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Pointed Vertices

A pointed vertex is incident to an angle > 180◦ (a reflex angle

or big angle).

A straight-line graph is pointed if all vertices are pointed.
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Pointed Vertices

A pointed vertex is incident to an angle > 180◦ (a reflex angle

or big angle).

A straight-line graph is pointed if all vertices are pointed.

Where do pointed vertices arise?
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Visibility among convex obstacles

Equivalence classes of visibility segments. Extreme segments

are bitangents of convex obstacles.

[Pocchiola and Vegter 1996]
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Geodesic shortest paths

Shortest path (with given homotopy) turns only at pointed

vertices. Addition of shortest path edges leaves intermediate

vertices pointed.

→ geodesic triangulations of a simple polygon

[Chazelle,Edelsbrunner, Grigni, Guibas, Hershberger, Sharir, Snoeyink 1994]
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Pseudotriangulations

Given: A set V of vertices, a subset Vp ⊆ V of pointed vertices.

A pseudotriangulation is a maximal (with respect to ⊆) set of

non-crossing edges with all vertices in Vp pointed.
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Pseudotriangulations

Given: A set V of vertices, a subset Vp ⊆ V of pointed vertices.

A pseudotriangulation is a maximal (with respect to ⊆) set of

non-crossing edges with all vertices in Vp pointed.
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Pseudotriangles

A pseudotriangle has three convex corners and an arbitrary

number of reflex vertices (> 180◦).
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Pseudotriangulations

Given: A set V of vertices, a subset Vp ⊆ V of pointed vertices.

(1) A pseudotriangulation is a maximal (w.r.t. ⊆) set E of

non-crossing edges with all vertices in Vp pointed.
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Pseudotriangulations

Given: A set V of vertices, a subset Vp ⊆ V of pointed vertices.

(1) A pseudotriangulation is a maximal (w.r.t. ⊆) set E of

non-crossing edges with all vertices in Vp pointed.

(2) A pseudotriangulation is a partition of a convex polygon

into pseudotriangles.
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non-crossing edges with all vertices in Vp pointed.

(2) A pseudotriangulation is a partition of a convex polygon

into pseudotriangles.
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angle without creating a nonpointed vertex.
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Pseudotriangulations

Given: A set V of vertices, a subset Vp ⊆ V of pointed vertices.

(1) A pseudotriangulation is a maximal (w.r.t. ⊆) set E of

non-crossing edges with all vertices in Vp pointed.

(2) A pseudotriangulation is a partition of a convex polygon

into pseudotriangles.

Proof. (2) =⇒ (1) No edge can be added inside a pseudotri-

angle without creating a nonpointed vertex.

Proof. (1) =⇒ (2) All convex hull edges are in E.

→ decomposition of the polygon into faces.

Need to show: If a face is not a pseudotriangle, then one can

add an edge without creating a nonpointed vertex.
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Characterization of pseudotriangulations

Lemma. If a face is not a pseudotriangle, then one can add

an edge without creating a nonpointed vertex.
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Characterization of pseudotriangulations

Lemma. If a face is not a pseudotriangle, then one can add

an edge without creating a nonpointed vertex.

Go from a convex vertex along the boundary to the third

convex vertex. Take the shortest path.
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Characterization of pseudotriangulations

Lemma. If a face is not a pseudotriangle, then one can add

an edge without creating a nonpointed vertex.

Go from a convex vertex along the boundary to the third

convex vertex. Take the shortest path.
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Characterization of pseudotriangulations,
continued

A new edge is always added, unless the face is already a

pseudotriangle (without inner obstacles).

[Rote, C. A. Wang, L. Wang, Xu 2003]
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Tangents of pseudotriangles

“Proof. (2) =⇒ (1) No edge can be added inside a pseudo-

triangle without creating a nonpointed vertex.”

For every direction, there is a unique line which is “tangent”

at a reflex vertex or “cuts through” a corner. (See also

Exercise 14)
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Flipping of Edges

Any interior edge can be flipped against another edge. That

edge is unique. (See also Exercise 15.)

before after



11

Flipping of Edges

Any interior edge can be flipped against another edge. That

edge is unique. (See also Exercise 15.)

before after

The flip graph is connected.

Its diameter is O(n log n). [Bespamyatnikh 2003]
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Vertex and face counts

Lemma. A pseudotriangulation with x nonpointed and y

pointed vertices has e = 3x + 2y − 3 edges and 2x + y − 2
pseudotriangles.

Corollary. A pointed pseudotriangulation with n vertices has

e = 2n− 3 edges and n− 2 pseudotriangles.
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Vertex and face counts

Lemma. A pseudotriangulation with x nonpointed and y

pointed vertices has e = 3x + 2y − 3 edges and 2x + y − 2
pseudotriangles.

Corollary. A pointed pseudotriangulation with n vertices has

e = 2n− 3 edges and n− 2 pseudotriangles.

Proof. A k-gon pseudotriangle has k − 3 large angles.∑
t∈T

(kt − 3) + kouter = y∑
t
kt + kouter︸ ︷︷ ︸
2e

−3|T | = y

e + 2 = (|T |+ 1) + (x + y) (Euler)
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Vertex and face counts

Lemma. A pseudotriangulation with x nonpointed and y

pointed vertices has e = 3x + 2y − 3 edges and 2x + y − 2
pseudotriangles.

Corollary. A pointed pseudotriangulation with n vertices has

e = 2n− 3 edges and n− 2 pseudotriangles.

Corollary. A pointed graph with n ≥ 2 vertices has at most

2n− 3 edges.
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Pseudotriangulations/
Geodesic Triangulations

Applications:

• data structures for ray shooting [Chazelle, Edelsbrunner, Grigni,

Guibas, Hershberger, Sharir, and Snoeyink 1994] and visibility [Poc-

chiola and Vegter 1996]

• kinetic collision detection [Agarwal, Basch, Erickson, Guibas, Hersh-

berger, Zhang 1999–2001] [Kirkpatrick, Snoeyink, and Speckmann

2000] [Kirkpatrick & Speckmann 2002] (see Exercise 3)

• art gallery problems [Pocchiola and Vegter 1996b], [Speck-

mann and Tóth 2001]
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2. Pseudotriangulations and Motions
Unfolding of polygons

Theorem. Every polygonal arc in the plane can be brought

into straight position, without self-overlap.

Every polygon in the plane can be unfolded into convex

position.

[Connelly, Demaine, Rote 2001], [Streinu 2001]
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Expansive Motions

No distance between any pair of vertices decreases.

Expansive motions cannot overlap.
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Expansive Mechanisms

A framework is a set of movable joints (vertices) connected

by rigid bars (edges) of fixed length.

Pseudotriangulations with one convex hull edge removed are

expansive mechanisms: The have one degree of freedom, and

their motion is expansive.



17

Rigid frameworks

A framework is rigid if it allows only translations and rotations

of the framework as a whole.

Rigidity is (apart from “exceptional” embeddings) a combina-

torial property of the graph: generic rigidity.
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Minimally rigid frameworks

A graph with n vertices is minimally rigid in the plane (with

respect to ⊆) iff it has the Laman property :

• It has 2n− 3 edges.

• Every subset of k ≥ 2 vertices spans at most 2k − 3 edges.

n = 10, e = 17n = 6, e = 9

[Laman 1961]
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Pointed pseudotriangulations are Laman
graphs

Theorem. [Streinu 2001] Every pointed pseudotriangulati-

on has the Laman property:

It has 2n− 3 edges.

Every subset of k ≥ 2 vertices spans at most 2k − 3 edges.

n = 10, e = 17n = 6, e = 9

Proof: Every subgraph is pointed.
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The Laman condition

The Laman property:

• It has 2n− 3 edges.

• Every subset S of k ≥ 2 vertices spans at most 2k−3 edges.

The second condition can be rephrased:

• Every subset S̄ of k ≤ n− 2 vertices is incident to at least

2k edges.
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Every planar Laman graph is a pointed
pseudotriangulation

Theorem. Every pointed pseudotriangulation is a Laman

graph.
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Every planar Laman graph is a pointed
pseudotriangulation

Theorem. Every pointed pseudotriangulation is a Laman

graph.

Theorem. Every planar Laman graph has a realization as a

pointed pseudotriangulation. The outer face can be chosen

arbitrarily.

Proof I: Induction, using Henneberg constructions

Proof II: via Tutte embeddings for directed graphs

[Haas, Rote, Santos, B. Servatius, H. Servatius, Streinu, Whiteley 2003]

Theorem. Every rigid planar graph has a realization as a

pseudotriangulation.

[Orden, Santos, B. Servatius, H. Servatius 2003]



22

Henneberg constructions

Type I Type II
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Proof I: Henneberg constructions
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Proof II: embedding Laman graphs via
directed Tutte embeddings

Step 1: Find a combinatorial pseudotriangulation (CPT):

Mark every angle of the embedding either as small or big.

• Every interior face has 3 small angles.

• The outer face has no small angles.

• Every vertex is incident to one big angle.

Step 2: Find a geometric realization of the CPT.
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Combinatorial pseudotriangulations
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Step 1: Find a combinatorial
pseudotriangulation

Bipartite network flow model:

sources = vertices: supply = 1.

sinks = faces: demand = k − 3 for a k-sided face

arcs = angles: capacity 1. flow=1 ⇐⇒ angle is big.

Prove that the max-flow min-cut condition is satisfied.



27

Step 2—Tutte’s barycenter method

Fix the vertices of the outer face in convex position. Every

interior vertex pi should lie at the barycenter of its neighbors.∑
(i,j)∈E

ωij(pj − pi) = 0, for every vertex i

ωij ≥ 0, but ω need not be symmetric.

Theorem. If every interior vertex has three vertex disjoint

paths to the outer boundary, using arcs with ωij > 0, the

solution is a planar embedding.

[Tutte 1961, 1964], [Floater and Gotsman 1999],

[Colin de Verdière, Pocchiola, Vegter 2003]
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Tutte’s barycenter method for 3-connected
planar graphs

Theorem. Every 3-connected planar graph G has a planar

straight-line embedding with convex faces. The outer face and

the convex shape of the outer face can be chosen arbitrarily.

Tutte used symmetric ωij = ωji > 0.

→ animation of spider-web embedding (requires Cinderella 2.0 software)

http://page.inf.fu-berlin.de/~rote/Papers/slides/Pseudotriangulations-Fall-school-2003/Tutte.cdy
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Good embeddings

Consider a directed subgraph of G. A good embedding is a

set of positions for the vertices with the following properties:

1. The vertices of the outer face form a strictly convex polygon.

2. Every other vertex lies in the relative interior of the convex

hull of its out-neighbors.

3. No vertex v is degenerate, in the sense that all out-neighbors

lie on a line through v.

Lemma. A good embedding gives rise to a planar straight-

line embedding with strictly convex faces.
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Good embeddings are good

Lemma. A good embedding is non-crossing.

Proof: Assume that interior faces of G are triangles. (Add

edges with ωij = 0.)

Total angle at b boundary vertices: ≥ (b− 2)π.

Total angle around interior vertices: ≥ (n− b)× 2π.

2n− b− 2 triangles generate an angle sum of (2n− b− 2)π.
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Good embeddings are good

Lemma. A good embedding is non-crossing.

Proof: Assume that interior faces of G are triangles. (Add

edges with ωij = 0.)

Total angle at b boundary vertices: ≥ (b− 2)π.

Total angle around interior vertices: ≥ (n− b)× 2π.

2n− b− 2 triangles generate an angle sum of (2n− b− 2)π.

→ all triangles must be

oriented consistently.
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Good embeddings are good

Triangles fit together locally.

equal covering number on both

sides of every edge.
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Good embeddings are good

There is no space for triangles with 180◦ angles.

π
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Equilibrium implies good embedding

The system∑
(i,j)∈E

ωij(pj − pi) = 0, for every interior vertex i (∗)

has a unique solution. (Exercise 16)

We have to show that the solution gives rise to a good

embedding. The out-neighbors of a vertex i in the directed

subgraph are the vertices j with ωij > 0.
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Equilibrium implies good embedding

1. The vertices of the outer face form a convex polygon.

2. Every other vertex lies in the relative interior of the convex

hull of its out-neighbors.

3. No vertex pi is degenerate, in the sense that all out-neighbors

pj lie on a line through pj.

We have (i) by construction. (ii) follows directly from the

system∑
(i,j)∈E

ωij(pj − pi) = 0, for every interior vertex i (∗)

We need 3-connectedness and planarity for (iii).
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The equilibrium embedding is nondegenerate
Assume that all neighbors of pi lie on a horizontal line `.

We have 3 vertex-disjoint paths from i to the boundary.

q1, q2, q3 = last vertex on each path that lies on `.

By equilibrium, qk must have a neighbor above ` and below `.

`

piq1

q2

q3
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The equilibrium embedding is nondegenerate
Assume that all neighbors of pi lie on a horizontal line `.

We have 3 vertex-disjoint paths from i to the boundary.

q1, q2, q3 = last vertex on each path that lies on `.

By equilibrium, qk must have a neighbor above ` and below `.

Continue upwards to the boundary and along the boundary to

the highest vertex pmax, and similarly to the lowest vertex.

`

piq1

q2

q3

`

piq1

q2

q3

pmax

`′

`

piq1

q2

q3

pmax

`′

`

piq1

q2

q3

pmax

`′

`

piq1

q2

q3

pmax

pmin
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Using planarity

pmin

pmax

piq1

q2

q3

Three paths from three different vertices q1, q2, q3 to a common

vertex pmax always contain three vertex-disjoint paths from

q1, q2, q3 to a common vertex (the “Y-lemma”).

Together with the three paths from pi to q1, q2, q3 we get a

subdivision of K3,3.
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Tutte’s barycenter method for directed planar
graphs

Theorem. Let D be a partially directed subgraph of a planar

graph G with specified outer face.

If every interior vertex has three vertex disjoint paths to the

outer face, there is a planar embedding where every interior

vertex lies in the interior of its out-neighbors. 2
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Selection of outgoing arcs

3 outgoing arcs for every interior vertex:

Triangulate each pseudotriangle arbitrarily.

For each reflex vertex, select

• the two incident boundary edges

• an interior edge of the pseudotriangulation
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3-connectedness—geometric version

Lemma. Every induced subgraph of a planar Laman graph

with a CPT has at least 3 outside “corners”.
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3-connectedness—geometric version

Lemma. Every induced subgraph of a planar Laman graph

with a CPT has at least 3 outside “corners”.
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Every subgraph has at least 3 corners

b boundary edges, b0 ≤ b boundary ver-

tices, with c corners.

# interior angles = 2e− b

# interior small angles = 3f

# interior big angles = n− c

Euler: e + 2 = n + (f + 1)

=⇒ e = 2n− 3− (b− c)

interior edges and vertices: eint = e− b, vint = n− b0

Laman: eint ≥ 2vint

=⇒ c ≥ 3
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3-connectedness in the graph

Need to show: Every interior vertex a has three vertex disjoint

paths to the outer face.

Apply Menger’s theorem: After removing two “blocking verti-

ces” b1, b2, there is still a path a →boundary.
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3-connectedness in the graph

Need to show: Every interior vertex a has three vertex disjoint

paths to the outer face.

Apply Menger’s theorem: After removing two “blocking verti-

ces” b1, b2, there is still a path a →boundary.

Lemma. An interior vertex v has its

big angle in a unique pseudotrian-

gle Tv.

There are three vertex-disjoint paths

v → c1, v → c2, v → c3 to the three

corners c1, c2, c3 of Tv.
v

Tv

c1 c2

c3
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3-connectedness in the graph

A := the vertices reachable from a. b1

a

b2

A

i S
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3-connectedness in the graph

A := the vertices reachable from a.

GS := ∪{Tv : v ∈ A }
b1

a

b2

A

b1

a

b2

Ta

GS

A

i S



42

3-connectedness in the graph

A := the vertices reachable from a.

GS := ∪{Tv : v ∈ A }
GS has at least three corners c1, c2, c3.

Find v1, v2, v3 with ci ∈ Tvi
and paths

v1 → c1, v2 → c2, v3 → c3.
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b1

a

b2

A

b1

a

b2

Ta

GS

A

i S



42

3-connectedness in the graph

A := the vertices reachable from a.

GS := ∪{Tv : v ∈ A }
GS has at least three corners c1, c2, c3.

Find v1, v2, v3 with ci ∈ Tvi
and paths

v1 → c1, v2 → c2, v3 → c3.

A blocking vertex b1, b2 can block only

one of these paths. =⇒ some ci ∈ A.

b1

a

b2

A

b1

a

b2

Ta

GS

A

Either ci lies on the boundary or one can jump out of GS.
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Specifying the shape of pseudotriangles

The shape of every pseudotriangle (and the outer face) can

be arbitrarily specified up to affine transformations.
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Specifying the shape of pseudotriangles

The shape of every pseudotriangle (and the outer face) can

be arbitrarily specified up to affine transformations.

The Tutte embedding with all ωij = 1 yields rational coor-

dinates with a common denominator which is at most 12n/2,

i. e. with O(n) bits.

OPEN PROBLEM: Can every pseudotriangulation be embed-

ded on a polynomial size grid? On an O(n)×O(n) grid?
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3. Locally convex surfaces
Motivation: the reflex-free hull

flat

nearly reflex

reflex

saddle
nearly convex

convex

an approach for recognizing pockets in biomolecules

[Ahn, Cheng, Cheong, Snoeyink 2002]
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Locally convex functions

A function over a polygonal domain P is locally convex if it is

convex on every segment in P .
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Locally convex functions

A function over a polygonal domain P is locally convex if it is

convex on every segment in P .
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Locally convex functions on a poipogon

A poipogon (P, S) is a simple polygon P with some additional

vertices inside.

Given a poipogon and a height value hi for each pi ∈ S, find

the highest locally convex function f : P → R with f(pi) ≤ hi.

If P is convex, this is the lower convex hull of the three-

dimensional point set (pi, hi).

In general, the result is a piecewise linear function defined

on a pseudotriangulation of (P, S). (Interior vertices may be

missing.)

→ regular pseudotriangulations

[Aichholzer, Aurenhammer, Braß, Krasser 2003]
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The surface theorem

In a pseudotriangulation T of (P, S), a vertex is complete if

it is a corner in all pseudotriangulations to which it belongs.

Theorem. For any given set of heights hi for the complete

vertices, there is a unique piecewise linear function on the

pseudotriangulation with the complete vertices. The function

depends monotonically on the given heights.

In a triangulation, all vertices are complete.



48

Proof of the surface theorem

Each incomplete vertex pi is a convex combination of the three

corners of the pseudotriangle in which its large angle lies:

pi = αpj + βpk + γpl, with α + β + γ = 1, α, β, γ > 0.

→ hi = αhj + βhk + γhl

The coefficient matrix of this mapping M : (h1, . . . , hn) 7→
(h′1, . . . , h

′
n) is a stochastic matrix. M is a monotone function.

There is always a unique solution. (Exercise 16)
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Flipping to optimality

Find an edge where convexity is violated, and flip it.

convexifying flips a planarizing flip

A flip has a non-local effect on the whole surface.

The surface moves down monotonically.
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Realization as a polytope

There exists a convex polytope whose vertices are in one-to-

one correspondence with the regular pseudotriangulations of a

poipogon, and whose edges represent flips.

For a simple polygon (without interior points), all pseudotri-

angulations are regular.
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4. Expansive motions and the polytope of
pointed pseudotriangulations

Infinitesimal Motion

n vertices p1, . . . , pn.

1. (global) motion pi = pi(t), t ≥ 0
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4. Expansive motions and the polytope of
pointed pseudotriangulations

Infinitesimal Motion

n vertices p1, . . . , pn.

1. (global) motion pi = pi(t), t ≥ 0

2. infinitesimal motion (local motion)

vi =
d

dt
pi(t) = ṗi(0)

Velocity vectors v1, . . . , vn.
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Expansion

1
2 ·

d

dt
|pi(t)− pj(t)|2 = 〈vi − vj, pi − pj〉 =: expij

vi · (pj − pi) vj · (pj − pi)

pj − pi

vi

pjpi

vj

expansion (or strain) expij of the segment ij
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The rigidity map

M : (v1, . . . , vn) 7→ (expij)ij∈E
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The rigidity map

M : (v1, . . . , vn) 7→ (expij)ij∈E

The rigidity matrix:

M =

 the

rigidity

matrix


︸ ︷︷ ︸

2|V |

 E
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Expansive Motions

expij = 0 for all bars ij

(preservation of length)

expij ≥ 0 for all other pairs (struts) ij

(expansiveness)
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The unfolding theorem
Proof outline

1. Prove that expansive motions exist.

2. Select an expansive motion and provide a global motion.
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The unfolding theorem
Proof outline

1. Prove that expansive motions exist. [ 2 PROOFS ]

2. Select an expansive motion and provide a global motion.
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Proof Outline

Existence of an expansive motion

m (duality)

Self-stresses (rigidity)

Self-stresses on planar frameworks

m (Maxwell-Cremona correspondence)

polyhedral terrains

[ Connelly, Demaine, Rote 2000 ]
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The expansion cone

The set of expansive motions forms a convex polyhedral cone

X̄0 in R2n, defined by homogeneous linear equations and

inequalities of the form

〈vi − vj, pi − pj〉
{

=
≥

}
0
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Bars, struts, frameworks, stresses

Assign a stress ωij = ωji ∈ R to each edge.

Equilibrium of forces in vertex i:∑
j

ωij(pj − pi) = 0
pi

pj

ωij(pj − pi)

ωij ≤ 0 for struts: Struts can only push.

ωij ∈ R for bars: Bars can push or pull.
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Motions and stresses

Linear Programming duality:

There is a strictly expansive motion if and only if there is no

non-zero stress.

〈vi − vj, pi − pj〉
{

= 0
> 0

∑
j

ωij(pj−pi) = 0, for all i

ωij ∈ R, for a bar ij

ωij ≤ 0, for a strut ij
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Motions and stresses

Linear Programming duality:

There is a strictly expansive motion if and only if there is no

non-zero stress.

〈vi − vj, pi − pj〉
{

= 0
> 0

∑
j

ωij(pj−pi) = 0, for all i

ωij ∈ R, for a bar ij

ωij ≤ 0, for a strut ij

[ MTω = 0 ]

[
Mv

{
= 0
> 0

]
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Making the framework planar

• subdivide edges at intersection points

• collapse multiple edges
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The Maxwell-Cremona Correspondence
[1864/1872]

self-stresses on a

planar framework

m one-to-one correspondence

reciprocal diagram

m one-to-one correspondence

3-d lifting (polyhedral terrain)
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Valley and mountain folds

ωij > 0 ωij < 0

valley mountain

bar or strut bar
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Look a the highest peak!

mountain → bar

Every polygon has > 3 convex vertices

→ 3 mountain folds → 3 bars.
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The general case

pointed vertex

There is at least one vertex with angle > π.
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The only remaining possibility

a convex polygon

2
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Constructing a global motion

[ Connelly, Demaine, Rote 2000 ]

• Define a point v := v(p) in the interior of the expansion

cone, by a suitable non-linear convex objective function.

• v(p) depends smoothly on p.

• Solve the differential equation ṗ = v(p)
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Constructing a global motion

[ Connelly, Demaine, Rote 2000 ]

• Define a point v := v(p) in the interior of the expansion

cone, by a suitable non-linear convex objective function.

• v(p) depends smoothly on p.

• Solve the differential equation ṗ = v(p)

Alternative approach: Select an extreme ray of the expansion

cone.

Streinu [2000]:

Extreme rays correspond to pseudotriangulations.
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Cones and polytopes

[Rote, Santos, Streinu 2002]

• The expansion cone

X̄0 = { expij ≥ 0 }

• The perturbed expansion cone

= the PPT polyhedron

X̄f = { expij ≥ fij }

• The PPT polytope

Xf = { expij ≥ fij,

expij = fij for ij on boundary }
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The PPT polytope

Theorem. For every set S of points in general position, there

is a convex (2n − 3)-dimensional polytope whose vertices

correspond to the pointed pseudotriangulations of S.
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Pinning of Vertices

Trivial Motions: Motions of the point set as a whole

(translations, rotations).

Pin a vertex and a direction. (“tie-down”)

v1 = 0

v2 ‖ p2 − p1

This eliminates 3 degrees of freedom.
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Extreme rays of the expansion cone

Pseudotriangulations with one convex hull edge removed yield

expansive mechanisms. [Streinu 2000]

Rigid substructures can be identified.
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A polyhedron for pseudotriangulations

Wanted:

A perturbation of the constraints “expij ≥ 0” such that the

vertices are in 1-1 correspondence with pseudotriangulations.
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Heating up the bars

∆T = |x|2

Length increase ≥
∫

x∈pipj

|x|2 ds
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Heating up the bars

∆T = |x|2

Length increase ≥
∫

x∈pipj

|x|2 ds
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Heating up the bars

∆T = |x|2

Length increase ≥
∫

x∈pipj

|x|2 ds

expij ≥ |pi − pj| ·
∫

x∈pipj

|x|2 ds
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Heating up the bars

∆T = |x|2

Length increase ≥
∫

x∈pipj

|x|2 ds

expij ≥ |pi − pj| ·
∫

x∈pipj

|x|2 ds

expij ≥ |pi − pj|2 · (|pi|2 + 〈pi, pj〉+ |pj|2) · 1
3
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Heating up the bars — points in convex
position

⇒
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The perturbed expansion cone
= PPT polyhedron

X̄f = { (v1, . . . , vn) | expij ≥ fij }

• fij := |pi − pj|2 · (|pi|2 + 〈pi, pj〉+ |pj|2)

• f ′ij := [a, pi, pj] · [b, pi, pj]

[x, y, z] = signed area of the triangle xyz

a, b: two arbitrary points.
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Tight edges

For v = (v1, . . . , vn) ∈ X̄f ,

E(v) := { ij | expij = fij }

is the set of tight edges at v.

Maximal sets of tight edges ≡ vertices of X̄f .
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What are good values of fij?

Which configurations of edges can occur in a set of tight

edges?

We want:

• no crossing edges

• no 3-star with all angles ≤ 180◦

It is sufficient to look at 4-point subsets.
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Good values fij for 4 points

fij is given on six edges.

Any five values expij determine

the last one.

Check if the resulting value expij

of the last edge is feasible (expij ≥
fij)

→ checking the sign of an expres-

sion.
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Good Values fij for 4 points

A 4-tuple p1, p2, p3, p4 has a unique self-stress (up to a scalar

factor).

ωij =
1

[pi, pj, pk] · [pi, pj, pl]
, for all 1 ≤ i < j ≤ 4

i

j

k

l

ωij > 0 for boundary edges.

ωij < 0 for interior edges.
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Why the stress?

If the equation ∑
1≤i<j≤4

ωijfij = 0

holds, then fij are the expansion values expij of a motion

(v1, v2, v3, v4).

Actually, “if and only if”.
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Why the stress?

If the equation ∑
1≤i<j≤4

ωijfij = 0

holds, then fij are the expansion values expij of a motion

(v1, v2, v3, v4).

Actually, “if and only if”.

[ MTω = 0, f = exp = Mv ]
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Good perturbations

We need ∑
1≤i<j≤4

ωijfij > 0

for all 4-tuples of points.

→ For every vertex v, E(v) is non-crossing and pointed.

→ X̄f is a simple polyhedron.
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The PPT-polyhedron

Every vertex is incident to 2n− 3 edges.

Edge ≡ removing a segment from E(v).

Removing an interior segment leads to an adjacent pseudotri-

angulation (flip).

Removing a hull segment is an extreme ray. 2
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Proof of
ω12f12+ω13f13+ω14f14+ω23f23+ω24f24+ω34f34 > 0

R(a, b) :=
∑

1≤i<j≤4

ωij · [a, pi, pj][b, pi, pj]

R ≡ 1!
R is linear in a and linear in b. R(pi, pj) = 1 is sufficient.

R(p1, p2): all fij = 0 except f34

R(p1, p2) = ω34f34 =
det(p1, p3, p4) det(p2, p3, p4)
det(p3, p4, p1) det(p3, p4, p2)

= 1. 2
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The PPT polytope

Cut out all rays:

Change expij > fij to expij = fij for hull edges.
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The PPT polytope

Cut out all rays:

Change expij > fij to expij = fij for hull edges.

The Expansion Cone X̄0:

collapse parallel rays into one ray. → pseudotriangulations

minus one hull edge. Rigid subcomponents are identified.
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The PT polytope

Vertices correspond to all pseudotriangulations, pointed or

not.

Change inequalities expij ≥ fij to

expij +(si + sj)‖pj − pi‖ ≥ fij

with a “slack variable” si for every vertex.

si = 0 indicates that vertex i is pointed.

Faces are in one-to-one correspondence with all non-crossing

graphs.

[Orden, Santos 2002]
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Expansive motions for a chain
(or a polygon)

• Add edges to form a pseudotriangulation

• Remove a convex hull edge

• → expansive mechanism 2
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Canonical pseudotriangulations

Maximize/minimize
∑n

i=1 ci · vi over the PPT-polytope.

ci := pi:

(a) (b) (c)

Delaunay triangulation Max/Min
∑

pi · vi

(not affinely invariant)

(Can be constructed as the lower/upper convex hull of lifted

points.) [André Schulz]
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Edge flipping criterion for canonical
pseudotriangulations of 4 points in convex

position

Maximize/minimize the product of the areas.

Invariant under affine transformations.
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The “Delone pseudotriangulation” for 100
random points
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The “Anti-Delone pseudotriangulation” for
100 random points
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Which fij to choose?

• fij := |pi − pj|2 · (|pi|2 + 〈pi, pj〉+ |pj|2)

• f ′ij := [a, pi, pj] · [b, pi, pj]

Go to the space of the (expij) variables instead of the (vi)
variables.

exp = Mv
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Characterization of the space (expij)i,j

A set of values (expij)1≤i<j≤n forms the expansion values of a

motion (v1, . . . , vn) if and only if the equation∑
1≤i<j≤4

ωij expij = 0

holds for all 4-tuples.

SKIP
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A canonical representation

∑
1≤i<j≤4

ωij expij = 0, for all 4-tuples

expij ≥ fij, for all pairs i, j
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A canonical representation

∑
1≤i<j≤4

ωij expij = 0, for all 4-tuples

expij ≥ fij, for all pairs i, j

∑
1≤i<j≤4

ωijfij = 1, for all 4-tuples

Substitute dij := expij −fij:∑
1≤i<j≤4 dij expij = −1, for all 4-tuples (1)

dij ≥ 0, for all i, j (2)
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The associahedron

9

11

13

15

4
6

8
10

12

1

3

5

7

v4

v2

v3
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Catalan structures

• Triangulations of a convex polygon / edge flip

• Binary trees / rotation

• (a ∗ (b ∗ (c ∗ d))) ∗ e / ((a ∗ b) ∗ (c ∗ d)) ∗ e
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Catalan structures

• Triangulations of a convex polygon / edge flip

• Binary trees / rotation

• (a ∗ (b ∗ (c ∗ d))) ∗ e / ((a ∗ b) ∗ (c ∗ d)) ∗ e

• non-crossing alternating trees

• . . . . . . . . . . . . . . . . . . . . .
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The secondary polytope

Triangulation T 7→ (x1, . . . , xn).

xi := total area of all triangles incident to pi

vertices ≡ regular triangulations of (p1, . . . , pn)

(p1, . . . , pn) in convex position:

pseudotriangulations≡ triangulations≡ regular triangulations.

→ two realizations of the associahedron.

These two associahedra are affinely equivalent.
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Expansive motions in one dimension

{ (vi) ∈ Rn | vj − vi ≥ fij for 1 ≤ i < j ≤ n }

fil + fjk > fik + fjl, for all i < j < k < l.

fil > fik + fkl, for all i < k < l.

For example, fij := (i− j)2

related to the Monge Property.
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Non-crossing alternating trees

non-crossing: no two edges ik, jl with i < j < k < l.

alternating: no two edges ij, jk with i < j < k.

[Gelfand, Graev, and Postnikov 1997], in a dual setting.

[Postnikov 1997], [Zelevinsky ?]
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The associahedron

9

11

13

15

4
6

8
10

12

1

3

5

7

v4

v2

v3



100

5. Reciprocal diagrams and stresses

Given: A plane graph G and its planar dual G∗.

A framework (G, p) is reciprocal to (G∗, p∗) if corresponding

edges are parallel.

5
8

8
5

3
2

3
2

1
2

8
3

2

2

4

-

-
8
3

-

3
8

-
3
8

-

2
3

-

1
4

-

1
2

-

3
2

-

-

a) b)

Variation: Maxwell uses perpendicular instead of parallel.

→ dynamic animation of reciprocal diagrams with Cinderella dynamic

geometry software

http://page.inf.fu-berlin.de/~rote/Papers/slides/Pseudotriangulations-Fall-school-2003/reciprocal.cdy
http://www.cinderella.de
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Self-stresses and reciprocal frameworks

An equilibrium at a vertex gives rise to a polygon of forces:

a) b)

3

4

1-

-

-

These polygons can be assembled to the reciprocal diagram.
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Assembling the reciprocal framework

1
4

1

1
2

−4
−3

−1

−1

1
4

ω∗
ij := 1/ωij defines a self-stress on the reciprocal.
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The Maxwell-Cremona Correspondence
[1864/1872]

self-stresses on a

planar framework

m one-to-one correspondence

reciprocal diagram
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The Maxwell-Cremona Correspondence
[1864/1872]

self-stresses on a

planar framework

m one-to-one correspondence

reciprocal diagram

m one-to-one correspondence

3-d lifting (polyhedral terrain)
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The Maxwell reciprocal

In the Maxwell reciprocal, corresponding edges of the two

frameworks (G, p) and (G∗, p∗) are perpendicular.

A

B
C

D

E

E

A

B

C

D

Interpret vertices (vectors) of (G∗, p∗) as gradients of faces in

the lifted framework (G, p) (and vice versa).
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The Maxwell reciprocal

Face f :

z = 〈f ∗,
(

x

y

)
〉+ cf

Need to determine scalars cf (vertical shifts) so that lifted

faces share common edges.

Lifted faces f and g in G with gradients f ∗ and g∗

→ the intersection of the planes f and g (the lifted edge) is

perpendicular to the dual edge f ∗g∗.

f : z = 〈f ∗,
(
x
y

)
〉+ cf

g : z = 〈g∗,
(
x
y

)
〉+ cg

f ∪ g : 〈f ∗ − g∗,
(
x
y

)
〉 = cg − cf
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Planar frameworks with planar reciprocals

Theorem. Let G be a pseudotriangulation with 2n− 2 edges

(and hence with a single nonpointed vertex). Then G has a

unique self-stress, and the reciprocal G∗ is non-crossing.

Moreover, if the stress on G is nonzero on all edges, G∗ is also

a pseudotriangulation with 2n− 2 edges.

[Orden, Rote, Santos, B. Servatius, H. Servatius, Whiteley 2003]
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Liftings of non-crossing reciprocals

Theorem. If G and G∗ are non-crossing reciprocals, the lifting

has a unique maximum. There are no other critical points.

Every other point p is a “twisted saddle”: Its neighborhood is

cut into four pieces by some plane through v (but not more).
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Minimal pseudotriangulations

Minimal pseudotriangulations (w.r.t. ⊆) are not necessarily

minimum-cardinality pseudotriangulations.

A minimal pseudotrian-

gulation has at most

3n − 8 edges, and this

is tight for infinitely ma-

ny values of n.

(see Exercise 7)

[Rote, C. A. Wang, L. Wang, Xu 2003]
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Pseudotriangulations in 3-space?

Rigid graphs are not well-understood in 3-space.



110TNPUT A NO TNPUT
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