
Pyramid Mysteries
EHRHARD BEHRENDS

II
n this article I describe the 3-dimensional version of the
phenomenon explored in ‘‘Triangle Mysteries’’ ([1]).
There we start with a row of n squares arbitrarily

colored red, green, or blue. By a simple rule they generate
a row of n - 1 colored squares, and we continue until
finally one square remains. The mystery: for certain n the
color of the final square can easily be predicted.

In the present article we begin with an n 9 n-grid of
colored cubes. By a certain rule this gives rise to an
(n - 1) 9 (n - 1)-grid of colored cubes that form the sec-
ond layer of a pyramid. One continues with an (n - 2) 9

(n - 2)-grid, then an (n - 3) 9 (n - 3)-grid, etc., until
finally a pyramid is constructed. We will show that for suit-
able n we can predict the color of the top cube easily just by
studying the first n 9 n-grid.

We include the discussion of a variant where we start with
a triangle formed by colored cubes that is considered to be
the base of a pyramid. The various layers are again con-
structed by a simple rule. And also here we can predict in
certain cases the color of the cube on the top.

The proofs are elementary, using only known properties
of binomial coefficients n

k

� �
when n is a power of a prime.

Our results cover the case of arbitrarily many dimensions,
but we will mainly concentrate on the 3-dimensional case.
For the formal approach we simply need a finite set D (the set
of ‘‘colors’’) and a map that associates with 3 (resp. 4) colors
another one, in other words, / is a map from D3 (resp. D4) to
D; it will be used to determine the color of the next cube that
will be put on top of three resp. four colored cubes of the
preceding layer of the pyramid.

After / is given we can start to build pyramids.

Pyramids where the base is a square

Let D, a map / : D4 ! D, and an n C 2 be given. We start
with the base of our pyramid, the first layer. It consists of a
square made of n2 cubes. The cubes are colored with the
elements of D. Formally such an arrangement is a square
matrix ðxi; jÞi; j¼0;...;n�1 with xi; j 2 D.

Here is an example with n = 10 and D ¼ fr ; g; bg where
these letters stand for the colors red, green, and blue. The first
layer could look like this.

Next we are going to construct the second layer. We will
use the following rule:

Where four cubes with colors c1, c2, c3, c4 of the first layer
meet, put on top of them in the middle another cube the
color of which is /(c1, c2, c3, c4). (It will be convenient
here to consider only such / where all permutations of
c1, c2, c3, c4 are mapped to the same element of D. Thus it
is not necessary to specify which of the four cubes is
associated with c1, etc.)

This means that we generate a new square of cubes with
colors ðyi; jÞi;j¼0;...;n�2 by the formula

yi; j :¼ /ðxi; j ; xiþ1; j ; xi; jþ1; xiþ1; jþ1Þ:

For our example (see the preceding picture) we consider the
following map:

The elements of D are identified with the numbers
0, 1, 2 of the group Z3 by 0 = r, 1 = g, 2 = b, and
/(c1, c2, c3, c4): = c1 + c2 + c3 + c4 mod 3. (Thus, e.g.,
/(b, b, r, g) = b.)

For this particular / the second layer of our pyramid looks
like this:

The first layer, the colors are chosen at random.

The second layer.
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To continue, we repeat the process. We construct smaller
and smaller square layers of cubes until finallywearrive at the
single top cube.
Now the question becomes: Is it possible to predict in a simple
way the color of this top cube just by checking the colors of
the first layer?

In thepicturebelowweseeontheright thefinalpyramid.The
cubeon the last layer is red: is it possible toknowthis in advance?

Motivated by our investigations in [1] we will call an inte-
ger n /-simple if the top color c is always just the /-value
of the corner cubes of the ground layer, i.e., if c = /(x0,0,
xn-1,0, x0,n-1, xn-1,n-1) holds. Thus, trivially, n = 2 is
always /-simple.

We will show below that n = 10 is /-simple for the /
defined above so that – since /(b, g, r, r) = r – it is no sur-
prise that red is the top color.

Pyramids where the base is a triangle

This timewe startwithD, a/ : D3 ! D, and an n C 2. First
we choose any triangular base of our pyramid, the first layer.
It consists of a triangle made of cubes: 1 in the row 0, then 2 in
row 1, etc., until finally there is a row of n cubes. The cubes
are colored with the elements of D, i.e., we are given a tri-
angular matrix (xi, j)0 B j B i B n-1 with xi; j 2 D. (xi, j is the
color of cube j in the row i.)

As before, we work with D ¼ fr ; g; bg, and in the example
we are going to discuss we have n = 4. The first layer was
generated with the help of a random generator; it can be seen
on the left-hand side in the next picture. We continue in a
similar way as in the case of pyramids with a square base:

Where three cubes with colors c1, c2, c3 of the first layer
meet put on topof themanother cube the color ofwhich is
/(c1, c2, c3).

This means that we generate a new triangle of cubes with
colors (yi,j)0 B j B i B n-2 by the formula yi,j : = /(xi, j, xi+1, j,
xi+1, j+1).

In our example we identify D with Z3 and define /
by /(c1, c2, c3): = c1 + c2 + c3 mod 3 (so that, e.g.,
/(b, b, r) = g.)

We continue to construct smaller and smaller layers until
finally there is only one cubeon the top. The four layers of the
pyramid of our example can be seen here:

As for pyramids with a square base, we are interested
in situations where the top color can directly be determined
from the corner colors of the base. More specifically we will
call the number n /-simple if for arbitrary choices of
(xi,j)0 B j B i B n-1 the top color c is given by the formula
c = /(x0,0, xn-1,0, xn-1,n-1).Wewill prove that 4 is/-simple
for our /, so that we can predict immediately in our example
that the top color must be red.

Our main results concerning /-simple n can be found in
the next two sections. In the last section we discuss some
generalizations.

Pyramids Where the Base Is a Square
Let us now set the stage for our theoretical development.
From now on we will assume that

• D is a nontrivial finite abelian group with respect to the
operation ‘‘+’’.

• The mapping / : D4 ! D is defined by ðc1; c2; c3; c4Þ
7!c1 þ c2 þ c3 þ c4.

In the above example we worked with ðZ3;þÞ as the
group D.

To prepare what follows we introduce some notation.
Here m,n C 2 denote arbitrary integers.

The mappings Um

Um : Dm2 ! Dðm�1Þ2 is the map that defines the next layer:
we have Um ðxi;jÞi;j¼0;...;m�1

� �
:¼ ðyi;jÞi;j¼0;...;m�2, where

yi;j :¼ /ðxi;j ; xiþ1;j ; xi;jþ1; xiþ1;jþ1Þ:

With this definition the top color c when starting with
ðxi;jÞi;j¼0;...;n�1 is

The layers of the pyramid with triangular base in the case

n = 4.

One, two, and ten layers (from left to right).
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c ¼ Wn ðxi;jÞi;j¼0;...;n�1

� �
:¼ U2 � � � � � Un�1 � Un ðxi;jÞi;j¼0;...;n�1

� �
:

(In other words, Wn maps the pattern in the first layer to the
top color.)

The rm
k;l;x

For x 2 D and k; l ¼ 0; . . .;m� 1, we denote by Sk,l;x
m that

element ðxi;jÞ 2 Dm2

where xk,l = x and theother xi,j are zero.

rm
k;l;x 2 D is defined to be the top colorwhenwe workwith/,

i.e., rm
k;l;x ¼ WmðSm

k;l;xÞ.
It will be clear soon why it is convenient to extend this

definition: we put rk,l;x
m : = 0 for ðk; lÞ 2 f�1;mg �

f�1; . . .;mg and ðk; lÞ 2 f�1; . . .;mg � f�1;mg. (These
indices extend the f0; . . .;m� 1g2-pattern to a f�1; . . .;mg2-
pattern, and the r for the new indices are zero.)
The rk,l;x

n can be explicitly determined:

LEMMA 1 For k; l ¼ 0; . . .;n� 1 we have rn
k;l;x ¼ n�1

k

� �
�

n�1
l

� �
x.

PROOF The proof is by induction on n. In the case n = 2 we

have r2
k;l;x ¼ /ðx; 0; 0; 0Þ ¼ x ¼ 1

k

� �
� 1

l

� �
x for k; l 2 f0; 1g.

Now suppose that the lemma is proved for some number

n - 1 with n C 3. Let us analyze the first step in the calcu-

lation of rk,l;x
n : we pass from the first layer Sk,l;x

n to UnðSn
k;l;xÞ.

This is an (n - 1) 9 (n - 1)-matrix with the entry x at one,

two, or four positions (the other entries are zero). For example,

if 0\k, l\n - 1, then the x are at the four positions

(k, l), (k - 1, l - 1), (k - 1, l), and (k,l - 1). BecauseUn�1 is

a homomorphism (fromDðn�1Þ2 toD),we arrive at the equation

rn
k;l;x ¼ rn�1

k;l;x þ rn�1
k�1;l;x þ rn�1

k;l�1;x þ rn�1
k�1;l�1;x:

We note that we can use the same formula if we adopt

the extended definition of the rk,l;x
n : e.g., r0,0;x

n = r0,0;x
n-1, and

this is covered by the formula since r-1,0;x
n = r0,-1;x

n =

r-1,-1;x
n = 0. By the induction hypothesis we know that the r

on the right-hand side can be expressed by binomial coeffi-

cients so that

rn
k;l;x ¼

X

k0¼k�1;k; l0¼l�1;l

n� 2

k0

� �
n� 2

l0

� � !

x:

But this sum coincides with n�1
k

� �
n�1

l

� �
x, as can easily be

deduced from the identity n�2
m�1

� �
þ n�2

m

� �
¼ n�1

m

� �
.

We now are going to show that the /-simple integers can
be characterized:

PROPOSITION 2 Suppose that ðD;þÞ is isomorphic to

ðZp;þÞd for a prime p and an integer d. Then a number n is /-

simple iff there is an s 2 N such that n = ps + 1.

PROOF Thekey toolwill be – as in [1] – BalakRam’s result [4]

on binomial coefficients:

• Let p be a prime and m an integer. Then all m
l

� �
for l ¼

1; . . .;m� 1 are divisible by p iff there is an s such m = ps.
• Let m, r be integers such that m [ r [ 1. If r divides all m

l

� �

for l ¼ 1; . . .;m� 1 then r is a prime and – by the first part –
m is of the form rs.

A proof can be found in [1] and [4], and for a far-reaching

generalization we refer the reader to [3].

Now let n be given. We observe that Wn : Dn2 ! D is a

group homomorphism when we consider Dn2

as a product

group. This has the following consequence:

Wn ðxi;jÞi;j
� �

¼ Wn

X

i;j

Sn
i;j;xi;j

 !

¼
X

i;j

Wn Sn
i;j;xi;j

� �

¼
X

i;j

rn
i;j;xi;j

¼
X

i;j

n� 1

i

� �
n� 1

j

� �
xi;j :

By definition, an n is /-simple iff the preceding sum

always coincides with /(x0,0, xn-1,0, x0,n-1, xn-1,n-1)

= x0,0 + xn-1,0 + x0,n-1 + xn-1,n-1, i.e., if
P
ði;jÞ62A

n�1
i

� �
�

n�1
j

� �
xi;j ¼ 0, where A denotes the set consisting of the

four elements (0, 0), (n - 1, 0), (0, n - 1), (n - 1, n - 1).

And this is obviously true iff n�1
i

� �
n�1

j

� �
x ¼ 0 for all x and for

all i, j with ði; jÞ 62 A.

Suppose that n is of the form ps + 1. Then, by thefirst part

of Ram’s result, p divides all n�1
l

� �
for l ¼ 1; . . .;n� 2, and

consequently all n�1
i

� �
n�1

j

� �
with ði; jÞ 62 A are divisible by p.

But px = 0 for all x since ðD;þÞ is isomorphic with ðZ p;þÞd .

This shows that numbers of the form ps + 1 are /-simple.

Suppose now that n is not of the form ps + 1. By Ram’s

result we find a k 2 f1; . . .;n� 2g such that n�1
k

� �
is not

divisible by p so that a :¼ n�1
k

� �
6¼ 0 in Zp. Let x be any

nonzero element in ðZpÞd . Then

/ð0; 0; 0; 0Þ ¼ 0

6¼ a2x

¼ WnðSn
k;k;xÞ:

Hence n is not /-simple.
Now we understand why our examples in the first section

worked with n = 4 and n = 10: the ‘‘good’’ n here are the
integers of the form 3s + 1.

For another example, we work with D ¼ ðZ2;þÞ (0 is
‘‘red’’ and 1 is ‘‘green’’). Note that in this case the /-simple n
are the integers of the form 2s + 1, and therefore it is
no surprise that the top color is red after we have seen the
base:
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In this case it is simple to translate the definition of /
without using the arithmetic in Z2: find c = /(c1, c2, c3, c4)
such that the total number of green balls among
c, c1, c2, c3, c4 is even.

Suppose that n is not /-simple in the preceding case. Then it
might happen that Wn ðxi;jÞ

� �
6¼ /ðx0;0; xn�1;0; x0;n�1; xn�1;

n� 1Þ. How often will this be the case? The answer can be
found in

PROPOSITION 3 Let ðD;þÞbeagain isomorphic to ðZp;þÞd
for aprimep. Suppose thatn is not/-simple. IfN = pd denotes

the cardinality ofD, then the following is true: the cardinalityof

the ðxi;jÞ 2 Dn2

whereWn ðxi;jÞ
� �

¼ /ðx0;0; xn�1;0; x0;n�1; xn�1;n�1Þ
holdsdividedby the cardinality ofDn2

is precisely 1/N. To state

it otherwise: if we want to ‘‘predict’’ the top color by giving the

guess /(x0,0, xn-1,0, x0,n-1, xn-1,n-1) we have a chance of

1/N of being correct.

PROOF Let n be an integer and ðxi;jÞi;j 2 Dn2

be arbitrary.

The prediction that the top color is /(x0,0, xn-1,0, x0,n-1,

xn-1,n-1) will be correct iff

X

i;j;ði;jÞ62A

n� 1
i

� �
n� 1

j

� �
xi;j ¼ 0:

(The set A of indices is as in the proof of proposition 2.)

We observe that the map W : ðxi;jÞ7!
P

i;j;ði;jÞ62A

n� 1
i

� �
n� 1

j

� �
xi;j is a group homomorphism (from Dn2

to D), and since n is not /-simple it is not the trivial

homomorphism. It follows that there must be a pair ðk; lÞ 62 A

and an x 2 D such that
n� 1

i

� �
n� 1

j

� �
x 6¼ 0. This

implies that r :¼ n� 1
i

� �
� n� 1

j

� �
mod p 6¼ 0, and since

Zp is a field,wemay select r 0 2 Zp with rr 0 ¼ 1p. It is noweasy

to show that ðxi;jÞ7!
P

i;j;ði;jÞ62A

n� 1
i

� �
n� 1

j

� �
xi;j from

Dn2

to D is onto: a given y 2 D has Sn
k;l;r 0y as a preimage. From

this we may conclude that the number of elements in the

kernel of W is N n2�4=N , and because there are N4 possible

choices for the xi,j with ði; jÞ 2 A, the proposition is proved.
Only the groups considered in the preceding propositions

admit /-simple integers:

PROPOSITION 4 Suppose that ðD;þÞ is not isomorphic to

any of the groups of the preceding proposition. Then there

are no /-simple n [ 2.

PROOF ðD;þÞ is a finite commutative group so that it

is a product of cyclic groups Zri
where the ri are prime

powers.

Case 1: There is a factor Zps with s [ 1. A /-simple n w.r.t. D
would also be /-simple w.r.t. the subgroup Zps , i.e., n�1

i

� �

would be divisible by ps for i ¼ 1; . . .;n� 2. But there are no

such n [ 2.

Case 2: ðD;þÞ is a product of at least two subgroups of the form

ðZpaÞ
ra with different primes pa. Suppose that a /-simple

integer n [ 2 exists. We conclude from the second part of

Ram’s result that n can be written as psa
a þ 1 for every a

and suitable sa. But this is surely not possible for more than

one pa.

Pyramids Where the Base Is a Triangle
All the results of the preceding paragraph have an analogue.
The modifications are the following:

• For the finite abelian group ðD;þÞ with at least two
elements,we consider themapping/ : D3 ! D definedby
ðc1; c2; c3Þ7!c1 þ c2 þ c3.

• A triangular pattern (the layers of the pyramid) of elements
of D needs mþ ðm� 1Þ þ � � � þ1 ¼ mðmþ 1Þ=2 ¼: dðmÞ
entries. Thus a typical pattern is given by (xi,j)0 B j B i B m-1,
this describes a triangle where the last row has m
elements. Consequently the passage to the next layer is

described by a map Um : DdðmÞ ! Ddðm�1Þ; it is defined

by Um ðxi;jÞ0� j� i�m�1

� �
¼ ðyi;jÞ0� j� i�m�2, where yi,j =

/(xi,j, xi+1,j, xi+1,j+1).
• Wn, the map that assigns the top color to the pattern of the

ground layer, is again defined as

U2 � � � � � Un : DdðnÞ ! D:
The number n will be called /-simple if always

Wn ðxi;jÞ0� j� i�n�1

� �
¼ /ðx0;0; xn�1;0; xn�1;n�1Þ holds.

• For 0 B l B k B m - 1, the pattern ~S
m

k;l;x 2 DdðmÞ is
defined to have x at the position (k, l) and all other
entries to be zero. ~rm

k;l;x denotes the element
Wmð~S

m

k;l;xÞ 2 D.

A pyramid where n = 3 with D ¼ Z3 and /.
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• It will then be crucial that ~rm
k;l;x ¼ m�1

k

� �
k
l

� �
x for all k, l. This

is again proved by induction, using simple properties of
binomial coefficients.

With these preparations at hand we can prove the fol-
lowing results for pyramids with a triangular base similarly as
in the previous section:

PROPOSITION 5 Suppose that ðD;þÞ is isomorphic to

ðZp;þÞd for a prime p and an integer d. Then a number n is /-

simple iff there is an s 2 N such that n = ps + 1.

In the next picture we illustrate this proposition by a
pyramid built with balls: note that 4 is /-simple in this
example. The colors r, g, b correspond to 0, 1, 2 as above.

PROPOSITION 6 Let ðD;þÞ be again isomorphic to ðZ;þÞd
for a prime p. Suppose that n is not /-simple. If N = pd

denotes the cardinality of D, then the following is true:

the cardinality of the ðxi;jÞ 2 DdðnÞ where Wn ðxi;jÞ
� �

¼
/ðx0;0; xn�1;0; xn�1;n�1Þ holds divided by the cardinality of

DdðnÞ is precisely 1/N.

PROPOSITION 7 Suppose that ðD;þÞ is not isomorphic to

any of the groups of the preceding proposition. Then there

are no /-simple n [ 2.

Magic in Hyperspace and More General /
In the first part of this section we note that we can naturally
generalize our theory to arbitrarily many dimensions D:
magicians in hyperspace can present the same tricks! The
preceding results of the present article and the results of [1]
correspond to D = 3 and D = 2, respectively.

Hyperpyramids where the base is a hypersquare

Let us fix an integer D, an n 2 N, and a nontrivial finite

abelian group ðD;þÞ. We define, with D0 :¼ 2D�1, a mapping

/D0 : DD0 ! D by ðciÞi2D0 7!
P

i ci.

We are going to construct a hyperpyramid consisting of

colored hypercubes. The ‘‘ground layer’’ is made from nD0

hypercubes, their colors are given by ðxi1;i2;...;iD�1
Þ 2 DnD�1

;

i1; . . .; iD�1 ¼ 0; . . .;n� 1. Wherever D0 hypercubes meet we
put ‘‘on top of them’’ another hypercube with color deter-
mined by /D0 . More formally: we map the pattern ðxi1;i2;...;iD�1

Þ

i1;...;iD�1¼0;...;n�1 to ðyi1;i2;...;iD�1
Þi1;...;iD�1¼0;...;n�2, where

yi1;i2;...;iD�1
:¼ /D0 ðxi1þj1;i2þj2;...;iD�1þjD�1

Þj1;...;jD�12f0;1g

� �
:

In this way we continue, after n steps we arrive at the top

layer that consists of only one hypercube. If its color is always

/D0 ðxi1;i2;...;xD�1
Þi1;...;iD�12f0;n�1g

� �
then we will call n a /D0 -

simple integer : the ‘‘top’’ color can be predicted easily from

the corner colors of the first layer.

It can be shown with similar techniques as in the pre-
ceding sections that the /D0 -simple n are precisely the
ps + 1 if ðD;þÞ is a power of Zp and that there are no such
n [ 2 for other D.

The key result here is the fact that the final color is

n� 1

i1

� �
n� 1

i2

� �
� � � n� 1

iD�1

� �
x

if the ground layer has color x at the position ði1; . . .; iD�1Þ
and color zero at the other places.

Hyperpyramids where the base is hypertriangular

A hypertriangular array of size n is a family

ðxi1;...;iD�1
Þ0� iD�1 � iD�2 � ...� i2 � i1 �n�1

where the x are inD.Wemap suchanarray tooneof size n - 1
by using a rule that generalizes the rule for 3-dimensional
pyramids with a triangular base, and after n - 1 steps we
arrive at the ‘‘top’’ of a D-dimensional hyperpyramidwith base
colors ðxi1;...;iD�1

Þ. Again we are able to identify those n where

we can predict the top color in a simple way: as before, pre-

cisely the ps + 1 have this property in the case D ¼ ðZp;þÞd .

The crucial lemma is the assertion that the top color is

n� 1

i1

� �
i1
i2

� �
� � � iD�2

iD�1

� �
x

if the first layer has x at the position ði1; . . .; iD�1Þ and the
other entries are zero.

More general /

So far we have assumed that / is given by the sum of the
input colors.This approachhas theadvantage that thedefinition

A pyramid: triangular base, n ¼ 4;D ¼ Z3.
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of / is ‘‘commutative’’: all permutations of the entries lead to the
same value. This makes it easier to translate the rules to an
audience of nonmathematicians, but it is in fact not necessary.

Consider the simplest example, where D = 2 and

D ¼ ðZp;þÞ. In [1] we worked with the / : D2 ! D defined

by ðc1; c2Þ7!c1 þ c2 and ðc1; c2Þ7! � c1 � c2. Now fix any

nonzero a; b 2 Zp and define /a;b : D2 ! D by ðx; yÞ

! ax þ by. Here we consider D as a vector space over Zp,

and we note that /a,b is the most general group homomor-

phism from D2 to D; the preceding cases correspond to the
choice a = b = 1 and a = b = -1, respectively.

Fix an n and a family ðxiÞi¼0;...;n�1 2 Dn. We will con-
sider these xi as in [1] as the colors of the first row of
colored squares of a triangle, and with the help of /a,b we
build a second row, then a third one, and so on: finally a
single square, the bottom square of the triangle, will be
found. Surprisingly we can predict this color as before
for the integers of the form ps + 1, the color will be
/a,b(x0, xn-1).

For the proof we have to combine the following facts:

• Consider a startingpattern ðxiÞi¼0;...;n�1 where there is color
x at position k and all other xi are zero. Then the top color is

n�1
k

� �
an�1�kbkx. This can be proved by induction.

• The ‘‘little Fermat theorem’’: one has cp = c for all c 2 Zp.

It is then possible to show the claim with the same
techniques that we have used previously. Similarly we can
pass in the case of 3 dimensions from our map / of the first
section to

/a;b;c;dðc1; c2; c3; c4Þ :¼ ac1 þ bc2 þ cc3 þ dc4;

where a; b; c; d 2 Zp are fixed nonzero elements. The same
results will hold: the n of the form ps + 1 are always

‘‘good’’ numbers, and if all a, b, c, d are different from zero
there are no others.

Here is an example: a pyramid with a square base where
n = 4. We work with D ¼ Z3 and the usual translation: 0, 1, 2
correspond to r, g, b, and we consider / defined by
/ : ðc1; c2; c3; c4Þ7! � c1 � c2 � c3 � c4. It is no surprise that
the top color must be blue:

The next step would be to treat similar generalizations for
D dimensions, but we omit the clumsy technical details here.
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