
Cooperative Event Detection in Wireless Sensor Networks

Georg Wittenburg

INRIA
LIX, École Polytechnique

Route de Saclay, 91128 Palaiseau, France
georg.wittenburg@inria.fr

Norman Dziengel, Stephan Adler, Zakaria Kasmi, Marco Ziegert, and Jochen Schiller

Department of Mathematics and Computer Science
Freie Universität Berlin

Takustraße 9, 14195 Berlin, Germany
[dziengel,adler,kasmi,ziegert,schiller]@inf.fu-berlin.de

Abstract

Event detection in wireless sensor networks is a so-
phisticated method for processing sampled data di-
rectly on the sensor nodes, thereby reducing the need
for multi-hop communication with the base station
of the network. In contrast to application-agnostic
compression or aggregation techniques, event detec-
tion pushes application-level knowledge into the net-
work. In-network event detection – especially the dis-
tributed form involving multiple sensor nodes – has
thus an exceptional potential to increase energy effi-
ciency, thus prolonging the lifetime of the network.

In this paper, we summarize recently proposed sys-
tem architectures and algorithms employed for event
detection in wireless sensor networks. On the exam-
ple of the AVS-Extrem platform, we illustrate how
energy-efficient event detection can be implemented
through a combination of custom hardware design
and distributed event detection algorithms. We then
continue to present a brief evaluation of the detection
accuracy and the energy consumption that is achiev-
able by current systems.

1 Introduction

In order to construct highly energy-efficient Wireless
Sensor Networks (WSNs), it is paramount to push
application-level data processing as deeply into the
network as possible. If sampled data is processed and
evaluated close to its source, communication with the
base station of the network is reduced, energy con-
sumption is minimized, and the lifetime of the net-
work is thus extended. Event detection in WSNs fol-
lows this strategy by programming the sensor nodes
in such a way that the occurrence of deployment-
specific, semantic events can be established directly
on the sensor nodes, relying only on the locally avail-
able data from the sensors. This transformation
of data from the physical sensory domain into the
scenario-specific application domain stands in con-
trast to other techniques for in-network data process-
ing, e.g., compression and aggregation, which are ag-
nostic to the application-level properties of the data.
Fundamentally, event detection trades in the general-
ity of these latter approaches in favor of higher data
reduction rates and thus higher energy efficiency.

1

Centralized approach Decentralized approach

Passive, Active Node Event

Norman Dziengel, Freie Universität Berlin ICCE-Berlin ‘11 07.09.2011 3

Passive, Active Node

Data Traffic

Event

Base Station
Radio Link

Figure 1: Centralized vs. decentralized event detection

Event detection in WSNs is commonly used for
tasks such as fire or hazard detection [1], vehicle
tracking [2], area surveillance [13], undersea moni-
toring [10], or the classification of human motion se-
quences [15]. Depending on the application, a vari-
ety of sensors can be employed, including light and
temperature sensors, accelerometers, microphones, or
cameras. The raw data gathered by these sensors
is – depending on the sampling rate – too volumi-
nous to be transmitted to the base station of the
WSN. Instead, one or multiple sensor nodes evaluate
the raw data locally, seeking application-specific pat-
terns, e.g., a temperature reading exceeding a thresh-
old value (for a fire detection system), a transient
change in a video image (for area surveillance), or
the occurrence of a specific motion path (when mon-
itoring human movement). Only the result of this
localized evaluation is then sent to the base station,
and thus, as illustrated in Figure 1, reduces the re-
quired network traffic substantially.

In general, designers of a WSN-based event detec-
tion system need to make two major architectural
choices: First, the question arises in how far the sen-
sor nodes should cooperate during the detection pro-
cess, and second, how the semantically relevant infor-
mation is to be extracted from the sampled raw data.
The first of these questions involves trade-offs related
to the communication architecture, while the second
one deals with algorithmic issues during data process-

ing. The overall goals when tackling these questions
are, of course, to minimize communication overhead
(and thus energy expenditure) and to maximize the
detection accuracy for a variety of use cases.

In this paper, we summarize and contextualize our
findings in this field of research based on our previ-
ous work on the AVS-Extrem platform for coopera-
tive event detection in WSNs, which we built, refined,
and evaluated in multiple lab experiments [4, 5] and
deployments [14, 13]. We begin with qualitative com-
parisons of possible communication architectures and
algorithms for data processing in Sections 2 and 3 re-
spectively, as part of which we also review the state of
the art. We then illustrate the typical design choices
that arise when building a deployment-ready event
detection system in Section 4. In Section 5, we sum-
marize experimental results from several deployments
of the AVS-Extrem platform, and finally conclude
and motivate future work in Section 6.

2 Architectures

As data processing and event detection play a key
role in WSNs, several different approaches have been
developed and deployed to process and to transport
data and events within a WSN.

2

2.1 Local Detection

The most basic approach is a local event detection. In
this approach, each node gathers data from its local
sensors and employs local algorithms (cf. Sec. 3) to
decide whether a specific event has occurred. Data of
neighboring nodes is not taken into account and all
signal processing is performed on the local node itself.
If an event is detected, each node signals the results
directly to the base station of the sensor network.

This approach is very easy to implement, but in-
curs a non-negligible communication overhead and is
only applicable to fairly simple types of events. An
exemplary implementation can be found in the fence
surveillance system proposed by Kim et al. [8].

2.2 Centralized Evaluation

Centralized event detection is widely used in current
real-world deployments. All nodes send either raw or
preprocessed sensory data directly to the base sta-
tion, which has significant computational and energy
resources. The data is interpreted exclusively on the
base station – individual sensor nodes have no knowl-
edge about the semantics of the collected data.

Although this method has several advantages, e.g.,
good detection accuracy resulting from the global
knowledge available at the base station, the network
does not scale well and the continuous data stream
quickly depletes the available energy. Furthermore,
the dependency on the base station node introduces
a single point of failure, thus rendering this architec-
ture unsuitable for security-relevant applications.

Event detection using a centralized evaluation ar-
chitecture has been implemented, amongst many oth-
ers, by Gu et al. [7] for vehicle tracking.

2.3 Decentralized Evaluation

Decentralized evaluation is one way of mitigating the
aforementioned problems of the centralized approach.
In this approach, the network is clustered into smaller
subnetworks which operate autonomously. Sensory
data is gathered, exchanged, and processed within
each of these clusters. One node in the cluster – the
so-called cluster head – takes on the task of com-

municating with the base station when an event is
detected or raw sensor data needs to be transmit-
ted. The cluster head is selected at deployment time
and may have additional computational and energy
resources. Furthermore, cluster heads may also be
equipped with a separate network interface to com-
municate directly with the base station, e.g., via the
cellular phone network.

The main advantage of this concept is its reliability
since the network remains mostly operational even if
individual subnetworks fail. Another advantage is the
possibility to save energy: As only the nodes in one
cluster need to exchange and process data when an
event occurs, nodes in other clusters can remain in
a low-power state. The limitations of this approach
become apparent in ad hoc scenarios, as the network
is impaired by the initial, event-agnostic selection of
cluster heads.

Event detection employing decentralized evalua-
tion has been used in large-scale deployments by
Duarte and Hu [2] for vehicle classification.

2.4 Distributed Evaluation

In a distributed evaluation, each node processes data
on its own and can take different roles during the
event detection process. If several nodes detect an
event, they communicate with each other and de-
cide autonomously, i.e., without the support of a base
station or cluster head, which type of event has oc-
curred. The decision about the event type is made by
a distributed algorithm running on each node: Nodes
wake up as a result of an event, sample and process
the sensory data, and afterwards exchange the results
with other nodes that also woke up. It is not prede-
fined, but rather established during the distributed
detection process, which node reports the detected
event to the base station. Depending on the appli-
cation, it is possible that all nodes in the network
remain in a low-energy state and only wake up upon
being exposed to an event. If a node of the net-
work fails to operate, the network itself remains op-
erational and only a minor drop in detection accuracy
is to be expected.

The major advantages of this architecture are its
reliability, robustness and the possibility for substan-

3

Table 1: Trade-offs of architectural approaches to event detection in WSNs
Architecture Energy Efficiency Detection Accuracy Exemplary

Implementations

Local detection Medium, since nodes process data
locally and no communication is
necessary. However, a single
event may be reported to the base
station multiple times by different
nodes.

Only applicable to ap-
plications with simple
events, e.g., those de-
tectable by monitor-
ing data for exceeded
threshold values.

Fence surveillance (Kim
et al. [8])

Centralized
evaluation

Low, since a continuous data
stream is transmitted from all
nodes to the base station.

High, since all data is
available at the base
station and a variety
of complex algorithms
can easily be applied.

Detection, tracking and
classification of vehicles
(Gu et al. [7])

Decentralized
evaluation

Medium, since this is a combina-
tion between the previous two ap-
proaches.

High, since all data is
available on each clus-
ter head.

Distributed vehicle
classification (Duarte
and Hu [2])

Distributed
evaluation

High, since data is only ex-
changed locally between nodes
and events are only reported once
to the base station.

High, since distributed
versions of complex al-
gorithms can be em-
ployed.

Event detection (Mar-
tincic and Schwiebert
[9]), Fence surveillance
(Wittenburg et al. [13])

tial energy savings. A drawback is the system com-
plexity that results from its reliance on ad hoc recon-
figurations. In particular, the autonomous evaluation
needs to be very reliable as the nodes change roles
and the user has no access to the sensor data and
cannot easily verify the correctness of the distributed
evaluation.

A system using fully distributed evaluation archi-
tecture has been proposed and simulated by Mart-
incic and Schwiebert [9], and implemented and de-
ployed as part of our own work on fence monitoring
(cf. Sec. 4).

The trade-offs between these architectures as well
as exemplary implementations are summarized in Ta-
ble 1. As WSNs pose challenges in energy optimiza-
tion and therefore need to communicate very spar-
ingly, not every architecture is suitable for the par-
ticular requirements in this domain. Specifically, the
distributed evaluation approach seems very promis-
ing for WSNs that operate on an unknown topology
and require extensive energy savings.

3 Algorithmic Approaches

Expanding upon the architectural view presented in
the previous section, we now shift our focus from the
networking aspects to the data processing aspects of
event detection in WSNs. Several alternatives to an-
alyzing the collected raw data in order to establish
whether a particular event has occurred have been
proposed in the literature. The overall trade-off in
this area consists of – as we will explore in this section
– weighting resource consumption against the com-
plexity of the events that the system is able to detect.
Another interesting aspect to consider is whether a
system is capable of learning events on its own, or
whether external expert knowledge needs to be em-
bedded into the detection algorithm.

3.1 Threshold-based Decisions

Event detection based on comparisons against thresh-
old values is the most basic approach to event de-
tection WSNs. Obviously, it is applicable to all

4

Table 2: Trade-offs of algorithmic approaches to event detection in WSNs
Algorithm Computational

Overhead
Applicability Exemplary

Implementations

Threshold-
based decisions

Low, since simple monitor-
ing of raw data is sufficient.

Only detects simple events,
e.g, “It’s very hot, hence
there must be a fire.”

Vehicle tracking (Gu et
al. [7]), fence surveillance
(Kim et al. [8])

Pattern
recognition

High, since approaches of
this type involve complex
feature extraction and clas-
sification.

Applicable to a variety of
complex events, depend-
ing on platform support
for feature extraction and
training.

Vehicle classification (Du-
arte and Hu [2]), human
motions (Ghasemzadeh et
al. [6]), fence surveillance
(Wittenburg et al. [13])

Anomaly
detection

Varies depending on the
complexity of the events
during normal operation.

Differentiates between
known and unknown, i.e,
anomalous, patterns.

Light tracking (Wälch-
li [11])

kinds of sensors that produce a continuous sampling
range, e.g., temperature sensors, magnetometers, mo-
tion sensors, microphones. Threshold values, which
correspond in their dimensionality to the number of
sensed values, are usually established by a domain
expert and set either at deployment or at run time.
Dynamically adjusting threshold values depending on
the observed events is possible, however rarely imple-
mented in practice.

The key advantage of this approach is its simplic-
ity. Comparisons against threshold values can be im-
plemented directly on the sensor nodes that sample
the data. Decentralized or distributed detection ar-
chitectures, as discussed in the previous section, are
thus not directly applicable to this detection scheme.

Event detection based on threshold values has been
implemented by Gu et al. [7] as part of the VigilNet
project to track vehicles, and by Kim et al. [8] as part
of their fence surveillance system.

3.2 Pattern Recognition

Pattern recognition is the process of classifying a set
of data samples into one of multiple classes. Vari-
ous techniques for pattern recognition have been em-
ployed in different WSN deployments, and we are
merely able to cover the fundamentals in this section.
The process of pattern recognition is typically subdi-
vided into four steps: sampling, segmentation, fea-

ture extraction, and classification. During sampling,
raw data related to an event is gathered by a sensor
and optionally preprocessed, e.g., for noise reduction.
Segmentation employs thresholds to detect beginning
and end of an event. Feature extraction computes a
set of highly descriptive features from the data and
combines them into a feature vector. Features may
comprise data such as minimum, maximum, average,
histogram, and/or discrete Fourier transform, and
their extraction from the raw data reduces the di-
mensionality while preserving characteristic informa-
tion. The feature vector may combine features from
multiple different sensors built into the sensor node;
each feature is extracted separately from the respec-
tive raw data. During classification, feature vectors
are evaluated, either through statistics or with a pri-
ori knowledge from a preceding training session. Al-
gorithms for classification include, among many oth-
ers, decision trees, neural networks, support vector
machines, and k-nearest neighbors. Since these algo-
rithms operate on the feature vector, different num-
bers and types of sensors are supported transparently.
A detailed introduction into these techniques can be
found in Duda et al. [3].

Most of these algorithms require significant com-
putational resources and thus need to be modi-
fied heavily in order to run on sensor nodes. Fur-
thermore, approaches to event detection that em-
ploy pattern recognition techniques usually require

5

a scenario-specific training to initialize the classifier.
Pre-configured threshold values can be used to sim-
plify the initialization, but tend to reduce the event
detection accuracy.

Event detection employing pattern recognition
techniques has been used in large-scale deployments
by Duarte and Hu [2] for vehicle classification, by
Ghasemzadeh et al. [6] to detect specific human
movement patterns, and by our own system for fence
monitoring (cf. Sec. 4).

3.3 Anomaly Detection

Anomaly detection is a term used for approaches that
focus on the specific case of detecting whether partic-
ularly unusual event has occurred. This is achieved
by learning typical system behavior over time and
then classifying specific events as either normal or
anomalous. Approaches with this goal expand upon
the methods of the previous two approaches and in-
corporate techniques from the fields of intrusion de-
tection and bio-inspired artificial immune systems.

One example of a system that specifically de-
tects anomalies is the Distributed Event Localiza-
tion and Tracking Algorithm (DELTA) proposed by
Wälchli [11] which uses light sensors to track a mov-
ing flashlight.

Our discussion of algorithmic approaches is sum-
marized in Table 2. The crucial properties of event
detection algorithms are the computational overhead
(in terms of processing and memory usage) and the
scenario-dependent applicability. The computational
overhead obviously increases as the algorithms be-
come more complex. The applicability describes
in which circumstances an acceptable accuracy can
be expected from an algorithm. Since applicability
varies depending on the deployment scenario, there is
not a single preferable algorithmic approach to event
detection in general.

4 An Exemplary Event Detec-
tion System: AVS-Extrem

Based on the general discussion of architectures and
algorithms, we now present an exemplary platform
for distributed event detection called AVS-Extrem.
This platform is employed in a project in which
wireless sensor nodes equipped with accelerometers
are integrated into the fence surrounding a security-
sensitive area. The goal of this deployment is to de-
tect intrusions into this area. The sensor nodes are
thus programmed to collaboratively distinguish be-
tween numerous events, e.g., opening the fence or
climbing over the fence, based on the movement of
the fence elements as measured by the sensors.

On the algorithmic side, the system implements
a pattern recognition approach (cf. Sec. 3.2). Each
event class is described by a prototype that incor-
porates the most descriptive features which are ex-
tracted from the training data. Training data is gath-
ered during on-site training as part of which the sen-
sor network is repeatedly exposed to events of each
class. When deployed, the prototypes allow the sen-
sor nodes to distinguish between event classes. Archi-
tecturally, this is achieved using a distributed evalua-
tion method (cf. Sec. 2.4) during which sensor nodes
exchange extracted features and merge them into pro-
totypes that span multiple sensor nodes.

4.1 Hardware Platform

The AVS-Extrem sensor nodes, as depicted in
Figure 2a, were developed with motion-centric
and localization-dependent applications in mind [5].
Each node is equipped with an ARM7-based NXP
LPC2387 MCU with 96 KB RAM and 512 KB ROM
running at a maximum of 72 MHz. For communica-
tions, a Texas Instruments CC1101 radio transceiver
operating in the 868 MHz ISM band is used. A Bosch
SMB380 low-power triaxial acceleration sensor with
a range of up to 8 g, 10-bit resolution, and a sam-
pling rate of up to 1,500 Hz is employed for acquiring
motion data.

In addition to these core components, the PCB also
includes a coulomb counter to measure battery usage,

6

ISM antenna

TI CC1101

Bosch SMB380

Socket for optional

FSA03 GPS module

Norman Dziengel, Freie Universität Berlin ICCE-Berlin ‘11 07.09.2011 2

3 cm

Bosch SMB380

3D-ACC sensor

NXP LPC2387 ARM7 MCU

Reset button

Sensirion SHT11

RH/T sensor

SD card socket

USB connector

FTDI FT232R USB UART IC

LEDs

Linear Technology LTC4150

Coulomb counter

Power supply

JTAG connectorConnector for ext. modules

1
0

 c
m

External pins for research

(a) Sensor node

Distributed

Event Detection

A
p

p
li

ca
ti

o
n

 L
a

y
e

r

Prototype

Classifier
Preprocessing

Feature

Extraction

Data Quality Estimator ACC- Calibration

System Architecture

Norman Dziengel, Freie Universität Berlin ICCE-Berlin ‘11 07.09.2011 3

Micro-Mesh

Routing

MCU: ARM7ACC-Sensor

S
y
st

e
m

 L
a

y
e

r
Security

HW: AVS

Sensor Board

A
p

p
li

ca
ti

o
n

 L
a

y
e

r
OS:

FireKernel
Multiple

Base Nodes

Housing

E
n

e
rg

y

M
a

n
a

g
e

m
e

n
t

(b) System architecture

Figure 2: AVS-Extrem platform

an SD card slot to store trained motion patterns, and
optionally a GPS receiver to establish the location of
the node. The rugged housing fixes the node in place
within vertical fence bars and enables us to conduct
highly repeatable experiments.

The MCU can be woken up from power-saving sta-
tus by the radio transceiver, the accelerometer, and
a scheduled interrupt timer from the RTC. These ex-
ternal interrupts are raised when a packet is received
(wake on radio, WOR), the accelerometer recognizes
a change in position of the node, or a scheduled OS-
level task needs to be run. Hence, only the radio
transceiver, the accelerometer, and the RTC consume
energy, while all other components of the node remain
in low-power modes most of the time.

4.2 System Architecture

As illustrated in Figure 2b, the system architecture
is divided into two layers: the application layer and
the system layer. The system layer contains the AVS-
Extrem sensor board, the operating system and the
energy management. The FireKernel OS [12] is a low-
power operating system that supports threading and
priority-based preemptive multitasking. The latter is
necessary to support uninterrupted sampling of the
sensor while at the same time communicating with

other nodes. A flexible energy management system
supports WOR and numerous MCU-specific energy
saving techniques.

For multi-hop communications, the nodes employ
the reactive Micro Mesh Routing (MMR) protocol.
We have adapted this protocol to our use case by
adding the capability to reliably communicate with
the base station of the sensor network via a set of
multiple base nodes. Each of these nodes can be
addressed by the network as a virtual base station
and transparently relays packets to the real base
station, which is connected to all base nodes via
wireless or wired connections. This way, a fault-
tolerant connection between any node in the WSN
and the base station is provided. For secured commu-
nications, we have implemented the ParSec security
layer that ensures confidentiality, authenticity, and
integrity of transmitted data by using a symmetric
cipher-algorithm in CBC mode.

The application layer encompasses a calibration
routine for the acceleration sensor, optionally a data
quality estimator, and the algorithmic core of our
distributed event detection system. The task of the
calibration routine is to compensate for the individ-
ual positional setup of the fence elements after ev-
ery event. The data quality estimator employs the

7

3. Feature Extraction

node n-1node nnode n+1

2. Preprocessing

1. Event

Norman Dziengel, Freie Universität Berlin ICCE-Berlin ‘11 07.09.2011 8

3. Feature Extraction

5. Classification

4. Feature Distribution

Event

6. Report

Figure 3: The distributed event detection process

Dempster-Shafer theory in order to establish confi-
dence levels for each measured data point, and, by
doing so, allows the system to ignore the readings
of malfunctioning sensors. This provides additional
input for the feature fusion module in the event de-
tection system, as detailed in the next section.

4.3 Event Detection Algorithm

The distributed event detection system observes and
evaluates events using multiple sensor nodes [13].
Events are recognized directly on the nodes in the
network, i.e., without the need for a base station or
other means of central coordination and processing.
This is advantageous over other approaches to event
detection in WSNs which transmit raw data to an ex-
ternal entity for evaluation or rely on simplistic pat-
tern recognition schemes (cf. Secs. 2 and 3).

The general idea of our event detection system is
that each node has its own view of any given event,
but only for one node this view corresponds to one of
the events it was trained to recognize. As illustrated
in Figure 3, the nodes are attached to the fence at
fixed inter-node distances. Whenever an event oc-
curs, a lateral oscillation is propagated through the
interconnected fence elements. The nodes thus sam-
ple the movement of the fence at different relative po-
sitions to the source of the event. If an event occurs,
all affected nodes exchange the extracted features and
concatenate their own features and the received fea-
tures from the neighbors based on the relative sender
position. This concatenated feature vector is then
compared to a set of previously trained prototype
vectors, and an event is reported in case of a match.

For a typical deployment, the system operates in
three distinct phases: In the calibration phase, the

8

aforementioned calibration routine automatically cal-
ibrates the acceleration sensors. The training phase
is initiated by a user via a control station to setup
a newly deployed system. The purpose of this phase
is to train the WSN to recognize application-specific
events by executing a set of representative training
events for each event class. Every event class is
trained by extracting the same set of features from
the sampled raw data on all sensor nodes, and then
transmitting it to the control station. An adequately
large pool of available features is crucial for the over-
all performance of the event detection system, since
– depending on the characteristics of the deployment
– some subsets of features is vastly superior in distin-
guishing between events than others. The control sta-
tion performs a leave-one-out cross validation across
all collected features to automatically select the opti-
mal subset of features for this specific deployment. A
prototype containing the most expressive features for
each event class is then calculated and transmitted
back to each sensor node.

Once the training is complete, the system enters
the detection phase. In this phase, the nodes are con-
figured to autonomously recognize the trained events
and the control station is no longer needed. As illus-
trated in Figure 3, the sensors gather data, which is
then preprocessed, segmented, and normalized. Only
features used in the prototype vectors are extracted
from the raw data, and then combined to form a fea-
ture vector. The extracted feature vector is then
flooded to all sensor nodes in the n-hop neighbor-
hood. In our deployments, n is usually set to 1 since
the radio range of our sensor nodes is significantly
larger than the spacial expansion of the fence motion
caused by an event. After receiving all required fea-
ture vectors, each node performs a feature fusion by
combining the feature vectors based and the relative
position of the sender. Each node establishes the rel-
ative position of other nodes by evaluating the unique
node IDs of received packets. As part of this overall
process, each node builds its own view of the event
using feature vectors from its neighboring nodes. Ob-
viously, the combined feature vector is different for
each node, because the respective neighboring nodes
perceive the event differently depending on their lo-
cation. The prototype classifier running on the node

whose view of the event matches the trained view
classifies the event correctly, while the feature vector
represents an unknown pattern for the other nodes,
which in turn ignore the event. If deemed relevant to
the use case, e.g., the event of climbing over the fence
in our scenario, the node that correctly classified the
event transmits a packet reporting the detection to
the base station.

5 Experimental Evaluation

In this section, we present the results from our exper-
imental evaluation of the detection accuracy and the
energy efficiency of the AVS-Extrem platform. These
results summarize four major experiments that we
conducted over the past years [14, 4, 13, 5].

5.1 Detection Accuracy

We evaluate the detection accuracy using three ex-
periments: an initial proof-of-concept deployment, a
lab prototype, and a real-world deployment.

In the proof-of-concept deployment [14], we at-
tached ten ScatterWeb MSB sensor nodes, the pre-
decessor of our current AVS-Extrem node, to a fence
and exposed them to six different events: long and
short shaking of the fence, kicking against the fence,
leaning against the fence, and peeking and climbing
over the fence. The proof-of-concept system did not
support autonomous training, and hence we relied on
a custom-built heuristic classifier implemented in a
rule-based middleware. This classifier was manually
configured to classify events based on visible patterns
in the raw data.

As part of the lab experiment [4], we trained three
sensor nodes to cooperatively recognize four different
motion paths based on the acceleration data mea-
sured by the sensor. The four motion paths, com-
prising a square, a triangle, a circle and the capital
letter U, were drawn simultaneously by three persons
on a flat surface by moving the sensor nodes. Event
detection was implemented using a cooperative fu-
sion classifier which, for the first time, allowed for
the feature vectors to include features from multiple
sensor nodes.

9

0

20

40

60

80

100

Proof of Concept Lab Prototype Real World
Deployment

%

Sensitivity Specificity PPV NPV Accuracy

(a) Detection quality of distributed event detection for differ-
ent deployments

20

30

40

50

60

70

0

10

20

No Event Detection Centralized Event

Detection

Decentralized Event

Detection

Power Consumption in mW Lifetime in Weeks

(b) Energy consumption and network lifetime of different
event detection systems

Figure 4: Detection quality and energy consumption of different approaches to event detection

Finally, in our real-world deployment [13], we at-
tached 100 sensor nodes to the fence of a construc-
tion site. We exposed the WSN to four different
classes of events: shaking the fence, kicking against
the fence, leaning against the fence, and climbing
over the fence. This deployment utilized the same
event detection algorithm as the lab prototype, but
additionally introduced automated feature selection
based on leave-one-out cross-validation (cf. Sec. 4.3)
during the training phase. For the training, we chose
a region of the fence that was free of any external
obstructions and trained the WSN with 15 events of
each class.

Figure 4a shows sensitivity, specificity, Positive
Predictive Value (PPV), Negative Predictive Value
(NPV), and accuracy for these three experiments.1

The figure illustrates that AVS-Extrem achieves near-
perfect results under lab conditions. Further, the
final real-world deployment performs substantially
better then the initial proof-of-concept setup with the
rule-based classifier. The current system achieves an
overall detection accuracy of 87.1%, an improvement
of 28.8% over the proof-of-concept.

5.2 Energy Consumption

In contrast to the detection accuracy experiment, the
energy consumption is evaluated with the succeeding
hardware platform AVS-Extrem as introduced in Sec-
tion 4. In our experiments in [5], we evaluated the

1Definitions of these metrics are given in [13].

energy consumption of a sensor node during the dis-
tributed event detection and recognition process. To
measure the energy consumption of the whole board
as accurately as possible, we soldered a 10 Ω shunt re-
sistor into the supply line which is powered by a refer-
ence voltage of 5 V. The voltage of the shunt resistor
was measured using a digital sampling oscilloscope
(DSO). As the resistor and the voltage are known, we
can calculate the value of the current and use it to
calculate the electric power used by the sensor node
over the time of one DSO sample. By integrating
the electric power over the time of one system state,
e.g., packet transmission or IDLE mode, we can mea-
sure the energy needed. This information can then
be used to approximate the energy consumption of
the sensor node over a given time (cf. [5]). During
the event detection phase, the sensor nodes use the
MCU power down (PD) mode, that also shuts down
all internal peripherals. The wireless transceiver uses
the wake-on-radio (WOR) mode and thus remains
available for processing incoming data. The acceler-
ation sensor is active and monitors the movement of
the fence.

Figure 4b illustrates the average energy consump-
tion and the resulting extrapolated network lifetime.
The underlying scenario for this calculation is a de-
ployment of seven nodes for which an event is gener-
ated and processed five times per hour. For compari-
son, we also plot the numbers for a deployment of the
same sensor network, but without any event-related
activity. As can been seen in the figure, the lifetime

10

of the network that employs centralized event detec-
tion is drastically reduced in comparison to the idle
network due to increase energy consumption. In con-
trast, distributed event detection is able to reduce the
per-node energy consumption by 77%, thus increas-
ing the lifetime of the network to an extrapolated
total of 41 weeks.

These results underline the validity of our initial
hypothesis, that distributed event detection is able
jointly achieve the otherwise conflicting goals of high-
accuracy event detection and long network lifetime.

6 Conclusion and Outlook

In this paper, we described how event detection in
wireless sensor networks comes in several different
forms, each with its specific trade-offs and, at times,
particularly suited for certain types of deployments.
The overall dominating factor is the trade-off be-
tween energy efficiency and event detection accuracy,
two goals which are mutually exclusive for simple ap-
proaches. Systems that operate distributively, such
as the AVS-Extrem platform which we used as an
example in this paper, pave the way towards deploy-
ments that can provide both, highly accurate event
detection as well as a long network lifetime.

As distributed approaches to event detection ma-
ture, we expect that a new, deployment-time trade-
off will emerge: System that adapt techniques from
machine learning (such as AVS-Extrem) profit from
their inherent adaptability to specific scenarios, but
on the downside also require extensive training for
each new deployment. Other types of systems rely
on on-site parametrization which can be performed
quickly, but is unable to detect complex events. It
will thus be interesting to explore in how far event
detection systems can not only achieve high accuracy
at low power consumption, but furthermore also be
efficiently deployed without sacrificing either of the
aforementioned properties.

Acknowledgments

This work was funded in part by the German Federal
Ministry of Education and Research (Bundesminis-
terium für Bildung und Forschung, BMBF) through
the project AVS-Extrem.

References

[1] D. M. Doolin and N. Sitar. Wireless Sensors for
Wildfire Monitoring. In Proceedings of the SPIE
Symposium on Smart Structures & Materials /
NDE ’05, San Diego, CA, USA, Mar. 2005.

[2] M. F. Duarte and Y. H. Hu. Vehicle Classifica-
tion in Distributed Sensor Networks. Journal of
Parallel and Distributed Computing, 64(7), July
2004.

[3] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern
Classification. Wiley-Interscience, 2nd edition,
Nov. 2000.

[4] N. Dziengel, G. Wittenburg, and J. Schiller.
Towards Distributed Event Detection in Wire-
less Sensor Networks. In Adjunct Proceedings
of the Forth IEEE/ACM International Confer-
ence on Distributed Computing in Sensor Sys-
tems (DCOSS ’08), Santorini Island, Greece,
June 2008.

[5] N. Dziengel, M. Ziegert, S. Adler, Z. Kasmi,
S. Pfeiffer, and J. Schiller. Energy-Aware Dis-
tributed Fence Surveillance for Wireless Sensor
Networks. In Proceedings of the Seventh Inter-
national Conference on Intelligent Sensors, Sen-
sor Networks and Information Processing (ISS-
NIP ’11), Adelaide, Australia, Dec. 2011.

[6] H. Ghasemzadeh, V. Loseu, and R. Jafari. Col-
laborative Signal Processing for Action Recog-
nition in Body Sensor Networks: A Distributed
Classification Algorithm Using Motion Tran-
scripts. In Proceedings of the Ninth ACM/IEEE
International Conference on Information Pro-
cessing in Sensor Networks (IPSN ’10), Stock-
holm, Sweden, Apr. 2010.

11

[7] L. Gu, D. Jia, P. Vicaire, T. Yan, L. Luo,
A. Tirumala, Q. Cao, T. He, J. A. Stankovic,
T. Abdelzaher, and B. H. Krogh. Lightweight
Detection and Classification for Wireless Sensor
Networks in Realistic Environments. In Pro-
ceedings of the Third International Conference
on Embedded Networked Sensor Systems (Sen-
Sys ’05), San Diego, CA, USA, Nov. 2005.

[8] Y. Kim, J. Kang, D. Kim, E. Kim, P. Chong, and
S. Seo. Design of a Fence Surveillance System
Based on Wireless Sensor Networks. In Proceed-
ings of the Second International Conference on
Autonomic Computing and Communication Sys-
tems (Autonomics ’08), Turin, Italy, Sept. 2008.

[9] F. Martincic and L. Schwiebert. Distributed
Event Detection in Sensor Networks. In Proceed-
ings of the International Conference on Systems
and Networks Communications (ICSNC ’06),
Tahiti, French Polynesia, Oct. 2006.

[10] A. Tavakoli, J. Zhang, and S. H. Son. Group-
Based Event Detection in Undersea Sensor Net-
works. In Proceedings of the Second Interna-
tional Workshop on Networked Sensing Systems
(INSS ’05), San Diego, CA, USA, June 2005.

[11] M. Wälchli, P. Skoczylas, M. Meer, and
T. Braun. Distributed Event Localization
and Tracking with Wireless Sensors. In Pro-
ceedings of the Fifth International Conference
on Wired/Wireless Internet Communications
(WWIC ’07), Coimbra, Portugal, May 2007.

[12] H. Will, K. Schleiser, and J. Schiller. A Real-
time Kernel for Wireless Sensor Networks Em-
ployed in Rescue Scenarios. In Proceedings of
the 34th IEEE Conference on Local Computer
Networks (LCN ’09), Zürich, Switzerland, Oct.
2009.

[13] G. Wittenburg, N. Dziengel, C. Wartenburger,
and J. Schiller. A System for Distributed Event
Detection in Wireless Sensor Networks. In Pro-
ceedings of the Ninth ACM/IEEE International
Conference on Information Processing in Sensor
Networks (IPSN ’10), Stockholm, Sweden, Apr.
2010.

[14] G. Wittenburg, K. Terfloth, F. L. Villafuerte,
T. Naumowicz, H. Ritter, and J. Schiller. Fence
Monitoring - Experimental Evaluation of a Use
Case for Wireless Sensor Networks. In Proceed-
ings of the Forth European Conference on Wire-
less Sensor Networks (EWSN ’07), Delft, The
Netherlands, Jan. 2007.

[15] A. Yang, S. Iyengar, S. S. Sastry, R. Bajcsy,
P. Kuryloski, and R. Jafari. Distributed Seg-
mentation and Classification of Human Actions
Using a Wearable Motion Sensor Network. In
Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition Work-
shops (CVPRW ’08), Anchorage, AK, USA,
June 2008.

12

	Introduction
	Architectures
	Local Detection
	Centralized Evaluation
	Decentralized Evaluation
	Distributed Evaluation

	Algorithmic Approaches
	Threshold-based Decisions
	Pattern Recognition
	Anomaly Detection

	An Exemplary Event Detection System: AVS-Extrem
	Hardware Platform
	System Architecture
	Event Detection Algorithm

	Experimental Evaluation
	Detection Accuracy
	Energy Consumption

	Conclusion and Outlook

