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Abstract

We describe a threshold-based local algorithm for im-
age binarization. The main idea is to compute a transition
energy using pixel value differences taken from a neighbor-
hood around the pixel of interest. By filtering the pixels with
low positive and negative energy, we keep two subsets in the
neighborhood, corresponding to higher positive and nega-
tive energy values. The binarization threshold is calculated
using a statistical model of the high energy pixels. Experi-
ments show that this new approach is faster and better than
current state-of-the-art algorithms.

1. Introduction

Binarization is one of several steps used in most docu-
ment image analysis systems. It consists on labeling each
pixel in an image as foreground and background. The for-
mer is a pixel subsetF that represents a region of inter-
est containing forms and objects used for further document
analysis and recognition, while the latterB is the comple-
ment ofF .

Most binarization algorithms for gray-scale images label
pixels as foreground, if their gray values are above some
threshold. Global algorithms extract the information from
the whole image and use only one threshold for all pixels,
while local binarization algorithms compute a threshold by
extracting information from a neighborhood of the pixel [6].

In other words, local algorithms compute athreshold
surfaceover the whole image: a pixel(i, j) belongs to the
foreground, if its intensityI(i, j) is higher than the thresh-
old valueT (i, j). A classical local algorithm is based on
Niblack’s method [5]. He computes the threshold value as

T (i, j) = µ(i, j) + γσ(i, j), (1)

whereµ(i, j) andσ(i, j) are the mean and standard devia-
tion of image intensities, which are taken from a neighbor-
hood of the pixel(i, j). An ideal neighborhood size main-
tains a trade-off between local-detail preservation (small

size) and noise elimination (large size). Kavallieratou [2]
developed an iterative algorithm that uses the mean gray
valueµ(i, j). In each iteration, the pixels with an intensity
value aboveµ(i, j) are removed. The remaining pixels are
considered as the current foreground and used to recompute
µ(i, j). This process is repeated until a fixed number of it-
erations is reached.

Li et al. [3] developed a method based on the discrete
Laplacian

∇2I(i, j) = I(i + 1, j) + I(i − 1, j) +

I(i, j + 1) + I(i, j − 1) − 4I(i, j). (2)

They use the sign change in the Laplacian at different im-
age scales as a criterion to select edge pixels from the im-
age. The remaining edge points are used to construct aco-
occurrence matrix, which is the base to compute the bina-
rization threshold.

The key ideas in the methods are, apart from theoreti-
cal and implementation details, the following. Niblack and
Kavallieratouuse statistics on a neighborhoodof the pixel
of interest, while Li et al.define a criterion to select pixels
that have high information content.

The method we present in this paper combines the above
mentioned ideas. We define a criterion to select pixels in
the image using anenergy functionwhose computation de-
pends on an small neighborhood of the pixel. We select the
pixels that reach extreme positive and negative energy val-
ues, and compute some statistics that are used to compute
the threshold used for the binarization.

2. Transition pixels and energy function

The ideal situation for a binarization algorithm occurs
when there is a large difference between pixel values of
foreground and background, and the rest of the pixel values
do not differ significantly from those values. Actually, it is
expected that the background and foreground correspond to
the pixels that reach the maximal and minimal pixel inten-
sity. Under these assumptions, binarization consists onlyon
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locating a region in the image, where there is a large differ-
ence between image values, computing the maximum and
minimum values in the region, and finally computing some
threshold that lays between them [1].

Large differences are observed at the boundary of our
region of interest, because a neighborhood of these pixels is
a transition from foreground to background. They contain
more information than other pixel neighborhoods where the
image values are practically constant.

The previous reasoning let us to define thetransition en-
ergyfor a pixel(i, j) as

E(i, j) = Imax(i, j) + Imin(i, j) − 2I(i, j) (3)

whereImax(i, j) andImin(i, j) are the maximal and mini-
mal pixel values in a small neighborhoodS(i, j) of the pixel
(i, j). Observe the similarities between the energy function
and (2).

Considering the transition energy and a positive integer
e, the pixels fall into three sets:

• E+(e) = {(i, j)|E(i, j) > e}

• E−(e) = {(i, j)|E(i, j) < e}

• E0(e) = {(i, j)|E(i, j) = e}

It is not difficult to note that the transition energychar-
acterizesthe foreground and background: pixels withhigh
positive energyare foreground with high probability, and
the pixels withhigh negative energyare background pixels
with high probability.

2.1. Global transitions and energy thresh-
olds

To keep track of the pixels in relation to their transi-
tion energy, we compute two histogramsH (E+(0)) and
H (E−(0)), whereH(P) computes the gray-level vs fre-
quency histogram over the pixel setP. Similarly, the value
H(P, i) is the frequency of the pixels that have ai-level
energy inP.

Let us denote withΦ the transition pixels, which are
the pixels containing background and foreground pixels in
some neighborhood. In an ideal case, there is a energy value
e∗+ > 0 such that

Φ ∩ F = E+(e∗+), (4)

with

1

|Φ ∩ F|

l−1
∑

i=0

H(Φ ∩ F , i) · i ≈
1

|F|

l−1
∑

i=0

H(F , i) · i, (5)

wherel is the number of gray-level in the imageI. Equa-
tion (4) is interpreted as follows. If a transition pixels be-
longs to the foreground, they must belong to the set of pixels

with highest energy. The intersectionΦ ∩ F is a scattering
of F , consequently average intensity values on the intersec-
tion is an estimatorof average intensities on the foreground.
Linking equation (4) and equation (5) we approach the av-
erage ofF using the suitableE+(e∗+) set.

1

|E+(e∗+)|

l−1
∑

i=0

H(E+(e∗+), i) · i ≈
1

|F|

l−1
∑

i=0

H(F , i) · i (6)

In the same way, there is a valuee∗
−

< 0 such that

Φ ∩ B = E−(e∗
−

) (7)

with

1

|Φ ∩ B|

l−1
∑

i=0

H(Φ ∩ B, i) · i ≈
1

|B|

l−1
∑

i=0

H(B, i) · i (8)

and

1

|E−(e∗
−

)|

l−1
∑

i=0

H(E−(e∗
−

), i) · i ≈
1

|B|

l−1
∑

i=0

H(B, i) · i. (9)

In the case of real images, equation (4) is not fulfilled
because there are noise since some elements ofΦ ∩F have
low positive energy or there are pixels inB with hight pos-
itive energy. However, in a real image, equation (4) can be
rewritten as

|X+ (e) ∪ Y+ (e) | = E+ (e) (10)

whereX+ (e) = {(i, j) ∈ F , E(i, j) > e} andX+ (e) =
{(i, j) ∈ B, E(i, j) > e}. Thus, the optimal parameter
e∗+ ∈ [0, l) is the one that minimizes the error

Error(e+) =

l−1
∑

i=0

(

H(Φ ∩ F , i)

|Φ ∩ F|
−

H (E+ (e) , i)

|E+ (e)|

)2

.

(11)
Since the setΦ∩F is unknown, the functionError(e+)

cannot be computed. We have found in our experiments that
the setΦ ∩ F fulfills:

|Φ ∩ F|

|E+(0)|
≤ 0.2. (12)

Following the reasonings expressed above, we reduced the
binarization problem to find the valueenergy thresholde∗+
that fulfills the inequality

|E+(e∗+)|

|E+(0)|
≤ α, (13)

whereα is ourtunning parameter. The main idea is now to
discard pixels with an energy value belowe+, while keep-
ing pixels an energy abovee+ for further computations. The
parameterα is the most important in our algorithm, because
its variation influences dramatically the binarization results.
See Fig. 1.



Figure 1. Good values for α are .82 (left image)
and .8 (right image).

Figure 2. Neighborhood N(h, k) is in gray, the
neighborhood M(h, k) is marked with cross
pattern and the S(i, j) is marked with grid pat-
tern.

2.2. Local averaging and binarization
threshold

In practice, images are far away from the ideal case, be-
cause local variations of the image intensity, such as shad-
ows and noise, generates many potentially values for back-
ground and foreground. We deal with such situations by
only considering determinated region in images, in particu-
lar, image partitions.

The partition we consider is constituted of rectangle ar-
eas, which are denoted withN(h, k) and are limited by its
lower left corner and upper right corner

(a · h, a · k) and((a + 1) · h, (a + 1) · k). (14)

By convention, the lower and left edges are considered in-
side the rectangle and the upper and right edges are consid-
ered outside the rectangle, see Fig. 2.

In our computation, we consider the pixels with high en-
ergy within the rectangleN(h, k) defined by

Λ+(h, k) = {(i, j) ∈ E+(e)}. (15)

If Λ+(h, k) 6= ∅ compute:

µ+(h, k) =
1

|Λ+(h, k)|

∑

(i,j)∈Λ+(h,k)

I(i, j) (16)

In the other case, we defineµ+(h, k) = 0.

Figure 3. Quantile linear threshold.

2.3. Computing the binarization threshold

Given a rectangleN(h, k), we define its positive neigh-
borhood as

M+(h, k) = {N(i, j)|r ≥ |i−h|, |j−k| ≤ r, |Λ+(i, j)| 6= ∅},
(17)

wherer is usually one.
Now, it is possible to compute the averageµ̂+(h, k) of

the meansµ+(∗) in the neighborhoodM+(h, k) when it is
not the empty set. Formally:

µ̂+(h, k) =
1

|M+(h, k)|

∑

N(i,j)∈M+(h,k)

µ+(i, j) (18)

In the same way:

σ̂+(h, k) =
1

|M+(h, k)|

∑

N(i,j)∈M+(h,k)

(µ+(i, j) − µ̂+(h, k))2

(19)
Analogously, we can computêµ−(h, k) and σ̂−(h, k),

except the setΛ−(h, k) that must be

Λ−(h, k) = {(i, j) ∈ E−(−e)}. (20)

Finally, if the pixel(i, j) is inside the rectangle N(h,k):

p(i, j) =

{

0 : I(i, j) ≤ T (h, k)
1 : I(i, j) > T (h, k)

(21)

with

T (h, k) =
µ̂+(h, k) + µ̂−(h, k) + β · σ̂+(h, k) − γ · σ̂−(h, k)

2
,

(22)
whereβ andγ are a free parameters that correspond to the
parameterγ in (1) for Niblack’s method, see figure 3.

2.4. Description and complexity

Our binarization algorithm consits on the following
steps:



Figure 4. Using the values of histogram
H(N(i, j)), we can compute the histograms
H(N(i± 1, j)) or H(N(i, j ± 1)) with effort 4 · a.

1. Compute transition energy for all the pixels.

2. Compute global transition energy thresholds (positive
and negative).

3. Compute the means of gray level by neighborhoods us-
ing only pixels with high energy.

4. Compute the threshold by huge neighborhoods.

5. Cluster the pixels according his neighborhood.

We consider|I| = n and|S(i, j)| = m. Then, comput-
ing the transition energy has a complexityO(m · n).

GivenS(i, j), computingµ+(i, j) has a complexitya2.
Thus, to compute the mean in all the rectangles, we need an
order ofO(a2 · n

a2 ) = O(n) operations.
If |M+| = w, then computinĝµ+(i, j) andσ̂+(i, j) has

a complexityO(w · n
a2 + w) = O(w · n

a2 ). Reasonable
parameter values arem = 9, w = 9 anda = 10. Then the
final complexity isO(9 ·n+n+ n

10 ) = O(10.1n) = O(n).

3. Experimental results

Our implementations of Kavallieratou’s and Niblack’s
algoritms use their local version, i.e. we computed a
thresholdT (i, j) for each pixel(i, j) using a neighborhood
N(i, j) with size a = 31. Both algorithms compute the
histogram of the intensity values onN(i, j). Our compu-
tation is optimal, because we use the property that square
neighborhoods of consecutive pixels differ from only one
column or row, see Fig. 4. The Quantile Linear algorithm
uses the parametersa = 10, β = 1 andγ = 1. Li’s method
was removed from our tests because it showed a very poor
performance in previous experiments.

Table 1. Average Runtime.
Size Kavallieratou Niblack Quantile

0.25 1123 974 32
0.5 2268 1952 63
1 3119 4384 125
2 6624 8964 246
3 9020 11827 319
4 11321 15495 418

Figure 5. Some examples of background.

We implemented the algorithms in C++ and ran our tests
on a computer with a 3.2 GHz Pentium IV processor and 2
GB in RAM. Table 1 shows the runtime of the algorithms
for different image sizes. The image are square and have a
size measured in mega pixels. The runtime is expressed in
milliseconds.

We also measure the quality of the binarization algo-
rithms in a second experiment, using a benchmark database.
The database is formed with two image sets. The first set
consists of ten gray-scale photos of the same document, us-
ing different backgrounds, See Fig. 5. The second set are
the binarized versions of the first set, generated by varying
the parameters of the binarization algorithms, giving a total
of 800 pictures, see Table 2. These images were recognized
by the commercial OCR system ABBYY-FineReader ver-
sion 8.0. In the last step we compare the recognized text
against the original text using Needleman-Wunsch [4]. The
result are summarized in Table 5.

4. Comments and further work

We presented a new binarization algorithm that com-
bines global and local information. The global information
establish criterion that selects pixels with high energy, using
a global energy threshold. Given the pixel(i, j) contained

Table 2. Parameter sets.
Algorithm Start value End value Increment

Kavallieratou 1 20 1
Niblack -2.15 -0.7 0.05
Quantile Linear 0.7 0.99 0.1



(a) (b)

(c) (d)

Figure 6. (a) The Original image and its binarized version using (b) Kavallieratou, (c) Niblack and (d)
Quantile Linear binarization. The images are only a detail of a whole letter.

Table 3. Recognition rates.
Text Kavallieratou Niblack Quantile

Letter A 76.63 86.20 92.77
Letter B 86.70 94.30 96.82
Letter C 78.55 90.25 97.72
Letter D 94.13 94.09 97.39
Letter E 95.21 96.57 98.45
Letter F 88.10 91.70 97.20
Letter G 75.26 83.85 91.61
Letter H 86.41 90.66 97.15
Letter I 92.07 93.47 97.52
Letter J 91.37 93.60 97.95
Average 86.44 91.47 96.46

in N(h, k), the local information uses the high energy pix-
els in a neighborhoodM(h, k) to compute the binarization
thresholdT (h, k). Our experiments shown that our method
has a high runtime performance, around 30 times faster than
the other algorithms. Our algorithm also keep the highest
recognition rates, when used as preprocessing step for an
OCR system. Figure 4 also shows that our method also re-
moves background artifacts that the other algorithms can
not.

It could be interesting to experiment with two values of
the parameterα+ andα−, corresponding for the positive
and negative energy values. One can use another method
to reduce the set of transition pixels, using for example the

pixel extracted with some edge detection operator such as
the Sobel filter. Other interesting research subject could be
the integration of some statistical model forα and the image
noise, in order to minimize optimally the error (11).
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