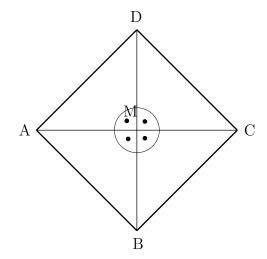
Übung zum Lehrerweiterbildungskurs 'Geometrie'

Aufgabe C3 (Parallelogramm/Rhombus/Wechselwinkel/Kongruenzsätze) Ein *Parallelogramm* ist ein ebenes Viereck, in dem nicht-benachbarte Seiten parallel sind (s.Aufgabe C2!). Ein *Rhombus (Raute)* ist ein ebenes Viereck, in dem alle Seiten kongruent sind.

Zeigen Sie:

Stehen in einem euklidischen Raum die Diagonalen eines Parallelogramms \mathbf{P} aufeinander senkrecht, so ist \mathbf{P} ein Rhombus.


Lösungshinweis: Zeigen Sie zunächst, dass sich die Diagonalen halbieren.

Lösungsskizze:

Sei $\lozenge ABCD$ ein Parallelogramm mit orthogonalen Diagonalen (vgl. die Skizze). Dann gilt nach Definition und nach Aufgabe C2 für die gegenüberliegenden Seiten \overline{AB} und \overline{CD} :

$$AB \parallel CD$$
 und $\overline{AB} \equiv \overline{CD}$.

Die Winkel $\triangleleft ABD$ und $\triangleleft BDC$ sind Wechselwinkel und damit kongruent.

Das Gleiche gilt für $\triangleleft BAC$ und $\triangleleft ACD$. Ist M der Schnittpunkt der Diagonalen (er liegt "innerhalb" des Parallelogramms), so stimmen die Dreiecke $\triangle ABM$ und $\triangle CDM$ in einer Seite und allen drei Winkeln überein. Z.B. nach dem Kongruenzsatz WSW sind sie damit kongruent. Es folgt $\overline{AM} \equiv \overline{MC}$ und $\overline{BM} \equiv \overline{MD}$.

Nach dem Kongruenzsatz SWS sind dann die Dreiecke $\triangle ABM$ und $\triangle ADM$ (mit gleicher Seite \overline{AM} und kongruenten Seiten \overline{MB} bzw. \overline{MD} und eingeschlossenen rechten Winkeln) kongruent. Es folgt $\overline{AB} \equiv \overline{AD}$ und damit die Behauptung.