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Abstract

This paper describes the replay attack against traditional and channel-based Chaumian
mixes and puts it into context with other attacks on anonymizing services. It then eval-
uates different possible approaches to a defense against said attack, concentrating on the
question of efficiently recognizing potentially compromised messages within a channel-based
cascade of mixes. Finally, an exemplary implementation of a solution is presented for the
anonymizing cascade of mixes of the AN.ON project.
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Chapter 1

Introduction to Mixes

The original Internet was designed to provide information services in case of a nuclear catas-
trophe. Fortunately, this scenario never became a reality and the Internet had a chance to
gain wide-spread adoption in civil society. Its core technology however, still remains cen-
tered around the goal of reliability and best-effort service, while typical civil use cases have
much more differentiated requirements. If the Internet is to become the communication
backbone of modern society and assuming that changes in the core technology are unlikely
to occur, these additional requirements need to be provided for by building new services
based on the existing core.

1.1 Anonymity and Unobservability

Among the three major goals of information security – confidentiality, integrity, and avail-
ability – anonymity and unobservability are subgoals of confidentiality. Rather than con-
cealing the content of a given message, it is the goal to hide the identity of the communi-
cating parties from each other and from any outsider. Given a sufficiently strong attacker,
it also becomes necessary to conceal the existence of the communication relationship along
with its defining parameters such as time, duration and volume of the transmitted mes-
sages, thus rendering the communication relationship unobservable. The questions that
should remain unanswered are “Who”, “When” and “If.”

1.1.1 Applications of Anonymity and Unobservability

If a technology aims to provide comprehensive communication services, a way to anony-
mously exchange information needs to be among them, as many key activities of individuals
or the society as a whole could not be carried out without it. These activities include:

Elections: At the core of the democratic process is the secret vote [GG, Art. 38 (1)] that
conceals the identity of the voter from the institution that is counting the votes. This
is possible because there is no way to deduce the voter based on a given ballot.

Business: The existence of a communication relationship between business partners taken
together with other secondary information such as market position, product line
or past communication habits may reveal information about internal strategies or
decisions. In the hands of a competitor, this information might endanger the economic
success of a company.

1



Chapter 1 Introduction to Mixes

Medical Counsel: Counsel related to health or other issues of a very personal nature is
commonly offered over the telephone network. In this case, the individual trusts the
operator of the telephone network not to reveal his1contact information to the other
party.

Freedom of Press / Speech: While anonymous statements can safely be regarded as less
trustworthy than those of which the author is known, cases are still plausible, in which
an author deems it beneficial for his personal safety to remain unknown. [Re03] has
a recent example.

Personal Privacy: Not a cornerstone of society as the other items, but still worth men-
tioning because of the volume of this kind of communication, is the possibility of
individuals to exchange messages anonymously mainly out of personal comfort. For
instance, in the case of a letter or advertisement published anonymously in a news-
paper, the individual trusts the publisher not to reveal his identity to a third party.

The intention to allow for these activities to take place over the Internet is reflected
in current policy and legislation: They recognize the importance of anonymity [CE99,
II. 3.], confirm the existence of a right of the individual to remain anonymous [Be92],
and specifically require a provider of information services on the Internet to allow for his
services to be used anonymously or with a pseudonym whenever this is technically feasible.
[TDDSG, §4 (6)]

1.1.2 A Formal Definition

True anonymity – the complete lack of any kind of information on who sent a particular
message – is not possible as an individual can only be anonymous within a set of subjects,
the “anonymity set”. Ideally, within this set only a probabilistic measure remains on
whom a message belongs to. The set needs to be as heterogeneous as possible, because any
feature visibly shared between all members would lead to the attacker gaining information
about the individual member in relation to said feature. For instance, if the Alcoholics
Anonymous were to set up a anonymous message service for their members, this would not
conceal the information that each individual sender of a message has a personal problem
related to alcohol, as this feature is visibly shared between all members.

For a single message m one would ideally expect the probability of it belonging to a
specific individual i to be equal to the reciprocal of the size of the anonymity set to which
the individual belongs:∧

i ∈ S
∧

m ∈
⋃
s∈S

Ms : Pr(m ∈ Mi) =
1
|S|

with S being the anonymity set in question and Mi the set of messages sent by an individual
i.

Based on this assumption, a simple metric for anonymity A(i) of an individual i comes
to mind: ∧

i ∈ S : A(i) = 1− 1
|S|

1For the sake of readability only, the male form will be used throughout this text.
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with A(i) = 1 standing for absolutely anonymous communication and A(i) = 0 for no
anonymity at all.

This simple scheme however does not take into account the circumstances of the trans-
mission, the differences in communication habits of the individuals, or changes in the
composition of the anonymity set. [SeDa02] offers a more in-depth evaluation of possible
metrics of anonymity.

1.2 The Concept of a Mix

A technical solution to make anonymous communication over an untrusted medium with a
potentially strong attacker possible was first proposed by David L. Chaum in 1981 [Ch81].
His idea is centered around a special entity in the communication network called a “mix”.
This mix would serve as a relay for messages while taking special steps to render the
communication relationship anonymous. For reasons described later in this text, a mix will
typically not work alone, but be part of a “cascade of mixes” – a chain of interconnected
mixes with a distinct first and last mix.

1.2.1 Protection Goals

By being relayed via a cascade of mixes a communication relationship will gain the following
qualities:

• The sender of a message remains concealed from its receiver.2

• The sender of a received message and respectively the receiver of a sent message
remain concealed from third parties.

• The existence of the communication relationship between sender and receiver remains
concealed.

The distinction between “received message” – a message in the shape in which it reaches
the receiver – and “sent message” – a message in the shape in which it leaves the sender – is
necessary as later on they will become synonymous with messages before and respectively
after being processed by a mix.

Figure 1.1 illustrates how these goals create different points of view on a messages: The
entire message is only known to the sender; everything except the identity of the sender is
visible to the receiver; and the attacker ideally is not even aware that the message exists.
As a side note, there are cases in which the receiver is not directly known to the sender, but
he is rather sending his message to an untraceable return address as described in [Ch81].

2Of course, if either a verification of the sender’s identity or a reply is required, the necessary information
may be added to the message, respectively in the form of a digital pseudonym or an untraceable return
address as described in [Ch81].
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Chapter 1 Introduction to Mixes

Figure 1.1: Protection Goals

1.2.2 The Attacker Model

The single most important parameter when designing a security related system is the set
of assumptions about the capabilities of whoever might try to break into the system – the
“attacker model”. If the attacker described in these assumptions is weaker than an attacker
in the real world, the system will be insecure. On the other hand, if the assumptions are
too strong, the system will either be inefficient or might even be completely infeasible.

The assumptions about the attacker under which the goals for a cascade of mixes are to
be reached are as follows:

1. The attacker may have both passive and active control over the network connection,
i.e. he can intercept any message, modify or delete it, and he can send any freely
constructed message to any node in the system.

2. With n being the total number of mixes in the cascade, the attacker may have control
over n−1 of these mixes and use them both actively and passively for insider attacks.

3. The attacker has no significant control over the members of the anonymity set.

4. The cryptographic algorithms used to built the system are not broken, that is they al-
low for no correspondence to be found between encrypted and unencrypted messages,
nor to create forged messages without knowing the secret key of the corresponding
user.

The last of these assumptions relates to the underlying technology used to built a mix.
The difficult part is of course that the security of some cryptographic algorithms – or rather
the mathematical assumptions they are based on – has yet to be proven. These algorithms
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are deemed hard to break not because of mathematical proof, but rather because no method
is currently known that could compromise them.

On the other side, the first three assumptions are more related to the specific scenario at
hand: Control over the network components and the ability to manipulate network traffic
are quite realistic for any sufficiently big Internet carrier; at least one mix in the cascade
must not be compromised, as otherwise it would be impossible for a mix-based system
to achieve its goals; and finally, if the attacker had control over a sufficiently large part
of the anonymity set, the corrupt members could adjust their communication patterns to
successively isolate their target within the set.

What remains is a fairly powerful attacker with the only major limitation specific to this
scenario being that he must not control all mixes.

1.2.3 Notation

While a mix per se is not a very complex entity, the fact that we are dealing with a
dynamic system with various participants makes the matter complicated enough for an
uniform notation to make sense. Unfortunately, two of the mayor papers ([Ch81] and
[PfPfWa89]) use different notations.

The following compromise between the two will be used in this paper:

Notation Semantics
Mi A mix with i ∈ [1, n] being the position of the mix in the cascade

and n being the total number of mixes in the cascade.
Ki, K−1

i Public and private key of the mix Mi.
A, B Communicating parties or – depending on the context – also their

addresses as used by the anonymizing system.
ri Random data used to pad messages while being encrypted.
m, x, y, z Messages that are sent through the system.
Ki(x, r) = y Message x is padded with random data r and encrypted with the

public key of mix Mi, thus yielding message y.
K−1

i (y) = (x, r) Message y is decrypted with the private key of mix Mi, thus yield-
ing message x and the random data r used for padding.

Mi(x) = y Message x is being processed by mix Mi into message y.

x
Mi−→ y A short form of the above for better readability.

Table 1.1: Notational Conventions

The key idea of this notation is to differentiate between the static and the dynamic
entities of a mix, such that for example the mix itself and its public and private keys are
denoted by an upper-case character, while messages that pass through the mix are given
lower-case characters. Additions to this notation further on in this text will also adhere to
this idea.
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1.2.4 Theory of Operation

A mix is a special machine in a network that relays messages from many senders to their
respective receivers. Apart from the obvious technical components, a mix Mi consists of a
pair of keys,3 the public key Ki and the private key K−1

i :

Mi = {Ki, K−1
i }

The effect of anonymous communication is reached by the following steps:

Figure 1.2: Path of a Message Through a Mix

1. The sender encrypts his message m padded with random data ri with the public key
Ki of the mix Mi and sends it to the mix.

2. Mi receives the encrypted message Ki(ri,m) and checks whether this message has
been received in the past.

3. It then decrypts the message with his private key K−1
i (Ki(ri,m)) = (ri,m), discards

ri and retains m.

4. Simultaneously with other messages and in an order unrelated to the input sequence,
Mi sends the message m to the receiver.

5. Except the information necessary to perform step 2, the mix does not retain any
information about these operations after the process in completed.

In the first step, the additional random data is necessary to increase the size of the
message to a previously defined message size. This makes it impossible for the attacker to
assess the real size of the message and furthermore ensures that encrypting two identical
messages produces different crypted messages.4 Furthermore, the possibility for the attacker
to capture the outbound messages, encrypt them with the public key of the mix and
easily match them to the inbound messages is eliminated. In case of the message m being

3With this pair of keys the mix is a participant of a public key cryptosystem: The public key Ki is
distributed among other users, while the private key K−1

i is only known to the mix. In the cryptosystem
the two keys are inverses of each other, such that a message m can be encrypted by anyone for the mix
as Ki(m) and only the mix can decrypt it with K−1

i (Ki(m)) = m. See [RiShAd77] for a thorough
description.

6
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encrypted itself, the mix also needs to be informed separately about the addressee by adding
the unencrypted address A to the message Ki(ri,m, A) before sending it to the mix.

The second step makes it impossible for the same message to travel more than once
through the mix. This prevents the so-called “replay attack” and is the topic of this paper.
In order to make timing attacks impossible, a message is relayed together with a set of
other messages – a “batch” – in step four. Finally, for the above steps to make sense,
the mix must not retain more information about this process than absolutely necessary to
guarantee proper operation.

If any single one of these steps is carried out incorrectly, the anonymity of sender and
receiver is at stake – either intentionally or due programming or configuration error. In
order to reduce the risk of trusting a compromised mix, a set of mixes – each of which
preferably is run by an independent institution – is chained together to form a cascade.
Only one mix in this cascade has to operate correctly to ensure anonymity.

The chain-like configuration of a set of mixes into a cascade is one of many possible
topologies. The opposite would be a completely random routing through a set of mixes – a
“mix-net” – following a path laid out by the sender for each of his messages. Combinations
of these two are also possible. While [Ra01] claims that mix-nets are even more secure
against traffic analysis than cascades, the chain-like configuration has several compelling
advantages: Superior performance can be achieved as network traffic within the cascade
is well known and predictable and can be taken into account when allocating network
resources; sticking to a default route for all messages keeps the overhead of the protocol
small and gives more room for the payload of the messages; and finally, it helps to isolate
the end-user from the internal structure of the mix network. Due to these reasons, this
paper will concentrate on the cascade of mixes rather than the alternatives.

A message that is sent through a cascade of n mixes is encased for each hop by the
sender. The first mix receives K1(r1, K2(r2, . . . Kn−1(rn−1, Kn(rn, m)) . . . )), performs
the steps two through five from above and sends the result to the second mix. For the i-th
mix in the cascade the transformation is

Ki(ri, Ki+1(ri+1, Ki+2(ri+2, . . . Kn−1(rn−1, Kn(rn, m)) . . . )))
Mi−→ Ki+1(ri+1, Ki+2(ri+2, . . . Kn−1(rn−1, Kn(rn, m)) . . . ))

or in a more functional notation, with snd(x, y) := y

Mi(x) := snd . K−1
i (x)

This procedure is repeated for each mix in the cascade until the final mix receives
Kn(rn,m) and sends the real message m to the receiver.

The major drawback of the traditional mix system is the fact that it was not conceived
for a high load of potentially time-critical traffic. It is well suited for asynchronous, latency-
independent traffic, such as electronic mail which also was its original field of application.

4If the random data was not added before the message m is encrypted, the attacker could try to guess the
content of the message mguess and verify his guess by checking whether Ki(m) = Ki(mguess).
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Chapter 1 Introduction to Mixes

Figure 1.3: Flow of Messages Through a Cascade of Mixes

1.2.5 Channel-Based Mixes

The performance problem of the traditional Chaumian mixes is mainly caused by the com-
putational complexity of the asymmetric cryptographic algorithms involved, which com-
pared with a symmetric algorithm is more computationally intensive roughly by a factor
of one thousand. It makes thus sense to replace this mechanism with hybrid cryptography:
Asymmetric cryptography is only used to distribute a common secret between the commu-
nicating parties. The actual data is then transfered using symmetric cryptography based
on the previously shared common secret.

This extension of the concept of a mix was first conceived by Andreas Pfitzmann et al.
in 1989 [PfPfWa89]. It expands the mix Mi to hold additional state about the currently
open channels Ci – most notably about their symmetric keys ki j , 1 < j < |Ci| – and allows
the user to establish a persistent high-throughput connection through a mix:

Mi = {Ki, K−1
i , Ci}, Ci = {ki 1, . . . , ki n}

The messages sent to a mix are divided into two categories: normal data messages
consisting of layers of symmetrically encrypted messages and special control messages.
Noteworthy among these control messages is the one used to open a new channel through
the cascade of mixes, because it is the only one that is asymmetrically encrypted and
carries the shared secret for the following symmetrically encrypted communication. This
leads to a significant gain in performance when compared to the traditional mix concept
which required all messages to be encrypted asymmetrically.

While originally proposed for anonymous communication over an ISDN telephone net-
work, the same concept is also applicable to TCP/IP based networks: TCP as a connection
based protocol maps naturally to connections routed through a cascade of mixes.5

5In an actual implementation however, this direct mapping must be avoided as otherwise it would create
a point of attack for an attacker to do traffic analysis on.

8
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1.3 Limitations of Mix-Based System

A mix-based system cannot always guarantee full anonymity even if all requirements are
met and the system is operating properly. This is due to some aspects of communication
simply being beyond the scope of this approach. The two most prominent ones are:

• The anonymity set is weakened over the time by the changing of its composition and
thus its behavior. For an observer with sufficient time, patience and the possibility
to isolate sessions of related messages patterns will become visible. Based on these
patterns and his knownledge about which subset of the anonymity set may have
caused them, he can successively reduce the size of the anonymity set until isolating
an individual. This attack is known as “intersection attack” and as it strikes at the
non-technical core of anonymity, a technical defense may be impossible [BeFeKö00]
or is at least extremely difficult to implement [La01].

• It is impossible to prevent the sender from unknowingly compromising the anonymity
gained by sending his messages through a cascade of mixes by including sensitive in-
formation into the messages themselves. This matter is relevant as the vast majority
of the messages will not be composed by the sender directly, but rather by an appli-
cation which he is using. Unfortunately, some popular applications only offer limited
support for controlling which information they include in their messages.6

6Partial solutions to this problem exist for specific applications. For instance, closely related to the
AN.ON project a program called “CookieCooker“ has been developed that helps the user not to reveal
his identity on websites that make use of cookies. See http://cookie.inf.tu-dresden.de/.

9
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Chapter 2

The AN.ON Project

The “AN.ON: Anonymity.Online” project is an implementation of the channel-based mix
architecture as described in [PfPfWa89] tailored to the requirements of communicating over
a TCP/IP based network – the Internet – rather than the ISDN telephone network. The
development started in the year 2000 as part of the “Projekt Anonymität im Internet” at the
Dresden University of Technology and is sponsored by the German Research Foundation
and the Federal Ministry of Economics and Technology. The goal of the project is to
evaluate the feasibility and costs of anonymity on the Internet against a strong attacker
that may have control about large parts of the system and is capable of performing traffic
analysis while providing a secure and anonymous technical infrastructure being able to
cope with said attacker. In contrast to other projects that tend to reduce the strength of
the attacker in order to reduce complexity and improve performance, AN.ON aims to be a
real-time service and provide true anonymity and unobservability at the same time.

The system has been open to the public since the year 2000 and routes 4 TB of traffic per
month through its four cascades of mixes in peak times. Current work is centered around
implementing batch-based communication between the mixes, remote mix configuration
and a system to charge the users for the service offered. The homepage of the project is
located at http://anon.inf.tu-dresden.de/.

2.1 System Overview

While it would be technically possible to route all kinds of proxy-based network traffic
through the cascade of mixes, the current implementation only supports HTTP traffic.
This decision has been made to reduce the risk of illegitimate uses of the system.

AN.ON consists of the following logical components:

JAP: JAP (short for JAP Anon Proxy) is the client-side connector to the cascade of mixes.
Written in Java to ensure platform independence, it runs as local proxy and forwards
all incoming requests to the first mix of the cascade after they have been properly
encrypted. It also queries the InfoService in order to retrieve information about the
currently active cascades and to give the user feedback about the current level of
his anonymity. The only step necessary to integrate JAP into the user’s setup is to
the change the browser configuration to use the port provided by JAP as its HTTP,
HTTPS and FTP proxy.

Cascade of Mixes: At the heart of AN.ON is a cascade of mixes that widely follows the
specification laid out above: The first mix in a cascade receives its input message

11
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Chapter 2 The AN.ON Project

from JAP, decrypts them and forwards them to the next mix. That last mix sends
the messages to the cache-proxy.

Cache-Proxy: At the end of the cascade of mixes is the cache-proxy. It receives the de-
crypted messages from the last mix and finally sends them to the webservers to which
they are addressed. As the replies from the servers are cached in the proxy, future
request can be handled more quickly and network traffic is avoided.

Furthermore, this setup can easily be expanded to scan the replies received from
the webservers for items that a user is likely to request in near future and retrieve
these items automatically from the corresponding server – this behavior is referred
to as “prefetching” – thereby further reducing response time. Sending these items
through the cascade of mixes before they are requested by JAP would yield additional
performance.

InfoService: The InfoService provides the user with data about the status of currently
available cascades of mixes. Most importantly, it distributes the addresses and public
keys of the mixes, but also statistical data such as system load and information about
the level of anonymity.

Figure 2.1: Components of the AN.ON System

While the InfoService is not immediately concerned with the security of individual mes-
sages, it still represents a single point of failure in the system: Without the InfoService it
would be impossible for JAP to retrieve the information about the currently active cascades
of mixes and the service would effectively be unavailable to the user. A more redundant
solution that replicates the InfoService over several machines is planned for the future.

The AN.ON system and its components are described in more detail in [BeFeKö01].

2.2 Enhancements Over Channel-Based Mixes

The original channel-based mix makes several assumptions about the environment it op-
erates in: The average traffic volume and thus the bandwidth and performance require-
ments for a mix are assessable based on limitations and statistical information of the ISDN
telephone network. As these design parameters change in a TCP/IP environment, the
implementation of a channel-based mix needs to be adapted. Additionally, several other
enhancements were or will be introduced as part of the AN.ON project:

12



2.3 Technical Details of Interest

Adaptive Chop-and-Slice Algorithm: While channels in the ISDN telephone network have
a constant bandwidth of 64 kb/s, the bandwidth used by traffic on a TCP/IP network
varies greatly depending on the service or application used. Frequently messages will
be bigger than a mix packet and hence it is necessary to chop these message into
chunks of constant length, called “slices”. Depending on the traffic situation it will
also be possible to modify throughput and duration of a channel.

Dummy Traffic: Dummy messages are constantly sent into the cascade of mixes by all
users thus concealing the existence of a real communication. These dummy messages
may consist of an encrypted constant value or encrypted random data. They need
to reach either the receiver or at least the last mix of the cascade as otherwise an
attacker controlling the first or a middle mix could identify the dummy traffic.1

Ticket-Based Authentication System: As the amount of message being processed by a
mix at any given time is limited, it is possible for an attacker to gain information
about a single message by having access to all other messages currently in the mix.
In order to bring about this situation he must “flood” the internal message store of
the mix with his own messages. He can then identify his own messages in the output
of the mix and the remaining one has to be the one sent by his victim.

In order to make the flooding of a mix impossible, precautions have to be taken to
make sure a user can only have an amount of message in the mix that is considerably
smaller than the total capacity of the message store of the mix. This is achieved
by issuing a limited number of “tickets” to each user which are valid for sending a
message through the mix.2

Feedback System: In order to enhance the user’s awareness about the quality of the ser-
vice provided by the system – or lack thereof in case it is impossible to guarantee
anonymity – feedback needs to be provided to the user about the current state of the
system. This feedback visualizes the level of anonymity depending on the number of
active users within the system and thus the magnitude of the anonymity set.

2.3 Technical Details of Interest

The AN.ON system has several peculiar features which will become relevant when exam-
ining the possibilities of carrying out a replay attack against it and when designing the
countermeasures. Altough a bit technical, they are mentioned at this point to allow for a
better evaluation of the the concepts presented later on.

• The size of a packet traveling through the AN.ON cascade is fixed to 998 bytes. This
includes a small overhead for signaling and meta information.

1It turns out that on a TCP/IP network these messages are also necessary in order to allow regular traffic
to pass through NAT gateways which would otherwise regard a TCP connection as inactive and purge
it from their routing tables.

2Furthermore, it was initially planned to use these tickets as a means of accounting and charge the users
for the anonymity service based on them.
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• AN.ON uses RSA as asymmetric and AES-128/128 as symmetric crypto algorithm.
AES is running in output feedback mode OFB-128. See [RiShAd77] and [AES] for
the complete specification of these algorithms.

• The communication between user and the first mix as well as the communication
between mixes is encrypted and authenticated with SSL.

• Between the mixes, all channels are multiplexed over one TCP connection and de-
multiplexed at the receiving end based on their channel ID, which is a 32-bit random
value.

Further details can be found in the technical documentation of the AN.ON system
[ANONdoc]. Additionally, a short overview of the classes and their functions is given
in appendix A.
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Chapter 3

The Replay Attack

A correctly implemented mix-based anonymity service guarantees protection against at-
tackers that could easily compromise systems based on other concepts such as anonymizing
proxies.1 While these systems are only secure against an attacker with very limited capa-
bilities, a mix-based system can even guarantee anonymity when more powerful attacks
are performed. One of these is the so-called “replay attack” which [Ch81] briefly describes
as follows:

“[...] if just one item is repeated in the input [of a mix] and is allowed to be
repeated in the output [of said mix], then the correspondence [between sender
and receiver] is revealed for that item.”

This chapter will put the replay attack into perspective with other attacks, examine
possible interactions, and investigate how it could be implemented by an attacker.

3.1 Modeling the Attacker

Of the many conceivable attacks on an anonymizing service most attacks are of generic
nature and are feasible against all kinds of systems. They can be put into categories
based on the capabilities an attacker requires to perform them. The more sophisticated
an anonymizing system is, the more capabilities may the attacker have against whom
it provides protection. For all systems the most challenging attacks are the ones whose
attacker has a set of capabilities that stretches the design parameters of the system, as it
can be assumed that a system, that for example protects against a strong passive attacker
will also trivially protect against a weak passive attacker.

The attacker can thus be classified by the capabilities that are required to perform the
attack. In this paper the following set of capabilities is used for classification:

Weak Passive (Pw): Being able to intercept relevant network traffic from a limited part
of the network for a limited period of time is the most basic of all capabilities. Any
Internet service provider has this capability over his users. Obviously, it is required
for all types of attacks.

Strong Passive (Ps): This attacker can intercept network traffic from any part of the net-
work over a period of time of his choice and has the resources to store and process it.

1A typical example for an anonymizing proxy is Anonymizer.com (http://www.anonymizer.com/).
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Note that the requirements on these resources are proportional to the size and aver-
age traffic of the anonymity set to which the target of the attacker belongs and can
thus be of considerable size. Major network carriers with a strategically connected
backbone and possibly government agencies fall into this category.

Weak Active (Aw): The attacker has the capability to send carefully constructed messages
to any part of the network. While basically all machines connected to the network
are capable of doing this, it depends on the quality – or rather the lack thereof – of
their Internet service provider which of the messages pass the filtering procedure that
may be in place and reach their destination.

Strong Active (As): Rather than sending new messages to hosts on the network, this
attacker can intercept messages sent by others and remove them from the network
thus causing them never to reach their destination. The entities capable of performing
this attack are similar to the ones mentioned in the description of the strong passive
attacker, except for the fact that it should be rather hard for them to hide their
existence for a longer period of time provided that the network topology does not
undergo major changes.

Insider / Client (Ic): The attacker is or rather controls one or more users of the system.
Assuming that the anonymizing service is open to the general public this could liter-
ally be anyone.

Insider / Server (Is): The attacker is or rather controls one or more components of the
system, e.g. the mixes in the cascade. Note that the assumptions from section 1.2.2
still need to hold true and only n− 1 mixes may be controlled by the attacker.

Finding a way to sort these capabilities in a meaningful way is difficult, because depend-
ing on the circumstances a capability may have a radically increased importance that is not
given in most other cases. Furthermore, the set of capabilities that an attacker possesses
may either be regarded as strong or weak depending on the target of his attack.

In order to allow for a comparison to be made between the capabilities, the following
assumption is made: An attacker has to acquire his set of capabilities in the real world. If he
has managed to acquire a capability to which access is highly restricted, it can be assumed
that he has the resources to acquire all capabilities to which access can be considered easier.
Therefore, the capabilities may be sorted by the difficulty an attacker has while getting
access to them, the “strongest” capability being the one to which access is most difficult.
The resulting half-order is depicted in figure 3.1.

The rationale for this classification is as follows: Anyone can become user of an open
anonymizing service, most people can send relatively freely constructed messages, and there
is a huge abundance of Internet service providers. Quantifying whether it is more difficult
to gain access to a network carrier or become part of a cascade of mixes is not obvious,
yet it seems as if carriers are more likely to run a mix than the other way round. Finally,
the level of access required to remove messages exceeds the one required to merely capture
them.
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Figure 3.1: Capabilities of Attacker Sorted by Strength

3.2 Attacks on Anonymizing Services

A summary of relevant attacks on anonymizing services is given in table 3.1. Additional
attacks mentioned in [BeFeKö00] and [Ra01] such as the collusion attack, active attacks
exploiting user reactions, the “sting” attack, the “send ’n seek” attack and message delaying
are omitted as they are rather concerned with interaction between users or the setup of the
user’s system rather than the implementation of the anonymity service itself.

These attacks can be compared with each other based on the half-order established in
figure 3.1. In figure 3.2 the attacks are sorted by the strongest capability they require. The
“Insider / Server” classification of the replay attack depends on the implementation of the
cascade of mixes, i.e. whether the communication between the mixes is encrypted or not.

Figure 3.2: Capabilities Required to Carry Out Attacks

A more detailed description of these attacks can be found in [BeFeKö00] and [Ra01].
2As we will see in section 3.5, for a replay attack to be successful on one of the AN.ON mixes, the attacker

needs to control one of the mixes.
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Name Description Required Capabilities
Pw Ps Aw As Ic Is

Brute Force Attack Following all possible paths that a
message may have taken will yield a
set of potential receivers.

• •

Contextual At-
tacks (including
Communication
Pattern and Inter-
section Attack)

Gaining information about the con-
text of a communication (usage pat-
terns, online / offline periods) may
help to single out an user within the
anonymity set.

• •

Denial of Service /
Routing Attack

In the case of a mix-net causing one
or more mixes to be unreachable
may reveal how an user’s messages
are routed.

• •

Message Coding
Attack, Attacks
on Distinguishing
Features

The lack of or only weak changes in
the coding of messages being trans-
mitted between mixes makes corre-
lating messages feasible.

•

Message Tagging
Attack

Similar to the message coding at-
tack, but first and last mix can agree
on a non-intrusive form to tag mes-
sages.

•

Message Vol-
ume and Packet
Counting Attack

Observing the size of messages ei-
ther directly or split into several
packets can yield matching parties
among senders and receivers.

•

Node Flushing At-
tack (a.k.a Spam
Attack, Flooding
Attack, n − 1 At-
tack)

The attacker “floods” the system
with messages filling up the internal
messages store of a mix. For any
additional message being processed
by a mix in this situation it is possi-
ble to find its corresponding output
message as all other outbound mes-
sages are known to the attacker.

• • •

Replay Attack By resending a previously captured
message a mix is tricked into pro-
cessing it again, thereby making it
distinguishable in the output.

• • •2

Timing Attack Similar to the message volume at-
tack, but instead of message size the
time and duration of the communi-
cation is observed.

•

Table 3.1: Attacks on Anonymizing Services
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3.3 Motivation for the Replay Attack

As shown in table 3.2, a mix-based system as proposed in [Ch81] eliminates the prerequisites
for each of the attacks that a weak passive attacker could carry out. It is thus impossible
for an attacker with only weak passive capabilities to correlate sender and receiver of a
message.

Attack Countermeasure
Message Coding Attack Strong cryptography layered around the message
Message Volume Attack Random data used to fill up messages to constant length;

long messages split into multiple shorter ones using the chop-
and-slice algorithm

Timing Attack Delayed batches of messages

Table 3.2: Countermeasures Against Passive Attacks

As mere observation is no longer sufficient to extract the desired information, the attacker
requires an additional capability in order to try the next potentially successful attack:
By acquiring the resources to actively send constructed messages to a machine of the
anonymizing system, he can try to trick a mix into revealing this information. The replay
attack is thus to be regarded as the closest possible replacement for the various passive
attacks that are no longer feasible against a mix-based system.

3.4 Theory of Operation

As mentioned briefly in table 3.1, the general idea behind the replay attack is to resent
a previously captured message through a mix, hoping that the mix will process it again,
and that the intersection of the original outbound batch with the current one will contain
exactly one message. This message corresponds to the replayed inbound message and
in- and output of the mix has thus been successfully correlated. The attack exploits the
fact that a mix needs to operate deterministically and identical input always must yield
identical output. It is not possible to move away from this mode of operation as otherwise
the concept of the user adding layers of cryptography for each mix in the cascade would
be infeasible.

The replay attack works differently for channel-based mixes than for traditional mixes
and they have to be considered separately.

3.4.1 Traditional Mixes

In order to carry out a replay attack against a traditional mix, the following steps need to
be performed:

1. Capture a message from the set of messages being sent to the mix by the user whom
to attack. This only is possible for the first mix of a cascade as otherwise the sender
of a message would already be concealed. However, when assuming that the attack
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can successfully be applied to all mixes in the cascade, it is possible to break the
anonymity hop by hop starting at the first mix.

2. Capture the batch of messages being transmitted by the mix after it has received
the captured message. Note that depending on the application of the traffic being
routed through the mix, it may not be necessary for the message to be part of the
next outbound batch. In this case it will be necessary to capture multiple batches,
possible increasing the amount of batches captured over several tries.

3. Resend the captured message to the mix.

4. Capture the next batch as it leaves the mix. If the mix processed the replayed message
again, the batch will contain an exact match of a message contained in one of the
previously captured batches. The correlation between input and output of the mix
has been successful.

Alternatively, a variation of the attack is conceivable in which the intercepted message
is sent to the mix repeatedly in quick succession. After it being processed by the mix,
the outbound batch of messages is searched for multiple occurrences of the same message,
thereby establishing a corelation between input and output message. [Pf00]

This process may be repeated for each mix in the cascade until reaching the last mix.
Successfully attacking this mix will yield the receiver of the message from the user being
attacked.

3.4.2 Channel-Based Mixes

Channel-based mixes are less vulnerable to the replay attack than traditional mixes. The
distinction between control and data messages, and among the control messages the channel-
open message, makes it possible to add a countermeasure to the system: As all messages
except for the channel-open message are transmitted using symmetric encryption, an in-
telligent choice of which symmetric crypto algorithm to use will protect these messages.

Contrary to the asymmetric encryption algorithms, which in order to perform their
task properly either have to remain stateless or make their state publically visible (e.g.
dependent on the system time), the symmetric encryption algorithms can already rely on
the state – the common secret – previously shared with the communicating party in the
channel-open message. If this state is fed back into the encryption algorithm to successively
affect all messages traveling through the channel, an attacker without knowledge of this
state is unable to inject or replay messages into the channel. It would not be possible to
encrypt newly created messages for injection at all, and replayed messages would be out of
sync with the current state of the symmetric encryption algorithm. This can either cause
the channel to break down, if the symmetric algorithm is unable to compensate for this
unexpected input, or otherwise cause a “hiccup” that will correct itself after another few
blocks of data have passed the decryption function. In either case it is possible to detect
the intrusion into the existing channel.

Replay attacks against messages belonging to a channel are thus not possible, except for
the case in which the attacker captures the entire set of messages belonging to the channel
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in question including the channel-open message, and is able to replay the complete flow of
messages. However, this is only possible if the channel-open message is accepted twice by
the mix. In the end, what remains is indeed only the channel-open message as the single
one requiring additional protection.

3.5 Existing Protective Measures

Several protective measures are already in place that make it harder although not impos-
sible to perform a replay attack against an AN.ON mix. Note that their original intention
was not to protect against this attack, it is just to be regarded as a side effect. Hence, the
protection cannot be regarded as complete.

TCP Sequence Numbers: The connection between users and mixes and among mixes is
based on TCP connections. Packets belonging to a TCP connection have a sequence
number to identify them. In order to hijack a connection, it is necessary to predict
this sequence number, which depending on the implementation of the TCP/IP stack
may be very easy or very hard.

Secure Socket Layer / SSL: The communication between users and mixes and among
mixes is encrypted and authenticated using SSL. This is a major problem for the
attacker as it makes it virtually impossible for him to send a forged packet to a mix.
It is thus not possible for an external attacker to perform a replay attack. Once again,
he needs an additional capability, this time “Insider / Server”. When controlling the
mix he can trivially send forged packets through the SSL connection.

These measures add up to several layers of protection. Only after breaking or circumvent-
ing them by being in control of a mix, the attacker will gain access to the asymmetrically
encrypted message which is his immediate target. Thus, hijacking a connection is hard,
but as we will see insider attacks are still possible.

3.6 Implementation

An external attacker would have to circumvent the protective measures described above,
which is a rather daunting task. Rather than hijacking a TCP connection and breaking
into a SSL connection, it is assumed at this point that the attacker will be an insider, i.e.
he directly controls at least two mixes, one for replayed messages and a second one for
capturing the output of the attacked mix. Note that this scenario is valid for any cascade
with more than two mixes, as one mix still remains trustworthy.

In the implementation, the attacker starts with creating a storage for captured messages.
The capturing and later on the replay of packets can be easily triggered on a running
system, by installing signal handlers for the signals SIGUSR1 and SIGUSR2. When receiving
SIGUSR1 the mix will wait for the next channel-open message, capture it, and then go on
to successively capture all packets belonging to the channel in question. This process is
terminated either if the storage is full, or when the channel is closed. With this data stored
in the mix, the attacker can now trigger a SIGUSR2 and replay these captured messages
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over the existing SSL connection. The decrypted replayed packets will now appear among
the outbound packets of the attacked mix.
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Countermeasures

Prevention of the simple version of the replay attack, which correlates messages by searching
for multiple occurrences in the outbound batch, can trivially be achieved by eliminating
duplicate messages while assembling the batch. However, in order to prevent all forms
of replay attacks from succeeding, a more general solution is required and two approaches
come to mind: On one hand, the risk of a mix being compromised by a replay attack can be
reduced by only allowing messages to be processed during a certain period of time. On the
other hand, a mix simply has to keep a record of which messages it has already processed
and ignore these messages in case it receives them again.

These two approaches may be combined to meet the requirements as closely as possible.
Except for the already mentioned fact that in the case of channel-based mixes only the
channel-open messages need to be considered, the countermeasures presented in this chap-
ter equally apply to both traditional and channel-based mixes. However, the main focus
remains on channel-based mixes as this concept is more applicable to the AN.ON project.

4.1 Requirements

The requirements for an implementation of countermeasures against a replay attack are as
follows, sorted by their relative importance, most important first:

1. First and foremost, the implementation obviously has to prevent a replay attack
from being carried out successfully, i.e. it must make it impossible for duplicates to
occur in the output of a mix. More functionally speaking, the processing function of
a mix has to be changed to

Mi(x, Pi) :=

{
“Detected Replay Attack!” if x ∈ Pi

(snd . K−1
i (x), Pi ∪ {x}) if x /∈ Pi

which expands the concept of a mix to

Mi = {Ki, K−1
i , Ci, Pi}

with Pi being the set of messages that the mix Mi has already processed in the past.
Note that apart from processing the message x, the mix also changes it internal state
by adding x to Pi.

2. It has to integrate into the existing system without requiring relevant changes
in the way the system is currently running. This is particularly true for the AN.ON
system, which – as pointed out in section 2 – already has a well established user base.
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3. The implementation has to be run-time efficient, especially in the common case
of a message not being part of a replay attack. The AN.ON project aims to provide
real-time service, which considering the expectancy of the users accustomed to an
ISDN connection would be around 7.5 KB/s with a latency of 150 ms.1

4. It should only cause a minimal network overhead, if any. As the size of a packet
transmitted through the AN.ON cascade is fixed to 998 bytes, any additional overhead
will have a direct negative impact on the payload of each packet.

5. Finally, the implementation has to be scalable in both processing time and memory
usage to allow for the cascade of mixes to transmit more traffic in the future. It seems
reasonable to allow for a growth in traffic volume by a factor of ten as this would
exceed the bandwith that currently connects the AN.ON cascades to the Internet.

The solution has to be implemented for all mixes in the cascade. Otherwise, if a single mix
is left unprotected, the attacker model would allow for all other mixes to be compromised
and the attacker would thus be able to circumvent the replay protection of the entire
cascade.

4.2 Limiting the Validity of Messages

A first step to reduce the vulnerability of mixes against replay attacks is to limit which
messages may be processed by a mix at a given time, i.e. to introduce a clearly bounded
period of time during which a message is valid. This concept helps to protect against a
replay attack, but cannot prevent it from happening. As usually there are no guarantees
on how fast a messages will be relayed over the network, the duration of the time interval
– the window of validity – needs to be long enough to compensate for these delays and also
allow for the clocks of the user and the clocks of the mixes to be slightly out of sync. Hence,
there is still an opportunity for attack, although it is considerably smaller as compared to
a system with unlimited validity of messages.

4.2.1 Timestamps

Including a timestamp in the message is the obvious way to limit its validity and has
already been suggested in [Ch81] and [PfPfWa89]. The timestamp needs to contain either
implicitly or explicitly two separate pieces of information: the start time of the interval
and its duration (or rather start and end time, which is equivalent).

Several alternatives on how to represent this information are conceivable:

Store start and end time explicitly: Assuming that the system time of a computer is an
unsigned long integer, which is a 32-bit value on most common architectures, de-
scribing the seconds passed between current time and the Epoch of the respective
operating system, this would cause 2× 32 = 64 bits of overhead in each packet.

1Currently, traffic relayed through an AN.ON cascade reaches 22.36 KB/s with a latency of 1604 ms on
average. The overhead of mixing the messages causes the latency to increase by a factor of ten, yet it
is still within the limits of real-time web browsing.
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Store start time and duration explicitly: If the duration is represented with a granularity
of seconds, then eight bits of space would already allow for the interval to range
between 0 and 255 ÷ 60 = 4.25 minutes, which is plenty considering that an user
would certainly abort an interactive session if it takes just a quarter of this delay.
This option leaves us with 40 bits of overhead per packet.

Only store start time explicitly: The duration needs to be implicitly known as a constant
in the anonymizing system. As network conditions are not expected to vary greatly
between users and as otherwise there is no need for them to control the duration of
the time interval, it may well be set to a constant value within the system. This
reduces the overhead to mere 32 bits.

Reduce the granularity by which the time is resolved: Taking seconds as the unit of time
by which the time intervals are identified is not necessary, as for the scenario at hand
longer units will do just as fine. Assuming a resolution of time units of 4.25 minutes,
this would allow for the less important eight bits of the time to be discarded, leaving
us with 24 bits of overhead.

Adapt the Epoch of the system: The anonymizing system can use a different Epoch than
the operating system it is running on. If this Epoch is kept variable and would start
over every new year, then the year could be divided into time intervals of a duration
of 60 × 24 × 365 ÷ 216 = 8.02 minutes which would only require a 16-bit value to
identify them. The drawback is of course that provisions have to be taken to match
an interval to the correct Epoch as otherwise it would be possible to replay a message
once every year.

Introducing timestamps into the messages in order to control the validity of the messages
would naturally require for the mixes within the cascade to diverge only slightly in their
system time on the internal side of the cascade. On the external side, the user would be
required to synchronize his time with the time of the cascade.

What remains is the question of where to store the timestamp within the message.
It could of course have its own field in the message header, but alternatively it could be
contained in the random part ri sent with each message as suggested by [Ch81]. At least for
the channel-open messages of channel-based mixes it could also be part of the symmetric
key contained in this message, however this approach would reduce the randomness of
the common secret shared between sender and mix and open the door to attacks on the
symmetrical crypto algorithm.

4.2.2 Changing the Asymmetric Key Pair

Another possibility to make messages only valid during a limited period of time is to change
the key pair Ki and K−1

i used for the asymmetric encryption algorithm.
A message encrypted with the old public key would cease to be valid once the new public

key has been available to the users and a predetermined time has passed. This extra time
would allow for the users to reinitialize their encryption functions and for the remaining
old messages to be transmitted normally through the cascade of mixes. During this period
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of transition, both the old and the new asymmetric key pair have to be valid. An invalid
– and thus potentially replayed – message would be recognized simply by the fact that the
mix is unable to decrypt it properly as K−1

i new(Ki old(m)) would not yield any meaningful
data.

The drawback of this approach is that it requires an infrastructure to automatically make
the new public keys known to the users. For traditional systems, these keys are usually
regarded as quite static and are only retrieved when a user first starts to use a cascade of
mixes. Therefore, it is not necessary to check these keys again whenever a new session is
started, let alone allow for them to change during a session. What is worse, if these keys
are allowed to change, an opportunity for an attack is opened in which the attacker foists
a corrupted key on a user. Even more than for a system in which the asymmetric key pair
does not change, in this case extra precautions would have to be taken, e.g. every new
public key needs to be signed by a trusted authority.

Based on this observation, changing the asymmetric key pair may be a viable option as
long as it is not required to undergo this procedure on a regular, short term basis. It may
however provide just the fitting solution for the problem of identifying the Epoch of the
cascade of mixes described above.

4.3 Recognizing Previously Sent Messages

There are essentially two places in which the information needed to recognize a previously
sent message can be stored: either in the mix or in the message itself. Keeping it in the
message however requires the mix to be able to authenticate this information and it thus
does not eliminate the need for the mix to store data but merely reduces the memory
needed to do so. In fact, any reduction in memory usage is highly desirable as the size of
the required storage is the crucial aspect of this approach.

Apart from the two possibilities examined below, [No00] proposes a third alternative:
For each time period a so-called “time vector” is created, which is essentially a bit field
addressed by the fingerprint of a message. The idea is to set the bit corresponding to a
message once it has been received by the mix and use this bit as indication for a replay
attack for the rest of the time period. Even when only using a 32-bit fingerprint (rather
than the 64-bit value suggested in [No00]), the memory requirements of 232 ÷ 8 = 512 MB
per time period still render this solution unrealistic.

4.3.1 Hash Table of Message Fingerprints

Storing all messages that are potential targets of a replay attacks directly in the mix is not
an option as this would violate the requirement of low memory consumption. Hence, as a
first step the amount of data to be stored is reduced by only looking at a b-bit fingerprint
of each message. Assuming that m relevant messages are processed by the mix while this
store is active, there only remains a probability of m−1

2b for two messages to have the same
fingerprint. Setting b = 64 bits and m = 50, 000 messages,2 this leaves us with a probability
of 2.7× 10−15 for a fingerprint collision to occur, which is smaller than that of a hardware
failure of the machine running the mix. However, setting b = 32 bits results in a probability
of 1.1 × 10−5, which is in the same order of magnitude as the reliability of the machine.
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Therefore, the fingerprint of the messages should be at least 64 bits long, a value which is
also suggested by [No00].

There are several possibilities for generating a fingerprint of the message: The message
could be split into blocks of the length chosen for the fingerprint, padding the last block
with a fixed pattern in case it is too short, and then bitwise XORing these blocks. The
resulting fingerprint will obviously be dependent on the entire input message, but the
probability distribution of the values it can hold may be less than optimal depending on
content and structure of the input message. This fact may cause collisions of the fingerprint
to occur more frequently than anticipated and might even allow for an attacker to construct
messages to yield a specific fingerprint.

Fortunately, there is no apparent way in which the attacker could use this possibility
to his advantage. He could intercept a message, construct another one that has the same
fingerprint, and send that one to the mix prior to the original. This would make it seem
as if the legitimate user was trying to perform a replay attack and his message would be
ignored. However, if the attacker can intercept a message and retain it, there would be no
need for him to compromise the mix in order to have the the message dropped. Still, these
speculations do not eliminate the fundamental flaw from the system. Hence, the wiser
choice is to resort to a well established message digest algorithm such as MD5 or SHA-
1 as described in [Ri92] and [SHA1]. These two condense a message into a 128-bit and
respectively a 160-bit value and as they are specifically designed to be collision resistant,
finding another message that yields the same value is impossible in adequate time.

Yet another option available for channel-based mixes is to store the symmetric key of
a channel instead of a fingerprint of the channel-open message. However, this has the
drawbacks that all messages need to be decrypted using expensive asymmetrical algorithms
in order to retrieve the key and that the symmetrical key is likely to be larger than 64 bits.3

As a second step, the fingerprints of the messages need to be accessed efficiently. This
can be achieved by storing them in a hash table with collision resolution by “chaining” as
described in [Kn98]. Depending on the traffic situation of the mix, the size of the hash
table may be adapted in order to avoid collisions as much as possible while still trying to
use as little memory as possible.

4.3.2 Ticket-Based Approach

While not eliminating the need for the mix to store data, the ticket-based approach still
makes the volume of data independent of the traffic situation. It merely requires a constant
amount of memory for each user currently connected to the mix. The general idea behind
this approach is for the user and each mix to share a secret – the set of “tickets” – which
are then sent along with each message. Tickets may only be used once and hence replaying
a message without knowing one of the valid tickets will fail.

The critical operation of this solution is that the set of tickets needs to be shared in a
secure manner which, of course, must not be subject to a replay attack itself. It has to
to take place before the first message is sent to the mix or a channel is opened. As users
and mixes are already participants of a public key cryptosystem, the following procedure

2The cascades of mixes of the AN.ON project handle roughly 4,000 channel-open messages per minute.
3AN.ON uses AES for symmetrical encryption with a 128-bit wide key.
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seems adequate: The user sends his public key to the first mix, thereby requesting a set of
tickets to be assigned to him. The first mix then generates a set of tickets, encrypts it with
the user’s public key and sends it back to him. The connections between the mixes are
protected in a similar manner: Each mix agrees with it successor on a set of tickets to be
used between the two for authentication of messages. Note that if the user generated the
tickets and sent them to the mix, the procedure would be vulnerable to a replay attack, as
the attacker could request the same tickets for his messages. Furthermore, if the user was
to request tickets directly from each mix, then even the last mix of the cascade could still
identify the message belonging to this user, which would violate the requirement that the
cascade should work properly even with n− 1 mixes in the hands of the attacker.

For each message to be sent the user can now take one ticket from the set, include it in
the headers of the message, and send the message to the first mix. If the mix can confirm
that the ticket has indeed been assigned to this user, then the message is valid. On the
other hand, if the ticket is invalid or has already been used – and was thus removed from
the set of tickets of the user – then the message might be part of a replay attack and must
be discarded.

Obviously, the size of the set of valid tickets will decrease over time and precautions
have to be taken to ensure that there are always enough tickets available for authenticating
messages. One possibility is to request new tickets in the manner describes above. It would
however cause a sharp increase in the latency of every message that is processed when the
set of tickets is empty. This can be avoided, if with every message that consumes a ticket
the user suggest a new ticket to the mix. If the message is processed normally, the user
will know that the newly suggested ticket has been added to the set of valid tickets and
he can use it in the future to authenticate his messages. The weak point in this scheme
is that it assumes that the attacker cannot inject invalid tickets into the communication
relationship between user and mix. This assumption holds, as new tickets are only regarded
as trustworthy if sent together with a valid ticket, which can only be known to the user.
Also, as these two tickets are are asymmetrically encrypted with the public key of the mix,
the attacker would need to break this encryption scheme in order to selectively manipulate
the new ticket.

The tickets themselves consists of a random value whose size depends on the size of
the set of tickets to be used. The bigger the set, the larger the random value, because
otherwise the probability of the attacker being able to guess a valid ticket would increase.
Preferably, the tickets should be as small as possible as at least one (or two depending on
which solution is used to refresh the set of tickets) has to be included in each message sent
to the mix, thereby causing the payload size to be reduced and the throughput to drop.

4.4 Evaluation

The ticket-based approach causes additional network overhead and would also require for
major adaptions of the existing system. Therefore, the storage of message fingerprints
seems to be a better solution, provided that the memory requirements are within acceptable
limits. This is achieved by combining the concepts of message fingerprints and timestamps,
the latter of which in turn depends on the change of the public keys of the mixes in order
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to keep the size of the timestamps to a minimum.
The total memory requirements of this solution consists of a 64-bit fingerprint of each

channel-open message, of which about 32,000 are expected to be processed by the mix dur-
ing a time interval. Considering that the requirements demand for a compromise between
avoiding collisions in the hash table and still being memory efficient to be found, the load
factor of the hash table should not increase above 75%. Hence, there has to be room in the
hash table for roughly 43,000 entries. Each entry has a size of 8 bytes and thus the size of
the hash table is 8 ∗ 43, 000 = 344, 000 bytes. Two of these hash tables have to be kept in
memory at the same in order to allow for old packets of the previous time interval to be
processed correctly when the switch to the new time interval has just been made.

It now also becomes apparent that the solution also meets the requirement of scalability,
as the necessary storage in case the traffic would increase by a factor of ten, still would
be below 64MB. Unfortunately, due to the 16 bits required for the timestamp in every
packet, even this carefully constructed solution requires for the protocol between JAP and
the mixes to be changed. Additionally, the persons in charge of running the mixes have
to keep in mind that unless they change the public and private key pair of the mix, their
system will be slightly vulnerable.

4.5 Implementation

The implementation of a defense against the replay attack has to integrate directly into the
AN.ON mix and hence, just like the AN.ON mix, is written in C++. It generally follows
the solution suggested in the evaluation above, however there is a difference that results
from peculiarities of the AN.ON system.

The mix packets of the AN.ON system contain signaling information in their headers
which is not part of the theoretical mix concept. An attacker could introduce a slight
change into these headers and thereby cause the packet to have a different fingerprint when
it is calculated upon arrival. The solution to this problem is to calculate the fingerprint
of outgoing instead of incoming packets. For the channel-open message, this incurs the
additional overhead of having to perform an asymmetrical cryptographic operation.

However, once this is done, the cost of calculating the fingerprint can be saved, because
the channel-open message already contains a perfect identifier for itself and the channel:
the symmetrical key. Instead of the 64-bit value upon which the evaluation above is based,
the symmetrical key is 128 bit wide, thereby doubling the amount of memory needed for the
hash table. Still, this option seems adequate, as on the expense of memory consumption
the security of the entire system is increased.
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Chapter 5

Conclusion

In the first chapter, this paper gave a short introduction to the concepts of anonymity and
unobservability along with examples for the importance of these concepts in our society. It
then went on to establish the concept of Chaumian mixes, their protection goals and the
attacker against whom they are meant to provide protection. It ended with explaining the
differences between traditional and channel-based mixes and the limitations of mix-based
systems.

The second chapter presented the AN.ON – Anonymity.Online – project, as an example
of a real-world implementation of a channel-based mix architecture, which of course is
heavily adapted to achieve the goal of providing a solution for real-time anonymous web
access.

Now that the background was established, the third chapter gave an overview of possible
attacks against anonymizing services and ways to classify them. In this context it intro-
duced the replay attack, explained the motivation for it and detailed how it can be used to
attack both traditional and channel-based mixes. Finally, an implementation of the replay
attack was briefly discussed.

The fourth chapter first listed the requirements for a successful defense against a replay
attack and then went on to evaluate several approaches: Both timestamps and changing
the public key of the mix were discussed as possibilities to limit the validity of messages
on one side. On the other side, in order to recognize previously sent messages, both
the possibilities to efficiently store fingerprints of messages in the mix and to tag the
messages with tickets were explored. These approaches were then evaluated according to
the requirements specified before and an optimal solution was suggested. Finally, a brief
overview over the details of the implementation of the proposed solution was given.
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Appendix A

Classes of an AN.ON Mix

CAASymCipher: Methods for de- and encryption of asymmetrically encrypted data using
RSA. Also generates and handles the key pair.

CABase64: De- and encodes data using the Base64 algorithm.

CACacheLoadBalancing: Performs load balancing of the cache proxies after the last mix.

CACertificate: Represents the certificate used by the mixes to identify each other.

CACertStore: Stores multiple of these certificates.

CACmdLnOptions: Parses and stores the command line options and data from the XML
configuration file. Serves as central store for configuration information.

CAConditionVariable: A synchronization mechanism using pthreads that extends the func-
tionality of CAMutex.

CADatabase: A database which is currently not used by the mix.

CADatagramSocket: A socket implementation.

CAFirstMix: Extends CAMix to act as the first mix in a cascade. Establishes a connection
to the second mix and allows for JAP to connect.

CAFirstMixChannelList: Keeps track of the active channels of the first mix.

CAInfoService: Communicates statistical information to the InfoService.

CAIPList: Keeps track of connections to the first mix preventing DoS attacks.

CALastMix: Extends CAMix to act as the last mix in a cascade.

CALastMixChannelList: Keeps track of the active channels of the last mix.

CALocalProxy: Additional mode of operation that behaves like a local proxy (just like
JAP).

CAMiddleMix: Extends CAMix to act as the middle mix in a cascade. Connects to the
previous middle mix and to the cache proxy.

CAMiddleMixChannelList: Keeps track of the active channels of the middle mix.
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CAMix: Common base class of first, middle and last mix and the local proxy.

CAMsg: A singleton class that is used for debugging or informational output of the pro-
gram.

CAMutex: A synchronization mechanism using pthreads.

CAMuxSocket: The multiplexing / demultiplexing socket that allows for packets from
different channels to travel over one TCP connection.

CAPayment: Access to a payment database.

CAQueue: A FIFO queue that allows blocking access.

CASemaphore: Another synchronization mechanism.

CASignature: DSA signature with methods to sign XML data.

CASingleSocketGroup: Allows for polling of a single socket.

CASocket: The socket implementation that is actually used to transmit packets between
the mixes.

CASocketAddr: Interface for socket addresses.

CASocketAddrINet: Implements CASockerAddr for a dotted-decimal Internet address.

CASocketAddrUnix: Implements CASockerAddr for a Unix socket.

CASocketGroup: A collection of sockets that allows to wait for input.

CASocketList: Stores the sockets and their respective channels for CAMuxSocket.

CASymCipher: Methods for de- and encryption of symmetrically encrypted data using
AES.

CAThread: A thread implementation using pthreads.

CAUtil: Utility functions.

StdAfx: Definitions and includes for the entire project.

proxytest: The main program.
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[BeFeKö00] Oliver Berthold, Hannes Federrath, Marit Köhntopp – Project “Anonymity
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