
Freie Universität Berlin

Department of Mathematics and Computer Science

Institute of Computer Science

Master's Thesis

A Rule-Based Middleware Architecture for

Wireless Sensor Networks

Georg Wittenburg � wittenbu@inf.fu-berlin.de

November 1, 2005

Examiner: Prof. Dr.-Ing. Jochen Schiller

Tutor: Dipl.-Inf. Kirsten Ter�oth

mailto:wittenbu@inf.fu-berlin.de

Abstract

Wireless Sensor Networks (WSN) are an emerging technology with applications in the

�elds of environmental monitoring, facility management, and high-precision data gathering

in general. They are deployed in the form of a large set of inexpensive sensing units

that communicate over an ad-hoc wireless network. Developing applications for WSNs is

challenging due to very limited resources available on each sensor node and the distributed

nature of the algorithms used.

In order to ease the development e�ort, we propose the FACTS middleware architecture

for wireless sensor networks. Built around a rule-based programming paradigm, FACTS

supports event-driven and data-centric applications to be written in the ruleset de�nition

language. Components of the middleware are implemented in rulesets, compiled into byte-

code and interpreted on the sensor nodes. We illustrate the capabilities of the FACTS

middleware architecture by simulating it using the ns-2 network simulator and the Scat-

terWeb WSN platform.

Acknowledgments

First and foremost, I would like to thank my parents and grandparents for supporting

me during my studies, providing help and advise from the humble beginnings up to and

including the writing of this thesis.

Many thanks to Kirsten Ter�oth, who came up with this inspiring idea in the �rst place,

had the background, skill and nerves to hammer out all the details, and still made working

on this project a thoroughly enjoyable experience.

Special thanks to Fabian Stehn for his insight, his subtle motivation now and then, and

for generally keeping the place from falling apart.

Contents

1 Introduction 1

1.1 Wireless Sensor Networks . 2

1.1.1 De�nition and Challenges . 2

1.1.2 Motivation and Applications . 3

1.1.3 Platforms and Deployments . 4

1.1.4 Basic Services . 7

1.2 ScatterWeb . 8

1.3 Problem Statement and Proposed Solution 9

2 Related Work 11

2.1 Programming Tools and Abstractions . 11

2.1.1 TinyOS . 11

2.1.2 nesC . 12

2.1.3 Attributed State Machines . 13

2.1.4 Protothreads . 14

2.2 Cross-layer Networking . 14

2.3 Middleware Overview and Concepts . 16

2.4 Existing Middleware Approaches . 17

2.4.1 Directed Di�usion . 17

2.4.2 Maté . 18

2.4.3 SWARMS . 18

2.4.4 Generic Role Assignment . 19

2.4.5 TinyLIME . 19

2.5 Simulation . 20

2.5.1 TOSSIM . 20

2.5.2 Wireless Sensor Networks on ns-2 21

2.5.3 OMNeT++ . 21

2.6 Theoretical Background . 22

i

3 Tools and Procedures 23

3.1 Project Management . 23

3.2 Subversion . 24

3.3 ns-2 Network Simulator . 24

3.4 C to C++ Translator (ctocpp) . 25

3.5 y2l � Yacc to LATEX . 25

4 Concepts and Language 27

4.1 Overview . 27

4.2 Basic Concepts . 29

4.2.1 Facts . 29

4.2.2 Rules . 30

4.2.3 Functions . 31

4.3 Derived Concepts . 31

4.3.1 Slots . 32

4.3.2 Rulesets . 32

4.3.3 Globally Shared Information Space 32

4.4 Design Details and Considerations . 33

4.4.1 Sets of Facts . 33

4.4.2 Separation of Conditions and Statements 33

4.4.3 Filtering Facts for Processing by a Statement 33

4.4.4 Adjusting Ownership of Modi�ed Facts 34

4.4.5 Avoiding Local Variables . 35

4.4.6 No else Keyword . 35

4.5 Ruleset De�nition Language . 35

4.5.1 Syntax . 36

4.5.2 Examples . 42

5 Compilation and Execution 47

5.1 The Compilation Process: FACTS-rc . 48

5.1.1 Example: Turing Machine Ruleset 48

5.1.2 Parsing and Bytecode Data Structure 50

5.1.3 EEPROM Memory Layout and Bytecode Optimization 55

5.1.4 Evaluation of Bytecode Optimization 61

5.2 Prototype Implementation: FACTS-hs . 64

5.2.1 Rationale . 64

5.2.2 Overview . 65

ii

5.2.3 Relevant Code Fragments . 65

5.3 Implementation on ScatterWeb: FACTS-re 66

5.3.1 Overview . 67

5.3.2 Relevant Code Fragments . 67

6 Simulation: ScatterWeb on ns-2 69

6.1 Overview . 69

6.2 Possible Approaches . 70

6.3 Implementation . 71

6.3.1 Linking C Code into ns-2 . 73

6.3.2 Connecting the Network Stack . 74

6.3.3 Simulating Timer Interrupts . 75

6.3.4 Minor Fixes . 76

6.4 Evaluation . 77

7 A Use Case 79

7.1 Use Case: Generic Role Assignment . 79

7.2 Generic Role Assignment Implemented in FACTS 81

7.2.1 Implementing the Property Directory 81

7.2.2 Implementing Property Propagation and Role Updates 83

7.3 Coverage Implemented in GRA Running on FACTS 87

7.4 Evaluation . 89

8 Future Work and Conclusion 91

8.1 Evaluation . 91

8.2 Future Work . 92

8.3 Concluding Remarks . 93

A Ruleset De�nition Language Grammar 95

B Example Rulesets 99

B.1 Coverage Ruleset . 99

B.2 Turing Machine Ruleset . 103

B.3 Generic Role Assignment with Coverage Ruleset 106

Bibliography 113

iii

Chapter 1

Introduction

One of the most fundamental observations in the computing industry is one made by Intel

co-founder Gordon E. Moore in 1965 � later to become known as Moore's Law [Moo65] �

which states:

�The complexity for minimum component costs has increased at a rate of roughly

a factor of two per year [. . .]. Certainly over the short term this rate can be

expected to continue, if not to increase. Over the longer term, the rate of increase

is a bit more uncertain, although there is no reason to believe it will not remain

nearly constant for at least 10 years.�

From this observation about how the number of transistors per chip that can be manufac-

tured in the most cost-e�cient way (given the current state-of-the-art production technol-

ogy) follows the better known statement that �the number of transistors on a chip doubles

about every two years� [int05, Sto03].

In the past decades, chip manufactures have been able to keep up with this prediction

and steadily integrated more features into a single chip. At the same time the physical size

of a chip has seen but little change, increasing only at a rate of about 7% per year since

1970. Amongst other things, this development has led to chips optimized for processing

power as found in nowadays personal computers.

Moore's Law however also allows for a di�erent optimization: Instead of emphasizing

processing power, one can as easily optimize for low power consumption and chip size. The

industry's shift towards power saving already has become visible in the latest generation of

processors speci�cally targeted towards laptops and other mobile devices. Still, the physical

size of the chip is not of major importance in this sector as devices are built to be operated

directly by humans and thus have a given minimum size.

But what if one was to aggressively optimize chips for physical size and low power con-

sumption, even at the expense of processing speed and features? How small can devices

be and what capabilities can they retain? What are possible areas of application for not a

1

Chapter 1 Introduction

single one, but for a set of many of these small devices? The research into so-called �wireless

sensor networks� provides a vision that gives answers to these questions.

1.1 Wireless Sensor Networks

The concept of Wireless Sensor Networks (WSN) started to appear at the end of the 1990s

with �rst publications about Wireless Integrated Networked Sensors (WINS) [ADL+98] and

Smart Dust [WLLP01]. The vision is to construct a network of very small and inexpen-

sive devices that are connected via radio and operate unattended. The important shift in

paradigm is that the individual device is no longer of crucial importance, but that the de-

vices cooperatively � or rather the network as a whole � perform a speci�c task. Saying that

�the whole is more than the sum of its parts� is especially true for wireless sensor networks.

1.1.1 De�nition and Challenges

A wireless sensor network consists of a potentially very large set of individual sensor nodes.

Each of these nodes has very limited resources, both in terms of processing speed and

memory. Further, the power available to each sensor node is also limited to the point at

which some approaches consider harvesting of energy from the surrounding environment

to be a worth while alternative. Depending on the task of the sensor network, each node

may be equipped with a di�erent set of sensors to monitor the environment, e.g. sensors

to detect temperature, motion, light, etc. Scenarios for both homogeneous wireless sensor

networks, in which all nodes have the same hardware setup, and heterogeneous wireless

sensor networks, in which some nodes are equipped with specialized hardware to perform

their task, are conceivable.

The crucial component of a sensor node is however the radio transceiver which allows each

individual node to exchange data with the rest of the network. As all other components of

a sensor node, it is limited in its capabilities, hence each sensor node will only be able to

reach a potentially very small fraction of the network with a directl radio transmission. To

make things even more challenging, communication via radio is the most energy-demanding

single action a sensor node can take and should therefore be avoided whenever possible.

Wireless sensor nodes only have a very limited user interface, if any. This fact, and

even more importantly the great number of nodes deployed as part of a sensor network,

makes it infeasible to con�gure or service them after deployment. There are even scenarios

in which the exact location of each sensor node in the �eld is not known. The nodes of

a wireless sensor network therefore need to be able to automatically con�gure themselves

after deployment using the limited knowledge they can gather from other nodes in their

vicinity. The con�guration process and with it the structure of the resulting network and

2

1.1 Wireless Sensor Networks

the di�erent roles that nodes perform within this structure depend on the task at hand and

will di�er from one deployment to another.

Unless equipped with components to harvest energy from the surrounding environment,

such as photovoltaic cells, the lifetime of each sensor node and thus of the entire network will

be limited. Power consumption will vary between nodes depending on network structure

and the roles that sensor nodes perform during the operation of the network. However, the

total lifetime of the network can be extended by intelligently restructuring the network or

reassigning roles of nodes, provided that we are dealing with a densely deployed network.

Summing things up, the key restrictions of wireless sensor networks are limited computa-

tional power and energy resources. This leads to key challenges which include programming

the sensor network in such a way as to make the best possible use of the scarce resources,

perform with an adequate level of service under di�cult conditions, increase the lifetime of

the sensor network, and complete the application-speci�c task.

1.1.2 Motivation and Applications

While the research interest might indeed have been sparked through the possibilities o�ered

by Moore's Law, there are several other motivations behind the research into wireless sensor

networks.

Research in this area follows the general trend towards ubiquitous (or pervasive) com-

puting. The vision is for embedded computers to become part of the environment, sensing

their surroundings and intelligently react to changes. This will open the door to new ways

of human-computer-interaction, such as intelligent buildings that individually adapt to per-

sons as they move through them.

Furthermore, wireless sensor networks have applications in high-�delity data gathering.

Scenarios may be static, e.g. environmental or habitat monitoring as used in the �elds of

geology or biology, as well as dynamic, e.g. in situations of disaster recovery. The amount

of sensor nodes deployed may vary greatly depending on the task of the wireless sensor

network: If the task involves monitoring a continuous physical region, the number of sensor

nodes can be potentially very large, ranging in the hundreds or even thousands. On the

other hand, if sensor nodes are used to monitor discrete objects in the physical world, such

as the machinery in an industrial plant, the total size of the sensor network can be rather

small due to the one-to-one relationship between sensor nodes and objects of interest.

Finally, it must be noted that wireless sensor networks also do have military applications,

most notably the gathering of battle�eld intelligence to be used directly by soldiers in the

�eld. It is no surprise that research is funded in part by the Defense Advanced Research

Projects Agency (DARPA), an organization of the Department of Defense of the United

3

Chapter 1 Introduction

State of America. This raises moral issues which we are aware of but will not discuss in

this thesis.

1.1.3 Platforms and Deployments

By now there is a great variety of di�erent hardware platforms for wireless sensor networks

and introducing all of them is beyond the scope of this chapter. Instead, we will describe

two representative examples before turning to the ScatterWeb platform used in our own

work in Section 1.2:

Smart Dust: While already �nished in 2001, the Smart Dust project provided much of the

vision that drives research in this area even today. The goal of Smart Dust was to

develop a platform for sensing and communication with the physical size of merely

one cubic millimeter. Figure 1.1 shows a Smart Dust mote as developed in mid 1999.

It has a volume of about 100 cubic millimeters and comprises an optical transmitter

array, an optical receiver, a charge pump, and a tiny digital controller, all mounted

on top of a hearing aid battery.

Berkeley Motes: Nowadays, these are the most widely used hardware platform for im-

plementing wireless sensor networks. Figure 1.2 shows a MICA2DOT mote, with a

diameter of 25 millimeters. It is based on the Atmel ATmega128L low-power micro-

controller, includes a multi-channel radio transceiver, and runs the TinyOS operating

systems. Furthermore, it comes with an on-board temperature sensor, a battery mon-

itor, and a LED, as well as expansion pins for analog, digital, and serial I/O. The

mote supports routing packets and may be reprogrammed over the air.

Figure 1.1: Smart Dust mote. (Image taken from [Pis])

4

1.1 Wireless Sensor Networks

Figure 1.2: MICA2DOT mote. (Image taken from [mic])

All of these platforms are beginning to undertake real-world testing as part of �rst exper-

imental deployments. Two examples, one using the Berkeley motes platform and the other

one using the ScatterWeb platform are pointed out here for better understanding:

Great Duck Island: Starting in 2002 a wireless sensor network comprising 32 Berkeley

motes was deployed on the uninhabited Great Duck Island, Maine. The goal was

to develop and test a kit for non-intrusive and non-disruptive habitat monitoring,

speci�cally sampling the microclimate in the vicinity of nesting burrows. Figure 1.3

shows two of the motes used. [SPMC04] describes the results in detail.

Heathland Experiment: Undertaken in early 2005, the goal of the Heathland Experiment

was to verify lifetime predictions that until then were extrapolated based on simula-

tion results or short deployments of sensor nodes in a lab environment. 24 ScatterWeb

sensor nodes were deployed in Northern Germany and exercised by periodically build-

ing a depth-�rst search tree. The sensor network remained operational for two weeks.

Figure 1.4 shows one of ScatterWeb sensor nodes, [TRV+05] describes the experiment

in detail.

It is very likely that we will start seeing more and larger scale deployments in the near

future. As both platforms presented above also have commercial o�erings, there is even a

chance of some of these rollouts having a business background.

5

Chapter 1 Introduction

Figure 1.3: Two Berkeley sensor motes deployed on Great Duck Island. (Image taken from
[gre])

Figure 1.4: A ScatterWeb Embedded Sensor Board (ESB) node part of the Heathland Ex-
periment. (Image taken from [hea])

6

1.1 Wireless Sensor Networks

1.1.4 Basic Services

Services required in the wireless sensor network domain di�er from those already available

in traditional network stacks. Consider the following examples which are unique to WSNs:

Coverage is a distributed algorithm that increases the total lifetime of a sensor network.

It is applicable in scenarios in which sensor nodes gather data related to the physical

location at which it is sampled and the sensor network is densely deployed. If several

sensor nodes sample data from the same region, then some nodes may switch into a

low power state while the region remains covered as far as data gathering is concerned

by the neighboring nodes. Once these nodes run out of energy, the previously inactive

nodes continue their task.

Clustering is the grouping of sensor nodes into logical clusters based on a shared property.

Commonly, this property is the distance between nodes, as measured in the amount

of hops that a network packet has to travel between them. Grouping nodes that

are in close proximity with regard to network connectivity is the basis for building a

hierarchical structure in an ad-hoc network, based on which more complex services

such as hierarchical routing can be implemented.

In-Network Aggregation is a re�nement of data-centric programming. Rather than merely

collecting data from the sensor nodes and sending it to the interested parties, the data

can be aggregated within the network. Performing application-speci�c processing of

data, e.g. by calculating averages, reduces the overall data that needs to be sent

through the sensor network and thus saves energy. Note that the exact operations

to be performed depend on the application, i.e. the application logic is decentralized

and located in part on every sensor node.

Object Tracking is a high-level application, possibly using the services provided by the

items discussed above. The goal is for the sensor nodes to identify a moving object, like

a speci�c car or animal, in the physical world and then coordinate among themselves

to record its trajectory as it moves through the region of interest.

Note that most of these services require a holistic view of the sensor node, i.e. they do

not �t into the layered architecture of traditional network stacks. Once again, this raises

questions regarding which programming abstractions are useful in the domain of wireless

sensor networks and which are not.

7

Chapter 1 Introduction

1.2 ScatterWeb

ScatterWeb is the platform for wireless sensor networks developed by the Computer Sys-

tems and Telematics (CST) working group at the Institute of Computer Science at Freie

Universität Berlin. It is built based on the Texas Instruments MSP430 microcontroller and

the TR1001 radio transceiver which operates at 868 MHz with data rates up to 19.2 kbit/s.

The ScatterWeb platform comprises the Embedded Sensor Board (ESB), Embedded Chip

Radio (ECR), the Embedded Web Server (EWS), and several tools and accessories.

A picture of the Embedded Sensor Board is shown in Figure 1.5. Running on three AA

batteries, it includes 2 KB RAM and 8 KB EEPROM. For data gathering, it features sensors

to sample temperature, luminosity, noise, and vibration. For non-radio I/O it includes an

IR sender and receiver as well as a serial port. Interaction with humans is possible by the

means of two buttons, one of which is freely programmable, three LEDs and a beeper.

ScatterWeb, being aimed primarily at educational institutions, has an active development

community. Available software includes among many other items a gateway to GSM phone

networks, various routing algorithms, clustering, time synchronization, and two virtual

machines [WLT, Pie05].

The homepage of the ScatterWeb project is located at http://www.inf.fu-berlin.

de/inst/ag-tech/scatterweb_net/. ScatterWeb components are commercially avail-

able at http://www.scatterweb.net/.

Figure 1.5: ScatterWeb Embedded Sensor Board (ESB). (Image taken from [sca])

8

http://www.inf.fu-berlin.de/inst/ag-tech/scatterweb_net/
http://www.inf.fu-berlin.de/inst/ag-tech/scatterweb_net/
http://www.scatterweb.net/

1.3 Problem Statement and Proposed Solution

1.3 Problem Statement and Proposed Solution

Given the wide-spread use of traditional networking technologies, it may be surprising how

challenging even simple tasks become in the realm of wireless sensor networks. Nowadays an

application-level developer expects certain services to be provided by the operating system

or by network protocols. However, due to the resource constraints of sensor nodes neither

of these can be taken for guaranteed.

Problems arise mainly from developing applications comparatively close to the hardware

on one side, and the need for distributed algorithms in wireless sensor networks on the other

side. Implementing a middleware as an abstraction layer is widely accepted as a solution to

this problem. However, as the middleware uses some of the scarce resources of the sensor

nodes, it must be carefully deliberated whether a middleware does add value from task to

task. Of course, the value of a middleware increases with the features it comprises, while

using as few resources as possible. The key to success is however to provide the application-

level developer with a programming abstraction that empowers him to directly formulate

the crucial parts of his application in a way that naturally maps to the WSN platform.

In this thesis, we propose the FACTS middleware architecture for wireless sensor networks

as a solution to the problem described above. FACTS is a rule-based architecture that

captures the data-centric and event-driven semantics inherent to wireless sensor networks.

It includes a programming language to easily specify how to process data items in response

to events occurring on the system, thus precisely capturing the desirable properties of

programming in an embedded WSN environment.

Inspired by concepts from the domain of expert systems, our main programming ab-

stractions are facts to encapsulate any kind of data, rules to asynchronously detect events

and modify facts in response, and functions to directly harness to power of the hardware

platform. Facts are stored locally in a fact repository on each sensor node, but may also be

transmitted from one node to another. To support modularity, rules are organized in com-

ponents called rulesets. Each of these concepts will be described in full detail in Chapter

4.

As illustrated in Figure 1.6, the FACTS architecture comprises a compiler and two run-

time environments: The FACTS-rc ruleset compiler translates applications implemented in

the form of rulesets to either bytecode that can be interpreted by the FACTS-re runtime

environment running on the ScatterWeb platform, or to FACTS-hs de�nitions to run on a

simulation of the FACTS middleware implemented in Haskell. Additionally, the FACTS-re

runtime environment may also use the ScatterWeb on ns-2 wrapper to execute bytecode

as part of a simulation on top of ns-2. The details of these components will be describes

in detail in Chapters 5 and 6.

9

Chapter 1 Introduction

Rulesets
FACTS-re
Bytecode

FACTS-re
Rule Engine

ScatterWeb

ScatterWeb
on ns-2

ns-2

FACTS-rc
Ruleset Compiler FACTS-hs

Haskell Simulation
FACTS-hs
Definitions

FACTS-re
Rule Engine

Figure 1.6: Overview of the FACTS middleware architecture for wireless sensor networks.

The next chapters of this thesis are organized as follows: In Chapter 2 we discuss related

work and compare our proposed solution to other middleware approaches. Tools and pro-

cedures used while working on this project are introduced in Chapter 3. With Chapter 4

we begin the main body of our work, and describe in detail the underlying concepts of the

FACTS middleware architecture as well as syntax and semantics of the ruleset de�nition

language. On the more practical side, Chapter 5 explains the details of the implementations

of the components that FACTS comprises: the FACTS-rc ruleset compiler, the FACTS-hs

implementation of FACTS in Haskell, and the FACTS-re implementation of FACTS on the

ScatterWeb platform. In Chapter 6 we deviate slightly from our main topic and propose

a way in which ScatterWeb sensor nodes can be simulated using the ns-2 network simu-

lator, thereby easing our development work on the implementation of FACTS. In order to

underline the relevance of our proposal, Chapter 7 has an extended use case that illustrates

how other middleware concepts can be implemented in FACTS. Finally, Chapter 8 discusses

future directions of research and concludes.

Additional information regarding the FACTS middleware architecture for wireless sensor

networks is available on the project homepage located at http://page.mi.fu-berlin.

de/~wittenbu/uni/facts/.

10

http://page.mi.fu-berlin.de/~wittenbu/uni/facts/
http://page.mi.fu-berlin.de/~wittenbu/uni/facts/

Chapter 2

Related Work

Wireless sensor networks are the focus of attention of several research groups, including (but

not limited to) the Wireless Embedded Systems (WEBS) Project of the Computer Science

Division at the University of California at Berkeley, the Center for Embedded Networked

Sensing (CENS) at the University of California at Los Angeles, the Distributed Systems

Group at the Eidgenössische Technische Hochschule Zürich, and the Computer and Network

Architectures Lab at the Swedish Institute of Computer Science, among others.

In this chapter we will summarize the current state of research and discuss aspects rele-

vant to our own work. In Sections 2.1 and 2.2 we introduce common programming tools in

the area of wireless sensor networks and motivate the need for cross-layer networking. Con-

centrating on middleware architectures, we summarize concepts and challenges in Section

2.3 and discuss speci�c implementations in Section 2.4. In Section 2.5, we cover approaches

towards simulation of sensor networks.

2.1 Programming Tools and Abstractions

While certainly complex, the publications discussed in this section are at a conceptually

lower level, either because of dealing with direct hardware interaction or tool development.

As such, we consider them tools for building a middleware architecture.

2.1.1 TinyOS

TinyOS is the most widely used operating system for the nodes of wireless sensor net-

works. Developed at the University of California at Berkeley and described by Hill et al. in

[HSW+00], it is built around the concept of components that consist of a set of command

handlers, a set of event handlers, an encapsulated �xed-size memory frame, and a bundle of

threads of execution. Declarations of command and event handlers are the public interface

of a component, while the frame is used to hold internal state, and threads perform com-

putation. Threads are run by a simple FIFO scheduler and may be preempted by events,

11

Chapter 2 Related Work

but are otherwise isolated from each other and run to completion. For deployments a con-

�guration of several interconnected components is created. Low-level components interact

with the actual hardware, while high-level components encapsulate the application logic.

The top-down �ow of control is handled by commands, the bottom-up noti�cation system

is handled by events.

Applications written for TinyOS have a very small memory footprint, with the examples

given in the publications ranging in the order of magnitude of a few hundred bytes. By

design, an application is deployed only with those components that it depends on as stated

in its con�guration, hence not wasting any memory. Multiple simultaneous �ows of control

through the stack of components are supported, however switching between threads does

incur some overhead.

In contract, the FACTS middleware architecture as proposed in this thesis is only marginally

concerned with implementing access to hardware. We rather use the existing �rmware of

the ScatterWeb sensor nodes to this end. Similar to TinyOS, we support event-centric

programming with the concepts of facts and rules, but actually take it one conceptual step

further by having a �rst class abstraction for events in the form of facts. Similar to compo-

nents in TinyOS, the FACTS rulesets encapsulate functionality and given their dependency

declarations can be arranged into a similar tree-like con�guration. The key di�erence is

that in our approach the data is separated from the processing components, and we can

thus support cross-layer optimization while TinyOS su�ers from its excessive modularity.

2.1.2 nesC

The nesC programming language as proposed by Gay, Levis and von Behren in [GLvB+03]

is the language of choice for implementing TinyOS components. We discuss it separately

from TinyOS because we intend to focus on the language and tool chain features rather

than the runtime environment.

nesC is an extension of the C programming language that adds support for structuring

applications into components. At the same time, the extension reduces the expressive power

of C in order to improve safety: For instance, the language does not support dynamic

allocation of memory. As program size can safely expected to be limited, con�gurations

are compiled as a whole rather than each component separately. As a results, the entire

call graph of an application is known at compile time, thus allowing for additional program

analysis and optimization to improve safety and runtime performance. The compiler has

support for checking the code for data races between multiple threads of execution. Data

races can be resolved by marking critical sections with the atomic keyword.

The imperative programming paradigm as followed by nesC is quite di�erent from the

12

2.1 Programming Tools and Abstractions

rule-based paradigm that is the foundation of the FACTS ruleset de�nition language. There

are advantages and disadvantages to this: The FACTS ruleset de�nition language does not

need to care about potentially insecure memory access or concurrency issues, because the

rule engine that interprets the rules on the sensor nodes takes care of this. On the other

hand, nesC bene�ts from its similarity to C because it is easier for new programmers to

develop applications, while our ruleset de�nition language may be unfamiliar. As far as

performance is concerned, it is still too early to tell: The ruleset de�nition language allows

for aggressive optimizations to be performed, but at the moment it is unknown whether

this can make up for the overhead incurred by rules being interpreted rather than running

natively.

2.1.3 Attributed State Machines

Kasten and Römer address one major drawback of event-driven programming in [KR05].

They observe that while superior from the theoretical point of view, event-centric implemen-

tations su�er from having to pass extra information between the code fragments that react

to events. Speci�cally, there are two distinct cases referred to as manual stack management

and manual control �ow. Manual stack management is the use of global variables instead

of automatic local variables, which are not available for sharing between event handlers,

each of which is implemented its own scope. Manual control �ow is code that implements

di�erent behavior of event handlers depending on a global state. This code may be du-

plicated in several event handlers, which results in more di�cult maintenance. To solve

this problem, the Object State Model (OSM) is proposed. It enhances Harel's statecharts1

with the option to store typed data as part of each state in so-called state variables. The

scope of state variables includes, apart from obviously the state itself, all other states that

are recursively embedded into it, as well as entry and exit functions of the state. As event

handlers run to completion, there can be no race conditions in accessing state variables. In

order to allow for this concept to be used in applications, the OSM speci�cation language

is proposed.

In our work we have identi�ed similar problems to those described above: State is stored

in facts and if di�erent rules should �re depending on the current value of the state, the

conditions of these rules need to be adapted for each possible value of the state fact. This

may result in duplicated code, particularly in duplicated conditions. The solution to this

may include introducing a hierarchical structure in either rules or conditions, however we

have not started looking into these kinds of re�nements at present.

1Statecharts is a model for hierarchical �nite state machine (FSM) with support for concurrency. [Har87]

13

Chapter 2 Related Work

2.1.4 Protothreads

There is no reason why innovative concepts need to be very complex. In [DSV05], Dunkels,

Schmidt and Voigt propose a creative way to use the standard C while-loop nested inside

a switch statement. Their programming construct, which can be encapsulated nicely in

defines, recreates semantics similar to those of real threads � hence the name protothread

� but with a memory overhead of only one unsigned integer. Compared to event-driven

programming, protothreads do not require �nite state machines to be designed. Compared

to traditional threads, a protothread cannot span over several C functions. It may call

other C functions, but not block inside these. On systems with very limited memory, these

disadvantages are however compensated by the fact that a protothread does not require its

own control stack.

Protothreads themselves � being an optimization for sequential programming in C-like

languages � are not directly related to our work. Still, we found the semantics quite intuitive

and are contemplating whether similar constructs would be a worthwhile addition to our

ruleset de�nition language.

2.2 Cross-layer Networking

Networking subsystems are commonly implemented as a layered architecture, the so-called

network stack. Each layer performs a well de�ned or even standardized task, implementing

a prede�ned interface to be used by the upper layer. This strict layering makes implemen-

tations of speci�c layers interchangeable and improves robustness. Until recently, this level

of modularity and data hiding was regarded as a Good Thing. In the domain of wireless

sensor networks however, it has been observed that more resource e�cient solutions can

be achieved by sharing information between layers. The technique of sharing information

between layers of the network stack to boost performance has been discussed outside of the

domain of wireless sensor networks under the label �cross-layer networking�.

Safwat, Hassenein and Mouftah were among the �rst to evaluate cross-layer designs for

WSNs in [SHM03]. They propose two cross-layer algorithms: Energy-Constrained Path

Selection (ECPS) and Energy-E�cient Load Assignment (E2LA). ECPS employs a reward-

based scheme to maximize the probability of sending a packet to its destination in at most

a given number of transmissions. E2LA distributes the load of routing packets over several

routes, again using a reward-based scheme for route assignment. Various reward schemes

using cross-layer information are presented and evaluated.

In [KKT04], Kozat, Koutsopoulos and Tassiulas tackle the problem of minimizing total

transmit power while meeting prede�ned quality of service (QoS) parameters, such as min-

14

2.2 Cross-layer Networking

imum bandwidth or maximum bit error rate. They model network links to use slots of

prede�ned size in packet frames, and then allocate slots based on bandwidth requirements

and schedule frames to avoid collisions. Several heuristics to jointly solve these problems

are discussed. Unfortunately, as the authors state at the end of their work, their algorithms

need to run on a central agent with global knowledge. This constraint makes it hard if not

impossible to apply their results to ad-hoc networks with only localized knowledge. Still,

this paper illustrates adequately how cross-layering helps to �nd solutions to con�icting

goals, like conservation of energy vs. quality of service.

A more holistic approach to the di�culties of power control in wireless ad-hoc networks

is taken by Kawadia and Kumar in [KK04]. They begin with a very detailed list of how

di�erent aspects in the operation of a wireless network are a�ected by power control. For

example, they point out that adjusting transmit power may cause bi-directional network

links to become uni-directional or vice-versa, thereby invalidating logical structures at higher

levels of the network stack. Or underlining the complexity of the problem, the value for

the optimal power level is stated to be a�ected by the current load in the network: For

high network load low transmit power achieves better results because it reduces the chances

of collisions at MAC level. In contrast, for low network load it proves superior to increase

transmit power to reduce the number of hops required to reach the destination node. Several

algorithms are presented to �nd the optimal power level: COMPOW adjusts the nodes to

globally use the same minimal power level that keeps all nodes of the network connected.

CLUSTERPOW reduces the transmit power within the same cluster of nodes and only uses

higher power levels for inter-cluster communication. The drawback of both algorithms is

that they are rather computationally intensive, possibly being targeted at palmtop sized

devices rather than at embedded sensor nodes.

The same authors discuss implications on a larger scale in [KK05]. The fundamental

argument is that cross-layer designs have only short term bene�ts while an architecturally

sound design is superior in the long run. As architectural layers are broken, it becomes

impossible to optimize parts of the system separately, and hence optimization of a cross-

layered design is far more di�cult. In order to create a sound cross-layer architecture, great

care must be taken to keep the interdependencies structured, well-understood and under

control.

Based on these observations, we consider it crucial for a middleware architecture to

support cross-layer designs. The opportunities for making better use of the limited resources

available in wireless sensor networks cannot be left unexplored. At the same time we take

the points raised in [KK05] serious: In the FACTS middleware architecture we support

cross-layering by leaving the fact repository unstructured with each fact being available to

all part of the system, as long as it is exported by its corresponding ruleset. As for the rules,

15

Chapter 2 Related Work

we have already a very powerful structuring mechanism in place: By adjusting the priority

of a rule (as described in Section 4.2.2) it can either �re early or late during the run of the

rule engine. Firing earlier moves the rule conceptually closer the generation of the event,

i.e. to a lower layer in the network stack. Formalizing priority ranges to correspond to

traditional layers of the network stack will leave us with the �exibility of cross-layer design

and the structure provided by rulesets at the same time.

2.3 Middleware Overview and Concepts

Römer, Kasten and Mattern summarize the requirements on middleware architectures in

the domain of wireless sensor networks in [RKM02]. According to them, the main pur-

pose of middleware is to support development, maintenance, deployment, and execution of

applications or services. Key features of a middleware architecture are energy e�ciency, ro-

bustness, and scalability. The middleware should also be able to connect the WSN deployed

in the �eld to external components for control and data storage, while at the same time

o�ering support for establishing time and location when gathering sensor data. Further-

more, they emphasize the design principles of application knowledge being available on the

sensor nodes and data-centric communication between the nodes. Both of these principles

help to make the best possible use of available resources. Finally, as sensor nodes operate

unattended after initial deployment, the middleware must provide for or support automatic

con�guration and error handling.

In [TS05], Ter�oth and Schiller classify existing middleware approaches into three concep-

tual groups: Group abstractions, such as Generic Role Assignments (which we will discuss

in Section 2.4.4), organize the sensor nodes into groups that share relevant characteristics.

A very common characteristic for instance is network proximity. Grouping nodes based on

this metric results in clusters of nodes, which are the basis for hierarchical addressing and

eventually routing. A second conceptual group consists of those middleware approaches

that implement a virtual machine. Their main goals are to provide an abstraction layer

from the possibly heterogeneous hardware platform of di�erent sensor nodes and to improve

robustness by running applications in a safe execution environment. One example of vir-

tual machine abstraction is Maté (see Section 2.4.2). The third and �nal conceptual group

comprises those middleware architectures that focus on modularity and service orientation.

Modularity allows for more �exibility in the software development process, and the de�-

nition of services makes it possible to reduce the software features deployed to those that

are actually required by the application, thus saving resources on the sensor nodes. The

two concepts complement each other, as services are commonly implemented in the form

of interchangeable modules. Each of the three conceptual groups has certain advantages

16

2.4 Existing Middleware Approaches

desirable for wireless sensor networks. However, existing middleware approaches tend to

be specialized to merely one concept, in some cases only slightly overlapping with a second

one.

In the FACTS middleware architecture we combine the bene�ts of the three conceptual

groups as into one system. We expect the resulting middleware architecture to meet and

exceed the challenges discussed above.

2.4 Existing Middleware Approaches

None of the concepts used in FACTS is completely new, most have been used with slightly

di�erent semantics and under di�erent names in other middleware approaches. In this

section we will directly compare FACTS to these approaches, discussing similarities and

di�erences. We will illustrate how concepts and abstractions of the FACTS middleware

architecture map nicely to the application domain by pointing out how di�erent subsets of

them have been used in the implementation of other projects.

2.4.1 Directed Di�usion

Proposed by Intanagonwiwat, Govindan and Estrin in [IGE00], Directed Di�usion is a

data gathering framework for wireless sensor networks. Queries, or rather interests are

structured to support request based on di�erent types of events, total duration during

which a query is to be active, the interval in which sensor readings are to be sampled,

and a geographical area of interest. Queries can be injected into any sensor node and are

disseminated automatically through the network. During dissemination interests leave a

trail of gradients. If a sensor node detects an event that matches one of the interests it has

received so far, it sends the data back along the gradients that were left by the interest until

the data eventually reaches the original source of the interest. Note that this process only

requires local knowledge on each sensor node. Gradients are reinforced when the source

renews its interest and the interests are propagated along a previously used path in the

network. Over time, the optimal route between the data gathering nodes and the data sink

is established.

Directed Di�usion is a rather specialized architecture that concentrates on solving the

problem of data gathering and potentially in-network aggregation. Complimentary services,

for example hierarchical routing, are however hard to integrate. Compared to FACTS, both

interests and sensor readings can be implemented as facts that are propagated automatically

through the network. A FACTS ruleset that implements a similar propagation mechanism

is presented in Chapter 7. Furthermore, gradients can easily be stored as facts in the local

17

Chapter 2 Related Work

fact repository of each node, thereby making an implementation of Direction Di�usion on

top of the FACTS middleware architecture feasible.

2.4.2 Maté

Maté as introduced by Levis and Culler in [LC02] is a bytecode interpreter that runs on

TinyOS. As such, it conceptually belongs to the the virtual machine category described in

[TS05]. It is implemented as a TinyOS component (compare Section 2.1.1).

With the goal of reducing bytecode size, Maté is designed as a stack-based architecture,

and as such does not require basic bytecode instructions to specify their operands. Some

instruction go beyond the usual scope of virtual machines and make Maté particularly

suitable for the wireless sensor network domain. For example, the instruction set includes

a send instruction that implements unreliable multi-hop communication with other sensor

nodes. The bytecode is broken down into �xed size capsules that may be transmitted over

the network. This feature makes it possible to distribute bytecode after the wireless sensor

network has been deployed, thus allowing for the capabilities of the WSN to be adjusted at

runtime.

Maté is similar to the FACTS rule engine as both of them are bytecode interpreters.

Our rule engine does however not implement a virtual machine because interpreting rules

does not involve architectural features of traditional processing units such as a program

counter or an execution stack. In fact, we try to avoid dynamic memory structures outside

of the fact repository whenever possible, thus taking the constraints of the sensor nodes

into account. While not implemented yet, we envision for our rulesets to be deployable at

runtime, similar to Maté's bytecode capsules.

2.4.3 SWARMS

In [BFK+03], Buschmann et al. describe a middleware approach that tries to mimic the

behavior observed in swarms of animals, who as a group are capable of achievements far

beyond the reach of a single individual. Before this kind of emerging property can be

achieved, the means of communication between the sensor nodes must be established. The

authors propose a Virtual Shared Information Space (VSIS) that stores data represented in

the XML format. The SWARMSware middleware coordinates access to the VSIS, retrieves,

�lters, and aggregates data. Higher-level services such as levels of trust into a particular

data item and role assignment are also supported.

Obviously, the overhead of XML-structured data is not acceptable for a WSN middleware

architecture. Except for this item, the concept of a shared information space is quite

attractive. Algorithms in wireless sensor networks frequently work on data gathered from

18

2.4 Existing Middleware Approaches

several di�erent sensor nodes, hence making the exchange of data transparent between

nodes is a desirable feature of a middleware architecture. In FACTS we have laid the

foundations for this kind of service by assigning globally unique IDs to facts and making it

easy to transmit facts over the network. A ruleset implementation of a service that retrieves

speci�c facts from the network is de�nitely feasible.

2.4.4 Generic Role Assignment

Römer, Frank et al. identify the assignment of roles to individual sensor nodes based on their

capabilities as a recurring problem in wireless sensor networks. In [RFMB04] and [FR05]

they propose Generic Role Assignment (GRA) as an abstraction from role assignment based

on hard-coded conditions.

In GRA, roles may be assigned based on the capabilities and resources of the local sensor

node as well as based on roles and resources of other nodes in the neighborhood. Typical

roles include whether a node is switched on or o� as part of a coverage algorithm, whether a

node is cluster head, gateway or slave in hierarchical routing, or whether it is a source or an

aggregator in a data aggregation scenario. As part of GRA, a language for role speci�cation

is proposed. At the core of the system is the distributed role assignment algorithm. As

nodes may change their role in response to role changes of other nodes, care must be taken

that the network as a whole eventually reaches a consistent and stable state. Further, it

is desirable to avoid excessive communication by intelligently choosing a role for the local

node before propagating it over the network.

Generic Role Assignment � while de�nitely deserving merit in its own right � is a subset

of the FACTS middleware architecture. The de�nition of capabilities and resources map

directly to our facts, the role speci�cation can easily be expressed in the form of rules.

Even implementing the role assignment algorithm in the form of a ruleset is feasible. To

support these claims we discuss how Generic Role Assignment can be implemented on top

of FACTS in Chapter 7.

2.4.5 TinyLIME

A di�erent approach is taken by Curino et al. in [CGG+05]: With TinyLIME they propose

a middleware architecture that is intended for cases in which highly mobile base stations

interact with only a local subset of the sensor network. TinyLIME uses the idea of a Linda

tuple space as abstraction for data storage and transmission, and is built on top of Linda

in a Mobile Environment (LIME). The tuple space is shared and updated when sensor

nodes or base stations move into close proximity of each other. The union of all these

separated tuple spaces is called a federated tuple space, which changes over time based on

19

Chapter 2 Related Work

the connectivity between the sensor nodes and the base stations. A node may register

patterns to be matched against the tuple space and execute a code fragment in response

to an appropriate tuple appearing. This mechanism is referred to as reactions. TinyLIME

has been successfully implemented in nesC and was simulated using TOSSIM.

The similarity between TinyLIME and FACTS is striking. Single tuples closely resemble

our facts and reactions are quite similar to our rules. However, the authors do not focus on

the event-like dynamics, possibly underestimating the potential of TinyLIME. In contrast,

event-driven programming is a core feature of FACTS. We have already implemented fact

propagation, which is equivalent to updates of the federated tuple space, as part of the

use case described in Chapter 7. This mechanism is however not a built-in component of

the architecture, but rather implemented as a ruleset. As such it is easy to adapt to an

application-speci�c need for data propagation, potentially reducing network tra�c. Further,

our rules are interpreted on the sensor node rather than running natively as reactions

in TinyLIME do. We thereby preserve the additional advantages of a virtual machine

architecture.

2.5 Simulation

Simulation of wireless sensor networks is not the main topic of this thesis. However, in

Chapter 6 we describe how to simulate a ScatterWeb user application on the ns-2 network

simulator with the goal of easing the development e�ort in the FACTS middleware archi-

tecture. In order to estimate the potential of this subproject, we discuss other approaches

to simulation in this section.

2.5.1 TOSSIM

Proposed by Levis et al. in [LLWC03], TOSSIM is a simulator for wireless sensor networks

that run TinyOS. Due to the component-oriented architecture of TinyOS, simulation of

a sensor node is relatively straightforward: TOSSIM implements all required hardware

interface components and the remaining components of the con�guration run unchanged

on top of these. For every node in the simulation, a separate instance of the component

graph is created. Additionally, there is also a discrete event queue to simulate interaction

with the hardware. Radio communication between sensor nodes is simulated at bit level with

bit error rates speci�ed for uni-directional connection in the network. The simulation also

supports communicating with external programs for control, visualization, and debugging.

Applications written in nesC can be compiled transparently to be executed on the the real

sensor node or on TOSSIM.

20

2.5 Simulation

The key advantage of TOSSIM is its seamless integration with TinyOS and the nesC

language. As TinyOS applications are already inherently structured, it is relatively easy to

replace one hardware abstraction layer, i.e. the components that interact with the hardware,

with a di�erent, simulated one. Compared to this, the ScatterWeb �rmware API is quite

heavy-weight and using it as abstraction layer for simulation purposes is more di�cult. On

the other hand, the radio simulation of TOSSIM is quite simplistic, e.g. it seems to ignore

interference caused by simultaneous transmissions. By choosing ns-2 as our simulation

backend, we expect our results to be more realistic and relevant.

2.5.2 Wireless Sensor Networks on ns-2

This section deals with simulating wireless sensor networks on ns-2 as proposed by Dow-

nard in [Dow04]. For an introduction to the ns-2 network simulator itself see Section

3.3.

Downard extends the popular ns-2 network simulator to allow for simulation of wireless

sensor networks. ns-2 already ships with built-in support for physical radio propagation

models, antenna models, and wireless MAC layer protocols. The missing element for a

complete simulation of wireless sensor networks is a simulation of the environment for the

sensor nodes to gather their data from. To implement this feature, a class of phenomenon

nodes is added to the system, to simulate real-world data sources by periodically broadcast-

ing their phenomenon type and associated value to all sensor nodes in the region. The data

is encapsulated in a newly created PHENOM packet and sent over a designated channel.

Exactly which sensor nodes are a�ected by the phenomenon is determined by the radio

propagation model included in the con�guration of the phenomenon node. As all other

nodes, the phenomenon node is able to move around during the simulation, thus simulating

a moving data source such as an animal.

Downard's work is complementary to our ScatterWeb on ns-2 e�ort. We are only

concerned with simulating the sensor nodes, while he concentrates on simulating the en-

vironment that the sensor nodes operate in. However, the approach presented has certain

drawbacks: Broadcasting information about phenomenons causes unnecessary simulation

overhead, which is not required if the phenomenon in question is not relevant to the sensor

nodes at that time. Further, using periodic updates does not allow the sensor nodes to

sample the environment at a rate they are concerned about. In Section 8.2 we sketch how

a more e�cient and realistic subscription-based approach can be implemented.

21

Chapter 2 Related Work

2.5.3 OMNeT++

Mallande et al. propose their own solution to the problem of simulating wireless sensor

networks in [MSK+05]. Arguing that ns-2 is di�cult to extend because of interdependen-

cies between modules, they propose OMNeT++ as an alternative platform. Like ns-2,

OMNeT++ is written in C++, however in the list of noteworthy features it is hard to

�nd anything special, except possibly the quite comprehensive simulation library. When

compared to ns-2, the OMNeT++ simulator uses less memory and simulates matching

setups in less time. However, the quality of the simulation is questionable. For example,

radio transmissions are simulated at the packet level, and once again interference is not

taken into account.

In light of the obvious de�ciencies of OMNeT++, we are quite happy to invest the time

to properly understand ns-2. Once implemented, our simulation enjoys the bene�ts of

running on a widely tested platform, and the simulation results are not questionable with

regard to the methodology used.

2.6 Theoretical Background

For the theoretical under�ttings of event-based systems we turn to Hinze and Voisard

who in [HV02] describe an algebra that formally de�nes the exact semantics of events and

event composition over time. Coming from a background in event noti�cation systems

in databases, the authors give de�nitions of temporal disjunction, conjunction, sequence,

negation and selection. Composed events based on this terminology helped us to nail

down exactly under which circumstances a rule should �re. Further, our facts � although

developed independently � are surprisingly similar in semantics and structure to their notion

of events, which we �nd encouraging.

While outside the scope of this thesis, we expect the theoretical constructs to be quite

valuable when proving the correctness of algorithms implemented in the form of FACTS

rulesets.

22

Chapter 3

Tools and Procedures

In this chapter we will quickly go over a selection of the tools that were used when imple-

menting the components of the FACTS middleware architecture as described in Chapter 5.

The goal is to introduce non-standard tools and point out caveats of well-known tools, thus

making sure that the results proposed in the following chapters are easily reproducible.

Standard tools which have been used, but will not be discussed in further detail for

brevity, are the GNU Compiler Collection (gcc) and Debugger (gdb), the Hugs 98 Haskell

interpreter, the Flex fast lexical analyzer generator (in Lex compatibility mode), the Bison

general-purpose parser generator (in Yacc compatibility mode), and, of course, LATEX.

3.1 Project Management

Development was organized according to the Rapid Prototyping process described in [Bal98,

Part II, Section 3.3.3]. The goal is to start implementing small, but still relevant aspects

of the proposed solution very early in the project. These building blocks can be analyzed,

re�ned, merged or discarded. Over time, the prototypes will begin to resemble the desired

product more and more closely.

The advantages of this process include that the availability of a prototype helps in under-

standing all details of the problem and boosts creativity in developing solutions. Being a

very hands-on approach, it encourages feedback from all stakeholders. With the appropri-

ate tools, in our case the Haskell programming language, prototypes are comparatively easy

to create. Finally, it should not be underestimated that having at least partially working

prototypes available during most of the development cycle of the project reduces the risk

that the project might fail. Due to these reasons, Rapid Prototyping is particularly well

suited for research-oriented projects such as the one treated in this thesis.

23

Chapter 3 Tools and Procedures

3.2 Subversion

Subversion (with its command-line client svn) is a source code management system (SCM)

designed as drop-in replacement of the Concurrent Versions System (CVS), but �xing some

of the inherent weaknesses of CVS. Most notably, Subversion supports versioning of direc-

tories, renames, �le meta-data, and even symbolic links. Additionally, commits are truly

atomic, binary data is handled automatically and e�ciently, and branching and tagging

is done using server-side copies in constant time with a mechanism similar to hard-links.

Subversion is available at http://subversion.tigris.org/.

Subversion supports multiple storage backends such as Berkeley DB and a plain �lesystem-

based structure. Berkeley DB is the default backend up until version 1.1.4 of Subversion,

but proved to be unreliable because temporary and log �les created by Berkeley DB caused

permission related problems when faced with multi-user access. Unfortunately, these prob-

lems resulted reproducibly in a corrupted database and hence data loss in the source code

repository. While recovery tools shipped with Subversion were unable to �x this problem, a

solution was eventually found relying on Berkeley DB tools. As a consequence and following

the advice on the Subversion mailing list, the repository was migrated to the �lesystem-

based storage backend which proved more reliable. Since version 1.2 the �lesystem-based

backend is the default storage backend. The full discussion on the Subversion mailing list

is available at http://svn.haxx.se/users/archive-2005-05/0509.shtml.

The �exibility of Subversion when it comes to naming �les greatly eases prototyping

during the early stages of development, a de�nitive advantage over CVS. It is therefore

highly recommendable for projects similar in size and scope.

3.3 ns-2 Network Simulator

The ns-2 network simulator is the most widely used simulator in networking research.

Architecturally a discrete event simulator, it allows for simulation of most modern TCP,

routing and multicast network protocols over both wired and wireless network links. On

the implementation side, ns-2 is a simulation framework with support for distributed

simulation written in C++, that interprets scripts written in the Tool Command Language

(Tcl). Based on the simulation speci�ed in these scripts, ns-2 produces detailed output

traces that can be examined statistically or replayed in tools such as the Network Animator

(nam). Furthermore, it is possible to run ns-2 with a real-time scheduler to allow for

interactions between real and simulated network components. ns-2 and related tools are

available at http://www.isi.edu/nsnam/ns/.

Although extensively documented in [ns005], we found that it was rather di�cult to

24

http://subversion.tigris.org/
http://svn.haxx.se/users/archive-2005-05/0509.shtml
http://www.isi.edu/nsnam/ns/

3.4 C to C++ Translator (ctocpp)

understand the inner workings of ns-2 up to the point at which it is possible to extend

the system. Actually, reading the C++ class de�nitions and Tcl scripts proved far more

valuable than the manual. Examining the running program with gdb is also a worthwhile

technique. We were able to �x a few compilation issue in both ns-2 and nam as well as

the supporting libraries tclcl and otcl. Patches have been submitted to the respective

authors and were partially accepted. Further, it must be noted that ns-2 does not compile

cleanly with the current 4.x series of the g++ compiler, but just with the older version 3.3.

We have documented these �ndings on the homepage of the FACTS project at [Wit].

3.4 C to C++ Translator (ctocpp)

The ctocpp C to C++ Translator is a Python script that translates programs written

in the C programming language into the C++ programming language. This process is

not trivial, because while C is a subset of C++, it is hard to automatically generate an

object-oriented structure based on a given C program. ctocpp is available at http:

//www.scriptet.com/ctocpp.php.

As we will explain in Section 6.2, an attempt was made to use ctocpp during the e�ort of

porting the ScatterWeb �rmware API to the ns-2 network simulator. Unfortunately, this

attempt was not successful for a variety of reasons: ctocpp neither handles production-level

C code, e.g. code containing compiler directives, nor resolution of header �les. Recursive

path resolution is slightly problematic, too. As for the generated C++ class de�nitions,

we found it to be less than optimal, with function remaining static and no constructors or

destructors being generated.

We created and submitted several patches to the author to �x some of these de�ciencies.

Although some of the patches were merged and the feedback was positive, we decide to

abandon ctocpp in favor of a di�erent solution.

3.5 y2l � Yacc to LATEX

Yacc to LATEX(y2l) is an AWK script that derives the Extended Backus-Naur Form (EBNF)

from a Yacc source �le. The EBNF is formatted as a LATEXsource �le and can be easily

included in other documents. Generally, the most accurate description of a programming

language is the one found in the de�nition of the compiler frontend. Hence it makes sense

to automatically generate the grammar of the language based on this de�nition. As Yacc is

a preferred way of implementing compiler frontends, the utility of the y2l script is obvious.

y2l is available at http://www.alchar.org/~aedil/Projects/y2l.html.

To further ease development, we enhanced y2l to use the Lex de�nition �le as a source

25

http://www.scriptet.com/ctocpp.php
http://www.scriptet.com/ctocpp.php
http://www.alchar.org/~aedil/Projects/y2l.html

Chapter 3 Tools and Procedures

for gathering the terminal symbols of the language and �xed a few inconsistencies in the

output. Patches have been submitted, but there was no feedback as of this writing.

y2l was used to generate the grammar of the FACTS ruleset de�nition language as shown

in Appendix A.

26

Chapter 4

Concepts and Language

Given the shortcomings of existing middleware approaches for wireless sensor networks as

listed in Section 2.4, this chapter will describe in full detail our proposed solution � the

FACTS middleware architecture.

After a brief overview in Section 4.1, the fundamental concepts of our proposal are in-

troduced in detail in Sections 4.2 and 4.3. Section 4.4 gives some background on the

considerations that led to the exact semantics of these concepts. Subsequently, the pro-

gramming language of our system � the FACTS ruleset de�nition language � is introduced,

with Section 4.5.1 explaining the syntax and Section 4.5.2 providing some examples.

4.1 Overview

The crucial point that decides about success or failure of a middleware architecture is the

question whether it provides the application-level programmer with a powerful abstraction

from the underlying hardware. The main goal is to allow him to solve his programming

task in a quick and e�cient manner, while at the same time providing an abstract mental

model that eases thinking and talking about components and algorithms of the system.

The key abstraction of our proposal is that of a distributed expert system. In this context,

information � that is everything ranging from sensor readings to temporary variables �

is represented as facts which are processed by rules. In contrast to backward-chaining

inference engines, which are used to implement popular expert systems such as JESS [jes],

our rule engine, which processes the facts according to the given rules, uses forward-chaining

in order to provide event-like semantics. Furthermore, rules may also call functions which

hook into the �rmware of the sensor node and perform resource critical operations in a fast

and memory e�cient manner.

Using the term �expert system� to describe our middleware architecture is not uncon-

troversial. It was suggested to us that expert systems are traditionally associated with

backward-chaining as opposed to event-driven programming, and, what is worse, imple-

27

Chapter 4 Concepts and Language

Fact
Repository

Rule
Engine

Functions

Middleware Services
Rulesets

Application-level
Rulesets

4

4

4 4

1

2 3

3

Application

Middleware

Firmware / OS

Figure 4.1: Interaction between the components of the FACTS middleware architecture.

mentations of expert systems are not particularly famous for performing well under tight

resource limits. It was suggested that the analogy might confuse potential users. On the

other hand, we have repeatedly found it helpful to use exactly the term �expert system� as

a brief synopsis of what the core idea of our middleware architecture is. The term provides

a well-known context in which our concepts are easier to understand when �rst learning

about them. To address the two key concerns mentioned above, we have labeled the algo-

rithmic core of the middleware �rule engine� rather than �inference engine�, and try hard

to emphasize on low resource consumption.

Facts, rules and functions are local to each node of a wireless sensor network and each

node runs its own rule engine. However, facts are also used as the key abstraction for

transmitting information from one node to another, to the entire sensor network, or to a

speci�c set of nodes. Hence, one can think of it as a node sending one of the facts from its

own fact repository to the fact repository of another node. This node in turn knows that

the original owner of the fact is the �rst of the two nodes and not itself. Other than that,

there is no further distinction made between local facts and facts received from other nodes

over the network.

While not currently implemented, it is easy to envision for rules and function to be

updated after a wireless sensor network has been deployed. New rules may enhance or

adapt the function (or role) that a node ful�lls as part of the sensor network. New functions

may allow to provide additional hooks into the underlying �rmware, possibly �ne tuning

the sensor network for e�ciency.

Figure 4.1 illustrates the interaction between the main components of the FACTS middle-

ware architecture. Low-level events start execution by creating new facts (1) which trigger

the rule engine (2) to check and possibly �re rules from available rulesets (3). The rules

then may either modify the fact repository or call functions (4).

28

4.2 Basic Concepts

4.2 Basic Concepts

The three basic concepts of the FACTS middleware architecture are facts, rules, and func-

tions. In the following, we introduce each of them in detail.

4.2.1 Facts

Facts are the central means of representing any kind of data in the system. They are

structured as a named set of key-value-tuples. Multiple facts with the same name may be

present in each local fact repository. A speci�c key-value-tuple is called a property of a fact.

Property keys are unique within each fact, values are typed. Available types of values are

bool, int and string.

Every fact has four prede�ned properties which are updated by the rule engine and

available to the programmer as read-only values. The keys and types of these properties

are:

owner (int): The network-wide unique ID of the sensor node that was the last to modify this

fact by either creating it, adding a new property, or modifying an existing property.

time (int): The time at which the fact was last modi�ed. Note that this merely is the

perception of the current time of the modifying node, which may well be out of sync

with the rest of the wireless sensor network. While theoretically feasible, it is currently

outside the scope of the middleware architecture to provide a time synchronization

service.

id (string): The network-wide unique ID of this fact. It is implemented as the dot-separated

concatenation of the ID of the owning sensor node (which is unique in the wireless

sensor network) and the time of last modi�cation (which is unique on the sensor node,

that sets itself as the owner upon modifying the fact).

modi�ed (bool): This boolean �ag indicates whether a fact has been modi�ed by either

another rule or some external system-generated event during or since the last run of

the rule engine. As rules only �re when one of the facts referenced in their conditions

has been modi�ed, this property is useful for working on only those facts that have

caused the the rule to �re and hence might require processing. The modi�ed �ag of

all facts in the local fact repository is cleared every time an entire run of the rule

engine has been completed.

As facts are dynamically added to the fact repository at runtime and as only facts marked

as modi�ed trigger the execution of rules, modi�ed facts appear as events to the application-

29

Chapter 4 Concepts and Language

level programmer, thus allowing for event-driven programming. Once again providing the-

oretical background, facts correspond in semantical meaning and structure to the concept

of an event as described in [HV02, Section 2.2]:

�An event is the occurrence of a state transition at a certain point in time. [. . .]

Events can be described as collections of (attribute, value) pairs, [. . .]�

Furthermore, facts are also the central means of transmitting information between nodes

of the wireless sensor network: A send statement (as introduced in the following section)

in a rule transmits one or multiple facts to another node or broadcasts them to the en-

tire network. The rule engine itself does not include higher-level services such as routing.

However, these services can be implemented as part of the middleware.

4.2.2 Rules

Rules are used to express algorithms and reactions to events external to the rule engine.

A rule is a named structure containing both a set of conditions and an ordered list of

statements. A rule �res, i.e. the rule engine executes the statements belonging to the

rule, if all the conditions become true according to the facts currently present in the fact

repository. More precisely, a rule �res if all conditions are true and at least one of the

facts mentioned in these conditions is tagged as modi�ed. This ensures that the rule engine

processes changes in the fact repository in an event-like manner.

To �esh out the above description with a more theoretical background, a rule �res as

soon as the temporal conjunction (see [HV02, Section 3]) of all complex events (as de�ned

by the conditions of the rule) since the start of the rule engine is true. Additionally, the

time of one of these events (which corresponds to the modi�cation time of a fact referenced

by a condition) must be after the time at which the previous run of the rule engine started.

A rule also has a priority which schedules at which time during a run of the rule engine

the conditions of the rule in question are checked against the fact repository. Based on the

result, it is then decided whether the rule should �re or not. Multiple rules can have the

same priority, but for these rules the system does not provide a guarantee on the order in

which they are executed.

Conditions have one of two forms:

Exists: Checks whether one particular fact is present in the local fact repository at this

time.

Eval: Checks whether a boolean expression is true given the data found in the local fact

repository at this time.

30

4.3 Derived Concepts

Statements modify the fact repository or generally interact with the rest of the system.

Available statements are:

De�ne: Adds a new fact to the local fact repository and initializes its properties, including

ownership and modi�cation time.

Retract: Removes one or more facts from the local fact repository.

Copy: Creates an exact copy of one or more facts, only updating ownership and modi�cation

time.

Send: Copies one or more facts from the local fact repository to remote fact repositories of

other nodes in the wireless sensor network.

Set: Changes the value of an existing property of one or more facts in the local fact repos-

itory or adds a new property to an existing fact. Also updates ownership and modi-

�cation time of a�ected facts.

Flush: Sets one or more facts to unmodi�ed in order to prevent them from causing rules to

�re in the the next run of the rule engine.

Call: Calls a function, possibly passing arguments based on properties of facts.

The exact syntax of these conditions and statements is given in Section 4.5.1.

4.2.3 Functions

A function is a piece of machine code that runs natively on the processor of the sensor node

and interacts with the �rmware. It provides an interface that can be invoked by the rule

engine. As such, its main purposes are to provide hooks for the rules to interact with the

hardware of a sensor node and to allow for e�cient implementation of performance critical

algorithms.

4.3 Derived Concepts

Complementing the basic concepts of the FACTS middleware architecture, the following

concepts provide additional means of interaction and abstraction:

31

Chapter 4 Concepts and Language

4.3.1 Slots

A slot is the primary mean for addressing facts and their property values in the fact repos-

itory. It is a tuple consisting of two strings, one identifying the fact and one identifying the

property key, and a list of conditions that further specify which subset of the fact repository

is to be addressed. To put it di�erently, facts that do not match the conditions of a slot are

�ltered out, and only the facts addressed by the slot are returned. The property key may

be omitted if only the fact itself, rather than one of its properties, is of interest.

4.3.2 Rulesets

A ruleset captures the concept of a middleware component from the software engineering

point of view. It is a set of rules and related facts that together provide certain services

to the system. Rulesets have a well-de�ned interface in terms of a set of facts that trigger

the execution of their rules. They encapsulate locally used rules and facts in their own

namespace which is implemented as dot-separated pre�x to the name of the facts or rules

in question.

We plan for rulesets to explicitly provide services as identi�ed by a well-known descriptor,

or require them to be present on a local system when being installed. This will allow for

the construction of a dependency graph at compile time and possibly for automatic loading

of rulesets at runtime.

Experience gained by implementing several common algorithms typical for wireless sensor

networks shows that a ruleset is typically in the magnitude of ten to twenty rules and a

similar amount of facts. These numbers are merely rough estimates and vary depending on

the complexity of the functionality that is to be implemented.

4.3.3 Globally Shared Information Space

Facts have a unique ID that is the concatenation of the ID of the owning node and the time

when the fact was last modi�ed. Only one fact can be modi�ed by a sensor node at any

given time. Using the unique ID, addressing facts on any sensor node of the wireless sensor

network is possible. Taking the next logical step, it is feasible to implement services that

retrieve remote facts based on their ID, thus constructing a globally shared information

space.

Furthermore, a fact repository may contain various facts from di�erent sensor nodes. For

the local sensor node it acts as a knowledge base. The knowledge stored within the facts

of the local fact repository comprises information about current state of the sensor node,

events it has spotted during a certain time interval, or similar information of other nodes

in the wireless sensor network.

32

4.4 Design Details and Considerations

4.4 Design Details and Considerations

The concepts as described above were rough sketches when the work of formalization began.

Several decisions were made during the design phase of the project, which eventually led

to the current semantics of the FACTS middleware architecture. This section explains

important details of our design and the rationale to support them.

4.4.1 Sets of Facts

As facts are addressed by their name � which is not required to be unique � evaluating a

slot against the fact repository may result in a set of multiple matching facts. Hence, a

condition or a statement that takes a slot as a parameter may either process a single fact

or a set of facts depending on the content of the fact repository at that time.

For a condition to return true when evaluated against a given fact repository, it is su�cient

if at least one of the facts matched by a slot satis�es the constrains stated in the condition.

A statement however will be executed separately for every single fact matched by the slot.

In case of a statement containing multiple slots, the statement is applied sequentially to all

possible combinations of the matching facts, i.e. the cross product of the respective sets of

facts.

If only one speci�c fact is to be processed, this can either be achieved by carefully naming

the facts, or by providing more speci�c constraints in the form of conditions as additional

parameter of the slot. The following section explains this in detail.

4.4.2 Separation of Conditions and Statements

Even when belonging to the same rule, conditions and statements are clearly separate

entities. Conditions only take care of �ring the rule without any side e�ects. Statements

only alter the fact repository or interact with the system.

This concept results in statements having exactly the same semantics no matter as part

of which rule they are executed. However, being independent from the conditions of the

rule also implies that the �ltering of exactly which facts to process needs to be done for

each statement separately.

4.4.3 Filtering Facts for Processing by a Statement

Apart from addressing a fact by its name, a slot is frequently required to be more speci�c

about exactly which fact from a potentially large set of matching facts it should address.

To this end, a slot can �lter the set of all facts with matching names by giving further

constraints about the required values of the properties of said facts. This is done in the

33

Chapter 4 Concepts and Language

form of a list of conditions that can be speci�ed as additional parameter of the slot. The

result is that the slot only addresses the subset of facts that matches all conditions.

It is up to the application-level programmer to ensure that the properties of facts di�er

enough for him to isolate a speci�c single fact in case this is required by the application.

The rule engine supports him by providing a unique ID for each fact in the fact repository

and making it accessible via the read-only id property.

An alternative design would have been to implement implicit �ltering of the facts based

on the conditions of the rule in question. While this would allow for a simpler syntax, there

are several disadvantages:

• Statements might access facts that are not referenced in the conditions. Adding

conditions for �ltering purposes alone would bloat the application-level code.

• It would raise questions on the order in which to process the statements: Should all

statements be executed sequentially for all matching facts, or should rather each single

statement be applied to each matching fact before executing the following statement?

None of these two options seems intuitive enough to be acceptable by an application-

level programmer.

• Statements would have di�erent semantics depending on which rule they appear in.

This would not only be confusing, but also violate the idea of strict decoupling of

conditions and statements within a rule as detailed in the next section.

In light of these drawbacks, it is understandable why we decided against implicit �ltering.

4.4.4 Adjusting Ownership of Modi�ed Facts

The owner property of a fact stores the information on which sensor node was the last one

to modify the fact in question. On read access this property remains unmodi�ed. The goal

is to keep the globally shared information space intact, e.g. ensure that sensor readings

processed within the sensor network are clearly marked as such. If the original fact is to

be preserved while processing, a copy needs to be made beforehand. The copy is owned by

the local sensor node and can therefore be modi�ed safely. In case only changes to facts

owned by the local sensor node are intended, a �ltering condition needs to be added to slots

stating that only facts whose owner property matches the ID of the local node are to be

processed.

An alternative solution proposes that facts should be owned by the originating sensor

node exclusively. Updates would then result in changes just in case the current executing

entity is also the owner of the fact and otherwise leave the fact untouched. It turned out

that while allowing for the same functionality to be implemented, these semantics resulted

34

4.5 Ruleset De�nition Language

in bloated code: For instance, when sending facts across the network, facts can be regarded

as packets, and packet properties, i.e. facts properties, need to be updated slightly for each

hop they travel on the network. Having to make a copy before being able to process a

packet would not only waste memory but also result in unreadable code and unnecessary

processing overhead.

4.4.5 Avoiding Local Variables

Unlike JESS [jes], a reference expert system we examined for language formalization, our

system does not support the notion of local variables to which a speci�c fact can be bound

within a rule. We consider binding facts to variables at runtime to be too expensive in

terms of memory usage for a sensor node. The syntax of �ltering in slots is able to provide

the same functionality, while lowering system overhead for memory management.

4.4.6 No else Keyword

We have been tempted several times to include the semantics of an else keyword into the

ruleset de�nition language. At �rst glance, there are numerous occasions in which it seems

to make sense to execute certain statements if the conditions of a rule are not true.

However, the semantics of an else-block of statements do not interact well with the

logic that �res a rule in the �rst place: If the conditions evaluate as true, the normal

statements of the rule are executed. This leaves the else-block executing when not all

conditions evaluate as true. But then the rule would not �re in the �rst place. Instead,

the else-block could be executed when a rule did not �re. But this would lead to most

else-blocks being executed most of the time, even in the absence of any other changes

in the fact repository which totally undermines the event-driven semantics of the FACTS

middleware architecture.

So even though there are cases in which the semantics of an else keyword might seem

desirable, on closer inspection it becomes obvious that they do not interact with the other

concepts of the middleware in a way that warrants inclusion. For this reason we have

decided not to include an else keyword.

4.5 Ruleset De�nition Language

In order to empower application-level programmers to implement services and applications

using the concepts proposed in the previous section, we have designed a ruleset de�nition

language for the FACTS middleware architecture for wireless sensor networks. While several

rule-based programming languages do exists [JTC, jes], none of them was designed with a

35

Chapter 4 Concepts and Language

focus on saving memory when running the programs. This however is a crucial requirement

for the FACTS rule engine. Speci�cally, the programming concepts of slots, which are used

to address facts in the fact repository, thereby avoiding local variables, has to the best of

our knowledge not been proposed before.

In this section we will introduce the syntax and semantics of the FACTS ruleset de�nition

language and give a few simple examples. For the complete grammar of the language, refer

to Appendix A.

4.5.1 Syntax

The FACTS ruleset de�nition language consists of the following programming constructs:

Rulesets

A ruleset as declared using the ruleset keyword is the basic translation unit of the

language and implements a self-contained application or service. It is identi�ed by an

alphanumerical name and comprises several declaration blocks. Each of these declares

either a name, a slot, a rule, a fact, or an external dependency of this ruleset on another

ruleset.

Listing 4.1: Example: ruleset keyword.

1 ruleset myRuleset
2

3 <dependency block>
4 <name block>
5 <slot block>
6 <rule block>
7 <fact block>

Each ruleset is saved in its own �le whose name typically has the su�x *.rls.

External Dependencies

A ruleset may declare dependencies on other rulesets using the depends keyword. If ruleset

A depends on the services o�ered by rulesets B and C, then the resulting declaration is as

follows:

We plan to extend this mechanism to import the public interfaces of the rulesets for

which dependencies have been declared into the current namespace in order to allow direct

interaction between rulesets. This will increase the expressiveness of the language to more

than the productive coexistence of rulesets that we have implement at present. However,

36

4.5 Ruleset De�nition Language

Listing 4.2: Example: depends keyword.

1 ruleset myRuleset_A
2

3 depends myRuleset_B
4 depends myRuleset_C

we �rst need to research into exactly which symbols to include into the public interface of

a ruleset should be and how to handle namespaces (see Section 8.2).

Names

Complementary to the dependency declarations described above, we plan for names as

declared using the name keyword to evolve into a building block of the public interface

of rulesets. As rulesets process facts, the interaction between di�erent rulesets must be

implemented in the form of facts, too. Hence a ruleset must be able to export the names

of the facts that it will process for other rulesets to create facts with matching names. The

name keyword implements this mechanism as shown below:

Listing 4.3: Example: name keyword.

1 ruleset myRuleset
2

3 name somePublicName = "myInternalName"

Facts

In order to allow for declarations of constants or initialization, the fact keyword followed by

the alphanumerical name of the fact and an optional list of key-variable-tuples to initialize

the properties can be used. It adds the speci�ed fact to the fact repository of the sensor

node before the rule engine begins execution:

Listing 4.4: Example: fact keyword.

1 ruleset myRuleset
2

3 fact someFact
4 fact anotherFact [propertyA = 12, propertyB = "test"]

In the example above, line 3 adds a simple fact called �someFact� without any prop-

erties to the repository. Line 4 adds a fact called �anotherFact� with two properties,

�propertyA� is of type int and �propertyB� is of type string.

37

Chapter 4 Concepts and Language

Note that these facts are not tagged as modi�ed and will not �re any rules when the rule

engine is run for the �rst time.

Rules

A rule, being the central building block of a ruleset, is declared using the rule keyword

followed by the name of the rule and its priority. Higher priority rules are evaluated �rst

during a run of the rule engine. The main body of a rule consists of a list of conditions

that describe in which cases the rule should �re, and a list of statements that de�ne the

subsequent changes to the fact repository, communication with other nodes, and and in-

teractions with the �rmware. Conditions are always pre�xed with �<-� and statements are

always pre�xed with �->�:

Listing 4.5: Example: rule keyword.

1 ruleset myRuleset
2

3 rule retractSomeFact 100
4 <- exists {someFact}
5 -> retract {someFact}

Slots

In the above example there are two blocks encapsulated in curly braces (�{� and �}�). Each

of them is a slot whose function is to address facts in the fact repository. A slot consists

of the name of the fact, the property key, and a list of conditions. Each of the latter two

arguments is optional.

Slots are used very frequently when implementing rulesets. In order to avoid code du-

plication, it is possible to declare named slots using the slot keyword quite similar to the

declaration of names described earlier.

Listing 4.6: Example: slot keyword.

1 ruleset myRuleset
2

3 slot mySlot = {someFact}
4 slot mySlotWithProperty = {someFact propertyA}
5 slot mySlotWithPropertyAndConditions = {someFact propertyA
6 <- <condition>
7 <- <condition>
8 }

38

4.5 Ruleset De�nition Language

Line 3 de�nes a simple slot that matches any fact in the fact repository with the name

�someFact�. The slot de�ned in line 4 goes beyond that and allows access to one of

the property values of the same fact, or to a set of values in case there are multiple facts

with matching names. Finally, the slot in lines 5 to 8 addresses the same property, but

additionally requires the fact to satisfy two conditions. We will discuss the syntax of

conditions in the next section and then return to this example.

Conditions

We have already seen simple conditions in the examples for rules and slots. Always pre�xed

with �<-� and as introduced in Section 4.2.2, there are two kinds of conditions:

exists is followed by a slot and is true if a matching fact is found in the fact repository.

eval allows for more complex expressions to be evaluated using comparison and simple

arithmetic operators.

Listing 4.7: Example: Simple conditions.

1 rule myRule 100
2 <- exists {someFact}
3 <- eval ({someFact propertyA} == true)
4 <- eval (({someFact propertyB} + 12) != {anotherFact propertyB})
5 <- eval ((2 ^ {anotherFact propertyB}) >= (sqrt {yetAnotherFact propertyC}))
6 -> [...]

The condition in line 2 simply checks whether a fact named �someFact� exists in the fact

repository. The condition in line 3 is true if �propertyA� of �someFact� is of type bool

and has the value true. Line 4 checks whether �propertyB� of �someFact� incremented

by 12 is not equal to �propertyB� of �anotherFact�, and line 5 checks whether 2 to

the power of �propertyB� of �anotherFact� is greater or equal than the square root of

�propertyC� of �yetAnotherFact�.

Furthermore, there are several additional operators that speci�cally make use of slots

being resolved to a set of facts:

count counts how many facts matching the following slot exist in the fact repository.

sum adds the values of the respective property of all facts that match the slot. If no fact

matches the slot the result is 0.

product multiplies the values of the respective property of all facts that match the slot.

If no fact matches the slot the result is 1.

39

Chapter 4 Concepts and Language

min returns the minimum value of the set of the respective property of all facts that match

the slot. If no fact matches the slot the result is unde�ned.

max returns the maximum value of the set of the respective property of all facts that match

the slot. If no fact matches the slot the result is unde�ned.

Note that the latter four operators only apply to properties of type int.

Listing 4.8: Example: Complex conditions.

1 rule myRule 100
2 <- eval ((count {someFact}) == 1)
3 <- eval ((sum {someFact propertyA}) >= 12)
4 <- eval ((product {someFact propertyA}) > 12)
5 <- eval ((min {someFact propertyA}) < 12)
6 <- eval ((max {someFact propertyA}) <= 12)
7 -> [...]

Slots Revisited: this

Now that we have introduced both slots and conditions (whose de�nitions are mutually

recursive), we will explain how slots and conditions interact. Coming back to the slot

example presented earlier, we can now declare proper conditions for the slot:

Listing 4.9: Example: this keyword.

1 slot mySlotWithPropertyAndConditions = {someFact propertyA
2 <- eval ({this propertyA} == "test")
3 <- eval ({this propertyB} > {anotherFact propertyC})
4 }

This example introduced the this keyword. It is used to refer to the one single fact that

the rule engine is currently matching against the slot. As part of this matching procedure,

the rule engine will access other facts in the fact repository. Hence, the fact currently being

matched is �rst removed from this �working set� as otherwise the condition in line 2 would

always evaluate as true as the fact is simply matched against itself.

Note that trying to implement the same semantics without this will not work as ex-

pected:

As there may be multiple facts with the name �someFact� in the fact repository, line 2

may evaluate as true for one fact and line 3 may evaluate as true for a di�erent fact. This

would result in the slot matching facts that the programmer most probably did not intend

to match.

40

4.5 Ruleset De�nition Language

Listing 4.10: Example: Slot without this keyword.

1 slot mySlotWithPropertyAndConditions = {someFact propertyA
2 <- eval ({someFact propertyA} == "test")
3 <- eval ({someFact propertyB} > {anotherFact propertyC})
4 }

It is important to always keep in mind that a slot may match multiple facts in the fact

repository and that the resulting set of facts will be operated on as described in Section

4.4.1. It is up to the programmer to carefully design slots to match exactly those facts that

he intends to.

Statements

The missing brick for a complete ruleset de�nition are statements. Available statements

have already been introduced in Section 4.2.2. In the ruleset de�nition language they are

always pre�xed with �->� and their syntax is a follows:

Listing 4.11: Example: Statements

1 rule testAllStatements 100
2 <- exists {someTriggeringFact}
3 -> define "someFact"
4 -> define "anotherFact" [propertyA = true, propertyB = 12]
5 -> set {someFact propertyA} = false
6 -> set {someFact propertyB} = ({anotherFact propertyB} * 12)
7 -> send <toMAC> <txPower> {someFact}
8 -> copy {someFact}
9 -> flush {someFact}

10 -> retract {someFact}
11 -> call someFunction ({anotherFact propertyA}, {anotherFact propertyB})

In the example above, we have introduced the syntax of the following statements:

define creates a new fact in the fact repository, optionally with properties. The fact is

tagged as modi�ed in the next run of the rule engine.

set updates an old or adds a new property to a fact and assigns a value to it.

send copies one or multiple facts over the network. �<toMAC>� and �<txPower>� are

expressions that de�ne the addressee and the transmit power to use. Both values

depend either on the hardware platform or the deployment scenario.

copy makes an exact copy of the facts speci�ed by the following slot. The ownership and

modi�cation time of the new fact are updated, and it is tagged as modi�ed.

41

Chapter 4 Concepts and Language

flush removes the modi�ed �ag from the matching facts so that they will not cause rules

to �re during the next run of the rule engine.

retract removes the facts matching the given slot from the fact repository.

call invokes a function with parameters as de�ned by the list of expressions in order to

access the �rmware directly or perform some resource critical computation.

For readability we have skipped a few minor details of the ruleset de�nition language.

They are however quite self-explanatory and will be introduced as part of the examples in

the next section. Again, refer to Appendix A for the complete grammar of the language.

4.5.2 Examples

Now that syntax and semantics of the FACTS ruleset de�nition language have been in-

troduced, we provide a few simple examples to illustrate how the di�erent concepts work

together. Refer to Chapter 7 for an in-depth discussion of a more complex example.

A Simple Timer Ruleset

The Simple Timer ruleset shows how two rules interact with each other by generating a

fact for the other rule to react to. As we are dealing with time in this example, the facts

are called tick and tack. Along with them, there is a counter fact that counts the

occurrences of tick facts. The complete ruleset is shown in Listing 4.12.

Listing 4.12: A simple timer ruleset.

1 ruleset Timer
2

3 slot counterTicks = {"counter" ticks}
4

5 fact "counter" [ticks = 0]
6

7 rule tick 100
8 <- exists {"tack"}
9 -> retract {"tack"}

10 -> define "tick"
11 -> set counterTicks = (counterTicks + 1)
12

13 rule tack 100
14 <- exists {"tick"}
15 -> retract {"tick"}
16 -> define "tack"

42

4.5 Ruleset De�nition Language

After the ruleset declaration in line 1, a slot referring to the ticks property of the

counter fact is de�ned in line 3. It is used for easy access to that property. In line 5,

the counter fact is created and initialized, with its ticks property set to 0. The core of

the ruleset are the two following rules, which are almost identical. Each of them �res if a

tack or respectively a tick fact has been created in the previous run of the rule engine.

The rules then proceed to remove this fact and create a new tick or tack fact for the

respective other rule to �re in the next run. Additionally, the tick rule increments the

ticks property of the counter fact, as addressed by the counterTicks slot in line 11.

There are two noteworthy issues about this example: In order to activate this ruleset,

either a tick or a tack fact must be provided externally, possibly as a reaction to an

event that occurred on the sensor node. More important however is the issue that this

ruleset creates a cyclic interaction between two rules. While intentional in this example,

cyclic interactions should generally be avoided as they may result in in�nite loop that

undermine the event-driven semantics, have the potential to destabilize a distributed rule-

based algorithm, and generally waste energy. We plan to add tool support for the detection

of cyclic interaction between rules in the future (see Section 8.2).

Temperature Monitoring Ruleset

The Temperature Monitoring example while still quite simple draws more towards realistic

WSN applications: The ruleset implements the distribution of sensor readings, in this case

temperature values, above a certain threshold value. Listing 4.13 presents the complete

rulesets.

The ruleset begins with de�ning a public name for the temperature fact in line 3, in

order to allow other rulesets to process the data once it has been distributed. Lines 5 and 7

are a common idiom in the ruleset de�nition language to retrieve the ID of the sensor node

that the current instance of the rule engine is running on. We consider to provide a standard

set of facts that hold this kind of node-speci�c information as part of a system-level ruleset

in the future.

The main processing of the ruleset is done in the readAndSend rule, which reacts to

temperature facts that have been generated on the local sensor node, i.e. the owner

of the temperature fact is equal to the node ID, and whose value property matches

certain conditions. In this case, the value property of the temperature fact simply

needs to be greater or equal than a threshold value of 20 for the rule to �re. Once �red,

the rule sends the temperature fact that �red the rule to all neighboring nodes (0 is the

broadcast MAC address) at a transmit power of 15.1 Retrieving the temperature fact

1These are arbitrary numeric values in the current example. For better integration with the hardware
platform we plan to add system-wide constants in the future.

43

Chapter 4 Concepts and Language

Listing 4.13: Temperature monitoring ruleset.

1 ruleset Temperature
2

3 name temperature = "temperature"
4

5 fact "node"
6

7 slot nodeID = {"node" owner}
8 slot myNewTemperature = {temperature
9 <- eval ({this owner} == nodeID)

10 <- eval ({this modified} == true)
11 }
12

13 rule readAndSend 20
14 <- exists {temperature
15 <- eval ({this owner} == nodeID)
16 <- eval ({this value} >= 20)
17 }
18 -> send 0 15 myNewTemperature

that is to be transmitted is handled by the myNewTemperature slot. The fact needs to

satisfy two conditions: It must be owned by the local node to avoid retransmitting facts

that have been received from other nodes, and it must be tagged as modi�ed to identify it

as the fact that has �red the rule as opposed to older temperature readings.

Once again, there are two noteworthy issues about this ruleset: For one, it shows how

seamlessly the system-generated owner and modified properties integrate with the ap-

plication level code. More importantly, the de�nition of the myNewTemperature slot in

lines 8 to 11 illustrates the importance of properly designing the slots: If the modified

condition had been omitted, then each �ring of the readAndSend rule would broadcast

all temperature facts from the local fact repository over the network, which is far from

the intention of the ruleset.

Coverage Ruleset

The goal of a coverage algorithm in a wireless sensor network scenario is to determine which

areas of a geographic region are covered by the sensor network. The information gained

may be used to selectively power down sensor nodes that are redundant in order to extend

the total lifetime of the sensor network. A partial listing of the rule-based implementation

of the coverage algorithm is given in Listing 4.14. The complete ruleset can be found in

Section B.1.

As a �rst step and �ring in the initialization state, the range rule removes the init

fact that caused it to �re from the fact repository in line 7, and sets the node's state to

44

4.5 Ruleset De�nition Language

Listing 4.14: Coverage ruleset (excerpt).

1 ruleset Coverage
2

3 [...]
4

5 rule range 50
6 <- exists {init}
7 -> retract {init}
8 -> set {"node" state} = "ON"
9 -> define "range" [xMin = (nodePosX - 10), xMax = (nodePosX + 10), yMin = (

nodePosY - 10), yMax = (nodePosY + 10)]
10 -> send {system broadcastMAC} {system txPower} {"range"}
11

12 [...]
13

14 slot rangeXMinYMinOwner = {"range" owner
15 <- eval ({this owner} != nodeID)
16 <- eval ({this xMax} >= nodePosX)
17 <- eval ({this yMax} >= nodePosY)
18 <- eval ({this xMax} <= (nodePosX + 10))
19 <- eval ({this yMax} <= (nodePosY + 10))
20 }
21

22 [...]
23

24 rule xMinYMinCovered 30
25 <- eval ({node state} == "ON")
26 <- exists rangeXMinYMinOwner
27 -> retract {"coveredXMinYMin"
28 <- eval ({this byNode} == rangeXMinYMinOwner)
29 }
30 -> define "coveredXMinYMin" [byNode = rangeXMinYMinOwner]
31

32 [...]
33

34 rule determineCoverage 40
35 <- exists {"coveredXMaxYMax"}
36 <- exists {"coveredXMaxYMin"}
37 <- exists {"coveredXMinYMin"}
38 <- exists {"coveredXMinYMax"}
39 -> define "covered"
40 -> send {system broadcastMAC} {system txPower} {"covered"}
41 -> set {node state} = "OFF"

45

Chapter 4 Concepts and Language

"ON" in line 8. It then proceeds to calculate the range it expects to cover and stores this

information in a range fact in line 9. Note that establishing the position of the node is

not in the scope of the coverage algorithm. In line 10 the newly created range fact is

broadcasted to the neighboring nodes.

In the next stage, the node waits for the range facts of its neighbors. Upon recep-

tion of a matching fact, the xMinYMinCovered rule inspects the data in line 26 us-

ing the rangeXMinYMinOwner slot de�ned in lines 14 to 20 and �res if the covered

area as reported by the range fact overlaps with its own. The result is stored in the

coveredXMinYMin fact that also holds the information which node overlaps in the given

direction. Similar rules for the coveredXMaxYMin fact, coveredXMaxYMax fact, and

coveredXMinYMax fact have been omitted for brevity.

Finally as a last step, the determineCoverage rule checks whether all four sides of a

nodes area are covered by other nodes in lines 35 to 38, and if this is the case, stores this

information in the covered fact, broadcasts this once again and turns the sensor node o�

afterwards. After this process has been completed for all nodes, each node knows whether

it is the only node of the wireless sensor network to cover one particular geographic region

or not and can act accordingly in the future.

The example of the coverage algorithm illustrates how our middleware provides intuitive

event-like semantics and abstraction from low-level communication details. Furthermore,

it shows how remote data transparently becomes available for local processing while still

preserving the semantics of a globally shared information space.

Now that concepts and language have been covered in detail and illustrated with a few

examples, we will move on to describe implementation details, such as the compilation

process, bytecode layout, and execution of rulesets, in the next section.

46

Chapter 5

Compilation and Execution

After describing in detail the conceptual aspects and introducing the ruleset de�nition

language of the FACTS middleware architecture for wireless sensor networks in the previous

chapter, we now turn to the more practical issues. The following subprojects have been

implemented successfully, or, as for the last subproject, the implementation is ongoing:

FACTS-rc is the ruleset compiler for the FACTS middleware architecture, that compiles

ruleset de�nitions into one of two possible output formats. Its frontend is imple-

mented using lex and yacc de�nitions derived in part from the type declarations

in FACTS-hs (see below). It has two backends implemented in C, one to generate

Haskell de�nitions as input for FACTS-hs, and one to generate optimized bytecode

for interpretation by FACTS-re (once again, see below).

FACTS-hs is an implementation of the FACTS middleware architecture and additionally

o�ers a rudimentary simulation environment of a wireless sensor network. Imple-

mented in the functional and strongly typed Haskell programming language, its goal

is to serve as a prototype while establishing the concepts as discussed in Chapter

4, to provide a reference for future implementations, and to function as a testing

environment for rulesets.

FACTS-re is an implementation of the FACTS runtime environment on the ScatterWeb

platform. It is implemented in C and runs as a user application on the Scatter-

Web sensor nodes. At the time of this writing, it does not yet implement the entire

functionality o�ered by FACTS.

In this chapter we will discuss each of these components separately: Section 5.1 covers

FACTS-rc and how applications written in the form of rulesets are compiled into byte-

code. Section 5.2 and Section 5.3 describe how the bytecode is executed on our functional

prototype implementation and on the ScatterWeb implementation of the FACTS runtime

environment respectively.

47

Chapter 5 Compilation and Execution

5.1 The Compilation Process: FACTS-rc

In order to run applications written in the FACTS ruleset de�nition language, they �rst

need to be compiled. To this end, we have implemented the FACTS-rc ruleset compiler.

As already mentioned above, its frontend is implemented in lex and yacc de�nition �les

for lexing and parsing. The parsing code in particular was derived from the functional type

declarations of the FACTS-hs subproject.

The parser creates an internal data structure that can be used as input for the two back-

ends of the compiler. One backend produces Haskell de�nitions that serve as input to the

FACTS-hs middleware simulation. It generates one Haskell �le per ruleset and FACTS-hs

takes care of dependency resolution. The other backend produces bytecode for interpreta-

tion by the FACTS-re runtime environment on a ScatterWeb sensor node. Several ruleset

may be compiled into one bytecode image, which then is added to a ScatterWeb EEP-

ROM image for deployment on the sensor nodes. The FACTS-re backend of the compiler

also takes care of reducing the size of the generated bytecode as much as possible through

optimization.

In the following, we will illustrate the implementation details of both the parsing and the

optimization processes by the means of an example.

5.1.1 Example: Turing Machine Ruleset

Listing 5.1 gives an excerpt of the implementation of a Turing Machine in the FACTS rule

de�nition language. We have chosen this example as the focus of this section is primarily on

parsing and bytecode optimization rather than applicability to the wireless sensor network

domain. On the other hand, having a complete Turing Machine implementation, consist-

ing of merely four rules and running on our middleware architecture nicely illustrates the

expressiveness of the language and the power of the underlying concepts.

In order to provide a better understanding, let us go over the short excerpt of the Turing

Machine ruleset (see Listing 5.1): A unique run fact as accessed by the slots in lines 9 and

10 holds the current state of the Turing Machine and the current position of the read/write

head on the tape. Both the tape and the transition function are implemented as sets of

facts, one of which is shown in Figures 5.1 and 5.2 respectively.

� position = 1
� symbol = „s1“

tape

Figure 5.1: A tape fact as used by the Turing Machine ruleset.

48

5.1 The Compilation Process: FACTS-rc

� state = 1
� symbol = „s0“
� nextState = 2
� nextSymbol = „s1“
� nextMovement = constLeft

function

Figure 5.2: A function fact as used by the Turing Machine ruleset.

Listing 5.1: Turing Machine ruleset (excerpt).

1 ruleset TuringMachine
2

3 name run = "run"
4 name function = "function"
5 name tape = "tape"
6

7 [...]
8

9 slot runState = {run state}
10 slot runPosition = {run position}
11 [...]
12

13 slot currentTapeSymbol = {tape symbol
14 <- eval ({this position} == runPosition)
15 }
16

17 slot functionNextState = {function nextState
18 <- eval ({this state} == runState)
19 <- eval ({this symbol} == currentTapeSymbol)
20 }
21 slot functionNextSymbol = {function nextSymbol
22 <- eval ({this state} == runState)
23 <- eval ({this symbol} == currentTapeSymbol)
24 }
25 slot functionNextMovement = {function nextMovement
26 <- eval ({this state} == runState)
27 <- eval ({this symbol} == currentTapeSymbol)
28 }
29

30 [...]
31

32 rule step 100
33 <- exists {run}
34 -> define "next" [state = functionNextState, symbol = functionNextSymbol,

movement = functionNextMovement]
35 -> set runState = {"next" state}
36 -> set currentTapeSymbol = {"next" symbol}
37 -> set runPosition = (runPosition + {"next" movement})
38 -> retract {"next"}

49

Chapter 5 Compilation and Execution

A tape fact describes one cell of the tape at a certain position and containing a

symbol. A function fact describes which nextState, nextSymbol, and nextMove-

ment follow from a given state and a given symbol. Note that there must be a function

fact for all possible combinations of states and symbols used by the Turing Machine, as

otherwise the de�nition of the transition function would be incomplete. Slots to conveniently

access one particular fact of the set of facts that make up either the tape or the transition

function are de�ned in lines 13 to 28.

The core of the Turing Machine ruleset is the step rule de�ned in lines 32 to 38. It �res

as long as the run fact exists and has been modi�ed in the previous run of the rule engine.

The �rst statement of the rule in line 34 de�nes a new temporary fact that stores the next

state, symbol and movement based on the data retrieved from the set of function facts

using the respective slots introduced above. The properties of the temporary fact are then

used to update the state and position properties stored in the run fact and the tape

symbol at the position of the read/write head as addressed by the currentTapeSymbol

slot (lines 35 to 37). Afterwards, the temporary fact is retracted.

Only the parts relevant to this example have been discussed in detail. Additional rules

contained in the complete listing in Section B.2 implement error handling and automatically

extending the tape by de�ning new tape facts when the read/write head reaches the border

of the existing tape.

5.1.2 Parsing and Bytecode Data Structure

The frontend of the FACTS-rc compiler parses the Turing Machine ruleset from Listing 5.1

into an abstract syntax tree (AST) as shown in Figure 5.3. Based on this, the generation of

Haskell code for FACTS-hs is a trivial syntactical transformation that we do not discuss in

detail. Instead we concentrate on how the bytecode for the FACTS-re runtime environment

is generated.

The data structure of the bytecode is shown in Figure 5.4. For readability all constants

have been spelled out and identi�ers, i.e. fact names and property keys, have been preserved.

In the actual data structure they are converted into unique numerical identi�ers. For this

example, Figure 5.1 shows the strings and their corresponding encoded bytecode identi�ers.

There are several di�erences between the data structure and the abstract syntax tree it is

derived from:

• As one bytecode image may contain several rulesets, the ruleset information is omit-

ted. The FACTS-re runtime environment deals directly with rules and facts. When

necessary, the separation between rulesets is preserved by retaining the namespace

scope of names of facts.

50

5.1 The Compilation Process: FACTS-rc

• All named items of the ruleset, i.e. names and slots, have been copied into the

locations of the data structure at which they have been referenced. While this actually

increases the size of the data structure at the moment, it later avoids special cases in

the optimization algorithm.

• All list structures are removed as they incur additional overhead for storing pointers.

Instead we organize items in several large arrays, one for each type of item. This

organization of data has some peculiarities which we discuss below.

In order reduce the size of the bytecode image, we try to avoid pointers in data structures

as much as possible: Instead of going with the obvious choice of using linked lists for storing

the complex data structures that make up a ruleset, we sort all our data structures by their

type and then access them via pointer arithmetic, i.e. in an array-like fashion.

This technique avoids the storage overhead of linked lists, which is linear in the elements

of the list due to the pointers contained in each element of the list structure, and replaces it

with a constant overhead of two pointers, one pointing to the �rst and one pointing to the

last element of the list. Alternatively, we could have used one pointer to the �rst element

and one integer to specify how many of the following elements belong to the list. However,

this has a small drawback when it comes to implementing the rule engine: A fragment

commonly found in the code of the rule engine is that of iterating over a set of elements in

the bytecode. If we had represented a list with a pointer and an integer, a loop over the

elements of a list, which for this example we assume to be of type fact_t, would have

looked as shown below.

Listing 5.2: List iteration with start address and length parameters.

1 UINT16 fact_addr, i;
2 for(i = 0; i <= header.facts_count; i++) {
3 fact_addr = header.facts_start + (i * sizeof(fact_t));
4 // Now retrieve fact at fact_addr and process it.
5 }

With our current representation of lists, the same loop can be implemented as follows:

Listing 5.3: List iteration with start and end address.

1 UINT16 fact_addr;
2 for(fact_addr = header.facts_first; fact_addr <= header.facts_last;
3 fact_addr += sizeof(fact_t)) {
4 // Now retrieve fact at fact_addr and process it.
5 }

51

Chapter 5 Compilation and Execution

Note that the second implementation only uses one automatic variable while the �rst

implementation uses two of them. The resulting reduction of memory usage may seem

negligible, however when taking into account the two points that iterations over lists are

very common in the implementation of the rule engine, and that these loops are deeply

nested in most cases, the representation with two pointers is clearly superior.

Note that this scheme only works because, data structures are sorted by type even if this

places data items that are logically related far away from each other in real memory. The

theoretical drawback is that data looses locality, which may result in poor performance if

techniques such as caching memory are used. However, this can be mitigated by adapting

the caching algorithm.

Taking a step back, it is obvious that there is still a lot of redundancy present in the

data structure shown in Figure 5.4. In the following section we will take care of removing

all this redundant information.

Identi�er Bytecode Value

“run” 0x02
“state” 0x03
“constants” 0x04
“errorState” 0x05
“position” 0x06
“leftBorder” 0x07
“tape” 0x08
“symbol” 0x09
“blankSymbol” 0x0A
“rightBorder” 0x0B
“next” 0x0C
“function” 0x0D
“nextState” 0x0E
“nextSymbol” 0x0F
“movement” 0x10
“nextMovement” 0x11
“right” 0x12
“left” 0x13
“neutral” 0x14

Table 5.1: Encoded bytecode identi�ers of the Turing Machine ruleset.

52

5.1 The Compilation Process: FACTS-rc

ruleset

name

identifier block_listruleset

block block block block block block block block block block

TuringMachine

named_name

identifier = name

run “run”

Two more analogous
named_name nodes.

slot

named_slot

identifier = slot

functionNextState

{ }name key condition_list

condition condition<- <-function nextState

eval ()expression expressioncomparison_operation

==variable

slot

{ }name key

this state

variable

slot

identifier

runState

rule

identifier

step

rule condition_list

condition<-

statement_list

statement->

slot

{ }name

run

exists

statement->statement->statement-> statement->

define name

“next”

[]initializer_list

initializer ,

key = expression

variable

slot

identifier

functionNextState

state

initializer ,

key = expression

variable

slot

identifier

functionNextSymbol

symbol

initializer

key = expression

variable

slot

identifier

functionNextMovement

movement

Two more analogous
named_slot nodes.

Three more simple
named_slot nodes.

One more analogous
condition node.

Four more simple statement nodes.

Figure 5.3: Abstract syntax tree of Listing 5.1. Some redundant parts have been omitted for
readability. Non-terminals are printed in italics, language keywords are printed
in bold.

53

Chapter 5 Compilation and Execution

rls_header_t
� rules_first
� rules_last
� facts_first
� facts_last
� properties_first
� properties_last

rule_t
� conditions_first
� conditions_last
� statements_first
� statements_last

condition_t
� type = EXISTS
� slot

statement_t
� type = DEFINE
� parameters_first
� parameters_last

statement_t
� type = SET
� slot
� expression

statement_t
� type = RETRACT
� slot

statement_t
� type = SET
� slot
� expression

statement_t
� type = SET
� slot
� expression

initializer_t
� key = “state”
� expression

expression_t
� type = CONSTANT
� variable

variable_t
� type = SLOT
� value

slot_t
� factName = “run”

slot_t
� factName = “function”
� propertyKey = “nextState”
� conditions_first
� conditions_last

slot_t
� factName = “next”

slot_t
� factName = “run”
� propertyKey = “state”

slot_t
� factName = “tape”
� propertyKey = “symbol”
� conditions_first
� conditions_last

slot_t
� factName = “run”
� propertyKey = “position”

variable_t
� type = SLOT
� value

slot_t
� factName = “run”
� propertyKey = “position”

expression_t
� type = CONSTANT
� variable

variable_t
� type = SLOT
� value

slot_t
� factName = “next”
� propertyKey = “movement”

expression_t
� type = CONSTANT
� variable

expression_t
� type = BINARY / ADD
� left_expression
� right_expression

expression_t
� type = CONSTANT
� variable

variable_t
� type = SLOT
� value

slot_t
� factName = “next”
� propertyKey = “symbol”

condition_t
� type = EVAL
� left_expression
� right_expression

variable_t
� type = SLOT
� value

slot_t
� factName = “run”
� propertyKey = “position”

expression_t
� type = CONSTANT
� variable

variable_t
� type = SLOT
� value

slot_t
� factName = THIS
� propertyKey = “position”

expression_t
� type = CONSTANT
� variable

variable_t
� type = SLOT
� value

slot_t
� factName = “next”
� propertyKey = “state”

expression_t
� type = CONSTANT
� variable

initializer_t
� key = “symbol”
� expression

expression_t
� type = CONSTANT
� variable

variable_t
� type = SLOT
� value

slot_t
� factName = “function”
� propertyKey = “nextSymbol”
� conditions_first
� conditions_last

initializer_t
� key = “movement”
� expression

expression_t
� type = CONSTANT
� variable

variable_t
� type = SLOT
� value

slot_t
� factName = “function”
� propertyKey = “nextMovement”
� conditions_first
� conditions_last

condition_t
� type = EVAL
� left_expression
� right_expression

variable_t
� type = SLOT
� value

slot_t
� factName = “run”
� propertyKey = “state”

variable_t
� type = SLOT
� value

slot_t
� factName = THIS
� propertyKey = “state”

expression_t
� type = CONSTANT
� variable

condition_t
� type = EVAL
� left_expression
� right_expression

variable_t
� type = SLOT
� value

expression_t
� type = CONSTANT
� variable

variable_t
� type = SLOT
� value

slot_t
� factName = THIS
� propertyKey = “symbol”

expression_t
� type = CONSTANT
� variable

slot_t
� factName = “tape”
� propertyKey = “symbol”
� conditions_first
� conditions_last

condition_t
� type = EVAL
� left_expression
� right_expression

variable_t
� type = SLOT
� value

slot_t
� factName = “run”
� propertyKey = “position”

expression_t
� type = CONSTANT
� variable

variable_t
� type = SLOT
� value

slot_t
� factName = THIS
� propertyKey = “position”

expression_t
� type = CONSTANT
� variable

fact_t and property_t
are not part of the
original ruleset excerpt.

Only first rule_t is shown.

Analogous
to conditions
above.

Analogous
to conditions
above.

expression_t
� type = CONSTANT
� variable

Figure 5.4: Bytecode data structure derived from the AST in Figure 5.3. Some redundant
parts have been omitted for readability. Note how similar data is duplicated in
several places within the data structure.

54

5.1 The Compilation Process: FACTS-rc

5.1.3 EEPROM Memory Layout and Bytecode Optimization

As already mentioned in the previous section, data structures of identical type are organized

as arrays in the bytecode to save the structural overhead of linked lists. The regions for the

di�erent types are laid out in the EEPROM bytecode image as shown in Figure 5.5.

...

0x0000

0x1000

0xFFFF

Reserved

Rules

Conditions

Statements

Slots

Expressions

Initializers

Variables

Facts

Properties

Magic Number Header

Figure 5.5: Bytecode layout within the EEPROM of a ScatterWeb sensor node.

On a ScatterWeb sensor node the EEPROM from addresses 0x0000 to 0x0FFF is re-

served for the �rmware. Data of user applications begins at address 0x1000, in our case

with a 16 bit magic number to identify the following data to be a FACTS bytecode image.

After the unique bytecode header, the EEPROM memory is partitioned into regions, one

for each bytecode data type. Within these regions structures of identical type are densely

packed. Except for the gap between the fact and the property regions, no memory is wasted

between the regions.

The fact and the property regions are special as they are the only regions that will change

in size at runtime as facts and their properties are added to the fact repository. The fact

region grows up in memory, while the property region starts at address 0xFFFF and grows

down in memory. It is up to the FACTS-re rule engine to make sure that the regions never

overlap.

As far as code organization is concerned, the sequence of statements within each rule is

the only feature that rulesets share with traditional imperative programs. Apart from this,

there are no constraints on how a ruleset can be laid out in the bytecode, thus allowing for

aggressive optimization to be performed in order to reduce the size of the bytecode image.

55

Chapter 5 Compilation and Execution

The FACTS-rc ruleset compiler parses rulesets implemented in the ruleset de�nition

language and generates a tree-like data structure with its root in the rls_header_t

structure to be used in the bytecode. For the Turing Machine example we have already

shown this data structure in Figure 5.4 and pointed out that it has several redundancies.

The key to optimize the data structure is to �nd identical subtrees, merge them into

one, and adjust pointers in the remaining data structure accordingly. Once this process

is complete, the resulting data structure has lost its tree property but still is a directed

acyclic graph (DAG). Figure 5.6 shows the optimized data structure for the Turing Machine

example.

There are two di�culties to take into account when implementing the optimization algo-

rithm:

• Optimization is recursive: Consider two subtrees A and B with their root elements a

and b. Initially, a and b are not identical because the respective subtrees are located at

di�erent EEPROM memory addresses and hence the pointers in a and b do not match.

After completely generating the elements pointed to by b, it is however established

that they are identical to those generated previously when working on subtree A.

This results in the �elds in b being updated to point to the elements contained in A,

which in turn renders a and b identical. Merging a and b however requires all external

references to b to be updated to point to a instead.

• The results of the optimization need to be known before the bytecode generation can

start: As the elements of the bytecode contain EEPROM addresses, the location of

all elements must be known when generating them. At the same time the bytecode is

densely packed in the EEPROM memory, not wasting any space between the regions

for each data type. Together, these two constraints result in the requirement of know-

ing the exact number of elements per type before generating the bytecode. However,

as optimization is part of the generation process, we have a chicken-egg-problem.

In order to solve the optimization problem, bytecode generation is implemented as a two

phase process: In the �rst phase, the bytecode backend of the FACTS-rc ruleset compiler

generates bytecode assuming the worst case, in which no elements of the bytecode are

redundant, and allocates the regions for the data types accordingly. The resulting temporary

bytecode image is not optimal in terms of size because it has gaps between the used regions

of each data type. However, in this �rst phase the compiler keeps track of how many

elements of each type are actually generated. In the second phase this information is used

to generate an optimal layout of regions of data types into which the elements can be placed

without wasting memory.

56

5.1 The Compilation Process: FACTS-rc

A typical function that creates a bytecode data structure, in this case of type condition_t,

is shown in Listing 5.4. It takes two arguments: rc_condition is a pointer to a represen-

tation of the condition internal to the compiler, and in_list_context states whether

the current condition is to be generated as part of a list of conditions as opposed to just a

single conditions. The di�erence is that single conditions may be optimized, while condi-

tions generated as part of a list must preserve the ordering within the list as mandated by

our addressing scheme for lists.

Line 2 calculates the EEPROM address at which to generate the new condition_t

based on the start of the region for conditions and the number of conditions generated

so far. Line 3 allocates memory for generation of a temporary condition. Line 5 actually

writes the content of rc_condition into the temporary EEPROM condition structure;

the details of this process are omitted for brevity.

Listing 5.4: FACTS-rc function to generate a condition_t structure in the EEPROM
bytecode image.

1 UINT16 eeprom_gen_condition(rc_condition_t* rc_condition, int in_list_context)
{

2 UINT16 eeprom_address = conditions_first + (conditions_used++ * sizeof(
condition_t));

3 condition_t* condition = (condition_t*) malloc_zero(sizeof(condition_t));
4

5 eeprom_gen_condition_at(rc_condition, condition);
6

7 if(optimize_bytecode && !in_list_context) {
8 // Optimize bytecode by reusing previously written items that
9 // are exact duplicates of the current item.

10 void* addr = memfind(condition, eeprom_image + conditions_first,
eeprom_image + conditions_first + ((conditions_used - 1) * sizeof(
condition_t)), sizeof(condition_t), 1);

11 if(addr) {
12 free(condition);
13 conditions_used--;
14 return (UINT16) (addr - ((void*) eeprom_image));
15 }
16 }
17

18 memcpy(eeprom_image + eeprom_address, condition, sizeof(condition_t));
19 free(condition);
20 return eeprom_address;
21 }

57

Chapter 5 Compilation and Execution

Optimization is performed beginning in line 10 by searching the region of previously

generated conditions for a condition_t that exactly matches the condition we have just

generated. If this is the case, line 12 to 14 free the temporary condition, adjust the counter

of used conditions, and return the EEPROM address of the previously generated condition.

If the current condition has not been generated before, it is added to the bytecode image

in line 18 and the new EEPROM address is returned.

The resulting bytecode is shown in Figure 5.7. For readability only the elements that

are part of the excerpt of the the Turing Machine ruleset are highlighted, the remaining

elements have been left blank. While the data structure is identical to one given in Figure

5.6, it is clearly intended for machine processing rather to be readable by humans. From

the coloring it is however obvious that the regions for data types found in the real bytecode

correspond to those given in the more abstract memory layout diagram in Figure 5.5.

This concludes the qualitative discussion of FACTS bytecode optimization. We will give

a quantitative analysis in the next section.

58

5.1 The Compilation Process: FACTS-rc

rls_header_t
� rules_first
� rules_last
� facts_first
� facts_last
� properties_first
� properties_last

rule_t
� conditions_first
� conditions_last
� statements_first
� statements_last

condition_t
� type = EXISTS
� slot

statement_t
� type = DEFINE
� parameters_first
� parameters_last

statement_t
� type = SET
� slot
� expression

statement_t
� type = RETRACT
� slot

statement_t
� type = SET
� slot
� expression

statement_t
� type = SET
� slot
� expression

initializer_t
� key = “state”
� expression

expression_t
� type = CONSTANT
� variable

variable_t
� type = SLOT
� value

slot_t
� factName = “run”

slot_t
� factName = “function”
� propertyKey = “nextState”
� conditions_first
� conditions_last

slot_t
� factName = “next”

expression_t
� type = CONSTANT
� variable

variable_t
� type = SLOT
� value

slot_t
� factName = “next”
� propertyKey = “movement”

expression_t
� type = BINARY / ADD
� left_expression
� right_expression

expression_t
� type = CONSTANT
� variable

variable_t
� type = SLOT
� value

slot_t
� factName = “next”
� propertyKey = “symbol”

variable_t
� type = SLOT
� value

slot_t
� factName = “next”
� propertyKey = “state”

expression_t
� type = CONSTANT
� variable

initializer_t
� key = “symbol”
� expression

expression_t
� type = CONSTANT
� variable

variable_t
� type = SLOT
� value

slot_t
� factName = “function”
� propertyKey = “nextSymbol”
� conditions_first
� conditions_last

initializer_t
� key = “movement”
� expression

expression_t
� type = CONSTANT
� variable

variable_t
� type = SLOT
� value

slot_t
� factName = “function”
� propertyKey = “nextMovement”
� conditions_first
� conditions_last

condition_t
� type = EVAL
� left_expression
� right_expression

variable_t
� type = SLOT
� value

slot_t
� factName = “run”
� propertyKey = “state”

expression_t
� type = CONSTANT
� variable

variable_t
� type = SLOT
� value

slot_t
� factName = THIS
� propertyKey = “state”

expression_t
� type = CONSTANT
� variable

condition_t
� type = EVAL
� left_expression
� right_expression

variable_t
� type = SLOT
� value

expression_t
� type = CONSTANT
� variable

variable_t
� type = SLOT
� value

slot_t
� factName = THIS
� propertyKey = “symbol”

expression_t
� type = CONSTANT
� variable

slot_t
� factName = “tape”
� propertyKey = “symbol”
� conditions_first
� conditions_last

condition_t
� type = EVAL
� left_expression
� right_expression

variable_t
� type = SLOT
� value

slot_t
� factName = “run”
� propertyKey = “position”

expression_t
� type = CONSTANT
� variable

variable_t
� type = SLOT
� value

slot_t
� factName = THIS
� propertyKey = “position”

expression_t
� type = CONSTANT
� variable

fact_t and property_t
are not part of the
original ruleset excerpt.

Only first rule_t is shown.

Figure 5.6: Optimized bytecode data structure derived from the data structure in Figure
5.4. Redundant parts have been omitted for readability. Duplicate data has
been removed by reusing previously generated items in the data structure as
indicated by the dashed arrows.

59

Chapter 5 Compilation and Execution

Figure 5.7: Bytecode for the Turing Machine ruleset. The highlights and pointer structure
correspond to the structure given in Figure 5.6. The identi�ers have been en-
coded according to Table 5.1. The areas of the bytecode that are not highlighted
have no correspondence in the excerpt of the Turing Machine ruleset as given
in Listing 5.1, speci�cally the data beyond address 0x1220 is the encoded fact
repository. Finally, the property elements � which are located between addresses
0xFEB0 and 0xFFFF � have been omitted for brevity.

60

5.1 The Compilation Process: FACTS-rc

5.1.4 Evaluation of Bytecode Optimization

After discussing the process of bytecode optimization in detail in the previous section, it

is now time to examine the impact of this process. In order to do so, we have collected

numbers from three major applications: the Coverage ruleset as covered in Section 4.5.2,

the Turing Machine ruleset as covered in Section 5.1.1, and the Generic Role Assignment

ruleset that will be the topic of Chapter 7.

For each of these rulesets, Tables 5.2, 5.3 and 5.4 show the item counts and bytes used of

the unoptimized and optimized rulesets. Rulesets are broken down into the types of data

structures which they contain. For each type of data structure as well as for the ruleset

as a whole the total amount of memory used is given before and after the optimization.

Further, the percentage saved by optimization is calculated.

The �rst single item to catch the eye in these tables are the immense savings achieved for

the Coverage and the Generic Role Assignment rulesets. 50.4 % and 60,2 % respectively

may seem unrealistic at �rst glance. In order to understand how these savings are possible,

it makes sense to look at the reduction in elements used for each type of data structure

seperately. Figure 5.8 illustrates the savings for all three rulesets split up by data type.

Coverage Bytecode

unoptimized optimized
size # size % saved

Rules 7 56 B 7 56 B 0 %
Conditions 43 258 B 40 240 B 6.9 %
Statements 22 176 B 22 176 B 0 %
Slots 66 528 B 33 264 B 50.0 %
Expressions 107 642 B 24 144 B 77.6 %
Initializers 8 32 B 8 32 B 0 %
Variables 95 280 B 20 80 B 78.9 %
Facts 2 40 B 2 40 B 0 %
Properties 3 18 B 3 18 B 0 %

Total 2,144 B 1,064 B 50,4 %

Table 5.2: Savings achieved by bytecode optimization of the Coverage ruleset.

61

Chapter 5 Compilation and Execution

Turing Machine Bytecode

unoptimized optimized
size # size % saved

Rules 4 32 B 4 32 B 0 %
Conditions 11 66 B 7 42 B 36.4 %
Statements 10 80 B 10 80 B 0 %
Slots 26 208 B 21 168 B 19.2 %
Expressions 38 228 B 20 120 B 47.4 %
Initializers 7 28 B 5 20 B 28.6 %
Variables 35 140 B 17 68 B 51.4 %
Facts 13 260 B 13 260 B 0 %
Properties 56 336 B 56 336 B 0 %

Total 1,392 B 1,140 B 18,1 %

Table 5.3: Savings achieved by bytecode optimization of the Turing Machine ruleset.

Generic Role Assignment Bytecode

unoptimized optimized
size # size % saved

Rules 14 112 B 14 112 B 0 %
Conditions 101 606 B 63 378 B 37.6 %
Statements 39 312 B 35 280 B 10.3 %
Slots 186 1,488 B 64 512 B 65.6 %
Expressions 235 1,410 B 61 366 B 74.0 %
Initializers 3 12 B 2 8 B 33.3 %
Variables 218 872 B 51 204 B 76.6 %
Facts 2 40 B 2 40 B 0 %
Properties 6 36 B 6 36 B 0 %

Total 4,902 B 1,950 B 60,2 %

Table 5.4: Savings achieved by bytecode optimization of the Generic Role Assignment rule-
set.

Examining the optimization in detail, we �nd that the savings are to be attributed

mostly to redundant expressions, variables and, to a lesser degree, slots. In fact, these

three constructs are heavily used when implementing rulesets. When looking at usage

patterns however, it becomes obvious that there are only very few di�erent instances of these

elements, which are repeated very often. Taking the complete de�nition of the Coverage

ruleset as listed in Section B.1 for example, there are in fact 107 expressions to be found in

the code. But on closer inspection it turns out that only 24 of these are unique. The other

77.6 % are duplicates and as such discarted when optimizing the bytecode.

In contrast, rules, facts and properties have not been optimized at all. This also makes

62

5.1 The Compilation Process: FACTS-rc

Rules Condi-
tions

State-
ments

Slots Expres-
sions

Initia-
lizers

Varia-
bles

Facts Proper-
ties

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

50.00%

55.00%

60.00%

65.00%

70.00%

75.00%

80.00%

Coverage

Turing Machine

GRA

P
e
rc

e
n
ta

g
e
 S

a
v
e
d
 b

y
 O

p
ti
m

iz
a
ti
o
n

Figure 5.8: Percentage saved against type of data structure.

0 1000 2000 3000 4000 5000

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

50.00%

55.00%

60.00%

65.00%

Unoptimized Bytecode Size in Bytes

R
e
la

ti
v
e
 P

e
rc

e
n
ta

g
e
 S

a
v
e
d
 b

y
O

p
ti
m

iz
a
ti
o
n

Figure 5.9: Size of unoptimized bytecode against percentage saved.

63

Chapter 5 Compilation and Execution

sense as there are no redundant rules in any of the rulesets examined. Facts and properties

cannot be optimized at all even if they were identical, because, contrary to other elements of

a ruleset, they may be modi�ed at runtime and hence even properties that are identical at

compile-time may be assigned di�erent values at runtime and hence need separate memory

to store them.

Interestingly and as shown in Figure 5.9, the relative percentage saved by optimization

increases with the unoptimized size of the bytecode image. Only evaluating three rulesets

does certainly not provide enough sample points to draw strong conclusions. Still, based

on the data available at the moment, it appears that bytecode size scales well with the

complexity of rulesets, which we �nd encouraging.

5.2 Prototype Implementation: FACTS-hs

The FACTS middleware architecture as proposed in Chapter 4 was �rst implemented as

purely functional prototype in the Haskell programming language. This section explains

the reasons why this somewhat unusual approach was taken, gives an overview of the

implementation and presents relevant code fragments of the FACTS-hs prototype.

5.2.1 Rationale

As [Tho99, p. 449] points out, a functional design or a prototype can be most useful even

if the ultimate goal is an imperative solution. In our case the advantages were as follows:

• Initially, the basic concepts were not well understood beyond traditional expert system

and their exact semantics changed while new requirements and interdependencies were

discovered. During this phase of rapid prototyping, the emphasis on concise functional

de�nitions helped the project to stay coherent.

• After �nishing the implementation of FACTS-hs, the de�nitions of the functions serve

as formal speci�cation of the system. Further, the de�nitions of the data types were

used as basis for lex and yacc de�nition for the frontend of the FACTS-rc rulesets

compiler. Based on these we were able to automatically generate the grammar of the

ruleset de�nition language as given in Appendix A.

• Special cases in the internal workings of the rule engine have already been identi-

�ed and implemented successfully in the prototype. The knowledge gained can be

transferred easily to the imperative implementation.

• Higher order function and their capability of using functions as parameters makes the

code base very compact and easy to maintain, while at the same time preserving type

64

5.2 Prototype Implementation: FACTS-hs

safety.

The availability of the functional prototype allowed us to run test cases and check the

semantics of the system very early in the development process, thereby improving overall

quality.

5.2.2 Overview

The core of the FACTS-hs system is implemented as a Haskell module. Its public interface

contains constructors for the condition and statement primitives and functions to create

rule, fact and function entities as well as slots and rulesets. For testing purposes there are

also functions that construct a sensor node, a sensor network and based on these run a

simple simulation.

Following the functional paradigm, the simulation runs by iteratively transforming the

current state of the sensor network � including all nodes and their respective rules and

fact repositories � into the subsequent state. For all nodes the conditions of their local

rules are checked against the fact repositories and the statements are executed if the given

facts su�ce for the rule to �re. In order to implement unique IDs of facts the simulation

environment provides a global time that is incremented whenever a fact is modi�ed or after

a complete run of the simulated rule engines on all sensor nodes has been completed. The

current notion of time of the sensor nodes is known at the beginning of each simulation step

which allows for the simulation to supports the injection of facts into the fact repositories

of one speci�c are all sensor nodes. As external events appear to the rule engines as new

facts in their repositories, the injection method can be used to simulate sensor readings at

certain points in time during the simulated deployment of the sensor network.

5.2.3 Relevant Code Fragments

Listing 5.5 is a shortened version of the main �loop� of the functional simulation. A simula-

tion step is broken down into several operations: In lines 8 and 9 the events for the current

simulation step are �ltered out of the global event list. Line 7 processes these events by

updating the state of the network accordingly. It then proceeds to use this new state as

input for the central processing of the network. Together with the calculation of the time

for the next simulation step in line 4 this concludes the processing of the current state.

Given a lists of events, the processState function can be reapplied to its own output.

Repeating this process using Haskell's built-in iterate function results in an in�nite list

of states which holds the state of the simulated sensor network at any given time.

Listing 5.6 shows the complete logic that decides whether to �re a rule or not and updates

the simulated state of the sensor network accordingly. Taking the MAC address as ID of

65

Chapter 5 Compilation and Execution

Listing 5.5: Functional simulation main loop.

1 processState :: [Event] -> State -> State
2 processState events state =
3 (State (step + 1) nextStepTime abortTime newNetwork newRxQueue)
4 where nextStepTime = time + simulationStepTime
5 (State step time abortTime _ _) = state
6 (State _ newTime _ newNetwork newRxQueue) =
7 processNetwork (processEvents state currentEvents)
8 currentEvents =
9 filter (\(Event eventStep _ _) -> (eventStep == step)) events

Listing 5.6: Functional rule �ring logic.

1 applyRule :: State -> MAC -> Rule -> State
2 applyRule state mac (Rule identifier _ conditions statements)
3 | oneFactIsModified && allConditionsAreTrue =
4 foldl (\state -> applyStatement state mac) state statements
5 | otherwise = state
6 where oneFactIsModified = or (map (containsModifiedFact facts) conditions)
7 allConditionsAreTrue =
8 and (map (evaluatesAsTrue facts Nothing) conditions)
9 facts = getFacts state mac

the current sensor node and the rule to be applied to the fact repository of said node as

additional parameters, this function can be broken down into the following operations: As

stated in line 3, a rule �res only if at least one fact is tagged as modi�ed and all conditions

of the rule evaluate as true. If this is the case, a rule is applied by folding its statements into

the current state of the simulation in line 4, Otherwise the state is returned unchanged in

line 5 as the rule did not �re. The calculations whether a fact referenced in the conditions

is modi�ed and whether all conditions are true are given in lines 6 and 7 respectively.

Just like this function de�nition, several other code fragments were reused conceptually

when implementing the FACTS-re runtime environment in C to run on the ScatterWeb

platform, which is the topic of the following section.

5.3 Implementation on ScatterWeb: FACTS-re

The implementation of the FACTS-re runtime environment on the ScatterWeb platform is

still work in progress as of this writing. We are con�dent that it can be implemented without

major di�culties as similar bytecode interpreters have already been completed successfully

in [WLT] and [Pie05]. Additionally, the functional implementation in FACTS-hs de�nes

exact semantics of the middleware. Re-implementing them in an imperative programming

language is perfectly feasible.

66

5.3 Implementation on ScatterWeb: FACTS-re

In the following, we will summarize the current state of the FACTS-re implementation.

5.3.1 Overview

FACTS-re is implemented as a ScatterWeb user application that runs on top of the C API

provided by the ScatterWeb �rmware. As already hinted at in Section 5.1.3, the EEPROM

of the ScatterWeb sensor node is used to store the bytecode as well as the fact repository.

Bytecode data items are retrieved from the EEPROM only when required, thereby keeping

RAM usage to a minimum. This comes at the price of a rather slow execution speed. In

the future we plan to improve this situation by using RAM more aggressively for caching

of frequently used bytecode items. The challenge will be to dynamically adjust the number

of items cached for performance while still retaining enough memory for the rule engine to

operate robustly.

To integrate FACTS-re with the ScatterWeb �rmware, we have created a new packet type

to encapsulate facts as they are being sent from one fact repository to another. We plan for

the receiving end to support both �ltering of received facts as well as adding them directly to

the repository. The �rst behavior is desirable if the application ruleset only deals with facts

sent speci�cally to the sensor node it is located on, and all other facts are to be discarded

upon reception. The second option allows for rulesets to implement routing algorithms.

Filtering received facts and possibly discarding them will be the default behavior, however

routing rulesets may switch to processing new facts themselves at any time by issuing a

function call to the �rmware.

Additionally, several hocks into the �rmware are in place that will allow for even more

function calls to interact with the hardware, including the toggling of LEDs for debugging.

5.3.2 Relevant Code Fragments

In Listing 5.7 we show the main loop of the rule engine as implemented using the ScatterWeb

�rmware API.

It loops over the addresses of all rules in the bytecode, and retrieves the current rule

from the EEPROM in line 6 using the IO_read() function provided by the �rmware.

As compared to Listing 5.6, both requirements on whether a rule should �re or not are

implemented in one function call in line 7, thereby avoiding repeated looping over the fact

repository. If a rule �res, its statements are executed in line 8.

Also note how the structure of this loop resembles the one proposed in Listing 5.3. The

care taken in the layout of the bytecode now pays o�, and we use as little memory as

possible.

67

Chapter 5 Compilation and Execution

Listing 5.7: Imperative rule �ring logic.

1 bool FACTS_run() {
2 UINT16 rule_addr;
3 rule_t rule;
4

5 for(rule_addr = header.rules_first; rule_addr <= header.rules_last; rule_addr
+= sizeof(rule_t)){

6 IO_read(rule_addr, (UINT8*) &rule, sizeof(rule_t));
7 if(checkConditions(rule.conditions_first, rule.conditions_last))
8 applyStatements(rule.statements_first, rule.statements_last);
9 }

10 }

We are currently developing FACTS-re using the ScatterWeb on ns-2 compatibility layer

that will be the topic of the next chapter.

68

Chapter 6

Simulation: ScatterWeb on ns-2

Rather than part of the main FACTS project, the ScatterWeb on ns-2 e�ort is a byproduct

that serves as a development tool. As we anticipated the development of a distributed

application such as a middleware architecture to be rather complex, we wanted to avoid

having to implement the FACTS-re runtime environment directly on the actual ScatterWeb

sensor nodes. Instead we chose to implement a compatibility layer that allows execution of

ScatterWeb user applications as part of the ns-2 network simulator.

After a detailed overview of goals and di�culties in Section 6.1, we will discuss di�erent

approaches to solve the problems in Section 6.2. We describe the details of our implemen-

tation in Section 6.3 and evaluate these results in Section 6.4.

6.1 Overview

The goal of this subproject is to run ScatterWeb user applications with as little modi�cations

as possible on ns-2 while retaining the semantics of the real ScatterWeb sensor nodes.

This is to be achieved by implementing a layer of glue code between the ScatterWeb user

application and ns-2 that implements the C API of the ScatterWeb �rmware as shown in

Figure 6.1.

The task at hand is not trivial. There are several constraints that make the implemen-

tation of the layer of glue code challenging:

• The core and most components of ns-2 are implemented in C++, while ScatterWeb

user applications are written in C, against a C API, and otherwise closely tied to the

actual hardware.

• We need to integrate the header �les of the real ScatterWeb �rmware because they

de�ne data types and constants which are used by the user applications.

• All components of ns-2 are statically linked into the ns binary at compilation time.

We need to link the ScatterWeb user application object code into the binary, possibly

69

Chapter 6 Simulation: ScatterWeb on ns-2

User Application User Application

Firmware Glue Code

ScatterWeb
Sensor Node

ns-2

ScatterWeb
C API

Figure 6.1: Conceptual sketch of running ScatterWeb on ns-2 by reimplementing the Scat-
terWeb C API.

dealing with clashing symbols.

• ScatterWeb user applications are written to run on a dedicated embedded processor.

When simulated by ns-2, several user applications suddenly �nd themselves running

as part of the same process. Hence the global variables need to be replicated for each

running instance of the user application.

• The layer of glue code and with it ScatterWeb user applications need to be integrated

into the build system of ns-2.

While trying to meet these constraints, it is important not to forget that modi�cations of

the code of ScatterWeb user applications are to be avoided whenever possible. We cannot

expect application developers to port their code back and forth between the real and the

simulated ScatterWeb platform.

6.2 Possible Approaches

Let us carefully consider the options that we have and whether they are feasible or not:

Simple Compatibility Layer: We could write a simple compatibility layer on top of ns-2

that implements the C API of the ScatterWeb �rmware. With this layer, ScatterWeb

user applications could link directly against the ns binary.

This approach is not feasible, because user applications need to store state for each

simulated sensor node separately. If the object code of the user application was

linked only once, then all global variables would be shared between all simulated

sensor nodes, or, to use object-oriented terminology, the global variables would be

static. Hence we need to provide the ScatterWeb user application with the semantics

of true objects that can be created dynamically with their own variables at runtime.

70

6.3 Implementation

Automatic Conversion from C to C++: As the C code of ScatterWeb user applications

needs to be integrated into C++ objects, it makes sense to look for tools to take care

of this conversion automatically. ctocpp is one of these tools and already has been

introduced in Section 3.4.

Unfortunately, the experience with automatic code conversion has been frustrating.

ctocpp did not handle inclusion of header �les properly, nor does it generate code

for member variables, or, based on these, constructors and destructors. To make

things worse, it does not parse compiler directives as used in the ScatterWeb source.

Consequently, we decided that automatic code conversion would not be the way to

go.

As approaches that are either commonly used or elegant seem to fail to meet the require-

ments, we decided to implement the glue code layer as a custom hack that gets the job

done but is neither commonly used (to our knowledge) nor elegant. In order to justify this

approach in light of the requirement of maintainability from the software engineering point

of view, we have tried to tightly localize the ugly aspects of the glue code layer in a few

�les and document exactly how we proceeded. The next section will explain our approach

in detail.

6.3 Implementation

We have implemented the layer of glue code between ns-2 and the ScatterWeb user ap-

plication as a set of two C++ classes.1 The ScatterWebAgent class reimplements the

ScatterWeb �rmware API in C++ and takes care of the interaction with ns-2. The

ScatterWebUserAppAgent inherits this functionality from ScatterWebAgent and

additionally pulls in the C code of the user application that is to be run on the simu-

lated sensor node. In other words, ScatterWebAgent takes care of the functionality of

the �rmware, while ScatterWebUserAppAgent constructs the logical unit of �rmware

and user application that is implicitly created when deploying �rmware and user applica-

tion object code on one sensor node. To be more precise, there must be one specialized

ScatterWebUserAppAgent per speci�c user application, i.e. one needs to slightly adapt

ScatterWebUserAppAgent for each user application. However, the changes typically

a�ect only very few lines of code and are well documented.

Being derived from the Agent superclass, a ScatterWebAgent is integrated as Source

/ Sink into the simulated ns-2 network stack as shown in Figure 6.2. As this subproject

1Actually, there are three C++ classes, but only two matter from the conceptual point of view. The third
provides functionality to make the simulation more realistic later on.

71

Chapter 6 Simulation: ScatterWeb on ns-2

Figure 6.2: Schematic of a ns-2 mobilenode. (Image taken from [ns005])

is focused on implementing a proof of concept rather than a realistic simulation, we set

the other components of the stack to sensible defaults, thereby enabling communication

between the simulated ScatterWeb sensor nodes. Speci�cally, we use the TwoRayGround

radio-propagation model, the OmniAntenna antenna model, the WirelessPhy network

interface type, the Simple MAC layer, the DropTail/PriQueue interface queue, and

the DumbAgent for routing. These and other parameters will have to be re�ned in the

future in order to achieve a more realistic simulation.

Figure 6.3 illustrates the interaction between ns-2, ScatterWebAgent, ScatterWeb-

UserAppAgent, and the user application at runtime. For the example of receiving and

sending a packet, the diagram illustrates how ScatterWebAgent translates a call to

its recv() (which is part of the interface of a ns-2 agent) to the appropriate callback

of the ScatterWeb user application. When sending a packet, the user application calls

the Net_send() method of the ScatterWebAgent object, which it translates into the

send() function of the ns-2 simulation.

The diagram also shows a third C++ class, ScatterWebAgentTimer, which inter-

acts closely with ScatterWebAgent. Its purpose is to schedule periodic events for the

simulated �rmware such as the interrupt-driven timer tick on the real sensor nodes.

72

6.3 Implementation

User Application

ns-2 Simulation

ScatterWebUserAppAgent

recv() send()

ScatterWebAgent

callbacks[C_RADIO]() Net_send()

ScatterWeb
AgentTimer

Figure 6.3: Interactions within the glue code layer at runtime.

6.3.1 Linking C Code into ns-2

The most di�cult part of our approach is the Net_send() method: While implemented

as method of the ScatterWebAgent class, it must look just as a C style function from the

point of view of the user application code. Further, as there may be multiple ScatterWebAgent

objects at runtime, the user application needs to call the method on the correct object.

To achieve this goal, we misuse the C preprocessor (cpp): Listing 6.2 shows a shortened

version of the ScatterWebUserAppAgent class de�nition. In lines 3 to 9 it �rst de�nes

its public interface consisting of the constructor and the Process_init() method, which

conceptually belongs to the user application. The crucial lines are however lines 15 to 18.

In line 15 we include a list of defines which map the C style API functions as expected

by the ScatterWeb user application to the methods implemented by ScatterWebAgent.

For example, the conversion of the Net_send() function looks as follows:

Listing 6.1: Mapping C API functions to C++ methods.

1 #define Net_send ScatterWebAgent::instance->Net_send

There are similar defines for all 114 functions of the ScatterWeb �rmware API. As the

API is fairly stable, this list of defines only needs to be created once and can be reused

for all user applications afterwards.

In line 16 of Listing 6.2 we add another define for the Process_init() function of

the user application. We cannot do this together with the defines for the other func-

tions, as we need to know the name of application wrapper class, which in this case is

73

Chapter 6 Simulation: ScatterWeb on ns-2

Listing 6.2: De�nition of the ScatterWebUserAppAgent wrapper class.

1 #include "../../../../Simulation/src/ScatterWebAgent.h"
2

3 namespace ScatterWeb {
4 class ScatterWebUserAppAgent : public ScatterWebAgent {
5 public:
6 ScatterWebUserAppAgent();
7 void Process_init();
8 };
9 }

10

11 [...]
12

13 ScatterWebUserAppAgent::ScatterWebUserAppAgent() : ScatterWebAgent() {}
14

15 #include "../../../../Simulation/src/ScatterWebFirmwareWrapper.h"
16 #define Process_init ScatterWebUserAppAgent::Process_init
17 #include "ScatterWeb.Event.c"
18 #include "ScatterWeb.Process.c"

�ScatterWebUserAppAgent�. Invocation of Process_init() will happen from the

super class via polymorphism. Finally in lines 17 and 18, we include the C code of the

user application into the de�nition of the C++ wrapper class.

Admittedly, lines 15 to 18 use language features in unusual ways and integrating the

ScatterWeb user application into a C++ framework is more a hack than an elegant solution.

However, the import code boils down to merely four lines and is independent from the

code of the user application. Further, it will not require frequent updates and it is well

documented. In this light, we think it is an acceptable solution for the problem at hand.

6.3.2 Connecting the Network Stack

Now that we have established the means of interaction between the ns-2 simulator and the

ScatterWeb user application, let's have a look at the details of this interaction taking place:

A shortened version of the Net_send() method of the ScatterWebAgent class is given

in Listing 6.3. This method is called by the ScatterWeb user application or the simulated

�rmware in order to send a packet over the network. After calculating the sequence number

of the ScatterWeb packet in line 4, the method allocates a ns-2 packet and its payload

object in lines 5 and 6. The ScatterWeb packet is then copied into the the payload of the

ns-2 packet in lines 7 and 8, before line 9 hands the packet down to the lower layers of the

ns-2 simulation.

Listing 6.4 shows the recv() method of the ScatterWebAgent class, which is invoked

by the ns-2 simulation when a packet has been received by the lower networking layers of

74

6.3 Implementation

Listing 6.3: Glue code for sending a packet.

1 bool ScatterWebAgent::Net_send(packet_t* packet, fp_char_t callback) {
2 [...]
3

4 packet->num = txNum++;
5 Packet* pkt = allocpkt();
6 PacketData* data = new PacketData(sizeof(packet_t));
7 memcpy(data->data(), packet, sizeof(packet_t));
8 pkt->setdata(data);
9 send(pkt, 0);

10

11 [...]
12 return True;
13 }

Listing 6.4: Glue code for receiving a packet.

1 void ScatterWebAgent::recv(Packet* pkt, Handler* handler) {
2 instance = this;
3 tcl = &Tcl::instance();
4 memcpy(&rxPacket, pkt->accessdata(), sizeof(packet_t));
5 rxState = RXSTATE_FULL;
6 Packet::free(pkt);
7 runModule |= MF_RADIO_RX;
8 loop();
9 }

the simulated sensor node. In line 2 the instance variable is set to point to the current

object. instance is a static �eld of the ScatterWebAgent class, that gives the C

code of the user application a reference to the object it is part of. Therefore instance

needs to be adjusted whenever the lower layers of the ns-2 simulation transfer control to

a ScatterWebAgent object. Line 3 is generic ns-2 I/O setup code. In lines 4 to 8 the

code processes the packet that was just received: It copies the payload of the ns-2 packet

into the ScatterWeb packet bu�er and frees the packet. In lines 5 and 7 the state of the

sensor node is updated to just having received a full packet. Finally in line 8, the main

loop of the ScatterWeb �rmware is executed once, just as if an interrupt had occurred on

the real sensor node.

6.3.3 Simulating Timer Interrupts

One element still missing to a complete simulation of a ScatterWeb sensor node is the

notion of all sensor nodes executing their respective applications concurrently. On the real

ScatterWeb platform, the hardware provides timer interrupts that allow periodic tasks to

be scheduled. While it is theoretically possible to use ns-2 timers to simulate each timer

75

Chapter 6 Simulation: ScatterWeb on ns-2

Listing 6.5: Glue code to simulate timer interrupts.

1 void ScatterWebAgent::loop() {
2

3 [...]
4

5 if(numberTimers > 0) {
6 runModule |= MF_TIMER;
7 _ticks = timers[0].ticks;
8 timer->resched(_ticks / SCATTERWEB_TICKS_PER_SECOND);
9 }

10 }

interrupt that occurs on a sensor node, the resulting overhead is prohibitively expensive for

a simulation that needs to scale up to possibly several hundred simulated sensor nodes.

In order to run the simulation as e�ciently as possible, we only simulate those timer

interrupts that the simulated sensor node is actually waiting for: Listing 6.5 shows a small

excerpt from the main loop of the simulated sensor node. Line 5 checks whether there are

any active timers registered in the �rmware. If this is the case, line 7 retrieves the time

at which the next timer is set to expire and line 8 reschedules the simulation of the sensor

node until said time. Once the simulation of this sensor node is resumed, the state of the

�rmware needs to hold the information that it is running in response to a timer interrupt

and hence line 6 sets the global �ags accordingly.

6.3.4 Minor Fixes

By now, all major components are in place. However there are few rough edges that still

need to be taken care of:

• As already seen in line 3 of Listing 6.2, C++ namespaces are used. This is done in

order to allow for duplicate type de�nitions, e.g. both ns-2 and ScatterWeb de�ne

a packet_t type and both types need to coexist in the simulation.

• In the ScatterWeb �rmware headers, we used ifdefs to rede�ne certain data types

for language compatibility, e.g. C++ has a prede�ned data type bool, while C has

not.

• Also in the ScatterWeb �rmware headers, we added ifdefs around includes of

hardware-speci�c header �les.

With these minor �xes, the layer of glue code between ScatterWeb and ns-2 is complete.

76

6.4 Evaluation

6.4 Evaluation

The simulation of ScatterWeb on the ns-2 network simulator does work. We have suc-

cessfully run several simulation setups with di�erent ScatterWeb user applications and

collected simulation traces. A screenshot of the Network Animator (nam) displaying one of

these traces is shown in Figure 6.4.

Figure 6.4: A trace of a ScatterWeb simulation shown on nam.

There are numerous advantages of running ScatterWeb simulations on ns-2: Compared

to the work required for deploying a large number of sensor nodes in order to test a user

application, the work of setting up a simulation is trivial. It is even possible to simulate

very large sensor networks, for which it would otherwise be impossible to procure enough

real sensor nodes. On a smaller scale, even the development of small applications is faster,

because the development cycle of implementing, compiling and testing does not involve the

time consuming act of �ashing the binary images onto the sensor nodes. Perhaps even more

importantly, debugging of large distributed applications, such as routing or load balancing

algorithms, is quite di�cult on real sensor networks. When simulating, it is not only easy

to trace events in the network, one can also resort to standard debugging tools such as gdb.

As a secondary advantage, the ScatterWeb on ns-2 subproject uses a di�erent compiler

than the one used traditionally in ScatterWeb. As a result, several inconsistencies in the

ScatterWeb source code were discovered and �xed, thus improving the overall quality of the

ScatterWeb codebase.

77

Chapter 6 Simulation: ScatterWeb on ns-2

At this stage, we have not worked on the integration of sensor readings into the simulation,

leaving this for future work (see Section 8.2). Our patches are however already being

included in the ScatterWeb project (see [sca]).

78

Chapter 7

A Use Case

Up until now, we have illustrated the concepts and workings of the FACTS middleware

architecture for wireless sensor networks using either theoretical examples foreign to our

application domain, such as the Turing Machine example in Section 5.1, or simpli�ed code

fragments, such as those found in Section 4.5.2. In this chapter we will underline the

real-world relevance of FACTS by showing how a real-world WSN application can be im-

plemented in FACTS.

Section 7.1 re-introduces Generic Role Assignment as the application that we will use as

example for this use case. Sections 7.2 and 7.3 present our implementation, followed by an

evaluation in Section 7.4.

7.1 Use Case: Generic Role Assignment

The example we have chosen is the Generic Role Assignment (GRA) framework as described

in [RFMB04]. We believe GRA to be a good example because it is a state-of-the-art WSN

concept proposed by an active research group in this domain, and it has only been proposed

in September 2004 in [RFMB04] and implementation details will not be published until

November 2005 in [FR05].1

To make things more interesting and as its name already suggests, GRA itself aims to be

a generic framework. Preserving this level of abstraction in the FACTS implementation of

GRA illustrates the power of the underlying concepts of our architecture.

Generic Role Assignment has already been introduced in Section 2.4.4, however we will

quickly recapitulate the fundamental idea: GRA tackles a self-con�guration problem com-

monly found in wireless sensor networks. Nodes have to decide which role they will perform

after the network has been deployed and during its operation. Possible roles di�er depend-

ing on the task of the network, and if a task requires several complementary services, a

node may even have several roles, one for each service. Typical services include coverage,

1A copy of this paper was available on the authors homepage as of this writing.

79

Chapter 7 A Use Case

Listing 7.1: Role de�nition for Coverage as formulated in the Generic Role Assignment
framework. (Code taken from [FR05])

1 ON :: {
2 temp-sensor == true &&
3 battery >= threshold &&
4 count(2 hops) {
5 role == ON &&
6 dist(super.pos, pos) <= sensing-range
7 } <= 1 }
8 OFF :: else

clustering and in-network aggregation, as already introduced in Section 1.1.4. GRA intro-

duces a language in which these roles can be de�ned and proposes a distributed algorithm

that allows sensor nodes to assign roles to themselves based on their own local information

and information they retrieve from neighboring nodes.

Listing 7.1 gives the GRA implementation of Coverage, a service which saves power by

turning o� nodes whose observations of the environment overlap with su�cient other nodes

in the vicinity and are thus redundant.

As can be seen, the Coverage listing de�nes two states, ON and OFF, that are used

to switch the sensor node either on or o�, depending on whether it is equipped with a

temperature sensor, has enough battery power left, and whether or not more than one

other node within it's sensing range is already switched on.

The role assignment algorithm as summarized in [FR05, Section 4.1] is

�[. . .] built around local cache tables maintained at each node, which contain a

collection of (local and remote) properties that are relevant for role assignment.

Eventually, the node will refer to its cache table to assign its own role, based on

the information it has learned about its neighbors up to that time.�

The cache table is also referred to as the property directory when the emphasis is more

on the conceptual rather than the implementation side. The process of �lling the property

directory, and deciding which role to assume is subdivided into several phases: initialization,

property propagation, and local rule evaluation. Further, the algorithm must take into

account that node and network conditions may change over time, and it must ensure that

the role assignment procedure terminates after a few iterations, leaving each node with a

stable role.

Note that in order to maintain the �exibility of Generic Role Assignment, the role assign-

ment algorithm must the strictly independent from the high-level role de�nitions. Hence

we will discuss each of them separately in the following sections.

80

7.2 Generic Role Assignment Implemented in FACTS

7.2 Generic Role Assignment Implemented in FACTS

The two key components of an implementation of Generic Role Assignment are the property

directory to hold the properties of the sensor nodes and the algorithm to distribute these

properties over the network. We have chosen to implement the property directory as a set

of facts, one for each property. The distribution algorithm is implemented in the form of

ten rules. The complete code is given in Listing B.3.

Note that the terminology might be slightly confusing because both FACTS and GRA

make use of the term �property�: In FACTS, a property is a key-value-tuple belonging to

one fact, in GRA a property describes a certain aspect of a physical sensor node and is

stored in the property directory together with some data internal to the role assignment

algorithm. Just as for all fact names, we will use a �xed-width font for the GRA property

facts in the following.

7.2.1 Implementing the Property Directory

property facts are structured as shown in Figures 7.1 and 7.2. The structure is somewhat

similar to the �elds of the cache table as described in [FR05, Figure 2]. The key, value,

and source �elds are exact matches, except for our source �eld having a numerical

value. Our positionX and positionY �elds replace the �eld for hop counting, as given

that the position of the sensor nodes is known (see Listing 7.1, line 6) it makes more sense

to use a distance predicate for the count-operator (see Listing 7.1, line 4). Otherwise

the role de�nition would have the implicit assumption that the sensing range is always

smaller than the radio range. Finally, timestamp, isUpdate, and needsFlushing are

�elds newly introduced in our implementation, which will be explained when discussing the

respective rules. Note however that for properties that are local to each sensor node and not

propagated over the network, we omit the timestamp and isUpdate �elds, thus saving

memory.

In our GRA ruleset, we have implemented the addition of a new local property to the

property directory in the form of two rules as shown in Listing 7.2. The �rst rule �res

whenever a new interesting property fact is added to the local fact repository. In this

context, �interesting� refers to those property facts that need to be propagated to other

sensor nodes as part of the role assignment algorithm. Interesting property facts are

identi�ed by their key, which matches the one de�ned in the global graControl fact

as shown in Figure 7.3. The statements of the rule then proceed to update all relevant

information of the property fact.

Note that the last statement of the �rst rule sets the needsFlushing property to true.

This results in the second rule, which has the lowest possible priority of 0, to �ush this fact

81

Chapter 7 A Use Case

� key = „temp-sensor“
� value = „true“
� source = 2
� needsFlushing = False

property

Figure 7.1: Fact representing a temperature sensor property.

� key = „role“
� value = „on“
� source = 2
� positionX = 5
� positionY = 0
� timestamp = 13176
� isUpdate = False
� needsFlushing = False

property

Figure 7.2: Fact representing a role property.

Listing 7.2: Addition of a new local GRA property (encapsulated in a FACTS fact) to the
property directory.

1 rule tagMyNewProperties 200
2 <- exists {property
3 <- eval ({this key} == {graControl interestingKey})
4 <- eval ({this owner} == systemID)
5 }
6 -> set myNewPropertySource = systemID
7 -> set myNewInterestingPropertyPositionX = systemPositionX
8 -> set myNewInterestingPropertyPositionY = systemPositionY
9 -> set myNewInterestingPropertyTimestamp = myNewInterestingPropertyTime

10 -> set myNewInterestingPropertyIsUpdate = false
11 -> set myNewInterestingPropertyNeedsFlushing = true
12

13 rule flushProperties 0
14 <- eval ({property needsFlushing} == true)
15 -> set {property needsFlushing <- eval ({this modified} == true)} = false
16 -> flush {property needsFlushing <- eval ({this modified} == true)}

82

7.2 Generic Role Assignment Implemented in FACTS

at the very end of the run of the rule engine. This interaction ensures that the facts, that

were just updated and are thus internally tagged as modi�ed, have their modi�ed �ags

removed and do not cause the �rst rule to �re again during the next run of the rule engine.

7.2.2 Implementing Property Propagation and Role Updates

Property propagation and role updates are controlled by the graControl fact as shown

in Figure 7.3. The interestingKey property of this fact describes which property

facts should be propagated, thus implementing the notion �that a node can decide which

of its property values are relevant to what neighbors� as stated in [FR05, Section 4]. The

newValue property of the graControl fact speci�es which value the property fact

matching interestingKey should be assigned. timeout controls the delay until when

this assignment should be made, as changing the value immediately might result in un-

stable behavior of the distributed algorithm. Setting the timeout property to −1 makes

it inactive, i.e. no values need to be updated.

On the implementation side, it makes sense to subdivide the problem into three separate

tasks:

1. Broadcast interesting property facts and update local values upon reception (see

Listing 7.3).

2. Filter property facts that are not of interest either because they are out of range

or duplicates (see Listing 7.4).

3. Update the timeout and change the role of the local node once the timeout expires

(see Listing 7.5).

In the following we will have a detailed look at each of these steps one by one and point

out peculiarities of the implementation.

� interestingKey = „role“
� newValue = „on“
� timeout = -1

graControl

Figure 7.3: GRA control fact.

83

Chapter 7 A Use Case

Listing 7.3: GRA property propagation.

1 rule propagatePropertiesInSensingRange 50
2 <- exists interestingPropertyIsNotUpdate
3 -> set interestingPropertyIsNotUpdate = true
4 -> send 0 systemTxRange interestingPropertyIsUpdate
5 -> set interestingPropertyIsUpdate = false
6

7 rule replaceUpdatedProperties 150
8 <- exists {property <- eval ({this isUpdate} == true)}
9 -> define tmp [updateID = {property id

10 <- eval ({this isUpdate} == true)
11 <- eval ({this source} != systemID)
12 }]
13 -> set {tmp updateSource} = {property source <- eval ({this id} == {tmp

updateID})}
14 -> set {tmp updateKey} = {property key <- eval ({this id} == {tmp updateID})}
15 -> retract {property
16 <- eval ({this source} == {tmp updateSource})
17 <- eval ({this key} == {tmp updateKey})
18 <- eval ({this id} != {tmp updateID})
19 }
20 -> set {property isUpdate <- eval ({this id} == {tmp updateID})} = false
21 -> retract {tmp}

Broadcast and Update

Listing 7.3 consists of two rules, one taking care of transmitting property facts and

the other one of handling received property facts. The propagatePropertiesIn-

SensingRange �res when property facts that are not �agged as being an update them-

selves become available. For these facts, the rule sets the isUpdate property to true in

line 3, broadcasts them to all sensor nodes in the transmission range, and then sets the

isUpdate property back to false. The function of the isUpdate property is to di�eren-

tiate between locally generated and received property facts: Only received property

facts are �agged as being an update. As a side note, it is worth pointing out that the two

slots being used in lines 2 and 3 as opposed to 4 and 5 are di�erent, although they both

refer to the same fact. The reason for this is that the fact they are addressing via �ltering

conditions is changed in line 3 and hence the �ltering conditions of the slot need to be

adjusted.

The second rule in Listing 7.3 deals with handling the reception of property facts as

transmitted by the previous rule. Accordingly, it �res whenever a property fact �agged

as an update is added to the fact repository. The �rst three statements extract information

from the new property fact and store it in a temporary fact. Note how the �rst of these

statements in lines 9 to 12 only extracts the unique id of the property fact, which is then

84

7.2 Generic Role Assignment Implemented in FACTS

used to easily access the other properties in lines 13 and 14. The retract statement in

lines 15 to 19 then removes all potential duplicates from the local fact repository, duplicates

being exactly those property facts that were received from the same source as the current

property fact, share the same key, but are not identical � after all we only want to retract

older facts but not the current one. Finally, the rule sets the isUpdate property of the

new property fact to false in line 20 and retracts the temporary fact.

Filtering

The above scheme appears to be straightforward, but unfortunately there are several corner

cases to take care of in which we do not want existing property facts to be replaced. This

�ltering of newly received property facts is implemented in the three rules in Listing 7.4.

Note that each of these rules has a higher priority than the replaceUpdatedProperties

rule in the previous listing. They are hence executed earlier and may remove undesired

property facts before these are processed any further.

All three rules �re when new property facts marked as updates are added to the

local fact repository. The �rst rule removes all those property facts that should not be

propagated any further because they are too far away from their originating node to be of

further interest. In our example, this is true when the facts are outside the sensing range

of the sensor node.

The second rule, after once again de�ning a temporary fact for easy access to the ID

of the current property fact, retracts the current property fact if it was generated at

exactly the local sensor node, i.e. the local sensor node has received its own property

fact that was retransmitted by a remote sensor node. The crucial conditions for these facts

are that the source of the property fact matches the ID of the local node (line 15) and

was modi�ed by another node (line 16).

Finally, the third rule takes care of retracting outdated property facts for which the

sensor node already has received newer information. It follows the by now well established

pattern of generating a temporary fact in lines 22 to 25. In the crucial retract statement

in lines 26 to 33, the rule retracts the current property fact (line 27) only if a di�erent

property fact exists which originated from the same source, has the same key, but a newer

timestamp (lines 28 to 32). This construct is particularly interesting because we have two

nested slots both with the same fact names. The inner slot allows to check whether a fact

di�erent from the one currently being evaluated in the outer slot exists.

85

Chapter 7 A Use Case

Listing 7.4: Removing unneeded properties.

1 rule removeOutOfRangeProperties 160
2 <- exists {property <- eval ({this isUpdate} == true)}
3 -> retract {property
4 <- eval ((sqrt (
5 (({this positionX} - systemPositionX) ^ 2)
6 + (({this positionY} - systemPositionY) ^ 2)
7)) > systemSensingRange)
8 }
9

10 rule removeOwnDuplicateProperties 160
11 <- exists {property <- eval ({this isUpdate} == true)}
12 -> define tmp [duplicateID = {property id <- eval ({this isUpdate} == true)}]
13 -> retract {property
14 <- eval ({this id} == {tmp duplicateID})
15 <- eval ({this source} == systemID)
16 <- eval ({this owner} != {system owner})
17 }
18 -> retract {tmp}
19

20 rule removeOtherDuplicateProperties 155
21 <- exists {property <- eval ({this isUpdate} == true)}
22 -> define tmp [duplicateID = {property id <- eval ({this isUpdate} == true)}]
23 -> set {tmp duplicateSource} = {property source <- eval ({this id} == {tmp

duplicateID})}
24 -> set {tmp duplicateKey} = {property key <- eval ({this id} == {tmp

duplicateID})}
25 -> set {tmp duplicateTimestamp} = {property timestamp <- eval ({this id} == {

tmp duplicateID})}
26 -> retract {property
27 <- eval ({this id} == {tmp duplicateID})
28 <- exists {property
29 <- eval ({this source} == {tmp duplicateSource})
30 <- eval ({this key} == {tmp duplicateKey})
31 <- eval ({this timestamp} >= {tmp duplicateTimestamp})
32 }
33 }
34 -> retract {tmp}

86

7.3 Coverage Implemented in GRA Running on FACTS

Listing 7.5: Change role after timeout.

1 rule cancelTimeoutIfUnchanged 130
2 <- eval ({graControl timeout} > 0)
3 <- eval ({graControl newValue} == myRole)
4 -> set {graControl timeout} = -1
5

6 rule countdownRoleTimeout 120
7 <- eval ({graControl timeout} > 0)
8 -> set {graControl timeout} = ({graControl timeout} - 1)
9

10 rule setMyRoleAfterTimeout 120
11 <- eval ({graControl timeout} == 0)
12 -> set myRole = {graControl newValue}
13 -> set myRoleTimestamp = myRoleTime

Timeout and Role Update

As the �nal building block of the generic part of the implementation of Generic Role As-

signment as FACTS rulesets, the rules in Listing 7.5 deal with updating the timeout counter

and changing the current role once the timeout expires.

The implementation is straightforward: The �rst rule cancels the timeout (as kept in the

timeout property of the graControl fact) if the newValue already matches the current

role. This may occur in case the local sensor node was about to change into a di�erent role,

but while waiting for the timeout to expire it has received new information that causes it

to return to its previous role. As the timeout has not expired yet and the �rst role change

has yet to occur, the solution is to simply abort the timeout thus leaving the current role

unchanged. To this end the timeout property is set to −1.
The second rule decrements the timeout property until it reaches 0, at which point the

third rule �res.

The third rule updates the role of the local node based on the newValue property stored

in the graControl fact. Additionally, it updates the timestamp of the role property

fact. The updated role property fact �res the �rst rule in Listing 7.3, thereby propagating

the changed role of the local sensor nodes to other nodes in the neighborhood.

Having implemented Generic Role Assignment in the FACTS ruleset de�nition language,

we now proceed to implement to Coverage speci�c parts in the next section.

7.3 Coverage Implemented in GRA Running on FACTS

The GRA role de�nition is implemented in the form of rules. They bridge the gap between

the available property facts and the properties of the graControl fact that control role

updates.

87

Chapter 7 A Use Case

Listing 7.6: Rule specifying whether a sensor node is turned on.

1 rule coverageON 100
2 <- exists {property}
3 <- exists {property
4 <- eval ({this source} == systemID)
5 <- eval ({this key} == "temp-sensor")
6 <- eval ({this value} == true)
7 }
8 <- exists {property
9 <- eval ({this source} == systemID)

10 <- eval ({this key} == "battery")
11 <- eval ({this value} >= systemBatteryThreshold)
12 }
13 <- eval ((count {property
14 <- eval ({this source} != systemID)
15 <- eval ({this key} == "role")
16 <- eval ({this value} == "on")
17 }) <= 1)
18 -> set {graControl newValue} = "on"
19 -> set {graControl timeout} = ((systemID * {system timeout-multiplier}) + {

system timeout-offset})

The Coverage algorithm implemented on top of the FACTS version of Generic Role

Assignment requires four rules, two of which are shown in Listings 7.6 and 7.7. The �rst rule

speci�es when a sensor node is to be turned on, the other three rules specify when a sensor

node is to be turned o�. Having three rules to switch a sensor node o� is signi�cantly more

overhead than the one required by the GRA implementation of Coverage (see Listing 7.1).

Unfortunately, there is no workaround to this drawback as the FACTS ruleset de�nition

language does not include the semantics of an else keyword (compare Section 4.4.6).

The rule in Listing 7.6 closely resembles the de�nition of the �ON� role in Listing 7.1.

The check for each GRA property translates directly into an exists condition for simple

GRA conditions. For GRA conditions involving an operator, such as the count keyword,

there is an equivalent FACTS eval condition. Note that each of these conditions checks

whether the property fact originated at the local node for the �rst two conditions (lines

3 to 12) or at a remote node (lines 13 to 17).

Once the rule �res, it sets the newValue property of the graControl fact to “on”

and initializes the timeout property. For simplicity, we base this initialization on the ID

of the local sensor node rather than a random value.

The exists condition of the rule shown in Listing 7.7 is the direct opposite to the

exits condition in lines 3 to 7 of Listing 7.6. Note how the comparison operator in line

6 di�ers. This rule sets the local sensor node to be turned o� because it does not have a

temperature sensor available.

88

7.4 Evaluation

Listing 7.7: Rule specifying whether a sensor node is turned o�.

1 rule coverageOFF_1 100
2 <- exists {property}
3 <- exists {property
4 <- eval ({this source} == systemID)
5 <- eval ({this key} == "temp-sensor")
6 <- eval ({this value} != true)
7 }
8 -> set {graControl newValue} = "off"
9 -> set {graControl timeout} = ((systemID * {system timeout-multiplier}) + {

system timeout-offset})

There are two more similar rules as part of the Coverage on GRA implementation in

FACTS. These rules trigger on the respective opposites to the conditions in lines 8 to 12

and 13 to 17 of Listing 7.6.

This concludes the discussion of the implementation of Generic Role Assignment, and on

top of that a Coverage algorithm, on the FACTS middleware architecture. The complete

ruleset is available in Section B.3.

7.4 Evaluation

The successful implementation of Generic Role Assignment in the form of FACTS rulesets

underscores the power of our middleware architecture. While not having access to the

original implementation of Generic Role Assignment, it is our impression that the imple-

mentation in merely ten rules presented in this chapter is rather elegant.

On the downside, we have not been able to run the compiled Coverage / GRA bytecode

as of this writing, because the implementation of the FACTS-re runtime environment on

the ScatterWeb platform is still lacking some language features. We are currently working

on implementing these missing features, a task which we do not expect to be particularly

challenging as several implementation of somewhat similar bytecode interpreters such as

[WLT] and [Pie05] have already been completed successfully.

On the other hand, we have successfully simulated a deployment of GRA running on

FACTS using FACTS-hs. Given that [FR05] also merely describes an implementation of

GRA in a simulation environment, we consider the results presented in this chapter as

su�cient to justify our claims.

89

Chapter 8

Future Work and Conclusion

In this thesis we have proposed the FACTS middleware architecture as tool to ease develop-

ment of applications and services for wireless sensor networks. After a short introduction,

we started by discussing related work and quickly presented the tools used during our de-

velopment e�ort (Chapters 1, 2 and 3). In Chapter 4 we then explained the fundamental

concepts of the FACTS middleware architecture and introduced the ruleset de�nition lan-

guage as a mean for implementing rule-based applications and services. Chapter 5 discussed

the steps undertaken to implement our proposals and presented the FACTS-rc ruleset com-

piler with an emphasis on bytecode optimization, the FACTS-hs implementation of FACTS

in Haskell, and the FACTS-re implementation of FACTS on the ScatterWeb platform.

Slightly deviating from the main topic of this thesis, we discussed in Chapter 6 how to

run ScatterWeb user application on the ns-2 network simulator. Our main goal in doing

so was to support the development of the FACTS-re runtime environment. Back on the

main track, Chapter 7 presented a detailed use case for the FACTS middleware architecture

running a state-of-the-art WSN application.

Finally, in this chapter we will evaluate our work as whole, discuss directions for future

research, and conclude.

8.1 Evaluation

We set out with the goal of developing a middleware architecture for wireless sensor networks

that is both data-centric and event-driven. Inspired by the programming abstractions from

the expert system domain, the FACTS middleware architecture was designed around facts,

rules and functions. Rule-based programming is indeed being used implicitly in several

middleware approaches for wireless sensor networks, as discussed in Section 2.4. To the best

of our knowledge, we are the �rst to explicitly propose a holistic rule-based architecture

in this domain, that is both generic and expressive enough to allow for other rule-based

concepts to be implemented on top of it.

91

Chapter 8 Future Work and Conclusion

In our work we have paid special attention to robustness and reproducibility. Hence, we

did not settle for a single implementation that implicitly de�nes the detailed semantics of

our system, but we created two separate implementations, one with its focus on concepts

and completeness and the other one targeted towards real-world deployments. Furthermore,

we have used well-known standard tools where ever possible to keep the barriers of entry

of our project as low as possible.

Finally, with our implementation of ScatterWeb on ns-2, we created a powerful devel-

opment tool with applications well outside our main project.

8.2 Future Work

There are three major directions in which to proceed based on the results presented in this

thesis.

On the implementation side, we �rst need to �nish the implementation of the runtime en-

vironment. Once this is completed, the more challenging work of optimizing the algorithms

begins. We expect the read and write access to the EEPROM of the sensor node that

stores the bytecode as well as the fact repository to be the main performance bottleneck in

the execution of the rule engine. Avoiding access to the EEPROM should result in major

performance improvements, however the obvious solution to cache the respective data in

RAM is made di�cult by the very limited amount of RAM. Established caching strategies

may provide a starting point when looking into this problem. Still, they will need to be

adapted to the fact that the bytecode contains data structures of di�erent types and sizes

and with di�erent access patterns.

On the application-level side, the next logical step is to extend the functionality of the

FACTS middleware by implementing more algorithms and services commonly used in wire-

less sensor networks in the form of rulesets. This will lead to questions about the depen-

dencies between rulesets and their interactions at run-time. We envision that rulesets will

eventually be used as drop-in components for sensor networks that extend the capabilities

of a deployed wireless sensor network while making these advantages transparently available

to the application that runs on the middleware.

The steps required to reach this goal are:

1. To add support for handling dependency resolution and compiling several rulesets into

one bytecode image to the FACTS-rc ruleset compiler. This includes investigating the

notion of what exactly the public interface of a ruleset should be and resolving public

symbols across rulesets.

92

8.3 Concluding Remarks

2. To implement compile-time checking for cyclic interactions between rules, i.e. given

that rules react to certain facts and modify other facts, can we be sure that the execu-

tion of several interdependent rules does not loop inde�nitely? This and related issues

have already been discussed in the past by the knowledge engineering community, and

there are good starting points for our work such as [PSA92] and [Kip92].

3. To eventually allow for the transmission of new rulesets to the sensor nodes at run-

time. In order for this to work properly, the rule engine must be able to rearrange

the bytecode in the EEPROM, possibly updating meta information and pointers in

the current bytecode.

On the simulation side, it would be desirable to achieve better integration of the Scat-

terWeb on ns-2 patches with the ScatterWeb code base and implement the remaining

functionality. The more interesting challenge is however to design a proper simulation of

the environment as perceived by the sensors of the simulated sensor nodes. The scope of this

simulation would be similar to the one proposed in [Dow04]. As discussed in Section 2.5.2,

their approach has some drawbacks. [Win05] suggests that a better approach would be to

have one global ns-2 agent for each property of the environment that is to be simulated.

This agent provides an interface for the simulated sensor nodes to register for very speci�c

events, e.g. the event that the temperature in a certain area rises above a threshold value.

The sensor node that has registered for this speci�c event is sent one noti�cation by the

environment agent only once when the event occurs. Compared to the periodic broadcast

packets as described in [Dow04] this approach would have a signi�cantly lower overhead

during the simulation.

8.3 Concluding Remarks

Seeing a project grow from conceptual sketches into fully implemented components is a very

satisfying experience. In about six months we have covered quite some ground and created

the FACTS middleware architecture for wireless sensor networks basically from scratch,

thereby closing the previously existing gap between us and established research groups in

this �eld.

With FACTS we have created a middleware architecture that combines the advantages

of the three major middleware abstractions: FACTS supports the grouping abstraction,

interpretation of bytecode, and service-oriented modularity. Our three key concepts, facts,

rules and functions, map naturally to the domain of wireless sensor networks. Together with

the expressiveness of the ruleset de�nition language, they empower developers to implement

applications that are both data-centric and event-driven by design.

93

Chapter 8 Future Work and Conclusion

We have already published parts of the results described in this thesis, namely the �rst

half of Chapter 4 and the middle of part of Chapter 5, in [TWS06] together with the

coverage example discussed in Section 4.5.2. In the near future we hope to follow up

these publications with both a quantitative study of the FACTS middleware running on

the ScatterWeb platform and a rather technical paper about the intricacies of simulating

ScatterWeb on ns-2.

Based on the foundations developed so far and in light of the open questions and the

potential of the FACTS middleware architecture, we look forward to continuing our research.

94

Appendix A

Ruleset De�nition Language Grammar

This is the complete grammar of the FACTS ruleset de�nition language. It has been

generated automatically using a patched version of y2l as introduced in Section 3.5 with

the yacc and lex de�nition �les of the FACTS-rc ruleset compiler as input. Section 4.5

explains the semantics of the language and provides some examples. Section 5.1 covers the

compilation process.

ruleset ::= �ruleset� identi�er block_list

identi�er ::= [a−zA−Z_][a−zA−Z_\−0−9]∗
block_list ::= block { block }
block ::= depends

| named_name

| named_slot

| fact

| rule

depends ::= �depends� identi�er

named_name ::= �name� identi�er �=� name

named_slot ::= �slot� identi�er �=� slot

fact ::= �fact� name property_list_opt

rule ::= �rule� identi�er priority condition_list statement_list

priority ::= [0−9]+
| −[0−9]+

slot ::= identi�er

| �{� name condition_list_opt �}�
| �{� name key condition_list_opt �}�

condition_list_opt ::= [condition_list]
condition_list ::= �< −� condition [condition_list]
condition ::= �exists� slot

| �eval� �(� expression comparison_operation expression �)�

95

Appendix A Ruleset De�nition Language Grammar

comparison_operation ::= �==�

| �! =�

| �<�

| �>�

| �<=�

| �>=�

statement_list ::= �− >� statement [statement_list]
statement ::= �de�ne� name initializer_list_opt

| �retract� slot

| �copy� slot

| �send� expression expression slot

| �set� slot �=� expression

| ��ush� slot

| �call� identi�er expression_list_opt

expression_list_opt ::= [�(� expression_list �)�]
expression_list ::= expression { �,� expression }
expression ::= variable

| �(� unary_operation expression �)�

| �(� expression binary_operation expression �)�

unary_operation ::= �count�

| �sum�

| �product�

| �min�

| �max�

| �sqrt�

binary_operation ::= �+�

| �−�
| �∗�
| �/�

| �^�

property_list_opt ::= [�[� property_list �]�]
property_list ::= property { �,� property }
property ::= key �=� variable

key ::= [a−zA−Z_][a−zA−Z_\−0−9]∗
variable ::= �true�

| �false�

| [0−9]+

96

| −[0−9]+
| quoted_string

| slot

initializer_list_opt ::= [�[� initializer_list �]�]
initializer_list ::= initializer { �,� initializer }
initializer ::= key �=� expression

name ::= identi�er

| quoted_string

quoted_string ::= ��� (��� | [a−zA−Z_][a−zA−Z_\−0−9]∗ ���)

97

Appendix B

Example Rulesets

B.1 Coverage Ruleset

Listing B.1: Coverage ruleset.

1 /**
2 *
3 * Problem: Coverage

4 * Shutdown nodes that supply values for regions already covered

5 *
6 **/

7

8 ruleset Coverage

9

10

11

12 /**
13 * Generic node setup.

14 **/

15

16 name system = "system"

17 fact system [broadcastMAC = 0, txPower = 15]

18

19 name node = "node"

20

21 slot nodeID = {node owner}

22 slot nodePosX = {node posX}

23 slot nodePosY = {node posY}

24

25

26

27 /**
28 * Coverage

29 **/

99

Appendix B Example Rulesets

30

31 fact node [state = "UNDEF"]

32

33 name init = "init"

34

35 slot coveredNodeID = {"covered" owner}

36

37

38

39 // Calculate pessimistic range and send it to neighbors.

40

41 rule range 50

42 <- exists {init}

43 -> retract {init}

44 -> set {"node" state} = "ON"

45 -> define "range" [xMin = (nodePosX - 10), xMax = (nodePosX + 10), yMin = (

nodePosY - 10), yMax = (nodePosY + 10)]

46 -> send {system broadcastMAC} {system txPower} {"range"}

47

48

49

50 // If the node is currently turned on, check all received range facts if they

51 // cover some of the current node’s regions, but don’t create duplicates.

52

53 slot rangeXMaxYMaxOwner = {"range" owner

54 <- eval ({this owner} != nodeID)

55 <- eval ({this xMin} <= nodePosX)

56 <- eval ({this yMin} <= nodePosY)

57 <- eval ({this xMin} >= (nodePosX - 10))

58 <- eval ({this yMin} >= (nodePosY - 10))

59 }

60

61 slot rangeXMaxYMinOwner = {"range" owner

62 <- eval ({this owner} != nodeID)

63 <- eval ({this xMin} <= nodePosX)

64 <- eval ({this yMax} >= nodePosY)

65 <- eval ({this xMin} >= (nodePosX - 10))

66 <- eval ({this yMax} <= (nodePosY + 10))

67 }

68

69 slot rangeXMinYMinOwner = {"range" owner

70 <- eval ({this owner} != nodeID)

71 <- eval ({this xMax} >= nodePosX)

72 <- eval ({this yMax} >= nodePosY)

73 <- eval ({this xMax} <= (nodePosX + 10))

100

B.1 Coverage Ruleset

74 <- eval ({this yMax} <= (nodePosY + 10))

75 }

76

77 slot rangeXMinYMaxOwner = {"range" owner

78 <- eval ({this owner} != nodeID)

79 <- eval ({this xMax} >= nodePosX)

80 <- eval ({this yMin} <= nodePosY)

81 <- eval ({this xMax} <= (nodePosX + 10))

82 <- eval ({this yMin} >= (nodePosY - 10))

83 }

84

85 // first: xMax/yMax

86 rule xMaxYMaxCovered 30

87 <- eval ({node state} == "ON")

88 <- exists rangeXMaxYMaxOwner

89 -> retract {"coveredXMaxYMax"

90 <- eval ({this byNode} == rangeXMaxYMaxOwner)

91 }

92 -> define "coveredXMaxYMax" [byNode = rangeXMaxYMaxOwner]

93

94 // second: xMax/yMin

95 rule xMaxYMinCovered 30

96 <- eval ({node state} == "ON")

97 <- exists rangeXMaxYMinOwner

98 -> retract {"coveredXMaxYMin"

99 <- eval ({this byNode} == rangeXMaxYMinOwner)

100 }

101 -> define "coveredXMaxYMin" [byNode = rangeXMaxYMinOwner]

102

103 // third: xMin/yMin

104 rule xMinYMinCovered 30

105 <- eval ({node state} == "ON")

106 <- exists rangeXMinYMinOwner

107 -> retract {"coveredXMinYMin"

108 <- eval ({this byNode} == rangeXMinYMinOwner)

109 }

110 -> define "coveredXMinYMin" [byNode = rangeXMinYMinOwner]

111

112 // fourth: xMin/yMax

113 rule xMinYMaxCovered 30

114 <- eval ({node state} == "ON")

115 <- exists rangeXMinYMaxOwner

116 -> retract {"coveredXMinYMax"

117 <- eval ({this byNode} == rangeXMinYMaxOwner)

118 }

101

Appendix B Example Rulesets

119 -> define "coveredXMinYMax" [byNode = rangeXMinYMaxOwner]

120

121

122

123 // If all parts are covered, the node sends a message to its neighbors that it

124 // is going to switch itself off so they retract the range fact of this node.

125

126 rule determineCoverage 40

127 <- exists {"coveredXMaxYMax"}

128 <- exists {"coveredXMaxYMin"}

129 <- exists {"coveredXMinYMin"}

130 <- exists {"coveredXMinYMax"}

131 -> define "covered"

132 -> send {system broadcastMAC} {system txPower} {"covered"}

133 -> set {node state} = "OFF"

134

135

136

137 // If a node gets a covered fact from another node, this implies that the node

138 // in question has turned itself off. Hence we need retract the range fact and

139 // possibly the coveredXY fact. Further, the current node remains switched on.

140

141 rule check 70

142 <- eval (coveredNodeID != nodeID)

143 -> retract {"range"

144 <- eval ({this owner} == coveredNodeID)

145 }

146 -> retract {"coveredXMaxYMax"

147 <- eval ({this byNode} == coveredNodeID)

148 }

149 -> retract {"coveredXMaxYMin"

150 <- eval ({this byNode} == coveredNodeID)

151 }

152 -> retract {"coveredXMinYMin"

153 <- eval ({this byNode} == coveredNodeID)

154 }

155 -> retract {"coveredXMinYMax"

156 <- eval ({this byNode} == coveredNodeID)

157 }

158 -> retract {"covered"}

159 -> set {node state} = "ON"

102

B.2 Turing Machine Ruleset

B.2 Turing Machine Ruleset

Listing B.2: Turing Machine ruleset.

1 /**
2 *
3 * This is the Turing Machine ruleset which implements a complete Turing

4 * Machine to show the power of the rule engine.

5 *
6 **/

7

8 ruleset TuringMachine

9

10 name constants = "constants"

11 name run = "run"

12 name function = "function"

13 name tape = "tape"

14

15 // These constants are to be used by external scripts that use this ruleset.

16 fact constants [errorState = -1, blankSymbol = "_", right = 1, left = -1,

neutral = 0]

17

18 // These slots make the programming below more readable.

19 slot constErrorState = {constants errorState}

20 slot constBlankSymbol = {constants blankSymbol}

21 slot constRight = {constants right}

22 slot constLeft = {constants left}

23 slot constNeutral = {constants neutral}

24

25 slot runState = {run state}

26 slot runPosition = {run position}

27 slot runLeftBorder = {run leftBorder}

28 slot runRightBorder = {run rightBorder}

29

30 slot currentTapeSymbol = {tape symbol

31 <- eval ({this position} == runPosition)

32 }

33

34 // Note how the slots for next state, symbol, and movement filter the fact base

35 // dynamically based on the current state of the Turing Machine.

36 slot functionNextState = {function nextState

37 <- eval ({this state} == runState)

38 <- eval ({this symbol} == currentTapeSymbol)

39 }

40 slot functionNextSymbol = {function nextSymbol

41 <- eval ({this state} == runState)

103

Appendix B Example Rulesets

42 <- eval ({this symbol} == currentTapeSymbol)

43 }

44 slot functionNextMovement = {function nextMovement

45 <- eval ({this state} == runState)

46 <- eval ({this symbol} == currentTapeSymbol)

47 }

48

49 /*
50 * This rule deals with error handling and turns the machine off when an error

51 * is encountered.

52 */

53 rule error 200

54 <- eval (runState == constErrorState)

55 -> retract {run}

56

57 /*
58 * These two rules create the impression of an infinite tape by extending the

59 * tape with new tape facts whenever the head reaches a side.

60 */

61 rule leftBorder 150

62 <- eval (runPosition < runLeftBorder)

63 -> define tape [position = runPosition, symbol = constBlankSymbol]

64 -> set runLeftBorder = (runLeftBorder - 1)

65

66 rule rightBorder 150

67 <- eval (runPosition > runRightBorder)

68 -> define tape [position = runPosition, symbol = constBlankSymbol]

69 -> set runRightBorder = (runRightBorder + 1)

70

71 /*
72 * This rule does the main processing of the Turing Machine: As long as the

73 * machine is running, move the current state, position and symbol to a

74 * temporary fact, then update the tape fact, and the state and position

75 * attributes of the run fact.

76 */

77 rule step 100

78 <- exists {run}

79 -> define "next" [state = functionNextState, symbol = functionNextSymbol,

movement = functionNextMovement]

80 -> set runState = {"next" state}

81 -> set currentTapeSymbol = {"next" symbol}

82 -> set runPosition = (runPosition + {"next" movement})

83 -> retract {"next"}

84

85

104

B.2 Turing Machine Ruleset

86

87 /**
88 * These facts implement a Turing Machine that increments a binary-coded

89 * number on the tape and then stops.

90 *
91 * See Uwe Schoening "Theoretische Informatik -- kurzgefasst" p. 83

92 **/

93

94 // These facts define the function of the Turing Machine, matching current

95 // state and symbol to the next symbol, state, and tape movement.

96 fact function [state = 0, symbol = "s0", nextState = 0, nextSymbol = "

s0", nextMovement = constRight]

97 fact function [state = 0, symbol = "s1", nextState = 0, nextSymbol = "

s1", nextMovement = constRight]

98 fact function [state = 0, symbol = constBlankSymbol, nextState = 1,

nextSymbol = constBlankSymbol, nextMovement = constLeft]

99 fact function [state = 1, symbol = "s0", nextState = 2, nextSymbol = "

s1", nextMovement = constLeft]

100 fact function [state = 1, symbol = "s1", nextState = 1, nextSymbol = "

s0", nextMovement = constLeft]

101 fact function [state = 1, symbol = constBlankSymbol, nextState =

constErrorState, nextSymbol = "s1", nextMovement = constNeutral]

102 fact function [state = 2, symbol = "s0", nextState = 2, nextSymbol = "

s0", nextMovement = constLeft]

103 fact function [state = 2, symbol = "s1", nextState = 2, nextSymbol = "

s1", nextMovement = constLeft]

104 fact function [state = 2, symbol = constBlankSymbol, nextState =

constErrorState, nextSymbol = constBlankSymbol, nextMovement = constRight]

105

106 // These facts are the intial content of the tape.

107 fact tape [position = 1, symbol = "s1"]

108 fact tape [position = 2, symbol = "s0"]

109 fact tape [position = 3, symbol = "s1"]

105

Appendix B Example Rulesets

B.3 Generic Role Assignment with Coverage Ruleset

Listing B.3: Generic Role Assignment with Coverage ruleset.

1 /**
2 *
3 * Generic Role Assignment / Coverage

4 *
5 * This script implements a simple role-assignment algorithm for wireless

6 * sensor networks based on Generic Role Assignment as discussed in

7 * Christian Frank and Kay Roemer. Algorithms for Generic Role Assignment in

8 * Wireless Sensor Networks. In Proceedings of the 3rd ACM Conference on

9 * Embedded Networked Sensor Systems (SenSys), San Diego, CA, USA, November

10 * 2005. http://www.vs.inf.ethz.ch/publ/papers/sensys05.roleassignment.pdf

11 *
12 **/

13

14 ruleset GenericRoleAssignment

15

16

17

18 /**
19 * Generic system setup.

20 **/

21

22 name system = "system"

23 slot systemID = {system owner}

24 slot systemPositionX = {system positionX}

25 slot systemPositionY = {system positionY}

26 slot systemTxRange = {system tx-range}

27

28

29

30 /**
31 * Generic Role Assignment.

32 **/

33

34 name property = "property"

35 name graControl = "graControl"

36 name tmp = "tmp"

37

38 // The timeout multiplier and offset need to allow for enough simulated time

39 // for the nodes to reach a consistent state.

40 fact system [tx-range = 10, timeout-multiplier = 3, timeout-offset = 3, battery

-threshold = 30, sensing-range = 10]

41

106

B.3 Generic Role Assignment with Coverage Ruleset

42 slot systemBatteryThreshold = {system battery-threshold}

43 slot systemSensingRange = {system sensing-range}

44

45 slot myRole = {property value

46 <- eval ({this source} == systemID)

47 <- eval ({this key} == "role")

48 }

49 slot myRoleTime = {property time // Read-only value generated by the

rule engine.

50 <- eval ({this source} == systemID)

51 <- eval ({this key} == "role")

52 }

53 slot myRoleTimestamp = {property timestamp

54 <- eval ({this source} == systemID)

55 <- eval ({this key} == "role")

56 }

57

58 slot myNewPropertySource = {property source

59 <- eval ({this owner} == systemID)

60 <- eval ({this modified} == true)

61 }

62 slot myNewInterestingPropertyPositionX = {property positionX

63 <- eval ({this key} == {graControl interestingKey})

64 <- eval ({this owner} == systemID)

65 <- eval ({this modified} == true)

66 }

67 slot myNewInterestingPropertyPositionY = {property positionY

68 <- eval ({this key} == {graControl interestingKey})

69 <- eval ({this owner} == systemID)

70 <- eval ({this modified} == true)

71 }

72 slot myNewInterestingPropertyIsUpdate = {property isUpdate

73 <- eval ({this key} == {graControl interestingKey})

74 <- eval ({this owner} == systemID)

75 <- eval ({this modified} == true)

76 }

77 slot myNewInterestingPropertyTime = {property time // Read-only value

generated by the rule engine.

78 <- eval ({this key} == {graControl interestingKey})

79 <- eval ({this owner} == systemID)

80 <- eval ({this modified} == true)

81 }

82 slot myNewInterestingPropertyTimestamp = {property timestamp

83 <- eval ({this key} == {graControl interestingKey})

84 <- eval ({this owner} == systemID)

107

Appendix B Example Rulesets

85 <- eval ({this modified} == true)

86 }

87 slot myNewInterestingPropertyNeedsFlushing = {property needsFlushing

88 <- eval ({this key} == {graControl interestingKey})

89 <- eval ({this owner} == systemID)

90 <- eval ({this modified} == true)

91 }

92

93 slot interestingPropertyIsNotUpdate = {property isUpdate

94 <- eval ({this modified} == true)

95 <- eval ({this isUpdate} == false)

96 <- eval ({this key} == {graControl interestingKey})

97 }

98 slot interestingPropertyIsUpdate = {property isUpdate

99 <- eval ({this modified} == true)

100 <- eval ({this isUpdate} == true)

101 <- eval ({this key} == {graControl interestingKey})

102 }

103

104 /*
105 * Add information relevant to GRA to new properties.

106 */

107 rule tagMyNewProperties 200

108 <- exists {property

109 <- eval ({this key} == {graControl interestingKey})

110 <- eval ({this owner} == systemID)

111 }

112 -> set myNewPropertySource = systemID

113 -> set myNewInterestingPropertyPositionX = systemPositionX

114 -> set myNewInterestingPropertyPositionY = systemPositionY

115 -> set myNewInterestingPropertyTimestamp = myNewInterestingPropertyTime

116 -> set myNewInterestingPropertyIsUpdate = false

117 -> set myNewInterestingPropertyNeedsFlushing = true

118

119 /*
120 * Remove properties that are outside their range of interest.

121 */

122 rule removeOutOfRangeProperties 160

123 <- exists {property <- eval ({this isUpdate} == true)}

124 -> retract {property

125 <- eval ((sqrt (

126 (({this positionX} - systemPositionX) ^ 2)

127 + (({this positionY} - systemPositionY) ^ 2)

128)) > systemSensingRange)

129 }

108

B.3 Generic Role Assignment with Coverage Ruleset

130

131 /*
132 * Remove duplicates that occur when a node’s information is send back to the

133 * node.

134 */

135 rule removeOwnDuplicateProperties 160

136 <- exists {property <- eval ({this isUpdate} == true)}

137 -> define tmp [duplicateID = {property id <- eval ({this isUpdate} == true)}]

138 -> retract {property

139 <- eval ({this id} == {tmp duplicateID})

140 <- eval ({this source} == systemID)

141 <- eval ({this owner} != {system owner})

142 }

143 -> retract {tmp}

144

145 /*
146 * Remove duplicates that occur when nodes retransmit the information they have

147 * from other nodes.

148 */

149 rule removeOtherDuplicateProperties 155

150 <- exists {property <- eval ({this isUpdate} == true)}

151 -> define tmp [duplicateID = {property id <- eval ({this isUpdate} == true)}]

152 -> set {tmp duplicateSource} = {property source <- eval ({this id} == {tmp

duplicateID})}

153 -> set {tmp duplicateKey} = {property key <- eval ({this id} == {tmp

duplicateID})}

154 -> set {tmp duplicateTimestamp} = {property timestamp <- eval ({this id} == {

tmp duplicateID})}

155 -> retract {property

156 <- eval ({this id} == {tmp duplicateID})

157 <- exists {property

158 <- eval ({this source} == {tmp duplicateSource})

159 <- eval ({this key} == {tmp duplicateKey})

160 <- eval ({this timestamp} >= {tmp duplicateTimestamp})

161 }

162 }

163 -> retract {tmp}

164

165 /*
166 * Replace old properties with updated ones as other nodes send their updated

167 * properties over the network.

168 * NOTE: There is a crucial assumption in this code. At any time only one

169 * property fact can be a candidate for replacing another one. If there are two

170 * the second one is silently ignored and may well cause problems later on.

171 * This assumption is valid because having a new candidate implies that a new

109

Appendix B Example Rulesets

172 * packet was received, and there can only be one single GRA fact per packet.

173 * After receiving a packet, the node MUST run the rule engine to process the

174 * new fact.

175 */

176 rule replaceUpdatedProperties 150

177 <- exists {property <- eval ({this isUpdate} == true)}

178 -> define tmp [updateID = {property id

179 <- eval ({this isUpdate} == true)

180 <- eval ({this source} != systemID)

181 }]

182 -> set {tmp updateSource} = {property source <- eval ({this id} == {tmp

updateID})}

183 -> set {tmp updateKey} = {property key <- eval ({this id} == {tmp updateID})}

184 -> retract {property

185 <- eval ({this source} == {tmp updateSource})

186 <- eval ({this key} == {tmp updateKey})

187 <- eval ({this id} != {tmp updateID})

188 }

189 -> set {property isUpdate <- eval ({this id} == {tmp updateID})} = false

190 -> retract {tmp}

191

192 /*
193 * Cancel timeout below if the new value has changed to match the current

194 * value.

195 */

196 rule cancelTimeoutIfUnchanged 130

197 <- eval ({graControl timeout} > 0)

198 <- eval ({graControl newValue} == myRole)

199 -> set {graControl timeout} = -1

200

201 /*
202 * Update role once a random timeout has run out.

203 */

204 rule countdownRoleTimeout 120

205 <- eval ({graControl timeout} > 0)

206 -> set {graControl timeout} = ({graControl timeout} - 1)

207

208 rule setMyRoleAfterTimeout 120

209 <- eval ({graControl timeout} == 0)

210 -> set myRole = {graControl newValue}

211 -> set myRoleTimestamp = myRoleTime

212

213 /*
214 * Send (push) properties to other nodes.

215 */

110

B.3 Generic Role Assignment with Coverage Ruleset

216 rule propagatePropertiesInSensingRange 50

217 <- exists interestingPropertyIsNotUpdate

218 -> set interestingPropertyIsNotUpdate = true

219 -> send 0 systemTxRange interestingPropertyIsUpdate

220 -> set interestingPropertyIsUpdate = false

221

222 /*
223 * Remove the modified flag from facts that have been updated by the previous

224 * rule.

225 */

226 rule flushProperties 0

227 <- eval ({property needsFlushing} == true)

228 -> set {property needsFlushing <- eval ({this modified} == true)} = false

229 -> flush {property needsFlushing <- eval ({this modified} == true)}

230

231

232

233 /**
234 * Below is the Coverage specific part.

235 **/

236

237 // Only the role properties are worth propagating.

238 fact graControl [interestingKey = "role"]

239

240 /*
241 * Decide whether the current node should be in charge of covering a certain

242 * area...

243 */

244 rule coverageON 100

245 <- exists {property}

246 <- exists {property

247 <- eval ({this source} == systemID)

248 <- eval ({this key} == "temp-sensor")

249 <- eval ({this value} == true)

250 }

251 <- exists {property

252 <- eval ({this source} == systemID)

253 <- eval ({this key} == "battery")

254 <- eval ({this value} >= systemBatteryThreshold)

255 }

256 <- eval ((count {property

257 <- eval ({this source} != systemID) // Don’t count the node itself.

258 <- eval ({this key} == "role")

259 <- eval ({this value} == "on")

260 }) <= 1)

111

Appendix B Example Rulesets

261 -> set {graControl newValue} = "on"

262 -> set {graControl timeout} = ((systemID * {system timeout-multiplier}) + {

system timeout-offset}) // We use the system ID as timeout value for

simplicity.

263

264 /*
265 * ... or not.

266 */

267 rule coverageOFF_1 100

268 <- exists {property}

269 <- exists {property

270 <- eval ({this source} == systemID)

271 <- eval ({this key} == "temp-sensor")

272 <- eval ({this value} != true)

273 }

274 -> set {graControl newValue} = "off"

275 -> set {graControl timeout} = ((systemID * {system timeout-multiplier}) + {

system timeout-offset}) // We use the system ID as timeout value for

simplicity.

276

277 rule coverageOFF_2 100

278 <- exists {property}

279 <- exists {property

280 <- eval ({this source} == systemID)

281 <- eval ({this key} == "battery")

282 <- eval ({this value} < systemBatteryThreshold)

283 }

284 -> set {graControl newValue} = "off"

285 -> set {graControl timeout} = ((systemID * {system timeout-multiplier}) + {

system timeout-offset}) // We use the system ID as timeout value for

simplicity.

286

287 rule coverageOFF_3 100

288 <- exists {property}

289 <- eval ((count {property

290 <- eval ({this source} != systemID) // Don’t count the node itself.

291 <- eval ({this key} == "role")

292 <- eval ({this value} == "on")

293 }) > 1)

294 -> set {graControl newValue} = "off"

295 -> set {graControl timeout} = ((systemID * {system timeout-multiplier}) + {

system timeout-offset}) // We use the system ID as timeout value for

simplicity.

112

Bibliography

[ADL+98] G. Asada, M. Dong, T.S. Lin, F. Newberg, G. Pottie, W.J. Kaiser, and

H.O. Marcy. Wireless Integrated Network Sensors: Low Power Systems

on a Chip. In Proceedings of the 1998 European Solid State Circuits

Conference, 1998. http://www.janet.ucla.edu/WINS/download_

publications/esscirc98.pdf.

[Bal98] Helmut Balzert. Lehrbuch der Software-Technik, volume 2. Spektrum

Akademischer Verlag, Heidelberg, Berlin, 2nd edition, 1998.

[BFK+03] Carsten Buschmann, Stefan Fischer, Jochen Koberstein, Norbert Lutten-

berger, and Florian Reuter. SWARMS - Software Architecture for Radio-

Based Mobile Self-Organizing Systems. Technical report, Institute of Op-

erating Systems and Computer Networks, Technischen Universität Braun-

schweig, July 2003. http://www.ibr.cs.tu-bs.de/users/cbuschma/

papers/Buschmann_etal_SWARMS.pdf.

[CGG+05] Carlo Curino, Matteo Giani, Marco Giorgetta, Alessandro Giusti, Amy L. Mur-

phy, and Gian Pietro Picco. TinyLIME: Bridging Mobile and Sensor Networks

through Middleware. In Proceedings of the 3rd IEEE International Confer-

ence on Pervasive Computing and Communications (PerCom 2005), pages

61�72, Kauai Island, Hawaii, 2005. IEEE Computer Society Press. http:

//www.elet.polimi.it/upload/picco/papers/percom05.pdf.

[Dow04] Ian Downard. Simulating Sensor Networks in NS-2. NRL Formal Report 5522-

04-10, Naval Research Laboratory, May 2004. http://pf.itd.nrl.navy.

mil/nrlsensorsim/.

[DSV05] Adam Dunkels, Oliver Schmidt, and Thiemo Voigt. Using Protothreads for

Sensor Node Programming. In The REALWSN'05 Workshop on Real-World

Wireless Sensor Networks, Stockholm, June 2005. http://www.sics.se/

~adam/dunkels05using.pdf.

113

http://www.janet.ucla.edu/WINS/download_publications/esscirc98.pdf
http://www.janet.ucla.edu/WINS/download_publications/esscirc98.pdf
http://www.ibr.cs.tu-bs.de/users/cbuschma/papers/Buschmann_etal_SWARMS.pdf
http://www.ibr.cs.tu-bs.de/users/cbuschma/papers/Buschmann_etal_SWARMS.pdf
http://www.elet.polimi.it/upload/picco/papers/percom05.pdf
http://www.elet.polimi.it/upload/picco/papers/percom05.pdf
http://pf.itd.nrl.navy.mil/nrlsensorsim/
http://pf.itd.nrl.navy.mil/nrlsensorsim/
http://www.sics.se/~adam/dunkels05using.pdf
http://www.sics.se/~adam/dunkels05using.pdf

Bibliography

[FR05] Christian Frank and Kay Römer. Algorithms for Generic Role Assign-

ment in Wireless Sensor Networks. In Proceedings of the 3rd ACM Con-

ference on Embedded Networked Sensor Systems (SenSys), San Diego, CA,

USA, November 2005. http://www.vs.inf.ethz.ch/publ/papers/

sensys05.roleassignment.pdf.

[GLvB+03] David Gay, Phil Levis, Rob von Behren, Matt Welsh, Eric Brewer, and David

Culler. The nesC Language: A Holistic Approach to Networked Embedded

Systems. In Proceedings of Programming Language Design and Implementation

(PLDI) 2003, June 2003. http://www.tinyos.net/papers/nesc.pdf.

[gre] Habitat Monitoring on Great Duck Island. Intel Research Laboratory at Berke-

ley. http://www.greatduckisland.net/.

[Har87] David Harel. Statecharts: A Visual Formalism for Complex Systems. Science

of Computer Programming, 8(3):231�274, June 1987. http://www.wisdom.

weizmann.ac.il/~dharel/SCANNED.PAPERS/Statecharts.pdf.

[hea] The Heathland Experiment Homepage. Telematics Working Group, Hamburg

University of Technology. http://www.ti5.tu-harburg.de/projects/

SensorNet/heathland.htm.

[HSW+00] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David Culler, and

Kristofer Pister. System Architecture Directions for Networked Sensors. In

Proceedings of the 12th International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS 2000), Cambridge,

November 2000. http://www.tinyos.net/papers/tos.pdf.

[HV02] Annika Hinze and Agnès Voisard. A �exible parameter-dependent Algebra for

Event Noti�cation Services. Technical report, Freie Universität Berlin, 2002.

ftp://ftp.inf.fu-berlin.de/pub/reports/tr-b-02-10.pdf.

[IGE00] Chalermek Intanagonwiwat, Ramesh Govindan, and Deborah Estrin. Directed

Di�usion: A Scalable and Robust Communication Paradigm for Sensor Net-

works. In Proceedings of the Sixth Annual International Conference on Mobile

Computing and Networking (MobiCOM '00), Boston, Massachussetts, August

2000. http://lecs.cs.ucla.edu/~estrin/papers/diffusion.ps.

[int05] Moore's Law � Made Real by Intel Innovation. Intel Corp., 2005. http:

//www.intel.com/technology/silicon/mooreslaw/.

114

http://www.vs.inf.ethz.ch/publ/papers/sensys05.roleassignment.pdf
http://www.vs.inf.ethz.ch/publ/papers/sensys05.roleassignment.pdf
http://www.tinyos.net/papers/nesc.pdf
http://www.greatduckisland.net/
http://www.wisdom.weizmann.ac.il/~dharel/SCANNED.PAPERS/Statecharts.pdf
http://www.wisdom.weizmann.ac.il/~dharel/SCANNED.PAPERS/Statecharts.pdf
http://www.ti5.tu-harburg.de/projects/SensorNet/heathland.htm
http://www.ti5.tu-harburg.de/projects/SensorNet/heathland.htm
http://www.tinyos.net/papers/tos.pdf
ftp://ftp.inf.fu-berlin.de/pub/reports/tr-b-02-10.pdf
http://lecs.cs.ucla.edu/~estrin/papers/diffusion.ps
http://www.intel.com/technology/silicon/mooreslaw/
http://www.intel.com/technology/silicon/mooreslaw/

Bibliography

[jes] JESS � The Rule Engine for the Java Platform. http://herzberg.ca.

sandia.gov/jess/.

[JTC] ISO/IEC JTC1/SC22/WG17. ISO/IEC 13211-1 Programming Language Pro-

log. http://www.sju.edu/~jhodgson/wg17/.

[Kip92] James D. Kiper. Structural Testing of Rule-Based Expert Systems. ACM

Transactions on Software Engineering and Methodology (TOSEM), 1(2):168�

187, 1992. http://portal.acm.org/citation.cfm?id=128894.

128896.

[KK04] Vikas Kawadia and P.R. Kumar. Principles and Protocols for Power Control

in Ad Hoc Networks. IEEE Journal on Selected Areas in Communications:

Special Issue on Ad Hoc Networks, 2004. http://black.csl.uiuc.edu/

~kawadia/papers/kawadia-kumar-jsac-camera-ready0.pdf.

[KK05] Vikas Kawadia and P.R. Kumar. A Cautionary Perspective on Cross

Layer Design. IEEE Wireless Communication Magazine, 12(1):3�11,

February 2005. http://black.csl.uiuc.edu/~prkumar/ps_files/

cross-layer-design.pdf.

[KKT04] Ula³ C. Kozat, Iordanis Koutsopoulos, and Leandros Tassiulas. A Frame-

work for Cross-layer Design of Energy-e�cient Communication with QoS Pro-

visioning in Multi-hop Wireless Networks. In Proceedings of IEEE INFOCOM

2004, Hong Kong, March 2004. http://www.inf.uth.gr/~jordan/

INFOCOM-2004.pdf.

[KR05] Oliver Kasten and Kay Römer. Beyond Event Handlers: Program-

ming Wireless Sensors with Attributed State Machines. In 4th Interna-

tional Conference on Information Processing in Sensor Networks (IPSN'05).

UCLA, April 2005. http://www.vs.inf.ethz.ch/publ/papers/

kasten-beyond-2005.pdf.

[LC02] Philip Levis and David Culler. Maté: A Tiny Virtual Machine for Sensor

Networks. In Proceedings of the 10th International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS-X), San

Jose, California, October 2002. http://www.cs.berkeley.edu/~pal/

pubs/mate.pdf.

[LLWC03] Philip Levis, Nelson Lee, Matt Welsh, and David Culler. TOSSIM: Ac-

curate and Scalable Simulation of Entire TinyOS Applications. In Pro-

115

http://herzberg.ca.sandia.gov/jess/
http://herzberg.ca.sandia.gov/jess/
http://www.sju.edu/~jhodgson/wg17/
http://portal.acm.org/citation.cfm?id=128894.128896
http://portal.acm.org/citation.cfm?id=128894.128896
http://black.csl.uiuc.edu/~kawadia/papers/kawadia-kumar-jsac-camera-ready0.pdf
http://black.csl.uiuc.edu/~kawadia/papers/kawadia-kumar-jsac-camera-ready0.pdf
http://black.csl.uiuc.edu/~prkumar/ps_files/cross-layer-design.pdf
http://black.csl.uiuc.edu/~prkumar/ps_files/cross-layer-design.pdf
http://www.inf.uth.gr/~jordan/INFOCOM-2004.pdf
http://www.inf.uth.gr/~jordan/INFOCOM-2004.pdf
http://www.vs.inf.ethz.ch/publ/papers/kasten-beyond-2005.pdf
http://www.vs.inf.ethz.ch/publ/papers/kasten-beyond-2005.pdf
http://www.cs.berkeley.edu/~pal/pubs/mate.pdf
http://www.cs.berkeley.edu/~pal/pubs/mate.pdf

Bibliography

ceedings of the First ACM Conference on Embedded Networked Sensor Sys-

tems (SenSys 2003), 2003. http://www.cs.berkeley.edu/~pal/pubs/

tossim-sensys03.pdf.

[mic] Datasheet of the MICA2DOT Wireless Microsensor Mote. http:

//www.xbow.com/Products/Product_pdf_files/Wireless_pdf/

MICA2DOT_Datasheet.pdf.

[Moo65] Gordon E. Moore. Cramming More Components onto Integrated Circuits.

Electronics, April 1965.

[MSK+05] C. Mallanda, A. Suri, V. Kunchakarra, S.S. Iyengar, R. Kannan,

and Durresi A. Simulating Wireless Sensor Networks with OM-

NeT++. http://bit.csc.lsu.edu/sensor_web/final_papers/

SensorSimulator-IEEE-Computers.pdf, January 2005.

[ns005] The ns Manual, June 2005. http://www.isi.edu/nsnam/ns/doc/ns_

doc.pdf.

[Pie05] Thomas Pietsch. Entwurf und Implementierung einer gra�schen Program-

mierumgebung für Sensorknoten in einem Funknetzwerk. Master's thesis, De-

partment of Mathematics and Computer Science, Freie Universität Berlin, 2005.

[Pis] Kristofer S.J. Pister. Smart Dust � Autonomous Sensing and Communication in

a Cubic Millimeter. http://robotics.eecs.berkeley.edu/~pister/

SmartDust/.

[PSA92] A. Preece, R. Shinghal, and Batarekh A. Principles and Practice in Verifying

Rule-Based Systems. Knowledge Engineering Review, 7:115�141, 1992. http:

//www.csd.abdn.ac.uk/~apreece/Pubs/KER92.html.

[RFMB04] Kay Römer, Christian Frank, Pedro José Marrón, and Christian Becker.

Generic Role Assignment for Wireless Sensor Networks. In Proceedings

of the 11th ACM SIGOPS European Workshop, pages 7�12, Leuven, Bel-

gium, September 2004. http://www.vs.inf.ethz.ch/publ/papers/

sigops.roleassignment.pdf.

[RKM02] Kay Römer, Oliver Kasten, and Friedemann Mattern. Middleware Challenges

for Wireless Sensor Networks. ACM Mobile Computing and Communication

Review, 6(4):59�61, October 2002. http://www.vs.inf.ethz.ch/publ/

papers/wsn-middleware.pdf.

116

http://www.cs.berkeley.edu/~pal/pubs/tossim-sensys03.pdf
http://www.cs.berkeley.edu/~pal/pubs/tossim-sensys03.pdf
http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/MICA2DOT_Datasheet.pdf
http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/MICA2DOT_Datasheet.pdf
http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/MICA2DOT_Datasheet.pdf
http://bit.csc.lsu.edu/sensor_web/final_papers/SensorSimulator-IEEE-Computers.pdf
http://bit.csc.lsu.edu/sensor_web/final_papers/SensorSimulator-IEEE-Computers.pdf
http://www.isi.edu/nsnam/ns/doc/ns_doc.pdf
http://www.isi.edu/nsnam/ns/doc/ns_doc.pdf
http://robotics.eecs.berkeley.edu/~pister/SmartDust/
http://robotics.eecs.berkeley.edu/~pister/SmartDust/
http://www.csd.abdn.ac.uk/~apreece/Pubs/KER92.html
http://www.csd.abdn.ac.uk/~apreece/Pubs/KER92.html
http://www.vs.inf.ethz.ch/publ/papers/sigops.roleassignment.pdf
http://www.vs.inf.ethz.ch/publ/papers/sigops.roleassignment.pdf
http://www.vs.inf.ethz.ch/publ/papers/wsn-middleware.pdf
http://www.vs.inf.ethz.ch/publ/papers/wsn-middleware.pdf

Bibliography

[sca] ScatterWeb Homepage. Computer Systems & Telematics Working Group, Freie

Universität Berlin. http://www.inf.fu-berlin.de/inst/ag-tech/

scatterweb_net/.

[SHM03] Ahmed Safwat, Hossam Hassenein, and Hussein Mouftah. Optimal

Cross-Layer Designs for Energy-E�cient Wireless Ad hoc and Sen-

sor Networks. In The 22nd IEEE International Performance, Com-

puting, and Communications Conference (IPCCC 2003), Phoenix, Ari-

zona, USA, April 2003. http://www.cs.queensu.ca/home/safwat/

samplepublications/Safwat_IPCCC_2003.pdf.

[SPMC04] Robert Szewczyk, Joseph Polastre, Alan Mainwaring, and David Culler.

Lessons From a Sensor Network Expedition. In Proceedings of the First Euro-

pean Workshop on Sensor Networks (EWSN '04), Berlin, Germany, January

2004. http://www.cs.berkeley.edu/~polastre/papers/ewsn04.

pdf.

[Sto03] Jon �Hannibal� Stokes. Understanding Moore's Law. ars technica, Febru-

ary 2003. http://arstechnica.com/articles/paedia/cpu/moore.

ars/.

[Tho99] Simon Thompson. Haskell � The Craft of Functional Programming. Addison-

Wesley, second edition, 1999.

[TRV+05] V. Turau, Ch. Renner, M. Venzke, S. Waschik, Ch. Weyer, and M. Witt. The

Heathland Experiment: Results And Experiences. In Workshop on Real-World

Wireless Sensor Networks REALWSN'05, Stockholm, June 2005. http://

www.sics.se/realwsn05/papers/turau05heathland.pdf.

[TS05] Kirsten Ter�oth and Jochen Schiller. Driving Forces behind Middleware Con-

cepts for Wireless Sensor Networks. In The REALWSN'05 Workshop on Real-

World Wireless Sensor Networks, Stockholm, June 2005. http://page.mi.

fu-berlin.de/~terfloth/mw_forces_realwsn05.pdf.

[TWS06] Kirsten Ter�oth, Georg Wittenburg, and Jochen Schiller. FACTS - A

Rule-Based Middleware Architecture for Wireless Sensor Networks. In

Proceedings of the First International Conference on COMmunication Sys-

tem softWAre and MiddlewaRE (COMSWARE), New Delhi, India, Jan-

uary 2006. http://page.mi.fu-berlin.de/~wittenbu/uni/facts/

terfloth06facts.pdf.

117

http://www.inf.fu-berlin.de/inst/ag-tech/scatterweb_net/
http://www.inf.fu-berlin.de/inst/ag-tech/scatterweb_net/
http://www.cs.queensu.ca/home/safwat/sample publications/Safwat_IPCCC_2003.pdf
http://www.cs.queensu.ca/home/safwat/sample publications/Safwat_IPCCC_2003.pdf
http://www.cs.berkeley.edu/~polastre/papers/ewsn04.pdf
http://www.cs.berkeley.edu/~polastre/papers/ewsn04.pdf
http://arstechnica.com/articles/paedia/cpu/moore.ars/
http://arstechnica.com/articles/paedia/cpu/moore.ars/
http://www.sics.se/realwsn05/papers/turau05heathland.pdf
http://www.sics.se/realwsn05/papers/turau05heathland.pdf
http://page.mi.fu-berlin.de/~terfloth/mw_forces_realwsn05.pdf
http://page.mi.fu-berlin.de/~terfloth/mw_forces_realwsn05.pdf
http://page.mi.fu-berlin.de/~wittenbu/uni/facts/terfloth06facts.pdf
http://page.mi.fu-berlin.de/~wittenbu/uni/facts/terfloth06facts.pdf

Bibliography

[Win05] Rolf Winter. Personal conversation, September 2005.

[Wit] Georg Wittenburg. FACTS - A Rule-Based Middleware Architecture for Wire-

less Sensor Networks. http://page.mi.fu-berlin.de/~wittenbu/

uni/facts/.

[WLLP01] Brett Warneke, Matt Last, Brian Liebowitz, and Kristofer S.J. Pis-

ter. Smart Dust: Communicating with a Cubic-Millimeter Computer.

IEEE Computer Magazine, pages 44�51, January 2001. http://doi.

ieeecomputersociety.org/10.1109/2.895117.

[WLT] Georg Wittenburg, Matthias Lehmann, and Kirsten Ter�oth. ScatterVM � A

Virtual Machine for the ScatterWeb ESB. http://page.mi.fu-berlin.

de/~wittenbu/uni/scattervm/.

118

http://page.mi.fu-berlin.de/~wittenbu/uni/facts/
http://page.mi.fu-berlin.de/~wittenbu/uni/facts/
http://doi.ieeecomputersociety.org/10.1109/2.895117
http://doi.ieeecomputersociety.org/10.1109/2.895117
http://page.mi.fu-berlin.de/~wittenbu/uni/scattervm/
http://page.mi.fu-berlin.de/~wittenbu/uni/scattervm/

	Introduction
	Wireless Sensor Networks
	Definition and Challenges
	Motivation and Applications
	Platforms and Deployments
	Basic Services

	ScatterWeb
	Problem Statement and Proposed Solution

	Related Work
	Programming Tools and Abstractions
	TinyOS
	nesC
	Attributed State Machines
	Protothreads

	Cross-layer Networking
	Middleware Overview and Concepts
	Existing Middleware Approaches
	Directed Diffusion
	Maté
	SWARMS
	Generic Role Assignment
	TinyLIME

	Simulation
	TOSSIM
	Wireless Sensor Networks on ns-2
	OMNeT++

	Theoretical Background

	Tools and Procedures
	Project Management
	Subversion
	ns-2 Network Simulator
	C to C++ Translator (ctocpp)
	y2l -- Yacc to LaTeX

	Concepts and Language
	Overview
	Basic Concepts
	Facts
	Rules
	Functions

	Derived Concepts
	Slots
	Rulesets
	Globally Shared Information Space

	Design Details and Considerations
	Sets of Facts
	Separation of Conditions and Statements
	Filtering Facts for Processing by a Statement
	Adjusting Ownership of Modified Facts
	Avoiding Local Variables
	No else Keyword

	Ruleset Definition Language
	Syntax
	Examples

	Compilation and Execution
	The Compilation Process: FACTS-rc
	Example: Turing Machine Ruleset
	Parsing and Bytecode Data Structure
	EEPROM Memory Layout and Bytecode Optimization
	Evaluation of Bytecode Optimization

	Prototype Implementation: FACTS-hs
	Rationale
	Overview
	Relevant Code Fragments

	Implementation on ScatterWeb: FACTS-re
	Overview
	Relevant Code Fragments

	Simulation: ScatterWeb on ns-2
	Overview
	Possible Approaches
	Implementation
	Linking C Code into ns-2
	Connecting the Network Stack
	Simulating Timer Interrupts
	Minor Fixes

	Evaluation

	A Use Case
	Use Case: Generic Role Assignment
	Generic Role Assignment Implemented in FACTS
	Implementing the Property Directory
	Implementing Property Propagation and Role Updates

	Coverage Implemented in GRA Running on FACTS
	Evaluation

	Future Work and Conclusion
	Evaluation
	Future Work
	Concluding Remarks

	Ruleset Definition Language Grammar
	Example Rulesets
	Coverage Ruleset
	Turing Machine Ruleset
	Generic Role Assignment with Coverage Ruleset

	Bibliography

