Übung zum Lehrerweiterbildungskurs Mathematik 'Lineare Algebra/Analytische Geometrie II'

Aufgabe D5 (Isometrie, orthogonale Abbildung)

Sei ψ das kanonische Skalarprodukt auf dem \mathbb{R} -Vektorraum $\mathbb{R}^{(n,1)}$ und M eine reelle $n \times n$ -Matrix. Geben Sie eine notwendige und hinreichende Bedingung dafür an, dass die lineare Abbildung

$$m: \mathbb{R}^{(n,1)} \to \mathbb{R}^{(n,1)}$$
 mit $m(v) = M \cdot v$

das Skalarprodukt ψ erhält, dass also $\psi(m(u),m(v))=\psi(u,v)$ für alle $u,v\in\mathbb{R}^{(n,1)}$ gilt.

Lösungsskizze

Bezüglich der kanonischen Basis $B = (e_1, \ldots, e_n)$ ist M die Matrix M_B^B von m, und jeder Vektor u hat u als Koordinatenvektor. Die Fundamentalmatrix des kanonischen Skalarprodukts ψ bezüglich der kanonischen Basis, also

$$(\psi(e_i, e_j))_{i,j=1,\dots n},$$

ist gleich E_n . Es gilt also $\psi(u,v)=u^Tv$ für alle $u,v\in\mathbb{R}^{(n,1)}$. Man erhält damit

(*)
$$\psi(u,v) = \psi(m(u),m(v)) \iff u^T v = (Mu)^T (Mv) = u^T M^T M v$$

für alle $u,v\in\mathbb{R}^{(n,1)}$. Einsetzen von (e_i,e_j) für (u,v) liefert den Eintrag von Stelle (i,j), nämlich $e_i^Te_j=e_i^TM^TMe_j$; dies zeigt die Notwendigkeit von $M^TM=E_n$. (M heißt dann "orthogonale" Matrix.)

Diese Bedingung ist wegen (*) auch hinreichend.