Übung zum Lehrerweiterbildungskurs Mathematik 'Lineare Algebra/Analytische Geometrie II'

Aufgabe D2 (Orthogonalraum)

Sei W der Unterraum von \mathbb{R}^4 , der von u=(1,0,-1,2) und v=(2,0,2,-1) aufgespannt wird; sei ferner W^{\perp} der Orthogonalraum (bzgl. des kanonischen Skalarprodukts) von W in \mathbb{R}^4 durch den Nullpunkt .

- (a) Welche Dimension hat W^{\perp} ?
- (b) Geben Sie eine Basis B von W^{\perp} an!

Lösungsskizze

(a) Da $W=\langle u,v\rangle$ und u,v linear unabhängig sind, folgt $\dim_{\mathbb{R}} W=2$; nach der Dimensionsformel für orthogonale Unterräume (hergeleitet aus der für lineare Gleichungssysteme) gilt

$$\dim_{\mathbb{R}} W^{\perp} = \dim_{\mathbb{R}} \mathbb{R}^4 - \dim_{\mathbb{R}} W = 4 - 2 = \underline{2}.$$

(b) Wir suchen Vektoren $x = (\xi_1, \xi_2, \xi_3, \xi_4)$ aus W^{\perp} :

$$x \in W^{\perp} \Longleftrightarrow \begin{pmatrix} u \cdot x = 0 \ \land \ v \cdot x = 0 \end{pmatrix} \Longleftrightarrow \begin{pmatrix} 1 & 0 & -1 & 2 \\ 2 & 0 & 2 & -1 \end{pmatrix} x^T = 0$$

$$\iff \begin{pmatrix} 1 & 0 & -1 & 2 \\ 0 & 0 & 4 & -5 \end{pmatrix} (\xi_1, \xi_2, \xi_3, \xi_4)^T = 0 \iff \begin{cases} \xi_1 - \xi_3 + 2\xi_4 = 0 \\ 4\xi_3 - 5\xi_4 = 0 \end{cases}$$

Wir erhalten z.B. die linear unabhängigen Vektoren $w_1 = (0, 1, 0, 0)$ und $w_2 = (-3, 0, 5, 4)$ aus W^{\perp} (Probe?¹), sodass (w_1, w_2) aus Dimensionsgründen eine Basis von W^{\perp} ist.

¹Sind nicht, wie hier, alle Umformungen Äquivalenzumformungen, so ist (wegen der Beweisrichtung) die Probe unerlässlich.