Übung zum Lehrerweiterbildungskurs Mathematik 'Lineare Algebra/Analytische Geometrie II'

Aufgabe D6 (Orthonormierungsverfahren von Gram-Schmidt) Gegeben seien folgende drei Vektoren im euklidischen Raum \mathbb{R}^3 mit kanonischem Skalarprodukt:

$$v_1 = (1, 1, 1), \quad v_2 = (1, 1, 0) \quad \text{und} \quad v_3 = (1, 0, 0).$$

Bestimmen Sie mittels des Verfahrens von Gram-Schmidt eine Orthonormalbasis (u_1, u_2, u_3) mit $< v_1 > = < u_1 >$ und $< v_1, v_2 > = < u_1, u_2 > !$

Lösungsskizze¹

Vorbemerkung: v_1, v_2 und v_3 sind linear unabhängig. (Die Matrix mit Zeilen v_1, v_2, v_3 ist eine Dreiecksmatrix.) Daher kann man das Verfahren von Gram-Schmidt anwenden.

Zuerst normalisieren wir v_1 :

$$u_1 = \frac{v_1}{||v_1||} = \frac{(1,1,1)}{\sqrt{3}} = (\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}).$$

Es ist $\langle u_1 \rangle = \langle v_1 \rangle$ und $||u_1|| = 1$.

Dann definieren wir

$$w_2 := v_2 - (v_2 u_1^T) u_1 = (1, 1, 0) - \frac{2}{\sqrt{3}} \cdot \frac{(1, 1, 1)}{\sqrt{3}} = (1, 1, 0) - \frac{2}{3} (1, 1, 1) = (\frac{1}{3}, \frac{1}{3}, -\frac{2}{3})$$

und normalisieren w_2 (mittels $||w_2|| = \sqrt{\frac{1}{9} + \frac{1}{9} + \frac{4}{9}} = \sqrt{\frac{6}{9}}$) zu

$$u_2 = \frac{w_2}{||w_2||} = \frac{1}{\sqrt{6}}(1, 1, -2).$$

Laut Konstruktion gilt auch $\langle v_1, v_2 \rangle = \langle u_1, u_2 \rangle$. Schließlich setzen wir

$$w_3 = v_3 - (v_3 u_1^T) u_1 - (v_3 u_2^T) u_2 = (1, 0, 0) - \frac{1}{\sqrt{3}} \frac{1}{\sqrt{3}} (1, 1, 1) - \frac{1}{\sqrt{6}} \frac{1}{\sqrt{6}} (1, 1, -2)$$
$$= (\frac{1}{2}, -\frac{1}{2}, 0)$$

und normieren (mittels $||w_3|| = \sqrt{\frac{2}{4}}$) zu

$$u_3 = \frac{w_3}{||w_3||} = \frac{\sqrt{2}}{2}(1, -1, 0).$$

Die gesuchte Orthonormalbasis ist daher

$$\left(\frac{1}{\sqrt{3}}(1,1,1), \frac{1}{\sqrt{6}}(1,1,-2), \frac{1}{\sqrt{2}}(1,-1,0)\right).$$

¹Frei nach S.Lipschutz, Schaum's Outline Series, McGra-Hill, Example 13.12