Übung zum Lehrerweiterbildungskurs Mathematik 'Lineare Algebra/Analytische Geometrie II'

Aufgabe D7 (Isometrie, Eigenvektoren)

Sei (V,φ) ein endlich-dimensionaler euklidischer Vektorraum und f eine (lineare) Isometrie von (V,φ) auf sich. Zeigen Sie: Eigenvektoren zu verschiedenen Eigenwerten stehen senkrecht aufeinander.

 $L\ddot{o}sungshinweis:$

Betrachten Sie z.B. $\varphi(f(x_1), f(x_2))$

Lösungsskizze

Seien $x_1, x_2 \in V$ Eigenvektoren und $\lambda_1, \lambda_2 \in \mathbb{R}$ die zugehörigen Eigenwerte mit $\lambda_1 \neq \lambda_2$. Dann gilt:

$$\varphi(x_1, x_2) = \varphi(f(x_1), f(x_2)) = \varphi(\lambda_1 x_1, \lambda_2 x_2) = \lambda_1 \lambda_2 \varphi(x_1, x_2),$$

da f lineare Isometrie ist und φ bilinear. Also gilt $\varphi(x_1, x_2)(1 - \lambda_1 \lambda_2) = 0$, woraus wiederum folgt:

$$\varphi(x_1, x_2) = 0$$
 oder $\lambda_1 \lambda_2 = 1$.

Da lineare Isometrien nur Eigenwerte ± 1 besitzen und nach Voraussetzung $\lambda_1 \neq \lambda_2$ ist, gilt $\lambda_1 \lambda_2 \neq 1$. Also erhalten wir $\varphi(x_1, x_2) = 0$.