
Sorting by Symmetry 

Patterns with a Centre

Bob Burn

Looking at symmetrical patterns is intriguing and satisfying.
Understanding the way symmetrical patterns are made is part of
geometry. We will make a lot of patterns, each with a centre. Two
different families will emerge. We will describe these families and

show why, when looking at plane patterns with a centre, there are just
these two families and no more. 
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Introduction

The ideas in this book have been developed in the form of a repeating cycle: 
observing, making, sharpening. First you, the reader, look at some images and 
objects and notice similarities, next you make something that is similar or related, and
then you reflect on what you have done and try to clarify the ideas. Then, when you 
start the cycle again, you may sometimes start by using some of the ideas that you 
have sharpened earlier. This repeated cycle gives you a sequence through which you 
learn by guided discovery, and develop the clarity needed to reason about symmetry.

The presentation presumes that you are familiar with length and angle, and with 
parallel and perpendicular lines. There are places where the word congruence is used, 
but if the word puts you off, you can probably skip those bits without much loss. If 
you have met symmetry before, well and good, but if you have not, what you find here
will, I hope, make good sense. It would be useful to have a geoboard and access to 
LOGO (procedures are given in FMSLogo, which may be freely downloaded from the
internet) and a dynamic geometry program. It is essential to have both squared and 
isometric paper, with either dots or lines, and also some kind of tracing paper - kitchen
paper will do. In one place polar graph paper is needed. A minimal number of lines 
and circles on this graph paper will suffice.

The amount of ‘sharpening’ that you may be ready for will vary from person to 
person. Some of the most general arguments have been marked as such so that you 
can recognise them for what they are and grapple with them only when you feel ready.

We use the word pattern when we see some kind of copying or replication. We may 
see patterns when we look at brickwork, wall paper or floor tilings, or we may see 
pattern in an ornament. You can start gathering a scrap book of patterns right away.
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1. One reflection, in which a mirror symmetry is linked to its axis, and is found to 
work all over the plane.

(a) Observing what you can match using one mirror

 Figure 1.1
 Orchids
 Leaves
 Butterfly wings
 Animal bodies (insects, fish, lizards, mammals)
 , , >, , , , , , 
 Kite
 Parabola
 Volkswagen, Rover, Mazda, Honda, Toyota, Daewoo, Citroën logos.

(b) Making

Here you are invited to construct figures which exhibit symmetry like those that you 
have been observing.
 Ink devils: take a plain sheet of paper and fold it in half; unfold it and then spread 

wet paint or ink (several colours if you like) on the paper to one side of the fold. 
Fold the paper again, and press. Then unfold and look at the result. 

 Fold paper and use scissors to cut across the fold, continue to cut, wiggling your 
scissors a bit and then complete the cut by coming out across the fold again. Look 
at the piece you have cut out and the hole.

 Use an elastic band on a geoboard to make shapes with symmetry. Or else try to 
draw such shapes on dotty paper.

 Draw a hexagon which has just one mirror line.
 Construct a reflection image with a dynamic geometry program.
 Make patterns with LOGO. A flag 

FD 100 REPEAT 3 [RT 120 FD 30] BK 100
      has mirror image 

FD 100 REPEAT 3 [LT 120 FD 30] BK 100

A mirror line is the place where you put a mirror to make what you are looking at 
appear the same, when in fact, half of it is hidden by the mirror. Mark the mirror lines 
that you have found. When you copy by paper-folding, the fold in the paper is the 
mirror line.

(c) Sharpening

Now we are going to think about what you have seen and done, and use another 
method to look at reflections.
The method is that of pricking through a piece of folded paper. Unlike what you can 
see with a mirror, where drawings on half the sheet of paper can be seen directly and 
the other half appears as an image in the mirror, when paper is folded and pricked, 
both the original and its mirror image are available to look at, and there is no way of 
knowing which is which.
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1. Fold a piece of unlined paper and press to make the fold precise.
Then take the point of a compass and prick through the folded paper.
Unfold the paper and mark the two pricked places A and A. (Figure 1.2)
Use a ruler to join AA.  How does AA relate to the fold line? (Some people call the 
fold line the mediator of AA.) Notice how the folding matches certain lengths, and so 
guarantees their (unfolded) equality, and how the folding matches certain right-angles,
and so guarantees their (unfolded) equality. Have you now got reasons for claiming 
that the fold line is the perpendicular bisector of AA?

2. How does folding paper correspond to reflection in a mirror? Does the fold line 
correspond to the mirror line? The mirror line is called the axis of the reflection.

3. Now take a fresh piece of plain paper, fold it and press to make the fold precise. 
Prick through the paper at two points. You obviously get something rather special if 
the two pricks are along a line either parallel or perpendicular to the fold line and 
these two special cases should be investigated after looking at the general case. 
Unfold and label the two points from one prick A and A and the two points from the 
other prick B and B.  What can you say about the lengths AB and AB? (Figure 1.3) 
Use a ruler to join AB. AB may cross the fold line or it may not. If it doesn’t, extend 
the line AB until it does, then do the same with AB. Where do AB and AB meet? 
How do the lines AB and AB relate to the fold line? If AB meets the fold line at M, 
what is matched with the points A, B and M when the paper is folded?

4. Now take another piece of fresh plain paper, fold it and make the fold precise.
Then prick through in three places to make a scalene triangle. (Figure 1.4)
Unfold the paper, mark three pricked points A, B, C, and the corresponding points A, 
B, C. What can you say about these two triangles? Use what you found with the two 
pricks exercise. When you are convinced that they are congruent, look at how a line 
through A turns from the direction AB to AC. Clockwise or anti-clockwise? Then look 
at how a line through A turns from the direction AB to AC.  Clockwise or 
anti-clockwise? Is one direction the opposite of the other?

5. If (x, y) is a point on a pattern with the x-axis as a reflection axis (or mirror line), 
what other point must be on the pattern? (Figure 1.5)
If (x, y) is a point on a pattern with the y-axis as a reflection axis, what other point 
must be on the pattern? 
If (x, y) is a point on a pattern with y = x as a reflection axis, what other point must be 
on the pattern? 
If (x, y) is a point on a pattern with y = x as a reflection axis, what other point must 
be on the pattern? 
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2. Two reflections (with intersecting axes), in which patterns with just two 
mirror lines are compared.

(a) Observing what you can match with a mirror

 Figure 2
 Hyperbola (two branches)
 , =, , [], {}, :, , 
 BMW, Audi logos
Try to spot two mirror lines in each case.

(b) Making

 Make patterns with two reflections with rubber bands on a geoboard or with a 
pencil on dotty paper

 Fold paper and then fold again with the first fold lying on itself, then make a 
straight or wiggly cut with scissors across the double fold point. Look at both the 
hole and the cut-out.

 Draw a hexagon which has just two mirror lines
 Draw some patterns with LOGO, such as 

REPEAT 2 [FD :A RT 90 FD :B RT 90]; choose numbers for :A and for :B.

(c) Sharpening

1. With a fresh sheet of plain paper, do the double fold as in 2(b)Making, second 
activity. Then, with a compass point prick right through the four overlying sheets. 
Unfold. What is the shape made by the four pricked points? What else can you call the
two fold lines for this shape?

2. After making a wiggly cut, in the twice folded paper (as in 2(b)Making, second 
activity), unfold the paper, and examine the cut-out and the hole. How many ways can 
you make the cut-out fit in the hole?
Try to describe the four ways in which you can replace the cut-out.
Two come directly from the two fold lines. How might you describe the other two 
ways?
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3. Two or more reflections (with axes through one point), in which you 
get three (or more) mirror lines for the price of two.
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(a) Observing - how many mirror lines can you find?

 Flower petals of monocotyledons (e.g. iris) and other flowers.
 Snowflakes
 Starfish
 Maltese Cross
 Figure 3.1
 Mitsubishi, Mercedes-Benz logos
 Some hubcaps
 The polar graph r = 10 sin 2 (if you have a program to sketch this)

(b) Making

 Use a compass to make equilateral triangles and regular hexagons. Keep the radius
fixed. Draw one circle. Put the compass point on the circumference and draw 
another circle. Then put the compass point where the two circles intersect and 
draw another circle. That gives you the vertices of one equilateral triangle. 
Continue to make more. Sooner or later you get the vertices of a regular hexagon. 

 Make patterns on squared, isometric or polar graph paper with at least two mirror 
lines.

 Draw a hexagon which has just three mirror lines
 Make patterns inside a Spirograph wheel.
 Sew patterns with coloured wool or thread on a cardboard base. To create curve 

stitching designs see Curve Stitching in 17. Reading list.
 Make patterns with LOGO, especially regular polygons.

REPEAT :N [FD 100 RT 360/:N] makes a regular polygon with N sides.
REPEAT :N [FD 100 RT (360/:N)*:A] may make a regular or a star 
polygon depending on the value of :A. Choose numbers for :N and :A with
:A < :N < 12.

 Explore the possibility of multiple folds of plain paper with the fold lines sharing a
common point, cutting across near that point with scissors.

 Get two similar hand mirrors. Put their reflecting faces together and holding them 
in this position, join the two mirrors with sticky tape along one of the short edges. 
Then open the mirrors and rest them on some polar graph paper, so that you can 
check the angle between the mirrors. Use your homemade kaleidoscope to find 
what angle between the mirrors gives exactly six images to look at. What angle 
gives eight?

 More ideas in Starting from Mirrors, in 17. Reading list.

(c) Sharpening

When a pattern has two mirror lines there are often some surprising consequences. 
The next activity is the paper and pencil counterpart of the kaleidoscope in 3(b) just 
above.
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1. (Figure 3.2) We will now look at what a pattern must be like if it has two reflections
in axes at 60. With some isometric paper boldly mark two lines at an angle of 60 
(which will act as mirror lines, or axes of reflection). Label one of them first and the 
other of them second. Now choose one of the printed triangles on the paper, mark its 
outline clearly, and write a number 1 inside it. We are going to label some of the other 
printed triangles with the numbers 2, 3, 4, 5 and 6. Look for the reflection of triangle 1
in the first axis. If you are not sure whether you have found it you can check by 
folding along the first axis. Write a number 2 inside the reflection of 1 in the first 
axis. 
Now find the reflection of 2 in the second axis. If you are not sure whether you have 
found it you can check by folding along the second axis. Write a number 3 inside the 
reflection of 2 in the second axis. 
Now continue marking triangles, alternating between reflection in the first axis and 
reflection in the second. 12, 34 and 56 will be corresponding images under 
reflection in the first axis, and 23, 45 will be corresponding images under 
reflection in the second axis.
(a) What do you notice about the relation between triangles 1 and 6? A consequence of
this relation is that if we went on repeating the process, six triangles are all we would 
get.
(b) Now stand back and look at all six triangles making a pattern together. The pattern 
must be symmetrical about the first and second axes because that is the way we made
it. Is the set of triangles symmetrical about another axis? Although we started with just
two mirror lines, you may have found more than you bargained for!

2. (Figure 3.3) A similar exploration can be made about what patterns have two 
reflections in axes at 45. This time you need to use ordinary squared paper. Mark a 
first and second axis as before, but this time choose a printed square to label 1. Then 
reflect 1 in the first axis to find 2. Reflect 2 in the second axis to find 3. Continue 
reflecting in first and second alternately, to make 12, 34, 56, 78 images 
under reflection in the first axis and 23, 45, 67 images under reflection in the 
second axis.
(a) What do you notice about the relation between squares 1 and 8? A consequence of 
this relation is that if we went on repeating the process, eight squares are all we would
get.
(b) Now stand back and look at all eight squares making a pattern together. The 
pattern must be symmetrical about the first and second axes because that is the way 
we made it. Is the set of squares symmetrical about another axis? Two more? Starting 
with reflection symmetry about two axes may create more symmetry automatically.

3. Optional supplementary problem. (Figure 3.4) Using isometric paper and two axes 
of reflections inclined at 30, follow the structure of 1 and 2 above, to find what other 
symmetries are implied. If two printed equilateral triangles on isometric paper have a 
common side, then together they form a rhombus with angles of 60 and 120. The 
long diagonal of the rhombus is at 30 to the sides. How many more mirror lines must
there be if two mirror lines at an angle of 30 are given?
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4.  Half turn, in which we find symmetrical copying by turning.

(a) Observing

You can check a turning symmetry by using tracing paper or making a photocopy on a 
transparency. You need to pin the tracing to the original at the central point and then 
rotate the tracing.

 Figure 4
 National Rail sign.
 Parallelogram (but not a rhombus or rectangle if you want a bare half turn)
 Has been recycled sign
 Some Celtic knots
 %, $, , 
 The graph of y = x3

 Renault, Hyundai, Fiat, Suzuki, Seat logos
Try to find the half turn centre in each case and check that there are no mirror lines.

(b) Making

 Use a rubber band, stretched to look like a line segment that may have kinks in it, 
to divide a 9 pin or 16 pin geoboard into congruent halves. The rubber band should
not look like a loop. The same exercise can be done with a pencil on square dotty 
paper.

 Cut out a parallelogram with scissors. In how many ways can it be put back in the 
hole it has left?

 Draw a hexagon that has half turn symmetry but no mirror lines.
 Use an unsymmetrical motif in LOGO, one in which the turtle starts and finishes in

the same place and in the same direction (sometimes called ‘state transparent’) 
such as 
TO FLAG
   FD 100
   REPEAT 3 [RT 120 FD 30]
   BK 100
   END

Make two flags pointing in opposite directions, for example, drawn with a 
command such as  REPEAT 2 [FLAG RT 180]

(c) Sharpening

1. If you have a large Z and a tracing of it, mark a point on the outer line of the Z and 
on the tracing of that point with a bold dot. Then do the half turn and where the dot on
the tracing meets the original shape again, mark this point also with a dot. What is the 
mid-point of the two dots on the original? See Figure 4.

2. If a figure has half turn symmetry about the origin (0, 0), and (x, y) is one point of 
the figure, name another point of the figure. 
3. Look for half turn symmetry in the shapes you looked at earlier with just two 
reflection axes, in Section 2.
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4. Do the points made by pricking the plain paper folded twice, as in 2(c), with the 
second fold taking the first fold onto itself, have half-turn symmetry?

5. One-third turn, in which three copies are made by turning.

As with the half-turn, use tracing paper to check the existence of this kind of 
symmetry.

(a) Observing

 Figure 5
 Nat West sign
 Wool sign
 Should be recycled sign (three bent arrows)
 Isle of Man sign
 Some toy windmills
Try to find the centre of the one-third turn and check that there are no mirror lines in 
each case.
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(b) Making

 With a compass at a fixed radius, draw one circle and then with the compass point 
on the circumference, join the centre of the first circle to the circumference. Do this 
three times. See the first pattern in Figure 5.
 Draw your own design which exhibits a one-third turn on isometric paper.
 Cut out the drawing you have just made on isometric paper. In how many ways 
may it be reinserted in the hole that it has left?
 With a state transparent motif in LOGO (for example, FLAG, as in Section 4 (b)), 

try a procedure such as REPEAT 3 [FLAG RT 120]

(c) Sharpening

1. Which of the patterns with two or more reflections also have one-third turn 
symmetry?
2. If a pattern has symmetry through a one-third turn must it have symmetry through a 
two-thirds turn also?

6. Quarter turn, in which four copies are made by turning.

(a) Observing

 Figure 6, which includes the next two examples
 Square for Pythagoras
 A few Celtic knots
Find the quarter turn centre in each case and check that there are no mirror lines.

(b) Making

 On squared paper: one big square with four small squares outside the big square 
but with their sides on those of the big square near the four corners of the big square.
 Circle with four semicircles of half radius inside.
 Use LOGO to try    REPEAT 4 [FD :A RT 90 FD :B RT 90 FD :C RT 90]    using 

your own choice of the numbers :A, :B and :C.

(c) Sharpening

1. Which of the patterns with two or more reflections (Section 3) also have quarter 
turn symmetry?

2. If a pattern has quarter turn symmetry must it have half turn symmetry and three- 
quarter turn symmetry also? 
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From this point on, we will be clarifying the words we have been using, until we are 
sure that we have found all the symmetrical kinds of pattern with a centre.

7. Clockwise and anti-clockwise, in which we see what reflections change.

When, after a paper fold, you used scissors to cut out a shape by cutting across the 
fold, you simulated a reflection by fitting the cut-out back in its hole with a flip-over. 
The cut-out was turned through 180 in three dimensions and reinserted back to front. 
This experience is handy for certain purposes, but misleading for others. It might 
make you think that a reflection was some form of rotation in disguise.

(a) Observing

Watch yourself writing in a large mirror. If you are right-handed, the person in the 
mirror is left-handed, and vice-versa.

Watch the second hand on a clock turning (clockwise) and then look at it in a mirror; 
the hand of the clock in the mirror turns the other way (anti-clockwise).

Look at the curl in Figure 7, and its mirror image.
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Think of the circles with curvy radii (in Figure 7) as the view from above a chimney 
cap. Which way round will the cap move when the wind blows?

The labels by the vertices of the triangles (in Figure 7) are not part of the pattern; they 
are there to indicate which points are matched by the reflection A  A, B  B and 
C  C. Now look at the circuits A  B  C  A and A  B  C  A. Which 
way round do they go?

The numbers on the groups of five little flags (in Figure 7) are not part of the pattern, 
they are only there to mark which flag is matched with which under the reflection. 
Which way around do the circuits 1  2  3  4  5  1 go?

(b) Making

Cut out an irregular quadrilateral from cardboard. Use it as a template to make a 
pattern and its mirror image, as in the pattern with a 60 rotation at the bottom of 
Figure 7. Locate which of the quadrilaterals can be drawn from the template with one 
side up, and which can only be drawn with the other side up.

You will have found that under a reflection, when the template is turned upside down
clockwise  anti-clockwise, and

anti-clockwise  clockwise.

You can also do this exercise with a dynamic geometry program.

You will also have found that under a rotation in the plane
clockwise  clockwise

anti-clockwise  anti-clockwise.

(c) Sharpening

So there is a difference between a reflection and a rotation.  What do you guess will 
happen to clockwise and anti-clockwise after two reflections?

Because the patterns we made with reflections generally have rotations as well, we 
will examine why that must be.
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8. Combining two reflections, in which a rotation is made from two reflections.

(a) Observing

Of the patterns with reflection symmetry that you have seen or made, which ones have
a rotation (or turning) symmetry?

(b) Making

Take a piece of plain paper, fold it once and prick to give two points matching with a 
reflection:  A1 and A2. Unfold the paper and label the two points on both sides of the 
paper. For each pricked point, the label must be the same on front and back. Then fold
the paper again (from an unfolded state) in such a way that the second fold line clearly
intersects the first fold line. Now prick through the point A2 to give one new pricked 
point A3. Unfold the paper again. You should see A1 and A2 matching across the first 
fold line and A2 and A3 matching across the second fold line. If you label the 
intersection of the two fold lines O, what can you say about the lengths OA1, OA2 and 
OA3. How are these lines inclined to the two fold lines?
If we reflected in the first fold line and then reflected in the second fold line, what 
point is A1 matched with? [ A1  A2  A3 ] How is the angle A1OA3 related to the 
angle between the two fold lines?

Explore the combination of two reflections with a dynamic geometry program.

(c) Sharpening

Take a piece of polar graph paper. Mark two long lines through the centre boldly and 
clearly. Label one of them first and the other second. Now choose any grid point on 
the sheet, and mark it A1. It is best to start with a grid point that is not on the lines 
labelled first or second, though such points should be considered later, when you 
have some confidence about what is going on. Mark the reflection of A1 in first as A2. 
Then mark the reflection of A2 in second as A3. Start again with a different grid point 
on the same polar graph paper and label it B1. Mark the reflection of B1 in first as B2. 
Then mark the reflection of B2 in second as B3.  Start again with a different grid point 
C1 etc. See Figure 8.1.
Continue building up such triples of points until you think you can recognise the 
symmetry that carries P1 (via P2) to P3.

Combining two reflections: When two reflections in intersecting axes are combined, 
the result is a rotation about the point of intersection of the axes, through twice the 
angle between the axes.
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The letters h, c, v, d label axes of reflection of the square shown in Figure 8.2 (h for 
horizontal, v for vertical and d for diagonal).
In the table below are spaces to enter 0, 90, 180 or 270, the anti-clockwise rotation
symmetries of the square, obtained by combining two of the reflections. Use the 
combination result just found.

second reflection
h c v d

h
      first          c

reflection v
d 90 180 270 0

It is interesting to note where the entries are symmetric in the table, giving xy =  yx, so
to speak. In all, eight entries appear symmetrically and eight do not.

The next step in our path to clarity, is to ask what is the same about rotations and 
reflections, that is, to give a meaning to the word ‘symmetry’.

9. What is a symmetry?, in which we catch hold of what reflections and 
rotations share.
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We saw in 1(c) that a reflection matched a line segment with another line segment of 
the same length. This makes a reflection match a triangle with a congruent triangle, 
and match angles with equal angles.
In Section 8 we saw that a rotation is formed when two reflections are combined one 
after the other, and in fact any rotation may be decomposed into two reflections. So, 
like reflections, rotations match equal lengths, congruent triangles and equal angles. 
These properties, which reflections and rotations share, are taken as the defining 
properties of a symmetry (or isometry). Because the congruence of triangles and the 
equality of angles follow from the equality of lengths, we can define a symmetry as a 
matching (of the points of the plane) in which lengths are matched with equal lengths. 

Definition of symmetry in the plane.
A symmetry is a matching of points of a figure or of the plane such that
if A is matched with A and B is matched with B, then 

the length AB = the length AB.

Reflections and rotations are examples of symmetries. There are more.

Because the word rotation also describes a movement, you might think that if the 
point A is matched with the point A by a particular rotation, there would be a unique 
route along a circular arc under which A may be moved to A. However the definition 
only specifies the start and finish points. Symmetry is something which you may 
recognise in a figure in which you only know the appearance before and after. It is as 
if you had turned your back while the process was happening. Possible intermediate 
positions are not part of the definition.

Now we are going to bring in a new word (the word group) to describe all the 
symmetries of whatever pattern we are looking at.
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10. Symmetry group, in which we list all the symmetries of a pattern.

i. The identity
(a) Observing
Count the number of rotations and reflections you can see for
(i) a capital N, (see Figure 10.1)
(ii) the Mercedes-Benz logo, (see Figure 10.1)
(iii) F, G, L, P, Q, the Alpha-Romeo, Ford, Nissan, Peugeot and Vauxhall logos.

You may have found one for the N (i), five for the M-B logo (ii), and perhaps none for
the capital letters and subsequent logos (iii); but there is a kind of non-event that 
counts as a symmetry once we have the definition of symmetry. Leaving everything 
where it is, leaves lengths unchanged. This symmetry is called the identity and may 
also be thought of as a rotation through 0 or 360. If you add in this one, you should 
have found two symmetries for the N (i), six for the Mercedes-Benz logo (ii), and one 
each for the capital letters and subsequent logos (iii). What other capital letters only 
have the identity symmetry?

(b) Making

If you cut out a figure that you have drawn on a piece of paper, then the number of 
ways in which the figure may be replaced in the hole from which it has been cut, gives
a method of counting its symmetries. Apply this idea to a square and make a list of its 
symmetries. You can simulate a reflection by turning the square over.

(c) Sharpening

A complete list of all the symmetries which preserve the appearance of an 
object or pattern is called its symmetry group.

The identity (a theorem). Every symmetry group contains the identity. This is rather 
obvious, because if you leave something where it is, all distances on it are unchanged. 
The identity is usually called I.

ii Inverses
(a) Observing

Make a list of the symmetries of a square. Use the figure at the end of section 8 to 
help you.

anti-clockwise rotations Reflections
symmetry 0 90 180 270 h c v D

inverse

Below this list of eight symmetries, try to make another list in which each symmetry 
in the second list undoes its respective symmetry in the first list. If a symmetry in the 
first list matches P to Q, then the corresponding symmetry in the second list must 
match Q to P. [Beware! Some symmetries are undone by themselves!]
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Generally a rotation through a is undone by a rotation through a or (360  a) 
about the same centre, and a reflection is undone by itself.
The standard word for this is the matching of each symmetry with its inverse. The 
nice thing to notice is that all the inverses are in the original group. Actually this is 
guaranteed by the definition of symmetry group. [There is no (b) here.]

(c) Sharpening

Inverses (a theorem). If a symmetry S is in a symmetry group, then its inverse, 
denoted by S1, is also in the group.
This is because if S (matching A with A and matching B with B) is a symmetry, it 
matches lengths with equal lengths, AB = AB. But then AB = AB and this makes S1 
a symmetry in the group. (Figure 10.2)
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iii. Closure
(a) Observing
In Section 8 we put together two distinct reflections and found they made a rotation. 
This explained why symmetry groups with at least two reflections with intersecting 
axes always contained rotations. 

Notice that SS1 = I = S1S. Also that when R is a reflection RR = I.

(b)Making

Practise this idea, by seeing how combining two reflection symmetries of a square  
gives one of its rotation symmetries, as in Section 8 (c). Try several pairs of reflection 
axes. 

What do you get if you combine two rotations with the same centre through angles of 
a and b (both anti-clockwise)?

(c) Sharpening

If you do one thing that leaves an object looking the same and then another, overall, 
the object looks the same!

Closure (a theorem). If symmetries R and S are in a symmetry group, then the 
combined symmetry RS is also in the group. This is true even when R = S. 
RR is usually written R2.

R S RS
A1  A2  A3 gives A1  A3

B1  B2  B3 gives B1  B3

Because R is a symmetry, A1B1 = A2B2. Because S is a symmetry, A2B2 = A3B3. 
Therefore A1B1 = A3B3 and so RS is a symmetry. (Figure 10.2)

Practice. If R and S are both reflection symmetries of a square with axes inclined at 
45, describe the difference between RS and SR.
Is it possible to have two different reflection symmetries R and S of a square such that
RS = SR?

Our next step of clarification is to see what the symmetry groups which only contain 
rotations have to be like.
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11. Cyclic groups – groups just with rotations having the same 
centre, in which we pinpoint one of the families of patterns that we have come 
across.

(a) Observing

Look back at the patterns that only had rotation symmetries.
If they only had 2 rotation symmetries what were the angles of those rotations?
If they only had 3 rotation symmetries what were the angles of those rotations?
If they only had 4 rotation symmetries what were the angles of those rotations?
If they only had 6 rotation symmetries what were the angles of those rotations?
(Figure 11.1)

(b) Making

It is worth checking your findings against the three theorems for groups that we found 
in Section 10. 
(i) Does each of these groups contain the identity?
(ii) Is there an inverse in your list for each of the symmetries that you have found?
(iii) Checking closure is a bit more trouble, but you can do it by filling in these tables.
You will have checked closure if you find that all the entries inside the table are in the 
list of rotations outside. (rotation a).(rotation b) = rotation (a + b).
The rotations are indicated just by their (anti-clockwise) angles. Remember, a 
rotational symmetry through 360 is indistinguishable from a rotational symmetry 
through 0. So 180 + 180 = 360 = 0, likewise, 180 + 270 = 360 + 90 = 90.

C2 0 180 C3 0 120 240 C4 0 90 180 270
0 0 0

180 180 0 120 90
240 240 0 120 180

270 270 0 90 180
Decide how you can check for inverses by looking at the tables, after they have been 
filled in.

Once you have got the hang of it you can fill in the table for six rotational symmetries 
as well.

C6 0 60 120 180 240 300
0
60
120
180
240
300 300 0 60 120 180 240

(c) Sharpening
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Suppose you had an object in the plane which had exactly five rotation symmetries 
(with the same centre) and no others. What would you expect the angles of those five 
rotations to be?  See Figure 11.2.

Paragraphs (i), (ii) and (iii), below, show how to construct a proof that the five 
rotations have to be 0, 72, 144, 216 and 288. If you don’t want to think about that
now, then skip it. The three theorems of Section 10 have to be used: the identity is in 
every group; each symmetry in the group has an inverse in the group; and, combining 
two symmetries in the group always keeps you inside the group, so the group is 
closed.
If you would like to argue why the five angles you have guessed must be right, you 
could ask yourself these questions:
(i) Why must one of the angles be 0 (or 360)? (Which theorem from 10?)
(ii) If a is one of the angles, why must 2a, 3a, 4a, 5a etc also be amongst the 
angles? (Which theorem from 10?) Why must a, 2a, 3a, 4a, 5a etc also be 
amongst the angles? (Which theorem from 10?)
(iii) Now we suppose that a is the smallest positive angle. We would like to think that
the five angles were a, 2a, 3a, 4a, 5a = 360 (which would tell us what a was, 
and we would then know everything). Just to be sure, let’s pretend that a positive 
angle b was in the list and not equal to any of a, 2a, 3a, 4a, 5a. Why can’t b be 
less than a? If b lay between 2a and 3a, would there have to be a rotation through an 
angle of (b  2a) in the group? (Which theorems?) Would be b  2a be less than a? 
What is wrong with that? So b cannot fail to be a multiple of a.
Thus the angles a, 2a, 3a, 4a, 5a are the angles of rotation, and since one of them
is 0 (or 360), the five angles are 0, 72, 144, 216 and 288.

Could you run through a similar argument to show that if an object in the plane had 
exactly six rotation symmetries, they would have to be through angles which were all 
multiples of 60?

Could the argument be applied to an object in the plane which had exactly n rotation 
symmetries? What would be the angles of the rotations then?
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A finite symmetry group is called cyclic when all its symmetries are multiples of one 
member of the group. That one member is said to be the group’s generator. If the 
word cyclic makes you think of a wheel, that is usually a helpful image.
Multiples of a generator give all the elements of a cyclic group.

The group consisting of {0, 180} is called C2. Its generator is the 180 rotation. This
is sometimes written <180> = C2. The group consisting of {0, 120, 240} is called 
C3. The group consisting of {0, 90, 180, 270} is called C4. In general, the group 
consisting of exactly n rotations is called Cn, the cyclic group of order n. 

The argument we used above, shows that the rotation with smallest angle is a 
generator of Cn. Thus <120> = C3; <90> = C4; <72> = C5; <60> = C6. In general, 
<360/n> = Cn. But there are often other angles which also generate the group, in the 
sense that its multiples give all the rotations. Test out 240 in C3, and 270 in C4. More
surprisingly test each of 144, 216 and 288 in C5.

Excursion on generators (This investigation is more about numbers than geometry.) 
Finding all the possible generators of C8 and of C12 also forms an interesting 
investigation. [C4 has two possible generators, C5 has four, C8 has four and C12 also 
has four. Make sure you know what these generators are before you launch into a 
general investigation. The LOGO procedure below may help you. Don’t feel obliged 
to tackle the general investigation if it seems a bit of a mouthful.]
In Cn the rotation through (360/n) is always a generator, so all the rotations of the 
group are through angles of ((360/n)*a), so these are the only angles to test if we are 
looking for other generators.
Here is a procedure in LOGO for exploring whether ((360/N)*A) is also a generator 
of CN.

TO TRY :N :A
ST
LT 90
REPEAT 360 [FD 2 RT 1]
RT 180*:A/:N
REPEAT :N [FD (720/PI)*SIN 180*:A/:N RT 360*:A/:N]
HT
END

For C4, TRY 4 1 and TRY 4 3 illustrate the generators 90 and 270, but TRY 4 2 
shows that 180 is not a generator - it does not reach the four points around the circle. 
For a particular :N, you know that :A = 1 always gives a generator, so execute the 
procedure   TRY :N 1   in order to check the visual effect of choosing a generator.

When you have found the four generators of C8 and the four generators of C12, you 
may like to conjecture the values of a that make a rotation through ((360/n)*a) a 
generator of Cn. The answer is that ((360/n)*a) is a generator of Cn when and only 
when hcf (n, a) = 1. You may not be interested in a proof at this stage. You can safely 
skip the proof that follows if you wish.
The proof that a rotation through ((360/n)*a) generates Cn when hcf (n, a) = 1 uses 
number theory. hcf (n, a) = 1 guarantees that there are integers x and y such that 
xn + ya = 1, and this in turn guarantees that when the rotation through ((360/n)*a) 
has been repeated y times, (360/n)*ay = (360/n)(1  xn) = 360/n  360x, so that has 
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the same result as the rotation (360/n). Since this rotation generates the group, so 
must the rotation we started with. 
When hcf (n, a) = d > 1, then the smallest angle which can be made by repeating  
rotations through ((360/n)*a) is ((360/n)*d) and that only generates the group Cn/d.

Challenge Problem. (This is a number investigation.) If you look at Figure 11.3 with 
its C12 symmetry, it has the rotations of C2, C3, C4 and C6. Try turning this idea around.
If a figure has the symmetries of C2 and C3, must it have all the symmetries of C12? Try
another pair. If a figure has C3 and C4 symmetry, must it have all the symmetries of 
C12? Try other pairs: C2 and C4; C3 and C6; C4 and C6. The question about C4 and C6 is 
equivalent to asking whether a figure having a rotation symmetry of 90 and also 60, 
must also have a rotation symmetry of 30. The closure and inverse theorems in 
Section 10 about symmetry groups should be enough to make sure about that. 

A figure with C18 symmetry has the rotations of C2, C3, C6 and C9. If a figure had the 
symmetries of C2 and C9 would that be enough to guarantee that it had all the 
symmetries of C18? What about C3 and C6? 

(A harder challenge) If a figure has both C10 and C18 symmetry, can you show that it 
has C90 symmetry? Convert the question into one about angles of rotation. This time 
you need two steps to get from the angles you have been given to the one you want. In
all these questions you are trying to make a generator of the big group. 

Here is a last question about cyclic groups. It is rather general, and the rest of the 
booklet does not build on it, so you can ignore it if you wish. The question is: “What 
is the full set of rotations of a figure which has both Cm and Cn symmetry?” The angles
you can get from these two groups are all multiples of 360/m combined with all 
multiples of 360/n, that is to say x(360/m) + y(360/n) for all integers x and y. The 
number theory that you need is that the smallest value of xa + yb is the hcf of a and b, 
and that lcm (a, b)  hcf (a, b) = ab.
In general, if a figure has both Cm and Cn symmetry, can you show that it has Clcm(m, n) 
symmetry? 
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Now you have a good vocabulary for groups of rotations, and we turn to look more 
carefully at reflections.

12. Combining three reflections, in which we go back to reflections and look 
more carefully at how they combine.

(a) Observing

Look back to the table you made at the end of Section 8. Find the four entries equal to 
90 in that table. List the pairs of reflections that gave this angle. What do you notice 
about them? Be careful about the order. We will use this list, to see how the rotation 
though 90 combines with a reflection.

(b) Making

hc = cv = vd = dh. Simplify hcd. Use hc = vd and dd = I.
Simplify hvd. Use vd = hc and hh = I.
If you wanted to combine a 90 rotation with d, what way of expressing the 90 
rotation would be most useful?

(c) Sharpening Take four lines 1, 2, 3, and 4 all through a point O, such that the angle
a from 1 to 2 is equal to the angle a from 3 to 4. (Figure 12) If we use boldface and 
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denote the reflection in 1 by 1, etc., what is the combined result 12 (which means first 
reflect in the line 1, and then reflect in the line 2 and look at the overall result) and 
what is the combined result 34?
You should have got a rotation through an angle 2a about O in both cases.
So 12 = 34.

Now take three lines 1, 2 and 3 all through a point O such that the angle from 1 to 2 is 
a. Can you find a line 1 through O such that the angle from 1 to 3 is also equal to 
a? If so, then, as before, 12 = 13. So, 123 = (12)3 = (13)3 = 1(33) = 1I = 1.

This shows that a combination of three reflections, whose axes all pass through one 
point, is equal to a single reflection. This is sometimes called the theorem of the three 
reflections.

You can also explore the combination of three reflections in intersecting axes with a 
dynamic geometry program.

You can use the kind of argument we put together for the theorem of the three 
reflections to investigate the combination of a rotation and a reflection, when the 
centre of the rotation lies on the axis of the reflection? Don’t forget you can 
decompose a rotation into two reflections. So a rotation followed by a reflection with 
axis through its centre = three reflections in axes through one point = one reflection. 
What answer might you have expected from thinking about clockwise and 
anti-clockwise?

You can also use the theorem of the three reflections to investigate the combination of 
a reflection and a rotation (in the opposite order), when the axis of the reflection 
passes through the centre of the rotation? [Answer. a reflection.] What answer might 
you have expected from thinking about clockwise and anti-clockwise?

To summarise
rotation. reflection

= reflection. reflection. reflection
= reflection. rotation

= reflection.

So, from a bird’s eye view, the table for combining the symmetries of a group of 
rotations and reflections must look like this.

rotations reflections
rotations rotations reflections
reflections reflections rotations
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13. Dihedral groups  - including a reflection, in which we identify the 
second family of patterns that we have come across.

The word “dihedral” is a Greek word meaning two-faced, and it is used here because 
turning something over, so that you can look at its back as well as its front, simulates a
reflection. 

(a) Observing
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Look back at all the patterns you have, and count the number of rotations and the 
number of reflections in the symmetry groups of those patterns. (See Figure 13.1)
Are all the possibilities you can track down recorded in this table? 

Number of reflections
0 1 2 3 4 5 6

Num- 1 poss poss
ber 2 poss poss
of 3 poss poss
rot- 4 poss poss
ations 5 poss poss

6 poss poss

(b) Making

Can you fill any of the gaps in the table here? Do you think it tells the whole story?
That is, that a finite symmetry group with a centre, either consists entirely of rotations 
(and is then cyclic), or has the same number of rotations as reflection symmetries.

We are now going to build on Section 12, to determine how many reflections there can
be in a group with a certain number of rotations.

c) Sharpening - how many rotations and how many reflections?

Here is an argument which pins down the possible number of reflections in a plane 
symmetry group with exactly five rotations. While the argument itself is quite 
abstract, you may feel happier making sense of it if you are looking at a diagram of 
something which has a dihedral symmetry group containing just five rotations. A 
regular pentagon will do. See Figure 13.2.

Suppose that we have a dihedral group with exactly five different rotations called A, 
B, C, D and E, one of which actually has to be the identity, and at least one reflection 
R. From the third property of groups (closure in section 10), AR, BR, CR, DR and 
ER are all in the group. Look at these five. From 12(c) above, what kind of 
symmetries are they? [All reflections.]
Might two of them be equal? [If AR = BR, then ARR = BRR, so A = B, which is 
wrong.] Thus if there are any reflections in the group, there must be at least five.
Might there be more than five reflections in the group?
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Let us suppose the group contains a reflection Z, which might be different from the 
five reflections AR, BR, CR, DR and ER.  What could you say about the symmetry 
ZR? [It has to be in the group, and it has to be a rotation.] If ZR = A, ZRR = AR, so 
Z = AR, one of the reflections we already knew about. So now, we know that the 
group cannot have more than five reflections, so it has exactly five.

Could you run through a similar argument to show that if an object in the plane had 
exactly six rotation symmetries, and at least one reflection, then it would have exactly 
six reflections?
    
A dihedral group of symmetries in the plane is a finite group containing rotations and
reflections. From the investigation we have just done, the number of rotations is the 
same as the number of reflections. The dihedral group with n rotations and n 
reflections is denoted by Dn.

The rotations in the dihedral group Dn match the rotations of the cyclic group Cn.
If you match diagrams of patterns with symmetry groups D1, D2, D3 etc. with patterns 
with symmetry groups C1, C2, C3 etc. it should become obvious that each D group 
contains its corresponding C group. (Figure 13.3)

If you are sceptical and want to doubt whether the rotations in a dihedral group must 
match the rotations of a cyclic group, here are some questions to face.
(i) Must the identity be amongst these rotations? 
(ii) Must the inverse of a rotation be a rotation with the same centre?
(iii) Must the combination of two rotations with the same centre be a rotation?  
These were the three properties which we used to determine the structure of cyclic 
groups in Section 11. So that structure holds for the rotations in a dihedral group.

Since the rotations of the dihedral group Dn form a cyclic group like Cn, the angles of 
the rotations in the dihedral group Dn are all multiples of (360/n).

If two of the axes of the reflections in Dn are inclined at a, then their combination 
(which has to be in the group, by closure) is a rotation through 2a from Section 8. So 
2a is a multiple of 360/n, and therefore a is a multiple of 180/n. If we use all the 
possible multiples of 180/n, we get just n axes of reflection, and that is the right 
number for Dn.

Since, all along, we have been looking at patterns with a centre, the symmetries we 
have used have always had at least one fixed point. We need to check whether there 
might be any other symmetry, that we have not thought of so far, which might also 
have a fixed point.
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14. Symmetries with a fixed point, in which we see why a symmetry with a 
fixed point must be either a reflection, a rotation or the identity.
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(a) Observing

What points are fixed by a reflection?
What points are fixed by a rotation?

(b) Making

If a symmetry S has a fixed point A, and the symmetry S takes the point P  P’, what 
can you say about the lengths AP and AP’? If a circle is drawn with centre A and 
radius AP, what can you say about the images of points on the circle under the 
symmetry S? You may want to think through the answer by considering what happens 
to a circle when rotated about its centre, or reflected in a diameter. But that is not the 
point here. Go back to the definition of symmetry in Section 9 to answer this question,
and try to pretend that you have never heard of rotations or reflections. (Figure 14.1)

(c) Sharpening

Our target is to show that a symmetry with a fixed point must be a reflection or a 
rotation. The first step is to pin down a symmetry with two fixed points. 

If a symmetry S has two different fixed points A and B, and P is any third point on the 
line AB, what can you say about the circles centre A, radius AP and centre B, radius 
BP? At how many points do they meet? Only presume that the symmetry S satisfies 
the definition in Section 9. Now think of the images of these two circles with fixed 
centres under S. If a point lies on both the circles must its image lie on both the 
images of the circles? So what is the image of P under S? (Figure 14.2)

This shows that if a symmetry fixes two points, it fixes all the points on the line 
joining them. [A theorem.] We use this repeatedly in the next paragraph.

Now suppose we have a symmetry S which fixes three points, A, B, C, at the vertices 
of a triangle (so that they are not just on one line). Use the theorem we have just 
proved to say why every point on the sides of the triangle ABC must be fixed by S 
(that is every point on BC, CA, and AB, extended indefinitely). Now choose a point, P,
not on any side of the triangle. Draw a line through P which is not parallel to any of 
the sides of the triangle. Can you be sure that this line will meet the sides of the 
triangle in at least two different points? Thus two points on this line are fixed by S. So
can you be sure that P must be fixed by S? And therefore S is the identity. [Another 
theorem: the identity is the only symmetry which fixes three points at the vertices of a 
triangle.] (Figure 14.2)

Suppose S is a symmetry which fixes the different points A and B. Let P be a point not
on the line AB. (Figure 14.3) If S fixes P, then S is the identity. If S is not the identity, 
then every point off the line AB is moved by S.  If S does not fix P, it must take P to a 
common point of the circles centre A, radius AP, and centre B, radius BP. These two 
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circles meet in exactly two points, one is P, the other is the reflection of P in the line 
AB.

A theorem. A symmetry fixing two different points A and B is either the 
identity, or the reflection with axis AB.
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Here is an argument that a symmetry with only one fixed point must be a rotation. The
argument is abstract because we are proving that it is not any weakness in our 
imaginations which has kept us working with reflections and rotations, and no other 
symmetries, so far.

Let S be the symmetry, A its unique fixed point, and P a point which is not fixed by S. 
Let S take the point P  P. Note that AP = AP. Now draw a line through A and the 
mid-point of PP, the perpendicular bisector of PP or bisector of PAP. Let M be the
reflection with this line as axis (see Figure 14.4). Then SM fixes A (because A  is 
fixed both by S and by M), and SM fixes P (because S takes P to P and M takes it 
back again). So SM fixes the two different points A and P and therefore is either the 
identity or the reflection with axis AP, which we denote by R. SM = I or R, so S = M 
or RM, a combination of two reflections, whose axes intersect at A, which is a 
rotation. So a symmetry with only one fixed point is a rotation.

Thus a plane symmetry with one or more fixed points is either the identity, a reflection
or a rotation. This means that a symmetry group with a centre can only have rotations 
and reflections in it, apart from the identity.

Every finite symmetry group with a centre is either cyclic (and consists 
only of rotations) or is dihedral (and consists of an equal number of 
rotations and reflections).

In fact, although a finite symmetry group has to have a centre, we are not in a position 
to prove that yet. The symmetry group of a circle (either a circumference or a disc) 
consists of rotations and reflections, but there is no smallest angle of rotation 
symmetry ( 0) for the circle. That is why it does not count as a ‘pattern’ in the sense 
that we have been investigating. The symmetry group of a circle is continuous, rather 
than discrete. Perhaps more disconcerting is the group of rotations generated by a 
rotation through an angle a where no multiple of a is ever a multiple of 360, the 
number a being irrational ( or 2 or such like). The rotations in the group are through
angles of na, for every integer n. You can illustrate this group with a LOGO 
procedure such as REPEAT :N [PU FD 100 PD FD 1 BK 1 PU BK 100 PD RT PI] 
which puts :N dots around the circumference of a circle, each one  further round 
than its predecessor. If :N < 115 the diagram is straightforward enough, but when :N >
1000 you will not be able to see a smallest angle of rotation. Even though the group is 
cyclic, it contains an infinity of rotations. Because this group has no smallest positive 
rotation it is said to be not discrete. The theorem we have stated above classifies 
discrete symmetry groups with a fixed point.
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Complete the following tables for dihedral groups. Always take the rotations 
anti-clockwise. The first symmetry is in the left hand column. The second symmetry is
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in the top row. For each table, you worked out the top left quadrant in Section 11. You 
also worked out how to fill the bottom right quadrant in Section 8. Use your results in 
the bottom right quadrant to convert each of the remaining combinations into a 
convenient combination of three reflections, as in Section 12(b).

D1 0 v D2 0 180 v h

0 0
v v 0 180 180 0 h v

v
h

See Figure 14.5 for the axes of the reflections v and h.

D3 0 120 240 v f g

0
120
240 240 0 120 g v f

v v g f 0 240 120
f
g

See Figure 14.6 for the axes of the reflections v, f and g.

D4 0 90 180 270 h c v d

0
90
180
270 270 0 90 180 c v d h

h h c v d 0 90 180 270
c
v
d

See Figure 14.7 for the axes of the reflections h, c, v and d.

One nice property of a group table is that each row and each column contain all the 
symmetries of the group. This is because a row can contain no repetitions, since
xa = xb  x1xa = x1xb  a = b. A column can contain no repetitions, since
ax = bx  axx1 = bxx1  a = b. The number of pigeons and the number of 
pigeon-holes is the same.
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15. Subgroups, in which we look at patterns within patterns.
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(a) Observing

In the tables you have made in Section 14 for D1, D2, D3 and D4, look for copies of the 
smaller groups inside the larger ones.

Inside D2 you should find two copies of D1 and a C2.
Inside D3 you should find three copies of D1 and a C3.
Inside D4 you should find four copies of D1 and a C4. You should also find a copy of 
D2, and, if you are very perceptive, a second copy of D2, but with different reflections.

(b) Making

If you have a figure with a particular symmetry group and add some lines to it, but do 
not just copy the whole figure, the symmetry group that results will be a subgroup of 
the original group. Sometimes you can increase the number of symmetries by adding 
lines, but that possibility will be left for you to explore.

A regular hexagon has symmetry group D6. By adding lines to the regular hexagon we 
can obtain figures with the subgroups D3, D2, D1, C6, C3, C2 and C1. See Figure 15.1.
   
Regular octagons have also been drawn in Figure 15.1, which have the symmetry 
group D8. Mark different octagons in such a way as to exhibit diagrams with the 
groups D4, D2, D1, C8, C4, C2 and C1.

(c) Sharpening

When every symmetry of one group is a symmetry of another (usually bigger) group, 
the first group is called a subgroup of the second.

If you count the number of symmetries in a group and then count the number of 
symmetries in each of its subgroups, what do you notice? Make a conjecture about the
number of symmetries in a group and the number in a subgroup.

16. Calculating with symmetries

Making

Here is a device to name and manipulate the symmetries in a dihedral group. It works 
for Dn, provided n  3, but we will make it now, just for D6.
Draw a regular hexagon. Join the centre of the hexagon to the six vertices. Then join 
the centre to the mid-points of the six sides. You now have twelve congruent triangles.
They are going to be matched with the twelve symmetries of the group D6.

(i) Label one of the twelve triangles I. It does not matter which.
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(ii) Name the rotations of D6, A for 60 anti-clockwise, A2 for 120, A3 for 180, A4 
for 240 and A5 for 300. With this convention, can you see that A6 = I ? Now, label 
five more triangles, with the rotation that takes triangle I to that triangle. (Figure 15.2)

(iii) Choose one of the reflections of the hexagon and call it M. You should notice that
the six unlabelled triangles are mirror images of the six labelled I, A, A2, A3, A4, A5. 
Now label the remaining six triangles M, AM, A2M, A3M, A4M, A5M, so that Ai and 
AiM label triangles which are mirror images under M. (Figure 15.3)

Observing

Look carefully at your hexagon with twelve triangles labelled. The twelve triangles 
have been labelled with the twelve symmetries of the hexagon. Label the axis of M 
with M. Now look at the two triangles labelled I and AM. Is there a reflection 
symmetry of the hexagon which interchanges them? If so, mark its axis with the label,
AM. Now look at the two triangles labelled I and A2M. Is there a reflection symmetry 
of the hexagon which interchanges them? If so, mark its axis A2M. Proceed similarly 
with the pairs of triangles I and A3M, I and A4M, I and A5M. The labels on the twelve 
triangles are the twelve symmetries of the hexagon, labelling each triangle with the 
symmetry which carries the triangle labelled I to it.

Sharpening

The hexagon, with its twelve labelled triangles provides a tool for calculating 
combinations of symmetries of the hexagon. Some combinations do not need the tool. 
(i) For example, to find A2 combined with A3 we just add the angles, as in a cyclic 
group, and get A5 (so A2A3 = A5). Less obviously, A3 combined with A4 gives A (since 
A6 = I,  A3A4 = A). 
(ii) The same idea works if you want to combine A2 with A3M and you get A5M (so 
A2A3M  = A5M). 
(iii) Which of the twelve symmetries is MA? If you can find where MA takes the 
triangle I to, you will know the answer. M takes I to M. Then A takes M to A5M, so 
MA = A5M. Similarly work out MA2, MA3, MA4 and MA5. You should get MAi = A6 

 iM, so AiMAj = Ai + 6  jM or Ai  jM.
(iv) The other tricky combination, for which you can use the hexagon, is for a 
combination of two reflections. Of course, if you know the angle between their axes, 
you can say that the combination is a rotation through twice that angle. But if you are 
trying to combine M with AM, the angle may not be obvious. You must first locate 
the axes of the two reflections, by finding the axis of symmetry for the triangles I and 
M, and the axis of symmetry for the triangles I and AM. Then you follow through 
what happens to the triangle I under the first and then the second symmetry. Under the
reflection M the triangle I is taken to M and then under the reflection AM , M is taken
to the triangle A5 (so M.AM = A5). It is a good idea to practise this. Find MA2M, 
MA3M, MA4M, and MA5M. You should get
MAiM = A6  i. So that in general one gets AiMAjM = Ai  j, which you could also have 
worked out from (iii).

The labelling of triangles that we have done on a hexagon to calculate with the 
symmetries of the dihedral group D6 can be done with any regular n-gon to explore the
symmetries of the dihedral group Dn provided n  3.
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17. Conclusion

When you are out and about and look at church windows, ornaments, hub caps, 
manhole-covers, badges, jewellery and such like, you should now be able to classify 
their symmetry groups as cyclic or dihedral. 
The next step with symmetries is to look at friezes, that is, patterns that run along a 
line. You will find cyclic and dihedral patterns within friezes, on quilts and within 
wallpaper patterns. What you now know about cyclic and dihedral patterns will help 
you sort these other, potentially infinite, patterns.
If you go on to explore symmetry further, you will need to remember that the only 
symmetries with a fixed point (apart from the identity) are rotations and reflections, 
and that combining two reflections with axes inclined at an angle a gives a rotation 
through 2a.
Keep looking.

18. Reading and sources list

Art sources

American Folk Art Designs and Motifs for Artists and Craftspeople, Joseph 
D’Addetta, Dover Publications, 1984, ISBN 0-486-24717-1 
The New Book of Chinese Lattice Designs, Daniel Sheets Dye, Dover Publications, 
1981, ISBN 0-486-24128-9 
Studies in Design, Christopher Dresser, Studio Editions, 1988, ISBN 1-85170-174-5
The decorative art of Arabia, Prisse d’Avennes, Studio Editions, 1989, ISBN 
1-85170-189-3 (originally 1873) 
The Grammar of Chinese Ornament, Owen Jones, Studio Editions, 1987, ISBN 
1-85170-237-7 (originally 1867) 
The World of M.C.Escher, J.L.Locher, H.N.Abrams, 1971, ISBN 0-451-79961-5

Circumstances of pattern

Safe Mirrors, made by Taskmaster Ltd, Morris Road, Leicester LE2 6BR
Starting from Mirrors, David Fielker, Beam 2000, ISBN 1 903142 16 4
Curve Stitching, Jon Millington, Tarquin, 2001, ISBN 0 906212 65 0 
Kaleidometrics, Sheillah Shaw, Tarquin, 2001, ISBN 0 906212 21 9 
Window Patterns, William Gibbs, Tarquin, 1999, ISBN 1 899618 31 7 
Crop Circles, Nick Kollerstrom, Wessex Books, 2002, ISBN 1 903035 11 2
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Software

MSWLogo (distinct from MSW LOGO, mind the gap) can be downloaded freely from
http://www.softronix.com
The best known dynamic geometry programs are CABRI and GEOMETER’S 
SKETCHPAD. But now, GEOGEBRA is available freely from the web.
For CABRI see http://www-cabri.imag.fr/cabrijava/   
For GEOMETER’S SKETCHPAD see http://www.dynamic  geometry.co.uk
Both CABRI and GEOMETER’S SKETCHPAD are available from
http://www.chartwellyorke.com

Symmetry and mathematics
Symmetry, Hermann Weyl, Princeton University Press, 1982, ISBN 0-691-02374-3
Symmetry, a unifying concept, István Hargittai and Magdolna Hargittai, Shelter 
Publications, 1994, ISBN 0-936070-17-X 
Dihedral Kaleidoscopes (H.S.M. Coxeter) College Geometry Project, 1966. Available 
from International Film Bureau, 332 South Michigan Avenue, Chicago, Illinois, 
60604-4382 (16mm film and VHS colour videotape, 13 min)
Investigating Vedic squares (LOGO), Nicola Wolf, Micromath, 1995, 11, 3
Journey into Maths, Part 1, chapter 3, Bell, Rooke and Wigley, Blackie, 1979
Transformation Geometry, George E.Martin, Springer 1982, ISBN 0 387 90636 3
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	Bob Burn

	Looking at symmetrical patterns is intriguing and satisfying.
	Understanding the way symmetrical patterns are made is part of geometry. We will make a lot of patterns, each with a centre. Two different families will emerge. We will describe these families and show why, when looking at plane patterns with a centre, there are just these two families and no more.
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