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Abstract

In the Euclidean Traveling Salesman Problem, a set of points in the plane is given, and
we look for a shortest closed curve through these lines (a “tour”). We treat two special
cases of this problem which are solvable in polynomial time.

The first solvable case is the N-line Traveling Salesman Problem, where the points lie on
a small number (N) of parallel lines. Such problems arise for example in the fabrication of
printed circuit boards, where the distance traveled by a laser which drills holes in certain
places of the board should be minimized.

By a dynamic programming algorithm, we can solve the N-line Traveling Salesman
Problem for n points in time nN , for fixed N , i. e., in polynomial time. This extends a
result of Cutler (1980) for 3 lines. The parallelity condition can be relaxed to point sets
which lie on N “almost parallel” line segments.

The other solvable case concerns the necklace condition: A tour is a necklace tour if we
can draw disks with the given points as centers such that two disks intersect if and only
if the corresponding points are adjacent on the tour. If a necklace tour exists, it is the
unique optimal tour.

We give an algorithm which tests in O(n3/2) time whether a given tour is a necklace tour,
improving an algorithm of Edelsbrunner, Rote, and Welzl (1988) which takes O(n2) time.
It is based on solving a system of linear inequalities by the generalized nested dissection
procedure of Lipton, Rose, and Tarjan (1979). We describe how this method can be
implemented with only linear storage.

We give another algorithm which tests in O(n2 log n) time and linear space, whether
a necklace tour exists for a given point set, by transforming the problem to a fractional
2-factor problem on a sparse bipartite graph.

Both algorithms also compute radii for the disks realizing the necklace tour.
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Introduction

The Traveling Salesman Problem is one of the most important problems in the area of
combinatorial optimization. It asks for computing a tour in a weighted graph (that is, a
cycle that visits every vertex exactly once) such that the sum of the weights of the edges
in this tour is minimal. A whole monograph, edited by Lawler, Lenstra, Rinnooy Kan,
and Shmoys [1985] has been devoted to this problem.

The traveling salesman problem is known to be NP-hard (see Garey and Johnson [1979]
or Johnson and Papadimitriou [1985]) which implies that no algorithm is known currently
which finds an optimal tour in polynomial time. There are two approaches to circumvent
this difficulty: one is the design of algorithms which compute tours that are close to
optimal; the other identifies restricted classes of the problem for which efficient solutions
are possible.

In this thesis, we use the second approach, and we identify two such classes with
polynomial-time solutions. An overview of many other efficiently solvable cases can be
found in Gilmore, Lawler, and Shmoys [1985]. Both classes that we treat are subclasses
of the Euclidean Traveling Salesman Problem in the plane where the considered graph G

is the complete distance graph of a finite set P of points in the plane: the vertices of G

are the points in P and the weight of an edge between two vertices is the Euclidean dis-
tance between the corresponding points. Geometrically, the Euclidean Traveling Salesman
Problem can be formulated as the problem of finding a polygon of shortest length whose
vertices are the given points.

A simple polygon is a polygon in which no two sides have a point in common except
for the common endpoint of two adjacent sides. The following lemma is an immediate
consequence of the triangle inequality:

Lemma 1. Unless all points lie on one line the optimal tour is a simple polygon having

the given points as vertices.

Although the Euclidean traveling salesman problem is a restricted version of the general
traveling salesman problem, it is still NP-hard (see Papadimitriou [1977]). There are a few
natural classes of point sets, however, which allow for an efficient construction of optimal
tours. For example, the boundary of the convex hull of P forms the unique optimal tour
of P if it contains all points of P .

The first solvable case of the Traveling Salesman Problem that we are going to deal
with is the N-line Traveling Salesman Problem, in which the points lie on N parallel lines,
where N is a small number. Such problems arise for example in the fabrication of printed
circuit boards, where a laser drills holes in certain places of a board, and the total distance
traveled by the laser is to be minimized (cf. Lin and Kernighan [1973]).

By the design, the positions of the holes are naturally aligned on parallel lines.

As will be shown in Chapter 1, the N-line Traveling Salesman Problem can be solved in
polynomial time, for fixed N . (The degree of the polynomial is N). The condition that the
lines are parallel can be relaxed a little: The points may lie on a set of N “almost parallel”
line segments without destroying the properties that are required for our algorithm to work
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correctly. An exact characterization of those line segments is given in the last section of
Chapter 1.

The other class of point sets considered here is based on the notion of the necklace
condition:

Let P be a finite point set in the plane. A tour T of P is a necklace-tour if it is
the intersection graph of a set S of closed disks centered at the points in P . If a
necklace-tour exists, then we say that P satisfies the necklace condition.

Figure 1 shows two examples of necklace-tours: a typical “necklace” which illustrates
the name of the necklace condition, and a more general example. It has been shown by
Sanders [1968] (see Supnick [1970]) that the traveling salesman problem becomes easy if a
necklace-tour exists, since a necklace-tour is the unique optimal tour.
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Figure 1. Two necklace tours

The necklace condition is probably not so interesting from the point of view of practical
applications, but rather because of the nice characterizations which can be obtained and
because of the algorithmic questions that arise naturally: Find out whether a set of points
admits a necklace-tour and if yes, find this tour. Chapter 2 deals with this question.

In Section 2.1 we deal with the easier problem of determining whether a given tour is
a necklace tour. This problem is solved by formulating a system of inequalities whose
feasibility has to be checked. This check is carried out by an elimination scheme called
generalized nested dissection.

In Section 2.2, we consider the problem of testing the necklace condition and finding a
necklace tour.

Some results of Chapter 2 (Sections 2.1.1, 2.1.2, 2.1.3.1, and 2.2) originated in cooper-
ation with Herbert Edelsbrunner and Emo Welzl, and they have been published jointly
(Edelsbrunner, Rote, and Welzl [1987]).
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For an overview of the results obtained in this thesis and their relation to previous results
see the individual introductions to the two chapters.

Notational conventions

When we are talking about a subgraph of the complete distance graph, we shall not
distinguish between the graph and its edge set. This leads to no confusion since the vertex
set is always the set P = {p1, p2, . . . , pn} of given points. In particular, |G| will always
denote the number of edges of the graph G, and we will write “{pi, pj} ∈ G” for “{pi, pj}
is an edge of the graph G”.

The Euclidean distance between two points X and Y of the plane will be denoted by
dist(X, Y ). For the distance between two given points pi and pj we will use the shorter
notation dij := dist(pi, pj).
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Chapter 1: The N-line Traveling Salesman Problem

1.1. Introduction

In this chapter we will deal with the Traveling Salesman Problem in which all points lie
on N parallel (or “almost parallel”) lines. We will use a dynamic programming approach
to obtain a polynomial algorithm. Our algorithm is an extension of an algorithm by
Cutler [1980] for three parallel lines. (For two lines, the problem is trivial.) Cutler also
considered the Traveling Salesman Path Problem. A similar but easier special case was
considered by Ratliff and Rosenthal [1983]: the problem of order-picking in a rectangular
warehouse. These authors also used the dynamic programming paradigm for their problem
and obtained a linear-time algorithm. Cornuéjols, Fonlupt, and Naddef [1985] extend the
result of Ratliff and Rosenthal to the Steiner Traveling Salesman Problem for arbitrary
undirected series-parallel graphs. In the Steiner Traveling Salesman Problem, we look for
a closed path which visits each of a given subset of the vertices at least once. The algorithm
takes linear time.

Another similar algorithm was given in Gilmore, Lawler, and Shmoys [1985], Section 15,
for the Traveling Salesman Problem with limited bandwidth. That algorithm also has
linear running time (for fixed bandwidth).

Cutler’s N-line Traveling Salesman Problem has recently been generalized in a different
direction by Děıneko, van Dal, and Rote [1994]. They considered the problem where the
given points lie on the boundary of a convex polygon and on one additional line segment
inside this polygon. Clearly, this class of problems contains the 3-line Traveling Salesman
Problem as a special case. Moreover, they improved the complexity from O(n3) to O(n2).†

Our condition that the lines are parallel can be relaxed, and the algorithm can be applied
to points on “almost parallel” lines, which still have the same combinatorial properties with
respect to shortest tours.

In the next section we state the exact condition which the lines must fulfill in order that
our algorithm is applicable. A characterization of such sets of line segments by forbidden
sub-configurations is deferred to Section 1.6, since it is somewhat peripheral to the main
course of the paper. In section 2 we continue by stating one simple but essential lemma

† A common generalization of the N-line Traveling Salesman Problem and the convex-hull-and-
line Traveling Salesman Problem was considered by Děıneko and Woeginger [1996]: the convex-
hull-and-k-line Traveling Salesman Problem, which has k parallel (or “almost parallel”, see the
following paragraph) line segments inside the convex hull, whose carrying lines intersect the convex
hull in two common edges. The time bound is O(nk+2), which corresponds to the time bound in
this paper.
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that follows from the conditions that we impose on the lines, and we discuss to what extent
these conditions are necessary for our algorithm. We also formulate the most elementary
facts about the Traveling Salesman Problem, and we define the required notations. In
particular, we will define what we mean by a partial solution.

In the third section we derive the main geometric lemma about optimal partial solutions.
In Section 1.4, we then formulate a rather standard dynamic programming algorithm,
whose correctness is based on that lemma. Finally, in Section 1.5, we analyze the time and
space complexity of the algorithm exactly. We can also deal with other metrics than the
Euclidean distance. This and other possible extensions and open problems are discussed
in the concluding section 1.7.

In this chapter, the terminology will be more of a geometric nature: We will often speak
of line segments, polygons, etc. instead of edges, tours, etc.

1.2. Elementary facts, definitions, and notations

We consider the special case where the points lie on N lines, for a small number N ≥ 2. We
shall assume in the rest of this chapter that N ≥ 2, i. e., not all points lie on a straight line.
The algorithm we are going to present works for the case when the lines are parallel, but
also more generally when the points lie on N straight line segments fulfilling the following
condition:

• No segment is perpendicular to the x-axis.

• For every pair of segments which are not parallel: If we project the two
segments and the intersection of their carrying lines onto the x-axis, the
projection of the intersection lies always outside the projections of the two
segments, never on or between these projections (cf. Figure 2).
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Figure 2.

Three line segments which fulfill
the condition for allowed segments
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Of course, the x-axis can be an arbitrary line, but for definiteness, we have chosen this
formulation.

This condition allows configurations of segments which are quite non-parallel, such as
the one shown in Figure 3a (the half-star) or Figure 3b (the zigzag). On the other hand,
the set of segments shown in Figure 4g (the 3-star) or 4e (the triangle) is forbidden. In
Section 1.6 we will show that the allowable configurations of segments are precisely those
which do not contain a subconfiguration like the ones in Figure 4a–g).
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Figure 3. Allowed configurations

This condition has several consequences:

i) The line carrying a segment does not intersect any other segment (cf. Figure 4b). In
particular the segments themselves do not intersect (cf. Figure 4a).

ii) It makes sense to speak of “left” and “right” with respect to points that lie on the
same segment.

iii) There is a linear ordering of the segments from top to bottom.

Henceforth we shall always assume that the lines are numbered from 1 to N from top
to bottom, and that the points on each line are numbered from left to right, from 1 to ni.

We are goint to exploit one main property that follows from these assumptions, which
we formulated in the following lemma. (The notation is already determined by the way
how we are going to use the lemma.)
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a) d) f)
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c)

the triangle the 3-star

Figure 4. Forbidden configurations

Lemma 2. Let P be a simple polygon whose vertices are points of the given set. Let l

be the bottom-most line that contains a vertex of the polygon, and let k be the top-most

line that contains a vertex of the polygon (see Figure 5a.) Assume that P touches each of

the lines k and l in more than one point, and let Xk′ and B(k) denote the left-most and

right-most point of the polygon on line k, and similarly, define the points Xl′ and B(l) on

line l. Then the cyclic sequence of these points around the polygon cannot be Xk′ , B(k),
Xl′ , B(l) (or the reverse order).

Proof: Assume that the cyclic order were as given above. Then the simple polygon P

together with parts of the lines k and l cound be extended to a planar embedding of the
complete bipartite graph K3,3, as shown in Figure 5b.‡

We cannot relax the condition for allowed segment configurations, because then we would
not have the ordering of the lines from top to bottom and the consistent ordering of the
points from left to right, and it is not obvious how to even formulate an analog of the
above properties or of lemma 2.

By a path on a set of points we mean an open polygonal line whose vertices are points
of the set.

We are going to solve the Traveling Salesman Problem “from left to right”, i. e., we
will consider partial solutions defined on subsets of points, and we want to extend these

‡ A different proof of this lemma uses an argument of de Bruijn [1955] about sum of the internal
angles of P . (De Bruijn’s original argument considered only parallel segments.)
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Figure 5a. The polygon P of lemma 2, and the self-intersection in Lemma 1
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Figure 5b. Extension of the simple polygon P to an embedding of K3,3

solutions by adding more and more points on the right. The subsets of points which we
consider will now be defined.

Let (k1, . . . , kN ) be an N-tuple of integers, 0 ≤ ki ≤ ni. P (k1, . . . , kN ) is the set
consisting of the first ki points of every line. With respect to this sequence, the ki-th point
on line i (it exists only for ki > 0) is called the i-th boundary point, denoted by B(i). If
ki ≥ 2, the (ki−1)-st point is denoted by B(i). Thus, P (k1, . . . , kN) contains the boundary
points and the points to their left.

When we look at a tour restricted to a subset P (k1, . . . , kN) of points, we will not get
a tour but rather a collection of paths. We want to extend such a partial tour by adding
points and edges on the right. Thus, we have to focus our interest on the interface between
the partial tour on P (k1, . . . , kN) and the rest of the tour. We shall see that we mainly
have to consider the situation near the boundary points, but we have to take care that we
don’t add edges which connect two endpoints of the same path, forming a subtour which
cannot be extended to a complete tour. Thus, in order to know which edges can be added,
we have to classify the partial solutions according to the way how the paths connect the
boundary points.
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Let S =
{{i1, i′1}, {i2, i′2}, . . . , {im, i′m}} be a collection of disjoint two-element subsets

of {1, . . . , N}.
For non-empty S we define:

M(S; k1, . . . , kN ) =
the set of all collections T = {T1, . . . , Tm} of m paths on the set P (k1, . . . , kN ),
where the j-th path extends between B(ij) and B(i′j), for j = 1, . . . , m, and every
point in P (k1, . . . , kN ) is contained in a path.

In the case where some of the required B(ij) (or B(i′j)) do not exist because kij
= 0,

(or ki′j = 0) M(S; k1, . . . , kN ) is empty.

For S = ∅ we define:

M(∅; n1, . . . , nN ) = the set of all tours through the given points.

M(∅; 0, . . . , 0) = the set consisting only of the “empty tour”.

The length of T , denoted by length(T ), is the sum of the lengths of its paths.

The elements of the sets M(S; k1, . . . , kN ) are called partial tours. We call a partial tour
cross-free if it consists only of paths that do not intersect themselves or each other or if
it is a tour which is a simple polygon or if it is the “empty tour”. (A turn by 180◦ in a
path of T counts as self-intersection.) Lemma 1 could now be rephrased as saying that an
optimal tour is cross-free.

Figure 6a shows a cross-free element T of M(
{{2, 4}, {3, 5}}; 3, 5, 4, 4, 4, 0). Figure 6b

shows that a set M(S; k1, . . . , kN) can contain no cross-free element at all. Thus, we do
not require the paths in a solution to be disjoint.

The notation S − {i1, j1} + {i2, j2} is an abbreviation for
(
S \ {{i1, j1}}) ∪ {{i2, j2}}.
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Figure 6a.

A cross-free partial solution of
M(
{{2, 4}, {3, 5}}; 3, 5, 4, 4, 4, 0)

Figure 6b.

M(
{{1, 3}, {2, 4}}; 2, 3, 3, 2)
contains no partial

solutions without crossings.



10

1.3. Properties of partial solutions

The following lemma states that an optimal partial tour in each set M(S; k1, . . . , kN ) must
contain some edge which is “close to the boundary” of the vertices in P (k1, . . . , kN ). This
will allow us to select the optimal partial tour in each set M(S; k1, . . . , kN) from a set of
few candidates which consist of a smaller optimal partial tour with an additional edge.

Lemma 2.

A) If T is a cross-free element of M(S; k1, . . . , kN ) and (k1, . . . , kN ) 6= (0, . . . , 0) then T

contains one of the following edges:

(i) an edge {B(i), B(j)}, for some i, j with 1 ≤ i < j ≤ N, and ki, kj > 0,

(a “boundary edge”)
or

(ii) an edge {B(i), B(i)}, for some i with 1 ≤ i ≤ N, where i is contained in a pair

of S.

B) A cross-free element of M(∅; n1, . . . , nN ) contains an edge {B(i), B(j)},
where 1 ≤ i < j ≤ N.

Example: The set of paths shown in Figure 6a contains a boundary edge between lines
1 and 2, and 3 edges of type (ii) on lines 3, 4, and 5.

Proof: Since part B) is a special case of part A), we have to prove only the first part. We
prove it by contradiction, assuming that there is no edge of type (i) or (ii).

If i is contained in a pair of S the edge of T leaving B(i) must go to a different line,
otherwise it would be of type (ii). If i is not contained in a pair of S and ki > 0 then there
must be two edges in T incident with B(i), but only one of them can go to a point on the
same line, otherwise T would not be cross-free. Summarizing, we can say that for every
line i with ki > 0 there is an edge from the boundary point B(i) to some point Xi on some
other line f(i) 6= i with kf(i) > 0. Moreover, Xi is not a boundary point (Xi 6= B(f(i))
since we assumed that there is no boundary edge in T .

Now we construct the following polygonal trajectory, which consists alternately of two
types of edges (see Figure 7):

• of pieces of the N line segments (“segment edges”), and

• of edges of T (“across edges”).

We choose some arbitrary i0 with ki0 > 0, and we start at the point Xi0 on line i1 :=
f(i0). Then we go to B(i1) along the line i1. Then we take the edge of T to Xi1 and set
i2 := f(i1). Then we go to B(i2), then to Xi2 on line i3 := f(i2), and so on.

Since there is only a finite number of points the trajectory must intersect itself. Let Q

be the first point where this happens. We claim that the simple polygon P formed by the
trajectory between its first and second visit to Q consists alternately of pieces of segments
and pieces of edges of T . Since this is true by construction for the whole trajectory, we
just have to check the vicinity of Q: If the trajectory leaves Q for the first time along a
“segment edge” and enters Q for the second time along an “across edge”, or vice versa,
the claim is true. Thus we only have to deal with the remaining two cases:
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Figure 7. The polygonal trajectory

• The trajectory leaves Q for the first time along an “across edge” (B(i), Xi) of T , and
it enters Q for the second time along another “across edge” (B(j), Xj) of T . The only
possiblility how this could be consistent with the cross-free property of T is that Q is a
common endpoint of the two edges. Q cannot be Xi because the trajectory has to leave
Q via the edge (B(i), Xi), and similarly, Q cannot be B(j) because the trajectory enters
Q via the edge (B(j), Xj). The only remaining possibility, Q = Xj = B(i), is excluded
because a point Xj is never a boundary point.

• The trajectory leaves Q for the first time along a “segment edge” {Xik
, B(ik+1)}, and it

enters Q for the second time along a “segment edge” {Xil
, B(il+1)}. Two different line

segments never cross, and therefore the two edges must lie on the same line ik+1 = il+1.
In this case, the point Q, which equals Xik

, is redundant as a vertex of P , and the claim
is again true.

Now we can apply lemma 2: Let k = f(k′) and l = f(l′) be the top-most and bottom-
most lines that are used by P (Figure 7a). As one traverses P in the direction of the
trajectory, one visits B(k) immediately after Xk′ and after a while Xl′ and immediately
afterwards B(l), and then after a while one returns to Xk′ . But this contradicts lemma 2.
(If Q lies on line k or on line l, Q might have to take the place of Xk′ or Xl′ in this
argument.)

When specialized to the case N = 3, Lemma 2B is Cutler’s “Triangle Theorem”, and
Lemma 2A corresponds to his “Σ Theorem” (Cutler [1980], Section 4).

Lemma 3.

A) Let T be a shortest cross-free element of M(S; k1, . . . , kN) (S 6= ∅). Then at least one

of the following four cases holds (see Figure 8):
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(i) (For some i 6= j, T contains an edge {B(i), B(j)}; ki, kj > 0:)

a) {i, j} ∈ S:

length(T ) = dist(B(i), B(j)) + length(T ′),

where T ′ ∈ M(S − {i, j} ; k1, . . . , ki − 1, . . . , kj − 1, . . . , kN ).

b) {i, q} ∈ S for some q, and j is not contained in a pair of S:

length(T ) = dist(B(i), B(j)) + length(T ′),

where T ′ ∈ M(S − {i, q} + {j, q} ; k1, . . . , ki − 1, . . . , kN).

c) neither i nor j is contained in a pair of S:

length(T ) = dist(B(i), B(j)) + length(T ′),

where T ′ ∈ M(S −{p, q}+ {i, p}+ {j, q} ; k1, . . . , kN ) and {p, q} is some

arbitrary pair of S.

(ii) (For some i, T contains an edge {B(i), B(i)}; ki ≥ 2, and i occurs in S:)

d) length(T ) = dist(B(i), B(i)) + length(T ′),

where T ′ ∈ M(S; k1, . . . , ki − 1, . . . , kN ).

B) Let T be a shortest simple polygon in M(∅; n1, . . . , nN ). Then for some i < j, T

contains an edge {B(i), B(j)}, and we have:

length(T ) = dist(B(i), B(j)) + length(T ′),

where T ′ ∈ M(
{{i, j}}; n1, . . . , nN ).

In all cases, T ′ is a cross-free element of the respective set.

Proof: The lemma follows by considering in each case the structure of the partial solution
T ′ which is obtained from T by removing the edge whose existence is implied by the
previous lemma. In case (i), the case that i and j are in different pairs of S cannot occur.
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1.4. The algorithm

We can now set up a dynamic programming recursion corresponding to the equations in
Lemma 3 in a straightforward way, involving variables d(S; k1, . . . , kN ) corresponding to
the sets M(S; k1, . . . , kN).

The starting value of the recursion is d(∅; 0, . . . , 0) := 0.

Let S =
{{i1, i′1} , {i2, i′2} , . . . , {im, i′m}} and let l1, . . . , lN−2m be the indices that do

not occur in a pair of S, in some fixed order. Then:

If S 6= ∅ and kij
= 0 or ki′j = 0 for some 1 ≤ j ≤ m, then we set:

d(S; k1, . . . , kN) := ∞.

Otherwise we set:

d(S; k1, . . . , kN ) := min {∆a, ∆b1, ∆b2, ∆c, ∆d1, ∆d2} ,

where

∆a := min
{

dist(B(ij), B(i′j)) + d(S−{ij , i′j} ; k1, . . . , kij
−1, . . . , ki′j−1, . . . , kN)

∣∣
1 ≤ j ≤ m

}
∆b1 := min

{
dist(B(i′j), B(ls)) + d(S−{ij , i′j}+ {ij , ls} ; k1, . . . , ki′j−1, . . . , kN )

∣∣
1 ≤ j ≤ m, 1 ≤ s ≤ N−2m

}
∆b2 := min

{
dist(B(ij), B(ls)) + d(S−{ij , i′j}+ {i′j , ls} ; k1, . . . , kij

−1, . . . , kN )
∣∣

1 ≤ j ≤ m, 1 ≤ s ≤ N−2m
}

∆c := min
{

dist(B(ls), B(lt)) + d(S−{ij , i′j}+ {ij , ls}+ {i′j , lt} ; k1, . . . , kN)
∣∣

1 ≤ s, t ≤ N−2m, s 6= t, 1 ≤ j ≤ m
}

∆d1 := min
{

dist(B(ij), B(ij)) + d(S; k1, . . . , kij
−1, . . . , kN )

∣∣ 1 ≤ j ≤ m, kij
≥ 2

}
∆d2 := min

{
dist(B(i′j), B(i′j)) + d(S; k1, . . . , ki′j−1, . . . , kN )

∣∣ 1 ≤ j ≤ m, ki′j ≥ 2
}

(The minimum of an empty set is always taken to be ∞. This ensures that d(∅; k1, . . . , kN)
is ∞ unless k = (0, . . . , 0).)

Finally, as an exception to the above rule:

d(∅; n1, . . . , nN) := min
{

dist(B(i), B(j)) + d(
{{i, j}}; n1, . . . , nN )

∣∣ 1 ≤ i < j ≤ N
}
.

We have to establish some order in which these recursions can be computed. We could
for example compute the d(S; k1, . . . , kN ) in increasing lexicographic order of (k1, . . . , kN ).
For equal (k1, . . . , kN ), the values with larger cardinality of S are computed first. Another
possibility would be to compute them in increasing order of

∑
ki − |S|, which is equal to

the number of edges in the elements of M(S; k1, . . . , kN ).

Example: N = 5; (aij denotes the j-th point on line i):
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d(
{{1, 3}}; 1, 3, 5, 0, 7) = min

{
dist(a11, a35) + d(

{}
; 0, 3, 4, 0, 7), (a)

dist(a11, a23) + d(
{{2, 3}}; 0, 3, 5, 0, 7), (b)

dist(a11, a57) + d(
{{3, 5}}; 0, 3, 5, 0, 7), (b)

dist(a23, a35) + d(
{{2, 3}}; 1, 3, 4, 0, 7), (b)

dist(a35, a57) + d(
{{3, 5}}; 1, 3, 4, 0, 7), (b)

dist(a23, a57) + d(
{{1, 2} , {3, 5}}; 1, 3, 5, 0, 7), (c)

dist(a23, a57) + d(
{{1, 5} , {2, 3}}; 1, 3, 5, 0, 7), (c)

dist(a35, a34) + d(
{{1, 3}}; 1, 3, 4, 0, 7)

}
(d)

The first line, corresponding to case (a), can be omitted in this case since M(∅; 0, 4, 5, 0, 7)
is empty and d(∅; 0, 4, 5, 0, 7) = ∞.

Lemma 4. If M(S; k1, . . . , kN ) 6= ∅, then:

length of the
shortest element in

M(S; k1, . . . , kN)
≤ d(S; k1, . . . , kN ) ≤

length of the shortest
cross-free element in
M(S; k1, . . . , kN)

Proof: The left inequality is true since d(S; k1, . . . , kN ) is always the length of some element
from M(S; k1, . . . , kN), and the right inequality follows from Lemma 3 by induction on the
recursion.

Since for M(∅; n1, . . . , nN ) the left and right sides of Lemma 4 are equal (by Lemma 1)
we get

Theorem 5. d(∅; n1, . . . , nN ) is the length of the shortest tour.

Remark: Some impossible cases could be excluded from the recursion. For example, if
|S| = 1 then case (a) need not be considered (like in the previous example) except at the
very beginning. However, this would not reduce the running time substantially except for
very small N .
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1.5. Complexity analysis

Let us now analyze the complexity of the algorithm, both as regards space and time. Let
PN denote the number of different sets S, i. e., the number of sets of disjoint unordered
pairs of {1, . . . , N}. If we regard the pairs in such a set S as the cycles of a permutation,
it is easy to see that PN equals the number of permutations of N elements whose square
is the identity, or equivalently, which are equal to their own inverse.

The numbers PN can be computed by the recursion:

PN+1 = PN + NPN−1 (N ≥ 1) (1)

from the start values P 0 = P 1 = 1. This recursion was given in Rothe [1800], p. 282. It
can be proved by splitting the PN+1 sets S into those where the element N + 1 is not
contained in a pair and into those where it forms a pair with one of the N other elements.
(The very same recursion, but with different start values, occurs in Gilmore, Lawler, and
Shmoys [1985], p. 138, where it describes the number of equivalence classes of partial tours
for the bandwidth-constrained Traveling Salesman Problem.)

The following table shows the first few values of PN : (The meaning of the last column
will be explained later.)

N PN TIME′(N)

1 1 0
2 2 3
3 4 15
4 10 72
5 26 300
6 76 1,290
7 232 5,418
8 764 23,520
9 2,620 102,672

10 9,496 461,700
11 35,696 2,107,380
12 140,152 9,876,768
13 568,504 47,127,600

Chowla, Herstein, and Moore [1951] proved the following asymptotic expression for P N :

PN ∼
(

N

e

)N/2

e
√

N 1
4
√

4e
.

Very roughly, PN is
√

N ! . A more exact approximation with additional terms of higher
order was proved by Moser and Wyman [1955] (cf. also Knuth [1973], pp. 65–67).

The storage requirement for the algorithm is now

PN ·
N∏

i=1

(ni + 1) .
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Thus, for fixed N , the storage requirement is

O

(
N∏

i=1

(ni + 1)

)
= O

(
N∏

i=1

ni

)
= O

(
nN
)
,

if we denote the total number of points by n =
∑N

i=1 ni.

If n is fixed then the maximum of the left side in the above equation is achieved for
ni = n/N ; thus, using the inequality ni + 1 ≤ 2ni, the constant of the O-notation in the
expression O(nN ) is at most

( 2
N

)N

· PN =
( 2

N

)N(N

e

)N/2

e
√

N 1
4
√

4e
= O

(
1

(N/4)N/2
· 1
eN/2−√

N

)
,

which decreases quite fast as N increases.

For analyzing the time complexity, let us now establish the complexity of one step of the
recursion: If S contains m pairs, then there are at most m, 2m(N−2m), (N−2m)(N−2m−
1)m, and 2m terms corresponding to cases (a), (b), (c), and (d), respectively. Therefore,
the total number of terms which are necessary for computing d(S; k1, . . . , kN ) is the sum
of these four expressions, which is m(3 + N+ N2) + m2(−4N− 2) + 4m3.

Let PN
m denote the number of sets S containing exactly m disjoint unordered pairs of

{1, . . . , N}. It is equal to the number of permutations with m cycles of length 2 and N−2m

cycles of length 1. Therefore, we have

PN
m =

N !
2mm! (N− 2m)!

, for 0 ≤ m ≤ N/2. (2)

Neglecting the boundary cases, the time complexity is thus

TIME(N) = TIME′(N) ·
(

N∏
i=1

(ni + 1)

)
,

where TIME′(N), the time for evaluating d(S; k1, . . . , kN ) for all sets S for some fixed
N-tuple (k1, . . . , kN), is given as follows:

TIME′(N) =
∑
m

PN
m · (m(3 + N+ N2) + m2(−4N− 2) + 4m3

)
. (3)

(By observing that PN
m = 0 for m < 0 or m > N/2, we may simplify matters by letting

the summation index m vary over all integers.)

The terms involving the variable m in this sum can be eliminated by using the following
formulas, which follow directly from (2):

PN
m m =

N(N−1)
2

PN−2
m−1

PN
m m(m − 1) =

N(N−1)(N−2)(N−3)
4

PN−4
m−2

PN
m m(m − 1)(m − 2) =

N(N−1)(N−2)(N−3)(N−4)(N−5)
8

PN−6
m−3.
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After this we can carry out the summation over m, using the identity P N =
∑

m PN
m , and

express TIME′(N) in terms of N , PN−2, PN−3, . . . , and PN−6. Repeated application of
the recursion (1) leads then to the following short expression:

TIME′(N) =
N(N− 1)

2
(
PN + PN−2

)
.

(The calculation is carried out in detail in the original version of the technical report
Rote [1988].) The values of TIME′(N) are tabulated in the above table.

Thus, for fixed N , the time complexity is again

O

(
N∏

i=1

(ni + 1)

)
= O

(
N∏

i=1

ni

)
= O

(
nN
)
.

Arguing as in the case of the storage requirement, we find that the constant of the
O-notation in the expression O(nN) is at most

(
2
N

)N

·
(

N

2

)(
PN + PN+2

)
= O

((
2
N

)N

N2

(
N

e

)N/2

e
√

N

)

= O

(
1

(N/4)N/2−2
· 1

eN/2−√
N

)
.

We summarize our results in the following

Theorem 6. The N-line Traveling Salesman Problem with n1, n2, . . . , nN points on

the lines 1, 2, . . . , N can be solved in space

O

(
PN ·

N∏
i=1

(ni + 1)

)

and time

O

(
PN · N2

N∏
i=1

(ni + 1)

)
,

where the numbers PN are defined by the recursion (1). For fixed N, and for a total

number of n points, the space and time complexities are thus

O
(
nN
)
.
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1.6. Characterization of “quasi-parallel” line segments

In Section 1.2, the following property was required of a set of line segments in order that
our algorithm could be applied:

No segment is perpendicular to the x-axis, and for any two segments which are not
parallel the projection of the intersection of the two lines carrying the segments
onto the x-axis lies always outside the projections of the two segments.

We call a set of line segments quasi-parallel, if they can be rotated in such a way that
this property is fulfilled, in other words, if an appropriate x-axis can be found. In this
section, we give a characterization of this property.

First we have to introduce some terminology:

By an orientation of a line we mean an assignment of the label “left” to one direction
of the line and the label “right” to the other direction. An oriented line is a line together
with an orientation. When we draw an oriented line the orientation will be indicated by
an arrow pointing in the “right” direction.

By an oriented segment we mean a segment a with an orientation of the line g(a) carrying
the segment.

When we project an oriented line on another line which is not perpendicular to it we
get a corresponding orientation of the second line in a natural way.

Now we call two oriented segments a and b oriented consistently if the intersection of
the carrying lines g(a) and g(b) either lies both on the left side of a on g(a) and on the left
side of b on g(b) or on the right side of a resp. b on both g(a) and g(b). (In case a and b

are parallel, the orientations have to be the same in order to be consistent.)

We can now rephrase the above definition of quasi-parallelness in the terminology just
introduced as follows:

There is an oriented line l (this line corresponds to the x-axis in the previous
formulation), not perpendicular to any segment, such that for the corresponding
orientations of the segments obtained by projection from the orientation of l, any
pair of non-parallel segments a and b is oriented consistently.

Theorem 3. Let a set of at least 3 segments be given, and let g0 be any fixed segment

of this set. Then the set of segments is quasi-parallel if and only if every subset of three

segments containing g0 is quasi-parallel.

Proof: First of all, it is clear that consequence (i) of Section 1.2 holds, i. e., the line
carrying a segment does not intersect any other segment, and in particular, the segments
themselves do not intersect.

Now fix any orientation of g0. Then there is only one possible orientation of every other
segment which is consistent with the orientation of g0.

We have to show two things:

(a) There is an oriented line l such that the orientations thus constructed correspond
by projection to the orientation of l.
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(b) Every pair of non-parallel segments a and b (different from g0) is also oriented
consistently.

For proving (b), let’s assume that two segments a and b are not oriented consistently.
Then the orientation of b resulting from the orientation of g0 is different from the orientation
of b resulting from the orientation of a resulting from the orientation of g0; thus, even for
the 3-set {g0, a, b}, it would be impossible to orient the segments consistently.

Now we still have to prove (a). For each segment the possible oriented directions of l

form an open half-circle (cf. Figure 9). We know that the half-circle belonging to g0 has
a non-empty intersection with every two other half-circles. We intersect the other half-
circles with the half-circle belonging to g0 and consider only the results, as parts of the
half-circle belonging to g0, or, equivalently, as intervals. We know that any two of these
intervals have a non-empty intersection. From this it follows, by Helly’s Theorem, that
the intersection of all intervals is non-empty. Therefore there is a possible orientation of l

yielding the constructed orientations of the segments.
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the possible directions of l

given direction of a segment

Figure 9.

The possible directions of l for
a given direction of a segment

An O(N2)-algorithm for testing whether N line segments are quasi-parallel follows in a
straightforward manner. It is possible to reduce this time to O(N log N), but since this is
by far surpassed by the complexity of solving the problem, this is not so interesting.

By a simple case analysis, one can determine all configurations of three or fewer line
segments which are not quasi-parallel, and thus one obtains the following theorem as an
easy corollary:

Theorem 8. A set of segments is quasi-parallel if and only if it does not contain a subset

of segments which looks like one of the seven∗ types of configurations in Figure 4.

∗ In the original version I had only six types of configurations. I thank Gerhard Woeginger for
pointing out that the configuration in Figure 4c was missing.
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1.7. Conclusion

From a higher standpoint our approach to the N-line Traveling Salesman Problem can
be viewed in the following way: A partial tour was defined to be a certain subset of the
edges of a tour. We have grouped the partial tours into equivalence classes with respect to
the edge sets which can be added to complete the tour: Two partial tours T1 and T2 are
equivalent if, for all sets T ′, T1 ∪ T ′ is a tour if and only if T2 ∪ T ′ is a tour. This allowed
us to forget all partial solutions except the best one in each equivalence class. With little
effort, we have now been able to compute the best partial solution in each equivalence
class in a systematic way.

Exactly the same paradigm has been followed by Ratliff and Rosenthal [1983] in their
solution of the order-picking problem, and by Gilmore, Lawler, and Shmoys [1985] for the
bandwidth-limited problem.

It is in principle not difficult to extend this approach to the Taveling Salesman Path
problem, which requires to find a shortest, not necessarily closed curve containing the
given set of points. It is necessary to modify the notion of a partial solution and to
establish a corresponding analog of Lemma 3.

Our algorithm also applies to Traveling Salesman Problems in the plane with other
metrics than the Euclidean distance, for example the L1 metric (Manhattan metric) and the
L∞ metric (maximum metric). These metrics are important for the class of manufacturing
problems that were mentioned in the introduction. In fact, the only property of the
Euclidean distance that we have used is the triangle inequality, which was necessary for
the cross-free property of Lemma 1. It is clear that there is always an optimal tour such
that the corresponding polygon is a simple polygon, for any symmetric distance function
that fulfills the triangle inequality. Thus, the only thing in the algorithm that has to be
changed is the computation of dist(X, Y ).

A question which we have not pursued so far is the following: Can our results be applied
to construct heuristic algorithms in cases when there is no set of few parallel straight
lines containing the points? One might only require that the points lie in the vicinity
of the lines; or one might reduce the number of partial solutions by excluding “unlikely”
sets P (S; k1, . . . , kN ), whose boundary points are distributed in a wide range between the
left-most and the right-most extremes, thus speeding up the algorithm.
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Chapter 2: The necklace condition

Introduction

Although the necklace condition was introduced as early as 1968 (cf. Supnick [1968]), the
algorithmic questions associated with it have not attracted the attention of researchers.
It was not even noticed in the survey paper of Gilmore, Lawler, and Shmoys [1985] on
well-solved special cases of the Traveling Salesman Problem.

These questions were raised for the first time in the paper of Edelsbrunner, Rote, and
Welzl [1987], from which some parts of this chapter are taken. Their algorithms can solve
the problem of testing whether a given tour is a necklace tour in O(n2) time, and they can
test whether a point set has a necklace tour in O(n2 log n) time. In both cases, if a solution
exists, the tour and radii which realize it can be found in the same time complexity. All
algorithms require only O(n) space.

In the Section 2.1 we will deal with the first question mentioned above: Given a tour, test
whether it is a necklace tour. Initially we follow the approach of Edelsbrunner, Rote, and
Welzl [1987]: The necklace condition specifies exactly which pairs of disks must intersect
and which pairs of disks must not intersect. This condition easily translates into a system
of inequalities for the radii of the disks. There are Θ(n2) inequalities, one for each pair of
points.

In Section 2.1.1 we show that this system of inequalities can be reduced to an equivalent
system with a smaller number of inequalities: Firstly, the restriction that the radius of
a disk be a positive number can be omitted. (This constraint comes from the geometric
concept of a disk; it is not necessary for the optimality of necklace tours, anyway.) Secondly,
not all pairs of points have to be considered: it is sufficient to consider those pairs which
corresponds to edges in a certain graph G(2) which is defined from geometric properties of
the point set.

In Section 2.1.2 we show that this graph has only O(n) edges, and hence the number
of inequalities of the system that has to be solved is O(n). Furthermore, we describe how
the graph G(2) can be constructed in O(n logn) time.

In section 2.1.3.1, the system is transformed in such a way that it becomes equivalent to a
single-source shortest path problem. In Edelsbrunner, Rote, and Welzl [1987], this shortest
path problem was solved by the Bellman-Ford algorithm, leading to a time complexity of
O(n2). However, by using generalized nested dissection as introduced by Lipton, Rose, and
Tarjan [1979], we can reduce the complexity to O(n3/2).

We present an outline of both procedures in Section 2.1.3.2, as well as an overview of
other related solution methods for systems of linear inequalities.
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In order to apply generalized nested dissection we need a further property of the graphs
G(2), namely that they can be separated into two parts of approximately the same size
by removing a set of O(

√
n) vertices (a “separator”). This property is proved in Sec-

tion 2.1.3.3, using a corresponding property for planar graphs.

In Section 2.1.3.4, we describe the generalized nested dissection method for the case
of

√
n-separators in detail. The generalized nested dissection method as described in

Lipton, Rose, and Tarjan [1979] takes O(n3/2) time and O(n logn) space in the case of√
n-separators. They mention the possibility that the space requirement can in principle

be reduced to O(n) only parenthetically. Therefore we give a detailed account of the
techniques that are required for reducing the storage to O(n) while maintaining the time
complexity of O(n3/2). For the analysis of the time complexity we can essentially rely on
the results of Lipton, Rose, and Tarjan [1979], whereas the space complexity is derived
anew.

Section 2.2 presents the solution of Edelsbrunner, Rote, and Welzl [1987] for the problem
of finding a necklace tour if it exists. Graphs for which a necklace tour exists can be
characterized by certain properties of the optimal solution of a corresponding fractional 2-
factor problem, which is described in Section 2.2.1. Section 2.2.2 shows that the fractional
2-factor problem can be transformed into a transportation problem. In O(n2 log n) time,
one can find an optimal solution of this problem. If a necklace tour exists, this solution
corresponds directly to the necklace tour.

A short summary of the results of this chapter is given in Section 2.3.

2.1. Testing whether a given tour is a necklace tour

A tour F of G is a necklace tour if there are radii ri fulfilling the following condition:

(R)




ri + rj ≥ dij , if {pi, pj} ∈ F (R.1)
ri + rj < dij , if {pi, pj} /∈ F (R.2)
ri > 0, for 1 ≤ i ≤ n, (R.3)

The numbers ri are said to realize F .

A tour T in a graph is a spanning subgraph with the following two properties:

(i) Every vertex has degree 2.

(ii) T is connected.

A spanning subgraph fulfilling the first property is called a 2-factor (or a 2-matching) of
the graph. Virtually all results about necklace tours can easily be extended to 2-factors.
Sometimes they are even easier to formulate for 2-factors than for tours. Hence we define
a necklace 2-factor as a 2-factor F which fulfills the conditions (R).

In Section 2.1.1, we shall prove that a small subset of the inequalities (R) is sufficient
for the necklace property. To define this subset, we have to introduce some notations:

Let m be a positive integer smaller than n. For each point p ∈ P , we let d(m)(p) denote
the distance from p to the m-nearest neighbor of point p, that is, d(1)(p) is the distance
from p to its nearest neighbor, d(2)(p) is the distance to the 2nd-nearest neighbor, and
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a) b)

Figure 10. A set of disks D(2)(p) and the graph G(2)

so on. We define D(m)(p) to be the closed disk centered at p with radius d(m)(p). The
graph G(m) is the intersection graph of these disks: There is an edge between two points
if and only if the two disks intersect, i. e., if d(m)(pi) + d(m)(pj) ≥ dij . (cf. Figure 10).

In G(m), every vertex has at least degree m; therefore, the number of edges is at least
mn/2.

Theorem 9 in Section 2.1.1 says that the relations (R) have only to be checked for edges
in G(2). In Section 2.1.2, we shall prove that G(2) is a sparse graph, and we shall describe
how G(2) can be constructed. Section 2.1.3 discusses the way how the reduced system can
be solved. The results are summarized in Section 2.3.

2.1.1. Systems of linear inequalities characterizing necklace tours

In this section we are going to prove that we can ignore the positivity constraints (R.3)
and that we only need to check edges of G(2), i. e., we can replace (R.2) by

ri + rj < dij , if {pi, pj} ∈ G(2) \ F. (R.2′)

The proof is fairly technical and involved.

Theorem 9. Let F be a 2-factor. Then the following statements are equivalent:

(i) The system (R.1), (R.2), (R.3) is solvable (i. e., F is a necklace 2-factor).

(ii) The system (R.1), (R.2′) is solvable.

Proof: The non-trivial part is the conclusion from (ii) to (i). We proceed in several steps.

Lemma 10. Let ri be numbers fulfilling (R.1), (R.2′) for a 2-factor F . If ri ≤ 0, dij ≤ rj,

and dij ≤ d(2)(pj), then {pi, pj} ∈ F .

Proof: (by contradiction.) Assume that there is a point pi with non-positive ri, dij ≤ rj,
dij ≤ d(2)(pj) and {pi, pj} /∈ F , for some j 6= i. and let pi be the point with smallest value
ri among these, and let pk and pk′ be the neighbors of pi in F (see Figure 11). We have

ri + rk ≥ dik and ri + rk′ ≥ dik′ , (4)
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pk′

pk

pj

pl

pi

Figure 11. Proof of Lemma 10.

pi and pj constitute a counterexample for Lemma 10. Disks with negative radius are
shown with broken lines.

Abridged version of the proof: If d(2)(pk) ≥ dik and d(2)(pk′) ≥ dik′ , then the disks

D(2)(pk), D(2)(pk′), and D(2)(pj), as well as the disks around pk, pk′ , and pj with radii
rk, rk′ , and rj , resp., would contain the common point pi, which would yield too many
edges incident to pk in F .

Now let dik ≥ d(2)(pk). D(2)(pk) contains 2 points, one of which — pl — is not
connected to pk. We have dki + (−ri) ≤ rk but dkl + (−rl) < rk (see figure). Together
with dkl ≤ dki this implies −ri < −rl.

and hence
rk ≥ dik and rk′ ≥ dik′ .

Next, we show that dik > d(2)(pk) or dik′ > d(2)(pk′): Otherwise we would get, using
the triangle inequality:

d(2)(pk) + d(2)(pk′) ≥ dik + dik′ ≥ dkk′ , and hence {pk, pk′} ∈ G(2), and

d(2)(pk) + d(2)(pj) ≥ dik + dij ≥ dkj , and hence {pk, pj} ∈ G(2).

Furthermore, we would have

rk ≥ rk + ri ≥ dik, and

rk′ ≥ rk′ + ri ≥ dik′ ,

by (R.1), and hence
rk + rk′ ≥ dik + dik′ ≥ dkk′ , and

rk + rj ≥ dik + dij ≥ dkj ,

by the triangle inequality. Since {pk, pk′} ∈ G(2) and {pk, pj} ∈ G(2), as was just shown
above, this would imply that {pk, pk′} ∈ F and {pk, pj} ∈ F , by (R.2′). But since also
{pk, pi} ∈ F , this would contradict the 2-factor property of F .
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Thus, we proved that at least one neighbor of pi (say, pk) fulfills

dik > d(2)(pk). (5)

There are at least two points pl with dkl ≤ d(2)(pk), by the definition of d(2)(pk). Not
both of them can be neighbors of k in F , since for one of the two neighbors of k, namely
i, we have dki > d(2)(pk). Hence there is a point pl with

dkl ≤ d(2)(pk) and {pk, pl} /∈ F. (6)

From that inequality follows {pk, pl} ∈ G(2) and hence, by (R.2′),

rk + rl < dkl.

From (4), (5), and (6), we get
rl < ri ≤ 0,

and moreover we have also

dlk ≤ rk + rl ≤ rk, dlk ≤ d(2)(pk), and {pk, pl} /∈ F.

Thus, the point pl, together with pk, constitutes another counterexample to our lemma,
contradicting the choice of pi as the counterexample with smallest ri at the beginning of
the proof.

Lemma 11. If a set of values ri, i = 1, 2, . . . , n, fulfills (R.1) and (R.2′) then the values

r′i :=




d(2)(pi), if ri > d(2)(pi) ,
0, if ri < 0 , and
ri, otherwise ,

also fulfill (R.1) and (R.2′).

Proof: We have now 0 ≤ r′i ≤ d(2)(pi), for all i. In the proof below, we distinguish two
cases, namely the case that an edge belongs to F and the case that it belongs to G(2) \F .
We treat the second case first.

(i) If {pi, pj} ∈ G(2) \ F , then we have ri + rj < dij . The corresponding inequality

r′i + r′j < dij

can be violated only if one previous variable (say, ri) is negative, which implies r′i = 0.
In this case, rj ≥ dij would imply rj ≥ r′j ≥ dij and d(2)(pj) ≥ r′j ≥ dij , which would
contradict Lemma 10. Thus, we have

r′j < dij and r′i + r′j = r′j < dij .

(ii) If {pi, pj} ∈ F , then we have ri + rj ≥ dij . The corresponding inequality

r′i + r′j ≥ dij
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can become violated only if one variable ri or rj (say, ri) is greater than d(2)(pi), which
implies r′i = d(2)(pi). We have d(2)(pi) ≥ dik for at least 2 points pk. Hence,

r′i + r′k ≥ r′i = d(2)(pi) ≥ dik and

d(2)(pi) + d(2)(pk) ≥ d(2)(pi) ≥ dik,

which implies {pi, pk} ∈ G(2), for at least 2 points pk. We have {pi, pk} ∈ F , for each of
these points, since, otherwise, r′i + r′k < dik, by part (i) of this proof. But there are only 2
points pk with {pi, pk} ∈ F . Thus,

r′i + r′k ≥ dik

holds for all points pk with {pi, pk} ∈ F and therefore also for point pj .

Now, we come to the conclusion of the proof of Theorem 9. By the preceding lemma,
we have transformed a solution of (R.1), (R.2′) into a solution fulfilling the additional
constraints

0 ≤ ri ≤ d(2)(pi).

Now, for {pi, pj} /∈ G(2), we get the remaining inequalities of (R.2)

ri + rj ≤ d(2)(pi) + d(2)(pj) < dij

for free. Let δ = min { dij − ri − rj | {pi, pj} /∈ F } > 0. Then r′′i := ri + δ/3 still fulfills
all inequalities (R.1) and (R.2) and, in addition, we have r′′i > 0.

The following theorem is important because in the next section we will show that G(2)

of a set of points is a sparse graph.

Corollary 12. A realizable 2-factor F of a graph G is a subgraph of G(2).

Proof: Let r1, r2, . . ., rn be radii that realize F . According to the proof of Lemma 11,
we can assume that they are positive and smaller than or equal to d(2)(p1), d(2)(p2), . . .,
d(2)(pn). Therefore, each edge {pi, pj} belonging to F (we have ri + rj ≥ dij) also belongs
to G(2) (because d(2)(pi) + d(2)(pj) ≥ dij).
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2.1.2. Properties of the family of graphs G(2)

2.1.2.1. G(2) of a Set of Points in the Plane is Sparse

In the previous section we have shown that a necklace tour is a subgraph of G(2). This
section shows that, for each natural number m, the graph G(m) of a set of n points in the
plane has at most (19m − 1)n edges. In particular, G(2) has at most 37n edges.

We need the following lemma.

Lemma 13. (Reifenberg [1948], Bateman and Erdős [1951]) Let D0 be a disk in the plane,

and let S be a set of disks in the plane which are at least as big as D0, such that none of

their centers lies in the interior of D0 or of another disk in S. Then the number of disks

in S that intersect D0 is at most 18.

With this lemma, we can prove the main result of this section which guarantees the
sparsity of G(m).

Theorem 14. Let P be a set of n points in the plane and let m be a natural number.

Then the edge set G(m) of the graph G(m) of P contains at most (19m − 1)n edges.

Proof: We claim that a smallest disk D0 in S(m) = {D(m)(p) | p ∈ P } intersects at most
19m − 1 disks in S(m). From this the theorem follows by a simple inductive argument.

Let S be the set of disks in S(m) that intersect D0. We know that each disk in S contains
at most m− 1 centers of other disks in its interior. We will now remove disks from S such
that no center of a remaining disk lies in the interior of D0 or of any other remaining disk.
This is done by the following procedure:

Step 1: Remove all disks from S that have their centers in the interior of D0.

Repeat the following step as long as there are disks in S which contain centers of
other disks of S in their interior:

Step 2: Choose the largest among these disks and remove all disks from S whose
centers belong to its interior.

Obviously, the final set S has the desired property and we conclude that it contains at
most 18 disks.

In Step 1, at most m−1 disks are removed from S, since there are at most m−1 centers
of disks in the interior of D0. Whenever a disk is chosen in Step 2, that disk will not
be chosen again. Moreover, the special choice as the largest disk guarantees that it will
not be removed in a later step. Consequently, each disk which is chosen in Step 2 will be
one of the disks which finally remain. It follows that Step 2 is repeated at most 18 times.
Moreover, at most m − 1 disks are removed from S in each repetition. Summing the the
number of disks that are removed at each step and that finally remain, we get the following
bound on the initial cardinality of the set S:

|S| ≤ m − 1 + 18(m − 1) + 18 = 19m − 1.
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We conjecture that the worst-case configuration for the theorem consists of (approxi-
mately) equal-size disks. This would mean that the true upper bound for

∣∣G(1)
∣∣ is 9n

instead of 18n, since all edges can be counted twice in the above proof. (Each disk is the
smallest.) Consequently, we would obtain a bound of (10m − 1)n for

∣∣G(m)
∣∣.

2.1.2.2. Construction of G(2) for Points in the Plane

G(2) can be constructed using standard techniques from computational geometry.

Theorem 15. The graph G(2) of a set P of n points in the plane can be computed in

O(n logn) time and O(n) space.

Proof: In order to compute G(2) in O(n logn) time and O(n) space, we first calculate the
value d(2)(p) for each point p in P . For this purpose, we consider the 3rd-order Voronoi
diagram of P (see Preparata and Shamos [1985]). This is a partition of the plane into
convex polygonal regions, where each region is the locus of points of the plane whose
three nearest neighbors are some fixed three points. This partition can be constructed
in O(n logn) time and O(n) space (see Lee [1982]). Next, we compute the 2nd-nearest
neighbor of each of the n points in P in O(n logn) time. This is done by locating for
each point p of P the region of the diagram it lies in (for a solution to this point location
problem, see Edelsbrunner, Guibas, and Stolfi [1986]). Then we determine which of the
three points given by the located region is furthest away from p. (One of the three points
is p itself.) Thus, in O(n logn) time, we can determine the numbers d(2)(p), for all points
p in P .

Next, we find all pairs {p1, p2} of points in P whose corresponding disks intersect:

D(2)(p1) ∩ D(2)(p2) 6= ∅.

By construction, no disk is contained in the interior of another disk. Hence, D(2)(p1) ∩
D(2)(p2) 6= ∅ if and only if the bounding circles intersect. We thus have the problem of
reporting all intersecting pairs of n circles. Using the plane-sweep technique of Bentley
and Ottmann [1979], this can be done in O(n logn + k log n) time, where k is the number
of reported pairs. By Theorem 14, k = O(n), and therefore the overall complexity is
O(n logn). For all algorithms mentioned, O(n) space is sufficient which concludes the
proof of the theorem.
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2.1.3. Testing the system of inequalities for feasibility

Systems of linear inequalities have become a well-established area in mathematics (cf. the
more specific remarks in Section 2.1.3.2). Linear programming, which is just the minimiza-
tion of a linear function subject to a system of linear inequalities, is by now a classical
field of applied mathematics, although it is still a very active area of research, and many
striking advances have been made only in the last few years.

In our case however, we do not want to optimize an objective function, we only want
to check feasibility (although these two problems are theoretically equivalent, in a certain
sense). Furthermore, our systems of inequalities have a special structure: Only two vari-
ables occur in each inequality, and the coefficients are ±1. This will allow us to apply
graph-theoretic methods for these systems.

In Section 2.1.3.1 we will transform the system of inequalities characterizing necklace
tours into an equivalent system where all inequalities are of the form

vj ≤ vi + cij , or

vj < vi + cij .

Although this is necessary neither theoretically nor from a practical viewpoint, it will allow
us a simpler formulation of the algorithms in the subsequent sections.

Section 2.1.3.2 discusses two possible approaches for solving these systems from a general
point of view: the shortest path approach and the elimination approach.

A special class of elimination algorithms which are called generalized nested dissection
require that the graphs can be separated into two approximately equal parts by removing
a small subset of the vertices (a separator). Section 2.1.3.3 defines this property exactly
and proves the separator theorem for our class of graphs. It is also shown how separators
can be constructed.

Section 2.1.3.4 describes the generalized nested dissection method in detail. The con-
clusions from all these results are summarized in Section 2.3.
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2.1.3.1. Transformation of the inequalities

The inequalities of the system (R.1) and (R.2′), whose solvability we want to check, are of
the following two forms:

(T)
{

ri + rj ≥ dij , if {pi, pj} ∈ F (R.1)
ri + rj < dij , if {pi, pj} ∈ G(2) \ F. (R.2′)

These inequalities are not suited to be modeled by a directed graph; therefore we transform
them as follows: For the sake of symmetry, we first double the number of inequalities:

(T′)




−ri ≤ rj − dij , if {pi, pj} ∈ F

−rj ≤ ri − dij , if {pi, pj} ∈ F

ri < −rj + dij , if {pi, pj} ∈ G(2) \ F

rj < −ri + dij , if {pi, pj} ∈ G(2) \ F.

In order to set up our directed graph, it is advantageous to introduce a new variable r̄i for
each ri, where r̄i represents −ri.

Using the new variables, we rewrite system (T′) to

(T′′.1)




r̄i ≤ rj − dij , if {pi, pj} ∈ F

r̄j ≤ ri − dij , if {pi, pj} ∈ F

ri < r̄j + dij , if {pi, pj} ∈ G(2) \ F

rj < r̄i + dij , if {pi, pj} ∈ G(2) \ F.

With the additional constraints

(T′′.2) ri = −r̄i, for all i,

the system (T′′) consisting of the constraints (T′′.1) and (T′′.2) is equivalent to the system
(T′) and therefore to the system (T).

Lemma 16. The system (T′′.1)-(T′′.2) has a solution if and only if the system (T′′.1) has

a solution.

Proof: The “only if” part is clear. If (r′i, r̄
′
i) is a solution of (T′′.1) then (ri, r̄i) with

ri = 1
2 (r′i − r̄′i), and r̄i = 1

2 (r̄′i − r′i),

is a solution of (T′′.1) and (T′′.2) as can be checked easily.

Hence, with respect to solvability, we can ignore the equations (T′′.2), and we only have
to consider inequalities of the form

vj ≤ vi + cij , and

vj < vi + cij ,

where the cij can be arbitrary (positive or negative) real numbers.

We remark that in general, the above transformation can be carried out for any system
with at most two variables in each inequality and with coefficients ±1. It can even be
generalized to systems with arbitrary coefficients.
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2.1.3.2. Graph-theoretic approaches to solving systems of inequalities

In the previous section, we have transformed the system of inequalities which we want to
solve into an equivalent system where all inequalities are of the form

vj ≤ vi + cij , and

vj < vi + cij .

For simplicity, let us first discuss systems with inequalities of the first form only:

vj ≤ vi + cij .

Let us draw a vertex for every variable vj and an arc from vi to vj of weight cij for every
inequality. We shall identify each variable with its corresponding vertex. Let us denote
the resulting weighted directed graph by G = (V, E, c).

It is well known that the solvability of the system of inequalities can be checked by a
single-source shortest path computation on this graph (cf. Rockafellar [1984], Chapter 6).
If the graph contains no negative cycles, the shortest path problem can be solved, and
the shortest distances are a solution of the inequality system. If the graph contains a
negative cycle, the system is unsolvable. This approach was followed in Edelsbrunner,
Rote, and Welzl [1987]. The single-source shortest path problem in the presence of negative
arc lengths can be solved by the Bellman-Ford algorithm in O(|V | |E|) time (see Lawler
[1976]). Since |V | = O(n) and |E| = O(n) in our case, this leads to an O(n2) algorithm
for checking the system.

One only has to take special care of the strict inequalities: If the graph contains a cycle
of zero length which contains an arc corresponding to a strict inequality, the system is also
infeasible. The checking of this additional condition and the modification of the shortest
distances to account for the strict inequalities are described in detail in Edelsbrunner,
Rote, and Welzl [1987], Section 5.

On the other hand, we can use elimination procedures for solving systems of inequalities
of the type considered. Although elimination schemes like Gaußian elimination or Gauß-
Jordan elimination were first applied in numerical linear algebra and were hence originally
described in matrix terminology, they can be conveniently described in a graph-theoretic
framework, which is also more appropriate in the context of our application.

Let us again consider the graph G = (V, E, c) corresponding to a system of weak in-
equalities of the form

vj ≤ vi + cij .

The above system can be expressed as

max
(j,k)∈E

(vk − cjk) ≤ vj ≤ min
(i,j)∈E

(vi + cij), for all j.

Let us look at all arcs that enter or leave a vertex vj (Figure 12a). We can eliminate
the variable vj and its incident arcs by inserting direct arcs from all its predecessors to
all its successors. More specifically, for each pair of incoming and outgoing arcs, we add
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vi1

vi2

vi3

vk1

vk2

vj

ci1j cjk1

a)
vi1

vi2

vi3

vk1

vk2

ci1j + cjk1

b)

Figure 12. Elimination of a vertex.

a direct arc whose weight is the sum of the weights of the two arcs (cf. Figure 12b). (If
some vertex is both a predecessor and a successor of vj , a loop is added to it.) The time
required for this elimination operation is proportional to the number of new arcs, which is
the product of the indegree and the outdegree of vj .

After having solved the resulting system without variable vj , we can give vj any value
between

max
(j,k)∈E

(vk − cjk) and min
(i,j)∈E

(vi + cij).

(If there is no incoming or no outgoing arc, the expression is taken to be −∞ or +∞, resp.)
The arcs that were inserted in the elimination step ensure that this range is non-empty.
This step is called “back-substitution”.

As soon as we detect a loop with negative weight, there is obviously no solution to the
system, since a loop means

vi ≤ vi + cii;

otherwise, we can continue until we have eliminated all but one variable and we are left
with a single-vertex graph. If it has no negative loop, we may give any value to this
variable and start back-substituting the other variables in the reverse order in which they
were eliminated.

The modifications of this algorithm which are required in order to handle strict inequal-
ities of the form

vj < vi + cij

are straightforward: During elimination, an inserted arc becomes strict if either of the
two arcs from which it originated was strict. A loop of weight zero will terminate the
algorithm if it is connected with a strict inequality. And finally, during backsubstitution,
the endpoints of the interval of possible values may have to be excluded.

Pairwise elimination schemes like the one above, but for general systems of inequalities,
have already been suggested by Fourier [1827] (see also Duffin [1974]). These algorithms,
commonly known as Fourier-Motzkin elimination, are not polynomial in general. Systems
in which at most two variables occur in each inequality have attracted special attention,
since they allow us to impose a directed graph structure on the problem and to utilize this
structure for a more efficient solution. In particular, Megiddo [1983], based on a technique
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in Shostak [1981], gives an O(m·n3 log m) time algorithm to solve systems of m inequalities
and n variables, where each inequality contains at most two variables.

The connection between algorithms for solving systems of linear equations and algo-
rithms for certain graph problems has been known for some time (cf. e. g. Carré [1971]).
In the meantime, a common algebraic foundation for both types of problems (and others)
has been established (cf. Lehmann [1977], Carré [1979], Gondran and Minoux [1979], Zim-
mermann [1981] Chapter 8). In order to formulate them in the proper algebraic setting
one has to use a semiring. The linear algebra problems use the semiring (IR, +, ·), which
is even a ring, whereas the shortest path problems use the semiring (IR, max, +). The
algorithm presented above corresponds to Gaußian elimination. Conventionally, the elimi-
nation algorithms are described algebraically. In our application, we can directly describe
the idea of vertex elimination using graph-theoretic terms.

Of course, the amount of work and storage space depends on the number of new arcs
which are inserted during the elimination process (the so-called “fill-in”), and this num-
ber again depends on the elimination ordering. In the worst case, conventional Gaußian
elimination (for dense matrices) takes O(n3) steps and O(n2) space. However, by using
the special structure of the underlying graph, we can reduce the time to O(n3/2) and the
space to O(n), even without taking advantage of the property that all non-zero coefficients
have absolute value 1.

In the next section we will define the property that is required of the graphs, and we will
show that it holds for the graphs G(2) which are of interest to us. Afterwards we return
to the topic of vertex elimination algorithms, and we describe how the time complexity
claimed above can be achieved.

2.1.3.3.
√

n-separators for G(2)

Let us first define what we mean by a separator theorem for a family of graphs. Let a
class of graphs be given which is closed under the subgraph relation, i. e., any subgraph
of a graph of this class belongs also to this class. We say that this class of graphs satisfies
an f(n)-separator theorem if there are constants α < 1 and β > 0 such that the following
holds: If a graph in this class has n vertices, then the vertex set can be partitioned into
three sets A, B, and C such that |A| , |B| ≤ αn, |C| ≤ βf(n), and no vertex in A is
adjacent to a vertex in B. C is called a separator of this graph.

This definition does not apply to individual graphs; it can only apply to a whole family
of graphs because one wants to apply the separator theorem recursively to the parts A and
B. Therefore it is important that the family is closed under the subgraph relation. (A
graph might have an articulation point, i. e., an O(1)-separator splitting the graph into
to equal-sized parts, and nevertheless these two parts might not have good separators.)
It is also important that the two “halves” A and B are of approximately equal size; this
guarantees that the recursive (“nested”) dissection will terminate at a recursive depth of
at most O(log n).

In this section we prove the
√

n-separator theorem for the family of graphs G(2), and we
show how the separators can be constructed. The family of graphs G(2) is not itself closed
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under the subgraph relation; therefore we have to mention their subgraphs explicitly when
we formulate the theorem.

Our results are based on the corresponding results for planar graphs, and hence we
cite these results first. They use a generalization of the concept of separators, where the
vertices have weights, and the size of the parts A and B is measured by their total weights.
(The size of the separator is still measured by its cardinality.)

Theorem 17 (weighted
√

n-separator theorem for planar graphs). (Lipton and
Tarjan [1979]). Let G be a planar graph with n vertices having non-negative vertex weights

summing to no more than 1. Then the vertices of G can be partitioned into three sets A,

B, and C, such that no edge joins a vertex in A with a vertex in B, the total weight of

both A and of B is at most 2/3, and |C| ≤ √
8n.

Moreover, the set C can be constructed in O(n) time and space if the adjacent vertices of

each vertex are given in clockwise order (for some planar embedding of the graph).

Theorem 18. Let G be the graph G(m) of a set of n points in the plane or a subgraph of

such a graph. Then its vertex set can be partitioned into three parts A, B, and C, such

that the following properties hold: there are no edges between vertices of A and vertices

of B; C contains at most 8
√

(19m − 1)
√

n vertices; and A and B consist of at most 2n/3
vertices each.

Proof: Let P0 be the set of points from which G originated (possibly as a subgraph). It is
sufficient to show the theorem for the graph G(m) of the set P , where P is the subset of
points which are vertices of G. We assume n > m, for otherwise C = P , A = B = ∅ would
fulfill the requirements of the theorem.

We would like to apply the
√

n-separator theorem for planar graphs. However, the graph
G(m), although defined through geometrical relations in the plane, is itself not planar. Thus
we have to find a planar graph which models the adjacencies of G(m). We use a graph
which is defined from the geometrical layout of the circles which define G(m).

Consider the set of circles of radii d(m)(p) which define G(m). (By a circle, we mean only
the boundary, as opposed to a disk.) We want to exclude touching circles or intersections of
more than two circles in a single point from consideration. Therefore we increase the radius
of each circle by a positive amount ε which is small enough such that no new intersections
of circles appear, but which ensures that no two circles touch and no three circles intersect
(cf. Figure 13a and b). The case that one circle touches another from inside (Figure 13c),
where an increase of both radii by the same amount would not change anything, cannot
occur since no circle can contain another. (Otherwise it could be handled by enlarging
smaller circles more than larger ones.)

Now we denote by K the (multi-)graph whose vertices are the intersections of the circles,
and whose edges correspond to the circular arcs between these points (see Figure 14).

This graph is planar. Each vertex has degree 4. For each pair of intersecting circles, K

contains exactly 2 vertices. Hence K has twice as many vertices as G(m) has edges. Each
circle intersects at least one other circle, and hence it contains at least two points. We
now attach weights to the vertices of K as follows: We start with all weights equal to 0.
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a) b) c)

Figure 13. How to handle degenerate situations

Figure 14. The graph K

For each point p of P we select an arbitrary vertex r(p) on the circle corresponding to p,
and add 1/n to its weight. Thus the total weight becomes 1, and each vertex has weight
0, 1/n, or 2/n.

Now we apply the weighted planar separator theorem to K and we obtain three sets
AK , BK , and CK , where CK separates AK and BK .

We claim that the set C of points of P whose circles contain the points of CK is an
O(

√
n)-separator for the graph G(m). Since each point of K belongs to two circles, |C| ≤

2 |CK |.
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The sets A and B are defined as the sets of points p of P which do not belong to C and
whose representative points r(p) belong to AK and BK , resp.

We have to prove that G(m) contains no edge between A and B. If two points p and q of
P are connected by an edge in G(m) then the two circles corresponding to p and q intersect.
The two vertices r(p) and r(q) which carry the weights of p and q must be connected by
a path in K which uses only edges which are pieces of the two circles.

If neither p not q belongs to C then this path must still exist in the graph K \ CK .
Hence r(p) and r(q) belong to the same component of K \ CK , i. e., they belong either
both to AK or both to BK . Concluding, we have proved that if neither p nor q belongs to
C, then they belong both to A or both to B.

We still have to prove the claimed bounds on the cardinalities of A, B, and C. AK

and BK have weight at most 2/3, hence A and B contain at most 2n/3 points. CK

contains at most
√

8
√|V (K)| =

√
8
√

2
∣∣G(m)

∣∣ vertices. Since
∣∣G(m)

∣∣ ≤ (19m − 1)n, we

have |CK | ≤√16(19m− 1)n, and hence |C| ≤ 2 |CK | ≤ 8
√

(19m − 1)n.

Corollary 19. The family of the graphs G(2) and their subgraphs satisfies a
√

n-separator

theorem with α = 2/3 and β = 8
√

37.

Finally, we address the question how the separator for a graph G(2) can be found quickly.
It is clear from the proof of the preceding theorem that if the graph K is available, the rest
of the construction needs only linear time: Since each vertex of K has only degree 4, the
requirement of Theorem 17 that the neighbors are given in sorted order can be trivially
fulfilled in linear time.

The following theorem shows that, for a given graph G(2), K can be constructed in
O(n logn) time. In Section 2.1.4., where separators have to be found repeatedly for dif-
ferent subgraphs of G(2), we will build the graphs K for these subgraphs as kind of “sub-
graphs” of the graph K of the original graph G(2). It will turn out that in the context of
that application each individual separator construction takes only linear time.

Lemma 20. The graph K of the previous theorem can be constructed in O(n logn) time,

along with the construction of G(2).

We refer to the construction of G(2) according to Theorem 15. There, all intersections of
circles were computed. These intersections form the vertex set of K, and the edges of K,
which are arcs of the circles, are readily available during the plane-sweep. It only remains
to discuss how the degeneracies, namely two circles which touch, and three of more circles
which intersect in a common point, should be treated. Touching circles can be handled
by simply generating two vertices instead of one. If three or more circles intersect in one
point, the plane-sweep algorithm will notice this as two intersections which have the same
coordinates. Since it processes the intersections according to the value of one coordinate,
this means that there is a tie in deciding which intersection to process next. The algorithm
can break this tie by implicitly applying the trick of enlarging the circles by a small amount
ε, as in the proof of the previous theorem. In this way, the intersections, which are actually
one point, will appear as different intersections, and they will yield different vertices of the
graph K.
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2.1.3.4. Generalized nested dissection for graphs with
√

n-separators

Generalized nested dissection is described in detail in Lipton, Rose, and Tarjan [1979].
They showed that for families of graphs fulfilling an nα-separator theorem (where 0 ≤ α <

1), generalized nested dissection provides an asymptotically optimal elimination ordering.

However, for
√

n-separators, their version uses Ω(n log n) space, and they give only
a reference to a paper where it is shown in the case of (specialized) nested dissection
(cf. George [1973]) for two-dimensional rectangular grids, how a storage reduction to O(n)
can be achieved (cf. Eisenstat, Schultz, and Sherman [1976], Section 4, pp. 91–95). There-
fore we give a self-contained presentation of the storage-saving version of the generalized
nested dissection algorithm. We present it in a recursive fashion, whereas in Lipton, Rose,
and Tarjan [1979] it is described as establishing an elimination ordering. (This elimination
ordering is nothing but a post-order traversal of the tree which is built up in the recursive
algorithm.)

2.1.3.4.1. Generalized nested dissection without storage saving

Generalized nested dissection can be regarded as an application of the divide-and-conquer
paradigm. The idea is roughly the following:

We apply the separator theorem to the given graph and obtain the sets A, B, and C,
where C separates A from B (cf. Figure 15a). Then we first eliminate A and B, and
finally C; since there are no arcs between A and B, the two eliminations of A and B are
completely independent of each other. When eliminating A and B, we recursively use the
same procedure.

C0 B0A0

a)

C1

B1

A1
b) c)

F

S

Figure 15. A global view of generalized nested dissection.

Since we recursively dissect the vertex set into smaller and smaller pieces, we can model
the result of these dissections on a tree: We proceed from the root to the leaves when
building the dissection tree; we proceed from the leaves to the root during the elimination
phase; and we again proceed from the root to the leaves during back-substitution. Since
we walk through the tree several times, it is best to store the tree explicitly.

A more formal description of the procedure follows:
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Phase 1: Construction of the tree

We assume the existence of a procedure

dissect(V, A, B, C);

taking a vertex set V as argument, and partitioning it into three sets A, B, and C according
to the separator theorem applied to the subgraph induced by V . The following procedure
dissection tree recursively dissects the vertex set and builds the corresponding dissection
tree. When the vertex set becomes smaller than some cut-off value N0, the dissection stops.
N0 is determined from the constants in the separator theorem such that it is guaranteed
that the partition does not become the trivial partition C = V , A = B = ∅. The procedure
returns a pointer to a node tree node which contains three fields: A field vertices storing a
set of vertices and two pointers to the left and right subtrees.

function dissection tree(S, F : vertex set) returns tree node;
begin let x be a new tree node;

if |S ∪ F | < N0

then begin vertices(x) := S;
left(x) := right(x) := null;

end
else begin dissect(S ∪ F, A, B, C);

vertices(x) := C \ F ;
left(x) := dissection tree(A \ F, (F ∩ A) ∪ C);
right(x) := dissection tree(B \ F, (F ∩ B) ∪ C);

end;
return x;

end;

The procedure dissection tree.

When the first dissection into three sets A0, B0, and C0 has been found, C0 is stored in
the root of the tree, and A0 and B0 will go into the left and right subtrees, resp. The next
sets to be separated are A0 ∪ C0 and B0 ∪ C0 (see Figure 15b). When A0 ∪ C0 has been
partitioned into A1, B1, and C1, C1 \ C0 is stored as the vertex set of the left son of the
root. Only vertices which have not been stored already in some ancestor of the current
node are stored in a node. In this way, since each vertex is stored exactly once, the tree
takes linear space.

In general, the vertex sets to which the separator theorem is applied will contain, in
addition to the set Aj (or Bj) that has been separated from the rest of the graph by a
sequence of separators, all vertices to which arcs from vertices in Aj might lead; these
vertices are contained in the sets Ci that were used as separators in the path from the
root to the current node in the tree. The procedure dissection tree takes two arguments:
the first one — S — is the set of vertices which have been separated from the rest of the
graph, and the second one — F — is a set of vertices which separate S from the rest of
the graph: there are no arcs between S and V \ (S ∪ F ) (cf. Figure 15c). S ∪ F is the
vertex set to be separated next. Although the sets S and F are not stored in the nodes
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we will later refer to the current cardinality of these parameters at the time of the call of
dissection tree by which a specific node was generated.

The procedure returns a pointer to a node of the tree; it is initially called as follows:

root := dissection tree(V, ∅).
Lipton, Rose, and Tarjan [1979] proved that this call takes O(n logn) time if each call to

dissect takes linear time. We will show below in Section 2.1.3.4.4 that we can also achieve
this time bound in our case.

Phase 2: Elimination

Elimination of all nodes can be done in a post-order traversal of the tree. Starting at the
leaves, the vertices stored in the nodes of the tree are successively eliminated. We initiate
elimination by calling

eliminate all(root).

procedure eliminate all(x: tree node);
begin if x 6= null

then begin eliminate all(left(x));
eliminate all(right(x));
for all v ∈ vertices(x)

do eliminate vertex (v);
end;

end;

The procedure eliminate all.

Phase 3: Back-substitution

Back-substitution is done in a preorder traversal of the tree: The vertices in each node of
the tree are back-substituted (i. e., the values of the corresponding variables are computed
as described in Section 2.1.3.2) before the nodes in the subtrees are visited (where these
values are already needed.) As above, we start the back-substitution process by calling

back substitute all(root).

procedure back substitute all(x: tree node);
begin if x 6= null

then begin for all v ∈ vertices(x) (∗ in the reverse order in which ∗)
(∗ they were eliminated ∗)

do back substitute vertex (v);
back substitute all(left(x));
back substitute all(right(x));

end;
end;

The procedure back substitute all.
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2.1.3.4.2. Analysis of the fill-in

Let us analyze the number of arcs that are inserted by the elimination. First, an inserted
arc that starts in a vertex stored in some node of the tree can only go to a vertex stored in
the same node or in an ancestor or a descendant of this node; there can be no “cross arcs”
relative to the tree: When eliminate all(x) is called for some node x, there are initially no
arcs between the vertices stored in the subtree left(x) and the vertices stored in the subtree
right(x). When eliminating these vertices, new arcs are inserted only between vertices that
are adjacent to the same node, i. e., between pairs of vertices which are both stored in
left(x) or in right(x), or between such vertices and vertices stored in x.

In the following treatment we closely follow the analysis given in Lipton, Rose, and
Tarjan [1979].

For estimating the number of inserted arcs, we first count the number of arcs between
vertices stored in the same node x. If x was built in a call to dissection tree with parameters
S and F and the dissection of S ∪ F was A ∪ B ∪ C, then |C| is an upper bound on the
number of vertices stored in x, and hence |C|2 is an upper bound on the number of arcs
between vertices stored in x.

Now let us count the number of arcs that run between a vertex stored in x and a vertex
stored in an ancestor of x (in either direction). F is the set of vertices stored in ancestors
of x to which the vertices stored in x (and in the whole subtree rooted at x, i. e., the
vertices in S) can possibly be adjacent. Thus, 2 |C| |F | is an upper bound on the number
of these arcs.

In the following, we derive an upper bound f(n, l) on the number of inserted arcs which
are incident to vertices stored in the subtree rooted at a node x which was created with
|S ∪ F | = n, |F | = l and |C| = c. We have

f(n, l) = c2 + 2cl (for the vertices in x)
+ max

n1,n2,l1,l2
(f(n1, l1) + f(n2, l2)) (for the vertices in the subtrees) (7)

Let us find out over which values the maximum in this expression has to be taken: n1, l1
and n2, l2 are the values of |S ∪ F | and |F | for the calls to dissection tree for left(x) and
right(x), resp., i. e.,

n1 = |A ∪ C|
n2 = |B ∪ C|

and

and

l1 = |(F ∩ A) ∪ C| ,
l2 = |(F ∩ B) ∪ C| .

We have
n1 = |A ∪ C| ≤ |A| + |C| ≤ 2n/3 + c, and

n1 = |A ∪ C| = |A ∪ B ∪ C| − |B| ≥ n − 2n/3 = n/3,

and analogous inequalities for n2; thus,

n/3 ≤ n1, n2 ≤ 2n/3 + c.

Moreover,

n1 + n2 = |A ∪ C| + |B ∪ C| = |A ∪ B ∪ C| + |C| = n + c, and

l1 + l2 = |(F ∩ A) ∪ C| + |(F ∩ B) ∪ C|
≤ |F ∩ A| + |C| + |F ∩ B| + |C| ≤ |F | + 2 |C| = l + 2c.
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By our separator theorem (Corollary 19), we have c ≤ β
√

n, and we can write

f(n, l) =

{
n2, for n ≤ N0,

β2n + 2βl
√

n + max
n/3≤n1,n2≤2n/3+β

√
n

n1+n2≤n+β
√

n
l1+l2≤l+2β

√
n

(f(n1, l1) + f(n2, l2)) , for n > N0.

By observing that f(n, l) is increasing in l, we can get a lower bound for f(n, l) if we
replace l by 0 on the right side and set n1 = n2 = n/2:

f(n, 0) ≥ β2n + 2f(n/2, 0).

From this recursion follows easily that f(n, 0), the upper bound for the total number of
inserted arcs in the algorithm, is Ω(n log n). (It is also known that the number of inserted
arcs can really become as large as Ω(n logn). Lipton, Rose, and Tarjan [1979] show that
the maximum number is actually Θ(n log n).)

2.1.3.4.3. Reducing the storage requirement

How can this superlinear space requirement be reduced? From the above recursion we see
that we must reduce the factor 2 on the right side; i. e., instead of needing the storage for
two subproblems of approximately half the size we must require only the storage for one so-
lution. This can be done by freeing the storage used by the first call to eliminate all(left(x))
before the second call eliminate all(right(x)), i. e., globally speaking, by selectively for-
getting and recomputing arcs. This will increase the computation time by only a constant
factor.

Let us discuss the required modifications in detail. Assume that after returning from
the call to eliminate all(x) all arcs incident to vertices stored in x are deleted. Then, after
calling eliminate all(left(root)) and eliminate all(right(root)), we could still eliminate the
variables in vertex (root) and back-substitute them. However, we could not compute the
values of the other variables, since the necessary arcs were deleted. We have to repeat the
elimination process, first for left(root), then for right(root). However, this time we now do
not throw away the arcs incident to vertex (left(root)), but we use them to back-substitute
their values.

Thus, there are now two versions of eliminate all : one with deletion, and one with
backsubstitution; both are variations of the original procedure.

The whole computation is started by calling

eliminate back substitute(root).

It can be proved by induction that

(i) after the procedure eliminate delete(x) or eliminate back substitute(x) returns to the
caller the graph is restored to its original status before the procedure was called;

(ii) when either eliminate delete(x) or eliminate back substitute(x) is being called, the
only inserted arcs run between vertices that are stored in nodes on the path from the
root to x.
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procedure eliminate delete(x: tree node);
begin if x 6= null

then begin eliminate delete(left(x));
eliminate delete(right(x));
for all v ∈ vertices(x)

do begin eliminate vertex (v);
delete all inserted arcs incident to v;

end;
end;

end;

The procedure eliminate delete.

procedure eliminate back substitute(x: tree node);
begin if x 6= null

then begin eliminate delete(left(x));
eliminate delete(right(x));
for all v ∈ vertices(x)

do eliminate vertex (v);
for all v ∈ vertices(x) (∗ in the reverse order as above ∗)

do back substitute vertex (v);
eliminate back substitute(left(x));
eliminate back substitute(right(x));
for v ∈ vertices(x)

do delete all inserted arcs incident to v;
end;

end;

The procedure eliminate back substitute.

Both properties follow from the fact that in the local statements of both procedures (not
during the execution of recursive calls) no arcs are affected except those that run between
vertices in x and vertices that are stored in nodes on the path from the root to x.
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2.1.3.4.4. Performance analysis of the complete algorithm

Let us now analyze the storage requirement and the computation time required by the
modified procedure.

We define f̂(n, l) to be an upper bound on the storage space needed for either elimi-
nate delete or eliminate back substitute, where the same conventions hold with respect to
the meaning of n and l as with f(n, l).

The recursion for f̂(n, l) is also similar to the recursion (7) for f(n, l), except that the
sum of the requirements for the two subproblems has to be replaced by their maximum,
by property (i) above:

f̂(n, l) =




n2, for n ≤ N0,

β2n + 2βl
√

n + max
n/3≤n1,n2≤2n/3+β

√
n

n1+n2≤n+β
√

n
l1+l2≤l+2β

√
n

max
{

f̂(n1, l1), f̂(n2, l2)
}

, for n > N0.

Since f̂(n, l) is isotone in both n and l, we can simplify this expression:

f̂(n, l) ≤ β2n + 2βl
√

n + f̂(2n/3 + β
√

n, l + 2β
√

n), for n > N0.

We shall prove that f̂(n) = O(n).

Let N1 ≥ N0 be a number such that

2n/3 + β
√

n ≤ 3n/4, for n > N1.

Then we can write

f̂(n, l) ≤
{

n2, for n ≤ N1,

β2n + 2βl
√

n + f̂(3n/4, l + 2β
√

n), for n > N1.

Denoting the additive term in the recursion by

h(n, l) = β2n + 2βl
√

n

and expanding the recursion, we get

f̂(n, 0) ≤ h(n, 0) + h(n1, l1) + h(n2, l2) + · · · + N2
1 ,

where
ni+1 = (3/4)ni = n (3/4)i and li+1 = li + β

√
ni, l0 = 0.

We get
li = 0 + β

√
n + β

√
n1 + · · ·β√ni−1

≤ β
√

n
(
1 +

√
3/4 +

√
3/4

2
+
√

3/4
3
+ · · ·

)
= βγ

√
n,

(8)
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with γ = 1/(1 −√3/4) = 7.4641. Thus,

f̂(n, 0) ≤ N2
1 +

∞∑
i=0

(
β2ni + 2βli

√
ni

)

≤ N2
1 +

∞∑
i=0

(
β2ni + 2β2γni

)

= N2
1 + β2(1 + 2γ)n

∞∑
i=0

(3/4)i

= N2
1 + 4β2(1 + 2γ)n = O(n).

Thus we have proved:

Theorem 21. The elimination step in the modified algorithm takes O(n) space.

Remark: Actually, we have only proved that the amount of fill-in that has to be stored is
O(n). The theorem is further supported by the implementational details which are given
in the next subsection.

Let us now analyze the running time of our algorithm. For the time complexity of
eliminate delete, as well as of eliminate all , we can set up a recursion as follows: The
amount of work for the elimination of a single vertex is proportional to the product of the
indegree and the outdegree of this vertex. In a call to any of the elimination procedures, the
indegree and the outdegree are bounded by c + l, where c and l have the same meaning as
in Section 2.1.3.4.2. Since c vertices are eliminated, the time spent inside the subroutine,
exclusive of the recursive calls, is O(c(c + l)2). Hence the total time requirement for
eliminate delete or for eliminate all , which we denote by g(n, l), satisfies the following
recursion

g(n, l) = c(c + l)2 + max
n1,n2,l1,l2

(g(n1, l1) + g(n2, l2))

≤ β
√

n(β
√

n + l)2 + max
n1,n2,l1,l2

(g(n1, l1) + g(n2, l2))

= O(
√

n(
√

n + l)2) + max
n1,n2,l1,l2

(g(n1, l1) + g(n2, l2)) ,

where the maximum has to be taken over the same range as for the recursion (7) in
Section 2.1.3.4.2, and suitable initial conditions for n ≤ N0 have to be provided. Lipton,
Rose, and Tarjan [1979] (p. 350–351, proof of Theorem 3) have shown that this recursion
has the solution

g(n, l) = O(
√

n(
√

n + l)2),

and hence
g(n, 0) = O(n3/2).

Now let us denote by ĝ(n, l) the time for the procedure eliminate back substitute. The
recursion for ĝ(n, l) is similar to the above recursion for g(n, l), except that we have to add
2g(n, l) on the right side for the two calls to eliminate delete. (The time for backsubsti-
tution of a vertex is only the sum of the indegree and the outdegree of the vertex, hence
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it is certainly dominated by the time for elimation and can be ignored in the asymptotic
complexity.)

ĝ(n, l) = c(c + l)2 + 2g(n, l) + max
n1,n2,l1,l2

(ĝ(n1, l1) + ĝ(n2, l2))

= O(
√

n(
√

n + l)2) + 2g(n, l) + max
n1,n2,l1,l2

(ĝ(n1, l1) + ĝ(n2, l2)) ,

However, it was shown above that g(n, l) = O(
√

n(
√

n+l)2). The term 2g(n, l) can therefore
be subsumed under the O-expression, and we get essentially the same recursion as above,
only with a different constant:

ĝ(n, l) = O(
√

n(
√

n + l)2) + max
n1,n2,l1,l2

(ĝ(n1, l1) + ĝ(n2, l2)) .

From this we conclude as above:

ĝ(n, 0) = O(n3/2).

Thus we have proved:

Theorem 22. The elimination step in the modified algorithm takes O(n3/2) time.

The only part of the generalized nested dissection algorithm that has not been analyzed
yet is the construction of the dissection tree. We will show that both the work and the
storage at the local level of a call to dissection tree with |S ∪ F | = n are O(n).

We assume that at the initial level we are given the graphs G(2) and K. Then the sepa-
rator C can be constructed in linear time, as follows from the discussion in Section 2.1.3.3.
The only problem is to ensure that the appropriate subgraphs of G(2) and the correspond-
ing graphs K are available for the recursive calls, such that during these calls the separators
can also be found in linear time. In other words, we are given a subgraph of G(2) induced
by the vertex set S ∪ F and the corresponding graph K; after finding the separator C

and the sets A and B, we have to construct the graph induced by A ∪ C and the graph
K corresponding to it before the first recursive call, and similarly for the second recursive
call.

It is straightforward to remove all edges incident to B in order to obtain the subgraph
of G(2) induced by A∪C. We update the graph K as follows: For each point of B, a whole
circle of the graph K must disappear. For each circle, we go through the vertices on that
circle one by one. Each vertex which is encountered lies on two circles: the circle which is
about to disappear, and another circle. When the vertex is removed, its neighbors on this
other circle become adjacent, and the graph K must be updated to reflect this change. It
is clear that this can be done in time proportional to the size of the graph which is O(n).

Before the change, we make a local copy of both graphs that we deal with; so we do not
have to worry about restoring them for the second recursive call. Thus we need O(n) time
and space locally for each call. This leads to the following recursions for the total time
h(n, l) and the total space q(n, l) required by the procedure dissection tree:

h(n, l) = O(n) + max
n/3≤n1,n2≤2n/3+β

√
n

n1+n2≤n+β
√

n
l1+l2≤l+2β

√
n

(h(n1, l1) + h(n2, l2)), for n > N0,



46

and
q(n, l) = O(n) + max

n/3≤n1,n2≤2n/3+β
√

n
n1+n2≤n+β

√
n

l1+l2≤l+2β
√

n

max {q(n1, l1), q(n2, l2)} , for n > N0.

For the time complexity h(n, l) we can refer to Theorem 2 of Lipton, Rose, and Tarjan
[1979], where

h(n, 0) = O(n logn)

is obtained.

For q(n, l) we use the same trick as for the derivation of f̂(n, l), and we obtain

q(n, l) = O(n) + q(3n/4, l + 2β
√

n), for n > N1.

We can proceed in the same way as for f̂(n, l) and we get

q(n, 0) = O(n).

Summarizing, we have

Theorem 23. The dissection tree can be built in O(n logn) time and O(n) space.

2.1.3.4.5. Details about the implementation

Since we talk about forgetting (i. e., deleting) arcs, we have to become specific about the
way in which the graph is stored.

As we are dealing with sparse graphs, an adjacency list representation will probably be
appropriate. However, during elimination, arcs may be inserted which are already in the
graph. We could replace duplicated arcs by a single arc whose weight is the smaller of the
two weights. However, this creates the problem of detecting arc duplications quickly in
adjacency lists. We could also leave multiple arcs in the adjacency lists. The elimination
algorithm is insensitive to multiple arcs, except for the storage and processing time they
require: They cause no harm in the adjacency lists, and the algorithm will process two
arcs with equal endpoints without notice. However, the analysis of the algorithm, which
was given above, makes the assumption that from a vertex set of cardinality a to a vertex
set of cardinality b there are at most ab arcs. Therefore, the inserted arcs would not be
taken into account correctly, if this scheme were used.

Therefore, we have to switch to an adjacency matrix representation, at least for parts of
the graph. Because of the space requirements, the matrix representation is certainly not
suited for the original graph. Thus we must deal with two different representations in the
same algorithm: an adjacency list for the graph as it is originally given, and a dynamical
matrix representation for the inserted arcs:

The vertices on the path from the root to the current node in the tree are pushed on
a stack, and they are associated with the rows and columns of the adjacency matrix in
the order in which they appear on the stack. When the algorithm enters a new node,
the corresponding number of rows and columns have to be added to the right and at the
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l

l c

c

Figure 16. How the matrix grows and shrinks dynamically.

bottom of the matrix for the vertices stored in that node. (cf. Figure 16). The number of
added elements (2cl + c2) corresponds exactly to the amount of fill-in that was accounted
for in equation (7) of Section 2.1.3.4.2.

It was shown above in (8) that the total number l of vertices stored on the path from
the root to any node is bounded by a falling geometric series starting with β

√
n. Hence

the maximum dimension of the matrix is O(
√

n), and the storage requirement is O(n).

When returning from a recursive procedure call, we pop the elements off the stack, and
we simply shrink the dimensions of the matrix and forget what was outside. The time of
O(2cl + c2) for clearing this area to zero when allocating it (or when freeing it) is clearly
dominated by the time needed for the elimination (O(c(c + l)2)).

When we delete arcs that were inserted earlier, we certainly do not want to destroy the
arcs that were originally in the graph. This problem is solved at the same time by our
twofold representation of the arcs.

2.2. Testing whether a graph has a necklace tour

Again, as in Section 2.1, all theorems about necklace tours hold equally for 2-factors. We
will usually formulate them in this way, and we will specialize them to necklace tours only
in the summary.
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2.2.1. Characterization of graphs which have necklace tours

To state our characterization, we formulate the optimal 2-factor problem as an integer
program. Let G = (P, G) be a weighted graph with P = {p1, p2, . . . , pn}. We define a
binary variable xij for each edge {pi, pj} of the graph, where xij = 1, if {pi, pj} belongs to
the 2-factor, and xij = 0, if it does not. The 2-factor problem can now be formulated as
follows:

(F)




minimize
∑

{pi,pj}∈G

xijdij (F.1)

subject to
∑

{pi,pj}∈G

xij = 2, for i = 1, 2, . . . , n, and (F.2)

xij ∈ {0, 1}, for {pi, pj} ∈ G (F.3)

The linear programming relaxation of this problem, called the fractional 2-factor problem
(FF) is obtained by replacing the constraints (F.3) by

0 ≤ xij ≤ 1, for {pi, pj} ∈ G. (FF.3)

Theorem 24. A graph G has a necklace 2-factor F if and only if the fractional 2-factor

problem defined by (F.1), (F.2), and (FF.3) has a unique optimal solution which is integral.

F is then the 2-factor corresponding to this solution.

Proof: (i) First we prove the “only if” part. Let r1, r2, . . . , rn be radii that realize F , that
is, they fulfill (R). Then it is clear that these radii can be made to fulfill

ri + rj > dij , if {pi, pj} ∈ F, and (R.1′)

ri + rj < dij , if {pi, pj} /∈ F, (R.2)

for example by adding δ/3 to all radii, where δ = min { dij − ri − rj | {pi, pj} /∈ F } > 0.
Now assume that r1, r2, . . . , rn fulfill (R.1′) and (R.2). If we replace the distances dij in
the objective function (F.1) by d′

ij := dij − ri − rj , then we get∑
{pi,pj}∈G

xijd
′
ij =

∑
{pi,pj}∈G

xij(dij − ri − rj) =
∑

{pi,pj}∈G

xijdij −
∑

{pi,pj}∈G

xijri −
∑

{pi,pj}∈G

xijrj

=
∑

{pi,pj}∈G

xijdij −
n∑

i=1

∑
{pi,pj}∈G

xijri =
∑

{pi,pj}∈G

xijdij −
n∑

i=1

2ri,

by (F.2). Thus, the new objective function

(F.1′) minimize
∑

{pi,pj}∈G

xijd
′
ij

differs from the old one by an additive constant, and the optimal solutions are the same
with respect to both objective functions. But we have

d′
ij = dij − ri − rj < 0, for {pi, pj} ∈ F, and

d′
ij = dij − ri − rj > 0, for {pi, pj} /∈ F.
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Therefore, the unique optimal solution of (F.1′) subject to (FF.3) is the solution corre-
sponding to F :

xij = 1, for d′
ij < 0 ({pi, pj} ∈ F ), and

xij = 0, for d′
ij > 0 ({pi, pj} /∈ F ),

and this solution also fulfills (F.2) and is thus the unique optimal solution of (F.1) subject
to (F.2), and (FF.3).

(ii) Now, we prove the “if” part of the theorem. Assume that the vector x̂ = (x̂ij) is
the unique optimal solution of (F.1), (F.2), and (FF.3). The following rather technical
consideration shows that the coefficients dij in the objective function (F.1) can be changed
slightly without destroying the optimality of x̂. We need this in order to obtain strict
inequalities in (R.2). Since the set M of solutions of the system of linear equations (F.2)
and linear inequalities (FF.3) is bounded by the constraints (FF.3), this set is a polytope,
and therefore the minimum of any linear objective function over M is attained at a at a
basic solution of the linear program, i. e., at a vertex of the polytope M . Hence, x̂ is a
vertex of M . Since M has only finitely many vertices, we can define δ to be the minimum
difference in objective function value (F.1) between x̂ and any other vertex. If we replace
dij by

d′′
ij =

{
dij − δ/n2, if x̂ij = 0, and
dij , if x̂ij = 1,

we get a new objective function

minimize
∑

{pi,pj}∈G

xijd
′′
ij . (F.1′′)

Now, we have, for all x ∈ M

∑
{pi,pj}∈G

xijdij ≥
∑

{pi,pj}∈G

xijd
′′
ij =

∑
{pi,pj}∈G

xijdij −
∑

x̂ij=0

δ

n2

≥
∑

{pi,pj}∈G

xijdij −
(

n

2

)
δ

n2
>

∑
{pi,pj}∈G

xijdij − δ

2
.

Thus, (F.1′′) differs from (F.1) by at most δ/2, for all x ∈ M . This implies that x̂ is still
optimal with respect to (F.1′′) among all vertices of M , and hence it is an optimal solution
of the linear program (F.1′′), (F.2), and (FF.3).

It remains to find radii ri that realize the 2-factor F corresponding to x̂. Let us consider
the dual program of (F.1′′), (F.2), and (FF.3):

maximize
n∑

i=1

2ri −
∑

{pi,pj}∈G

δij

subject to − δij + ri + rj ≤ d′′
ij , for {pi, pj} ∈ G,

with δij ≥ 0 and ri arbitrary .

Here, the ri are the dual variables associated with the vertices, and the δij are associated
with the constraints xij ≤ 1. Complementarity implies that for x̂ to be optimal, there
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must exist values ri and δij such that the following complementary slackness conditions
hold:

x̂ij > 0 implies ri + rj − δij = d′′
ij , and

x̂ij < 1 implies δij = 0.

This means

(I.1)

{
x̂ij = 1 implies ri + rj ≥ d′′

ij = dij and

x̂ij = 0 implies ri + rj ≤ d′′
ij = dij − δ

n2 < dij .

Thus, the radii ri, which are just the dual variables of the linear program, fulfill (R.1) and
(R.2). Positivity (R.3) can be achieved with the help of Theorem 9. The resulting radii
realize the 2-factor F corresponding to x̂.

Corollary 25. A necklace 2-factor of a graph is the unique optimal 2-factor.

Corollary 26. A necklace tour of a graph is the unique optimal tour.

2.2.2. Finding necklace tours and necklace 2-factors

By Theorem 24, we need only solve the fractional 2-factor problem specified by (F.1), (F.2),
and (FF.3) in order to find a necklace 2-factor. Extending the reduction given in Derigs
and Metz [1986] and Balas [1981] (cf. Fulkerson, Hoffman, and McAndrew [1965]) from
the fractional m-factor problem to the assignment problem, we can reduce the fractional
2-factor problem to the n × n capacitated transportation problem specified below. For
consistency, we define dii = ∞, for 1 ≤ i ≤ n.

(C)




minimize
n∑

i=1

n∑
j=1

yijdij

subject to
n∑

j=1

yij = 2, for 1 ≤ i ≤ n,

n∑
i=1

yij = 2, for 1 ≤ j ≤ n, and

0 ≤ yij ≤ 1, for 1 ≤ i, j ≤ n.

This is essentially the same 2-factor problem, but on a bipartite graph with twice as
many vertices. The complementary snecklace conditions for this problem and its dual are
as follows:

(I.2)

{
yij > 0 implies ui + vj ≤ dij , and

yij < 1 implies ui + vj ≥ dij .

If a set of values xij , ri fulfills (F.2), (FF.3), and (I.1), a pair of primal and dual solutions
yij and ui, vj fulfilling (C) and (I.2) can be defined by setting

yij := yji := xij and ui := vi := ri.
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Conversely, from a solution fulfilling (C) and (I.2), we can compute a solution of (F.2),
(FF.3), and (I.1) as follows:

xij :=
yij + yji

2
and ri :=

ui + vi

2
.

Since the values yij of an optimal basic solution of (C) are integral, it is necessary and
sufficient for xij to be integral that yij = yji for all i and j, i. e., that the solution is
symmetric.

By a straightforward extension of Theorem 24, we get now the following result:

Theorem 27. A necklace 2-factor exists if and only if the solution of the capacitated

transportation problem (C) is symmetric and unique.

Since the necklace 2-factor can be restricted to be contained in the subgraph G(2), we
need only consider the arcs corresponding to the edges of G(2). (There are two arcs (pi, pj)
and (pj , pi) corresponding to each edge {pi, pj} of the original subgraph.)

For solving the transportation problem we can use the shortest augmenting path method
(cf. Edmonds and Karp [1972], Tomizawa [1972], or Derigs [1988]). Since the total amount
of flow is 2n, we need at most 2n flow augmentations. Each flow augmentation involves a
single-source shortest path computation. Since the graph is sparse, we use for the shortest
path computations the variation of Dijkstra’s algorithm with priority queues implemented
as heaps. The time-complexity of this method is O((e+n) logn), where e is the number of
edges of the graph. Since e is O(n) in our case, this implies an O(n2 log n) time algorithm
for finding necklace 2-factors in the plane. Note that this time matched by an algorithm
of Gabow [1983] for (always) finding an optimal 2-factor.

Finally, we summarize the complexity results of this chapter obtained for finding necklace
2-factors and necklace tours.

2.3. Summary of results about the necklace condition

Theorem 28. Given a 2-factor or a tour for n points in the plane, we can decide in

O(n3/2) time and O(n) space whether it is a necklace 2-factor or a necklace tour. If it is a

necklace 2-factor or a necklace tour, then positive radii that realize it can be constructed

within the same time and space bounds.

Theorem 29. Given a set of n points in the plane, the necklace condition can be tested

in O(n2 log n) time and O(n) space. If the necklace condition is satisfied, the necklace tour

or necklace 2-factor and a set of radii that realize it can be constructed within the same

asymptotic time and space bounds.
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Conclusion

We have identified two special classes of the Traveling Salesman Problem which are solv-
able in polynomial time. Although polynomial time is generally associated with “good”
algorithms, we view our algorithms mainly as a contribution to Theoretical Computer Sci-
ence. In the case of the N-line Traveling Salesman Problem, the degree of the polynomial
seems to be too high for practical applications; and in the case of the necklace condition,
the class of problem instances for which it holds is probably too restricted. The necklace
condition might perhaps be used as a guide for the development of heuristics for finding
suboptimal solutions of the Traveling Salesman Problem. (This would be the other of the
two approaches to NP-hard problems mentioned in the introduction.)

An interesting open problem would be to extend the results about the necklace condition
to higher dimensions. The results about the sparsity of the graphs G(m) (Section 2.1.2.1)
carry over in a straightforward way. It is however not so easy to prove for example an
n2/3-separator theorem for G(2) of point sets in space, since the planar separator theorem
can no longer be applied. This would be the first case of a general separator theorem for
point sets in three dimensions (apart from regular grid graphs).
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