Übungen zum Lehrerweiterbildungskurs "Lineare Algebra/Analytische Geometrie II"

Aufgabe B3 (Kern, Bild, Dimension, Fortsetzungssatz)

Seien V ein $n-\dim$ und W ein $m-\dim$ Vektorraum über dem Körper K (mit $n,m\in\mathbb{N}$)! Ferner sei X ein Unteraum von V und Y ein Unteraum von W. Welche Bedingung an die Dimensionen ist 1.) notwendig und 2.) hinreichend für die Existenz einer linearen Abbildung

$$f: V \to W$$
 mit Kern $f = X$ und Bild $f = Y$.

(Mit Begründung!)

Lösungsskizze

1.) Für eine beliebige lineare Abbildung $f:V\to W$ gilt die Dimensionsformel

$$\dim_K(\operatorname{Kern} f) + \dim_K(\operatorname{Bild} f) = \dim_K V.$$

Für Kern f = X und Bild f = Y folgt als notwendige Bedingung:

(*)
$$\dim_K X + \dim_K Y = n$$
.

2.) Diese Bedingung ist auch hinreichend. Beweis: Es gelte (*). Nach dem Basisexistenzsatz existiert eine Basis B_X von X; dabei ist $|B_X| = \dim_K X$. Nach dem Basisergänzungssatz kann man diese Basis zu einer Basis $B = B_X \stackrel{\bullet}{\cup} D$ von V ergänzen. Aus (*) folgt, dass

$$r := |D| = |B| - |B_X| = n - \dim_K X = \dim_K Y$$

ist. Eine Basis C_Y von Y hat ebenfalls die Mächtigkeit r; wir setzten $D=(d_1,\ldots,d_r)$ und $C_Y=(c_1,\ldots,c_r)$. Damit definieren wir eine Abbildung

$$\tilde{f}: B \to W$$
 durch $\tilde{f}(B_X) := \{0_W\}$ und $\tilde{f}(d_i) := c_i$ für $i = 1, \dots, r$.

Nach dem Fortsetzungssatz existiert eine lineare Abbildung $f: V \to W$ mit $f|_B = \tilde{f}$. Die so konstruierte lineare Abbildung f erfüllt Kern f = X und f(V) = Y.