ¢(X)
We must define £,(FA) := £, (F)Q&(A)
We choose & (A\X..Bg) = (1,f) where f: D, — Djg is the
function such that f(a) = &, 1, /x(B) for all a € D,

£ and &’ agree on all constants, they are different though:
E(AX.X) = (0,id) # (1,id) = &'(AX,.X)

where id : D, — D, is the identity function

AOORN UNIVERSITAT

MWI DES
""""""" SAARLANDES ATPHOL06-[8] - p.22

(©)Benzmiiller, 2006

Ex.: Models without 1 and

Let MPZ be the ¥-model (D, @, £, v) as constructed before

Define an alternative evaluation function £’ by induction:
Forallw € ¥, let £'(w) := E(w)
For variables we define &£,(X) := ¢(X)
We must define £,(FA) := £, (F)Q&(A)
We choose & (A\X..Bg) = (1,f) where f: D, — Djg is the
function such that f(a) = S%[a/x](B) foralla € D,

£ and &’ agree on all constants, they are different though:
E(AX.X) = (0,id) # (1,id) = &'(AX,.X)

where id : D, — D, is the identity function

Thus, in non-functional models evaluation functions are not
uniquely determined by their values on constants

AOORN UNIVERSITAT
) H‘@m W’"‘ DES

(©)Benzmiiller, 2006 &Y SAARLANDES ATPHOL06-[8] — p.22!

Ex.: Models without ¢

full

[
AN
o
|
)
1)
o
|
o
T
o
<C

Ex.: Models without ¢

Not here!

See [JSL-04]

ATPHOL06-[8] — p.22

Ex.: Models without ¢

full

z
AN
o
|
)
1)
o
-
o
T
o
<C

Ex.: Models without ¢

Not here!

See [JSL-04]

ATPHOL06-[8] — p.22

	
	Outline for Today
	Notion of Higher-Order Logic
	Notion of Higher-Order Logic
	Focus of the Lecture
	Focus of the Lecture
	Relevance and Applications
	
	Who am I?
	Who am I?
	Who am I?
	Who am I?
	Who are You?
	
	Before we start ldots
	Miscellaneous
	Lectures
	Exercises and Tutorials
	Examination
	
	
	History
	History (Cont'd)
	History (Cont'd)
	History (Cont'd)
	History (Cont'd)
	History (Cont'd)
	History (Cont'd)
	History (Cont'd)
	History (Cont'd)
	History (Cont'd)
	History HOL
	History HOL (Cont'd)
	History HOL (Cont'd)
	History (Cont'd)
	
	$lambda $-Calculus: Motivation
	$lambda $-Calculus: Motivation
	$lambda $-Calculus: $lambda $-terms
	$lambda $-Calculus: Set of $lambda $-expressions
	$lambda $-Calculus: Conventions
	$lambda $-Calculus: $ eta $-reduction
	$lambda $-Calculus: $ eta $-reduction
	$lambda $-Calculus: Currying
	$lambda $-Calculus: $alpha $-conversion
	$lambda $-Calculus: $eta $-reduction
	$lambda $-Calculus: $ eta eta $-equivalence
	$lambda $-Calculus: Normalforms
	$lambda $-Calculus: Normalforms
	$lambda $-Calculus: Iteration
	$lambda $-Calculus: Church Numerals
	$lambda $-Calculus: Church Numerals
	$lambda $-Calculus: Church Numerals
	$lambda $-Calculus: Sets
	$lambda $-Calculus: Sets
	$lambda $-Calculus: Sets
	$lambda $-Calculus: Sets
	$lambda $-Calculus: Russell's Paradox
	$lambda $-Calculus: Russell's Paradox
	$lambda $-Calculus: Nontermination
	Typed $lambda $-Calculus
	Typed $lambda $-Calculus: Typed Terms
	Typed $lambda $-Calculus: Typed Terms
	Typed $lambda $-Calculus: Typed Terms
	Typed $lambda $-Calculus: Assigning Types
	Typed $lambda $-Calculus: Assigning Types
	Typed $lambda $-Calculus: Assigning Types
	Typed $lambda $-Calculus: $ eta eta $
	
	Typed $lambda $-Calculus: Logical Constants
	HOL: Abbreviations
	HOL: Expressing Properties
	HOL: Expressing Properties
	HOL: Prefix Polymorphism
	HOL: Cantor's Theorem
	HOL: Standard Higher-Order Model
	HOL: Henkin-Style Model
	
	Def.: Types
	Ex.: Freely Generated
	Ex.: Freely Generated
	Ex.: Types
	Def.: Functions
	Ex.: Sets of Functions
	Ex.: Sets of Labelled Functions
	Def.: Frames
	Ex.: Frames
	Ex.: Frames (Contd.)
	Def.: Typed Applicative Structure
	Rem.: Currying
	Interesting Properties
	Def.: Functional Applicative Structures
	Def.: Full Applicative Structures
	Def.: Standard Applicative Structures
	Rem.: Frames and Applicative Structures
	Example: Full Functional Appl. Structure
	Def.: Homomorphic Appl. Structures
	Def.: Isomorphic Appl. Structures
	
	Def.: Untyped $lambda $-Calculus
	Simply Typed $lambda $-Calculus
	Notational Conventions
	Def.: Positions in $lambda $-Terms
	Def.: Position (Contd.)
	Def.: Replacement at Position
	Def.: Scope of $lambda $-Term
	Def.: Free and Bound Variables
	
	Def.: Substitution
	Ex.: Substitution
	Def.: $alpha $-Conversion
	Def.: $ eta $-Conversion
	Def.: $ eta $-Normal Form
	Thm.: Church-Rosser Property for $	woheadrightarrow _ eta $
	Ex.: Church-Rosser Property for $	woheadrightarrow _ eta $
	Termination
	Def.: $eta $-Conversion
	Def.: $eta $-Normal Form
	Thm.: Church-Rosser Property for $	woheadrightarrow _eta $
	Def.: $ eta eta $-Conversion
	Def.: $ eta eta $-Normal Form
	Thm.: Church-Rosser Property for $	woheadrightarrow _{ eta eta }$
	Thm.: Strong Church-Rosser Property
	Def.: Long $ eta eta $-Normal Form
	Ex.: Long $ eta eta $-Normal Form
	Thm.: Long $ eta eta $-Normal Form
	Rem.: $ eta eta $-Head Normal Form
	Notation
	
	Ex.: An Interesting Applicative Structure
	Ex.: Interpretation of Terms
	Ex.: Interesting Applicative Structures
	Ex.: Interesting Applicative Structures
	Ex.: Interesting Applicative Structures
	Ex.: Interesting Applicative Structures
	Def.: Variable Assignment
	Some Assumptions
	$Signat $-Evaluations
	$Signat $-Evaluations
	Def.: Evaluation Function
	Def.: $Signat $-Evaluation
	Def.: Functional/Full/Standard $Signat $-Eval.
	What is the Idea?
	Lemma: $Signat $-Evaluations respect $ eta $-Equality
	Thm.: {Substitution-Value Lemma}
	Prf.: {Substitution-Value Lemma}
	Weaker Notions of Functionality
	Def.: $eta $-Functional
	Def.: $xi $-Functional
	Lemma: Functionality and $eta $
	Lemma: Functionality and $eta $+$xi $
	Logical Constants in Signature
	Once More: Cantor's Theorem
	Once More: Cantor's Theorem
	Once More: Cantor's Theorem
	Once More: Cantor's Theorem
	
	Def.: Properties of Logical Constants
	Def.: $Signat $-Valuation
	Def.: $Signat $-Model
	Some Conventions: Equality
	Def.: Properties $f, b, eta , xi $
	Lemma: Surjective v
	Thm.: Property $propb $
	
	Def. (Reminder):
$Signat $-Model
	Def. (Reminder):
Properties $f, b, eta , xi $
	Def. (Reminder):
Different Model Classes
	Def.: Satisfies, models, and $models $
	Semantics: HOL-CUBE
	Semantics: HOL-CUBE
	Standard Models and Henkin Models
	Standard Models and Henkin Models
	Standard Models and Henkin Models
	Standard Models and Henkin Models
	Models without Functional Extensionality
	Models without Functional Extensionality
	Semantics: HOL-CUBE
	Models without $eta $- or $xi $-Functionality
	Semantics: HOL-CUBE
	Semantics: HOL-CUBE
	Models without Boolean Extensionality
	Models without Boolean Extensionality
	Semantics: HOL-CUBE
	
	Test Problems for Theorem Provers
	Test Problems for Theorem Provers
	Remark: Signature
	HOL-Problems: $ eta $
	HOL-Problems: $propb $
	HOL-Problems: $propf $
	HOL-Problems: $propeta $
	HOL-Problems: $propxi $
	HOL-Problems: $propf $
	HOL-Problems: $propb $
	HOL-Problems: Other Examples
	HOL-Problems: DeMorgan's Law
	HOL-Problems: DeMorgan's Law
	HOL-Problems: DeMorgan's Law
	HOL-Problems: Set Comprehension
	HOL-Problems: Set Comprehension
	HOL-Problems: Set Comprehension
	
	Examples of $Signat $-Models
	Ex.: Singleton Model
	Ex.: Singleton Model
	Ex.: Model without Boolean Extensionality
	Ex.: Model without Boolean Extensionality
	Ex.: Model without Boolean Extensionality
	Ex.: Model without Boolean Extensionality
	Ex.: Groundhogs and Woodchucks
	Ex.: Groundhogs and Woodchucks
	Generalizing the Previous Model
	
	Ex.: Models without Funct. Extensionality
	Ex.: Models without $propeta $ and $propf $
	Ex.: Models without $propeta $ and $propf $
	Ex.: Models without $propeta $ and $propf $
	Ex.: Models without $propeta $ and $propf $
	Ex.: Models without $propeta $ and $propf $
	Ex.: Models without $propeta $ and $propf $
	Ex.: Models without $propeta $ and $propf $
	Ex.: Models without $propeta $ and $propf $
	Ex.: Models without $propeta $ and $propf $
	Ex.: Models without $propeta $ and $propf $
	Ex.: Models without $propxi $
	Ex.: Models without $propxi $
	
	Short Reminder
	Reading
	Natural Deduction: Motivation
	Sequent Calculus: Motivation
	Sequent Calculus: Introduction
	Natural Deduction
	Natural Deduction Rules Ia
	Natural Deduction Rules IIa
	Natural Deduction Rules IIIa
	Natural Deduction
	Natural Deduction Proofs
	Natural Deduction with Contexts
	Natural Deduction with Contexts
	Natural Deduction with Contexts
	Natural Deduction with Contexts
	Natural Deduction Rules Ib
	Natural Deduction Rules IIb
	Natural Deduction Rules IIIb
	Intercalation
	Intercalating Natural Deductions
	ND Intercalation Rules I
	ND Intercalation Rules II
	ND Intercalation Rules III
	Intercalation and ND
	Example Proofs
	Soundness and Completeness
	From ND to Sequent Calculus
	Sequent Calculus Rules I
	Sequent Calculus Rules II
	Example Proof
	Sequent Calculus: Cut-rule
	Sequent Calculus
	Gentzen's Hauptsatz
	Applications of Cut-Elimination
	What have we done?
	Applications of Cut-Elimination
	Summary
	
	ND Calculi for HOL
	ND Calculi for HOL
	ND Calculi for HOL
	ND Calculi for HOL
	ND Calculi for HOL
	ND Calculi for HOL
	ND Calculi for HOL
	ND Calculi for HOL
	ND Calculi for HOL
	
	Completeness (of $allNdcalc $)
	
	Abstract Consistency: History
	Abstract Consistency: Idea
	Abstract Consistency: Idea
	Def.: Closed under Subsets / Compact
	Ex.: Closed under Subsets / Compact
	Lemma: Closed under Subsets / Compact
	Def.: Sufficiently $Signat $-Pure
	Abstract Consistency: Conventions
	Def.: Abstract Consistency Properties
	Def.: Abstract Consistency Properties
	Def.: Abstract Consistency Classes
	Abstract Consistency Classes
	Ex.: Abstract Consistency Class
	Rem.: Possible Generalization
	Def.: Saturated
	Ex.: Saturated
	Thm.: Model Existence Theorem
	Thm.: Model Existence for Henkin Models
	
	Def.: {	ermcolor $allNdcalc $}-Consistent/Inconsistent
	Lemma: Saturated $ACCstar $
	Lemma: Saturated $ACCstar $
	Lemma: Saturated $ACCstar $
	Lemma: Saturated $ACCstar $
	Thm.: Henkin's Theorem for $allNdcalc $
	Thm.: Completeness Theorem for $allNdcalc $
	Compactness
	
	Preliminaries and Notation
	Preliminaries and Notation
	Def.: General Bindings
	Def.: Literals
	Def.: Unification Constraints
	Def.: Clauses
	Def.: Clauses (contd.)
	Rem.: Skolemisation
	
	Andrews' Higher-Order Resolution $RES $
	Andrews' Higher-Order Resolution $RES $
	Andrews' Higher-Order Resolution $RES $
	Andrews' Higher-Order Resolution $RES $
	Andrews' Higher-Order Resolution $RES $
	Andrews' Higher-Order Resolution $RES $
	Andrews' Higher-Order Resolution $RES $
	Andrews' Higher-Order Resolution $RES $
	Andrews' Higher-Order Resolution $RES $
	Andrews' Higher-Order Resolution $RES $
	Example Proofs
	Example Proofs
	Example Proofs
	
	Huet's Constrained Resolution $CRES $
	Huet's Constrained Resolution $CRES $
	Huet's Constrained Resolution $CRES $
	Huet's Constrained Resolution $CRES $
	Huet's Constrained Resolution $CRES $
	Huet's Constrained Resolution $CRES $
	Huet's Constrained Resolution $CRES $
	Huet's Constrained Resolution $CRES $
	Huet's Constrained Resolution $CRES $
	Huet's Constrained Resolution $CRES $
	Huet's Constrained Resolution $CRES $
	Huet's Constrained Resolution $CRES $
	Huet's Constrained Resolution $CRES $
	Huet's Constrained Resolution $CRES $
	Huet's Constrained Resolution $CRES $
	Huet's Constrained Resolution $CRES $
	Huet's Constrained Resolution $CRES $
	Example Proofs
	Example Proofs
	Example Proofs
	
	Extensional HO Resolution $ERES $
	Extensional HO Resolution $ERES $
	Extensional HO Resolution $ERES $
	Extensional HO Resolution $ERES $
	Extensional HO Resolution $ERES $
	Extensional HO Resolution $ERES $
	Ex.: Extensional HO Resolution $ERES $
	Ex.: Extensional HO Resolution $ERES $
	Ex.: Extensional HO Resolution $ERES $
	
	Def.: Sequent Calculi
	Def.: Validity of Sequents
	Def.: k-Admissibility of Rules
	Def.: Sequent Calculus Rules
	Def.: Sequent Calculus Rules
	ACC for Sequent Calculi
	Def.: ACC for Sequent Calculi
	Lemma: Consequence of {	ermcolor $seqneginv $}
	Thm.: Sufficient Conditions for $accseq SEQCALC in ACCMODD $
	Thm.: Sufficient Condition for $accseq SEQCALC in ACCMODD $
	Thm.: Sufficient Condition for $accseq SEQCALC in ACCMODD $
	Thm.: Saturation and Cut
	Def.: Saturated Extension
	Ex.: ACC without Saturated Extension
	Existence of Saturated Extensions and Cut

