
Toward optimal diffusion matrices �

Robert Elsässer, Burkhard Monien, Stefan Schamberger
Universität Paderborn

Department of Mathematics and Computer Science
Fürstenallee 11, D-33102 Paderborn

{elsa,bm,schaum}@uni-paderborn.de

Günther Rote
Freie Universität Berlin

Institute of Computer Science
Takustr. 9, D-14195 Berlin

rote@inf.fu-berlin.de

Abstract

Efficient load balancing algorithms are the key to many
efficient parallel applications. Until now, research in this
area has mainly been focusing on homogeneous schemes.
However, observations show that the convergence rate of
diffusion algorithms can be improved using edge weighted
graphs without deteriorating the flows quality. In this pa-
per we consider common interconnection topologies and
demonstrate, how optimal edge weights can be calculated
for the First and Second Order Diffusion Schemes. Us-
ing theoretical analysis and practical experiments we show,
what improvements can be archived on selected networks.

Keywords. load balancing, diffusion, eigenvalues, FOS,
SOS, hypercubic networks

1. Introduction

Load balancing is a very important prerequisite for an ef-
ficient use of parallel computers. Many parallel applications
produce dynamic work load and its amount per processor
often changes dramatically during run time. Therefore, to
reduce the overall computation time, the total work load of
the network has to be distributed evenly among all nodes
while the computation proceeds. Obviously, we can ensure
an overall benefit of the computation only if the balancing
scheme itself is highly efficient.

One example showing the importance of an efficient load
balancing scheme is parallel finite element simulation. Us-
ing meshes consisting out of several million elements repre-
senting the discretized geometric space, these are split into
parts and evenly distributed among all processors. Each
processor starts computing independently on its part until
the next global communication step is required. Depending

�This work was partly supported by the German Science Foundation
(DFG) project SFB-376 and by the IST Program of the EU under contract
number IST-1999-14186 (ALCOM-FT).

on the application, the mesh refines and coarsens in some
areas during the computation what causes an imbalance be-
tween the processors’ load and therefore delays the overall
computation. In fluid dynamics for example, simulation of
turbulences or shocks often depends on such refinements.
In these situations, there is a need to balance the load. The
application is interrupted and the at this moment static load
balancing problem is solved. For a selection of applications,
case studies and references on the problem of parallel finite
element simulations the reader is referred to [11].

One of the most common approaches for load balancing
is the 2-step model (e. g. [7]). The first step calculates
a balancing flow. This flow is used in the second step, in
which load elements are migrated accordingly. This paper
focuses on the first step and analyzes the questions, how
much load has to be migrated and where to. More formally,
given a network withn nodes, each containing work load
wi, we calculate a load balancing flow over the edges of the
network such that after termination of the second step, each
nodei has the balanced work load ofw i =

Pn

j=1 wj=n. We
further assume that no load is generated or consumed during
the balancing process and the structure of the network is
fixed, meaning we consider a static load balancing scenario.

If the global imbalance vectorw � w is known, it is
possible to solve the problem by solving a linear system of
equations [14]. But assuming that processors of the parallel
network may only access information of their direct neigh-
bors, load information has to be exchanged locally in iter-
ations until a balancing flow is computed. Two sub classes
of local iterative load balancing algorithms are thediffu-
sion schemes [3, 5] and thedimension exchange schemes
[5, 19]. These two classes reflect different communication
abilities of the network. Diffusion algorithms assume that
a processor can send and receive messages to/from all of
its neighbors simultaneously, while the dimension exchange
approach is more restrictive and only allows a processor
communicate with one of its neighbors during each itera-
tion. Thealternating direction iterative scheme [10] rep-
resents a mixture of the diffusion and dimension exchange

methods. It reduces the number of iteration steps needed for
networks constructed by Cartesian products of graphs. The
drawback of this scheme is that the resulting flow may have
load migration loops tending to infinity.

In [5], Cybenco defined the general diffusion scheme.
If we denote the load after thekth iteration step on node
i of the graphG = (V;E) with wk

i , thenwk
i satisfies the

equation

wk
i = wk�1

i �
X

fi;jg2E
�i;j(w

k�1
i � wk�1

j):

Most of the results in this area concentrate on homoge-
neous schemes with the entries�i;j being the same for
any fi; jg 2 E. Furthermore, there is plenty of work
[5, 7, 9, 13, 16, 17] focusing on the relation between conver-
gence rates of diffusion algorithms and the condition num-
ber of the unweighted Laplacian matrix defined in the next
section. In [7] it is shown that all diffusion schemes calcu-
late the same flow and that this flow is minimal considering
thel2-norm. In the same paper is also shown that the known
diffusion schemes can be generalized for weighted graphs.
Sending a higher amount of load over heavier weighted
edges, the calculated flow is still minimal with respect to
a weightedl2-norm. A formal definition of this is given in
the next section.

Inhomogeneous schemes can be described by edge
weighted graphs. The goal is to find edge weights such that
the condition number of the resulting Laplacian matrix is
maximized among all Laplacians having the same commu-
nication structure, e. g. having the same zero entries. At this
time very little is known about this problem. To our knowl-
edge, [8] was the first and up to now the only paper address-
ing this topic. There, semi definite programming is used and
it is proved that a polynomial time approximation algorithm
exists to compute the optimal values. Furthermore, some
examples of graph classes with optimal weights are given.
Using this approach, however, considerable results can only
be obtained for graphs of small cardinality.

The results of this paper are the following. First, we
consider edge transitive graphs and show that for these
graphs the maximal condition number of the correspond-
ing weighted Laplacian matrix is achieved if all edges have
the same weight. This result solves some open problems
described in [8] with respect to optimal edge weights of Hy-
percubes, Cycles and the Star. Second, we consider Cayley
graphs and prove, that edges generated by the same genera-
tor must be of equal weight in order to achieve the maximal
condition number. Another general graph class are Carte-
sian products of graphs. For this class, we compute edge
weights that can be used to improve the known load bal-
ancing diffusion algorithms on them. Additionally, we con-
sider the Cube Connected Cycles and compute optimal val-
ues for the weights of its edges, maximizing the condition

number of the corresponding Laplacian. Moreover, we de-
scribe how optimal edge weights can be obtained for other
hypercubic networks like Cube Connected Paths, Butterfly,
wrapped Butterfly and the de Bruijn. To confirm our the-
oretical results, we perform several experiments using dif-
ferent edge weight scenarios on the mentioned graph types
and show the dependencies between edge weights and con-
vergence rate.

2. Background and Definitions

Let G = (V;E) be a connected, weighted undirected
graph withjV j = n nodes andjEj = N edges. Letci;j 2
IRN be theweight of edgeei;j 2 E, wi 2 IR be theload
of nodevi 2 V andw 2 IRn be the vector of load values.
Vectorw := 1

n
(
Pn

i=1 wi)(1; : : : ; 1) denotes the vector of
an average load.

Let A 2 IRn�n be theweighted adjacency matrix of G.
As G is undirected,A is symmetric. Column/rowi of A
containsci;j wherevj andvi are neighbors inG. For some
of our constructions we need theLaplacian L 2 ZZ n�n

of G defined asL := D � A, whereD 2 IN n�n con-
tains the weighted degrees as diagonal entries, e. g.D i;i =P

fvi;vjg2E ci;j , and0 elsewhere.
We consider the followinglocal iterative balancing al-

gorithm that requires communication with adjacent nodes
only and performs the iteration

8e = fvi; vjg 2 E : yk�1i;j = �ci;j(w
k�1
i � wk�1

j)

xke = xk�1e + Æi;jy
k�1
i;j (1)

wk
i = wk�1

i �
X

e=fvi;vjg2E
yk�1i;j

on every nodevi 2 V . Here,Æi;j represents the arbitrar-
ily assigned edge direction,Æi;jyki;j describes the amount of
load sent via edgee = fvi; vjg in stepk, xke is the load
sent via edgee added up until iterationk andwk

i is the load
of the nodevi after thek-th iteration. If a directed edge is
pointing fromvi to vj , thenÆi;j = 1 otherwiseÆi;j = �1.
Note, thatÆi;j = �Æj;i and thereforeÆi;jyki;j = Æj;iy

k
j;i for

any pair offvi; vjg 2 E. Computing the flowxke can be
skipped in case of a1-step model since there the load is
immediately moved and no monitoring needs to be done.
Throughout this paper however, we assume applying the2-
step model in which a balancing flow is calculated first and
load is moved in a second step accordingly as already men-
tioned in section 1. The scheme shown in equation (1) is
known as theFirst Order Scheme (FOS) and converges to
the average loadw [5]. It can be written in matrix nota-
tion aswk = Mwk�1 with M = I � �L 2 IRn�n. M
contains�ci;j at position(i; j) for every edgee = fvi; vjg,
1�Pe=fvi;vjg2E �ci;j at diagonal entryi, and0 elsewhere.

Now, let�i(L), 1 � i � n be the eigenvalues of the Lapla-
cianL in non decreasing order. It is known that�1(L) = 0
with eigenvector(1; : : : ; 1) and�n(L) � 2 � degmax with
degmax being the maximum weighted degree of all nodes
[4]. M has the eigenvalues�i = 1 � ��i. Here,� has to
be chosen such that1 = �1 � �2 � : : : � �n > �1. Since
G is connected the first eigenvalue�1 = 1 is simple to the
eigenvector(1; 1; : : : ; 1). The matrixM is calleddiffusion
matrix. We denote by
 = maxfj�2j; j�njg < 1 the second
largest eigenvalue ofM according to absolute values and
call it thediffusion norm of M .

Several modifications to theFirst Order Scheme have
been discussed in the past. One of them is theSecond Order
Scheme (SOS) [13] which has the form

w1 =Mw0; wk = �Mwk�1+(1��)wk�2; k = 2; 3; : : :

with � being a fixed parameter, whereby fastest conver-
gence is archived for� = 2

1+
p
1��2

2

. The Chebyshev

method [7] differs from SOS only by the fact that� depends
onk according to

�1 = 1; �2 =
2

2� �22
; �k =

4

4� �22�k�1
; k = 3; 4; : : :

Generalized, apolynomial based load balancing scheme is
any scheme for which the work loadwk in stepk can be
expressed in the formwk = pk(M)w0 wherepk 2 �k.
Here,�k denotes the set of all polynomialsp of degree
deg(p) � k satisfying the constraintp(1) = 1.

The convergence of a polynomial based scheme depends
on whether (and how fast) the errorek = wk � w be-
tween the load after iterationk, wk = pk(M)w0 and the
corresponding average loadw = 1

n
(
Pn

i=1 w
0
i)(1; : : : ; 1)

converges to zero. In this work we consider a system
to be �-balanced after thekth iteration step iff the error
kekk2 � � � ke0k2. Here,kekk2 andke0k2 represent the
vectorse0 resp.ek in l2-norm. In [13], the number of steps
needed to�-balance a system is analyzed and using the re-
sults of this work we can state the following lemma.

Lemma 1 Let G be a graph and L be its Laplacian. Let
M = I��L be the diffusion matrix with � = 2

�2(L)+�m(L)

and set � = 2

1+
p
1��2

2

. Then FOS and SOS both take

O(1
�
� ln(1=�)) resp. O(1p

�
� ln(1=�)) steps to �-balance

the system. Here, � = �2
�m

is the condition number of L.

In this lemma� and � are chosen such that the conver-
gence rate of FOS and SOS is maximized. We can see that
the SOS converges faster than FOS by almost a quadratic
factor. The Chebyshev method can be regarded to perform
asymptotically identical to SOS [7]. Lemma 1 also shows
the importance of the condition number of the Laplacian.

Both schemes, FOS and SOS converge faster, if the condi-
tion number is higher. As mentioned in section 1, by using
edge weighted graphs it is possible to increase the condition
number of the Laplacian and therefore to reduce the number
of steps needed to compute a balancing flow distributing the
load in the network.

We concentrate now on the flow obtained by the polyno-
mial based diffusion algorithms. Let thel2 optimal flow
be represented by the minimal flow with respect to the
weighted Euclidian norm, i. e. the solution to the problem

min!kxkk2 =
vuut NX

e=1

(xke)
2

ce
over all balancing flowsxk :

Here, c1; : : : ; cN represent the weights assigned to the
edges of the graph. Then we can state the following lemma
[7].

Lemma 2 FOS and the SOS compute an l2-minimal bal-
ancing flow.

In [7], lemma 2 is shown for polynomial based load balanc-
ing schemes in a general form.

3. New Results

In this section we deal with general graph classes like
edge-transitive graphs, Cayley graphs and Cartesian prod-
ucts of graphs as well as with interconnection topologies
like Grid (G), Torus (T), Cube Connected Cycles (CCC),
Butterfly (BF) and de Bruijn (DB) networks. These inter-
connection topologies are designed to have many favorable
properties for distributed computing, e.g. small vertex de-
gree and diameter and large connectivity. In the present
work, we focus our attention on computing optimal edge
weights for these graphs in order to maximize the condition
number of the corresponding Laplacian. First, let us con-
centrate on some simple graphs like Cycles, Hypercubes,
complete graphs or the Star. All these graphs are edge tran-
sitive. In other words, for any pair of edgesfu; vg and
fu0; v0g there is an automorphism� such that�(u) = u 0

and�(v) = v0. An automorphism of a graph is a one-to-one
mapping of nodes onto nodes such that edges are mapped
onto edges. To show that for all edge transitive graphs the
maximal condition number is achieved if all edges have the
same weight, the following lemma is useful.

Lemma 3 Let L0; L1; : : : ; Lm 2 IRn�n be Laplacian
matrices of weighted graphs G0; : : : ; Gm, all with the
same adjacency structure, and L0 = L1+:::+Lm

m
. Then

�2(Lo) � minf�2(L1); : : : ; �2(Lm)g and �n(L0) �
maxf�n(L1); : : : ; �n(Lm)g.

Proof 1 We know that (1; : : : ; 1) is an eigenvector of Li,
0 � i � m to the eigenvalue 0 and for all Graphs Gi

we denote the number of vertices with n and the number
of edges with N . Furthermore, we denote by ci1; : : : c

i
N

the weights of the edges of Gi. We assume w.l.o.g. that
�2(L1) � �2(L2) � : : : � �2(Lm). Let (x1; : : : ; xn) be
the eigenvector of L0 to the eigenvalue �2(L0). Then, using
the Rayleigh coefficient we obtain

�2(L0) =

P
fu;vg2EGi

�Pm
j=1 c

j

fu;vg

m
(xu � xv)

2

�
P

u2VGi x
2
u

=
1

m

mX
j=1

P
fu;vg2EGi

cjfu;vg(xu � xv)
2P

u2VGi x
2
u

� 1

m

mX
j=1

min
y?1

P
fu;vg2EGi

cjfu;vg(yu � yv)
2P

u2VGi y
2
u

!

=
1

m
(�2(L1) + : : :+ �2(Lm)) � �2(L1)

where y and 1 = (1; : : : ; 1) are vectors of size n.
The second statement of the lemma can be obtained in a

similar manner. ut
Now, letL1 be the Laplacian of a weighted edge symmetric
graph. Applying the lemma to the family of all matrices that
can be obtained fromL1 by permuting rows and columns
according to some automorphism ofG, we obtain a Lapla-
cianL0 where all edge weights are equal. Due to lemma
3, the condition number ofL0 will not be smaller than the
condition number ofL1 and we can state the following the-
orem.

Theorem 1 LetG be an unweighted, edge transitive graph.
Among all weighted graphs with G’s adjacency structure,
the condition number of the Laplacian is maximal for the
one that has all edge weights set to 1.

In the present paper we consider several graphs that can
be viewed as Cayley graphs. The definition of a Cayley
graph is given below.

Definition 1 Let G be any abstract finite group, with iden-
tity 1 and let
 be a set of generators for G, with the prop-
erties x 2
) x�1 2
 and 1 62
. The Cayley graph
� = �(G;
) is a simple graph with vertex set V� = G and
edge set E� = ffg; hgjg�1h 2
g.

An edge {h,k} is generated by a generator! 2
, iff
h�1k = ! or k�1h = !. We now show that edges of the
same generator of
 must have the same weights in order
to achieve a minimal amount of iteration steps in diffusion
algorithms.

Theorem 2 Let � be a Cayley graph and let
 be the set
of its generators. The condition number of the Laplacian
is maximized, if for any two edges e = fg; hg and e0 =
fg0; h0g generated by the same generator ! 2
 the edge
weights of e and e0 are equal.

Proof 2 For each g 2 G we may define a permutation g
of V� by the rule g(h) = gh; (h 2 G). This is an auto-
morphism of � [2]. If there exists an edge between h and
k generated by !, then there also exists an edge between
gh and gk generated by !. Assume !�1 6= ! and let p
be the smallest integer with the property !p = 1. Then !
generates cycles of length p where each vertex has an inci-
dent edge generated by ! and an other incident edge gen-
erated by !�1. Therefore, the number of edges generated
by ! equals the number of vertices of �. Next, we have to
show that for different g and g 0 the edge fh; kg is mapped
to different edges. Assume fgh; gkg = fg0h; g0kg. Then
gk = g0k and gh = g0h or gk = g0h and gh = g0k. In the
first case, we have a contradiction to the assumption that
g 6= g0, while in the second case there is a contradiction to
!�1 6= !. Hence, we can use jGj permutations to map each
edge to every other edge and the theorem follows by lemma
3. If !�1 = !, using jGj permutations causes each edge
being mapped twice to every other edge in the graph and
the theorem also follows by lemma 3. ut

As a consequence of this theorem, edges belonging to the
same dimension of a Torus must have the same weight. On
the other hand, a Torus can be viewed as a Cartesian product
of Cycles. For a Cartesian product of two graphsG andH
however, we can state the following theorem.

Theorem 3 LetG andH be two unweighted graphs and let
G�H be their Cartesian product. W.l.o.g, assume �2(G) �
�2(H). The diffusion schemes on G �H can be improved
by assigning the weight �2(H)

�2(G)
to the edges contained in G

and 1 to the edges contained in H .

Proof 3 The second smallest eigenvalue of G � H is
minf�2(G); �2(H)g and the largest eigenvalue of G �
H has the form �n(G) + �n(H). Let a be the weight
of the edges of G. We have to maximize the function
� = minf a�2(G)

a�n(G)+�n(H) ;
�2(H)

a�n(G)+�n(H)g. The function
a�2(G)

a�n(G)+�n(H) is increasing, while �2(H)
a�n(G)+�n(H) is de-

creasing in a. It follows that a = �2(H)
�2(G)

holds for a maxi-
mized �. ut

Note, that if both graphsG andH defined in theorem 3
are edge transitive graphs, assigning weight�2(H)

�2(G)
to the

edges ofG and1 to the edges ofH maximizes the condition
number of the Laplacian matrix.

Since the eigenvalues of a Cycle of lengthn are 2 �
2 cos(2�j

n
); 0 � j < n, we can state the following:

Corollary 1 Let T be the d-dimensional Torus generated
from the Cartesian product of d Cycles of length n1 � n2 �
: : : � nd. The polynomial based diffusion algorithms have
their fastest convergence rate, if the edge-weights of cycle i,
1 � i � d are set to (2� 2 cos(2�

n1
))=(2� 2 cos(2�

ni
)).

Other graphs with a similar structure ared-dimensional
Grids. However, these are not Cayley graphs and it is
known that edges of the same dimension do not neces-
sarily need to have the same edge weight [8]. However,
considering them as Cartesian products of Paths of length
n1 � n2 � : : : � nd, we can also improve the diffusion
algorithms on them. Similar to corollary 1, the best results
are achieved by setting the edge weight of a dimensioni to
(2� 2 cos(�

n1
))=(2� 2 cos(�

ni
)).

Another example showing the power of this method is
the Cartesian product of a Path of lengthk and a complete
graph of cardinalityk2. Using theorem 3 and the result of
[13], we see thatO(n4 � ln(1=�)) steps are required to�-
balance the system using FOS. Assigning a weight ofn2

to the edges of the Path, onlyO(n2 � ln(1=�)) steps are re-
quired.

Next, we consider the Cube Connected Cycles Network
of dimensiond, which will be denoted by CCC(d). The
CCC(d) contains2d cycles of lengthd. We can represent
each node by a pair(i; q) wherei; (0 � i < d) is the po-
sition of the node within its Cycle andq is a d-bit binary
string, whereq is the label of the node that corresponds to
the cycle. Two nodes(i; q) and(i0; q0) are adjacent, iff ei-
therq = q0 andi � i0 = �1 modd, or i = i0 andq differs
from q0 in exactly thei-th bit. Edges of the first type are
calledcycle edges, while edges of the second type are re-
ferred to ashypercube edges. Our objective is to determine
the edge weights for which the diffusion algorithms FOS
and SOS will have the fastest convergence. We use the fact
that the CCC(d) is a Cayley graph [1]. It is known that
the cycles in the CCC(d) are generated by one generator of
the corresponding Cayley graph, while the hypercube edges
are generated by some other generator. As a consequence
of theorem 2, the CCC(d)’s optimal value for the condition
number is obtained, iff all cycle edges are of one weight
and all hypercube edges of some other weight. We normal-
ize the weight of the Cycle edges to1 while the weight of
the Hypercube edges remains variable and is set toa. To
compute the optimal value ofa we need the following lem-
mas.

Lemma 4 Let C 2 IRp�p and C 0 = C + a � J where J 2
IRp�p with J1;1 = 1 and all other entries of J equal 0. Then
�i(C) � �i(C

0) for all a � 0 and 1 � i � p.

The proof of this lemma immediately follows from the so
called Separation Theorem [18]. In the next lemma we com-
pute the eigenvalues of a modified Laplacian of a Cycle,
where one diagonal entry contains the value2 + 2a and all
other diagonal entries are set to2.

Lemma 5 Let C be the Laplacian of an unweighted Cycle
of length n and C 0 = C + 2a � J where a > 0 and J

is defined as in lemma 4. Then �1(C
0)

2a+4 is maximized for

a = 2 � p2 1p
n
+O(1

n
).

The proof of this lemma has to be omitted due to space lim-
itations. Now, we are ready to formulate the following the-
orem.

Theorem 4 The optimal value of the condition number of
the Laplacian of a weighted CCC(d) is achieved for a =
2 � p2 1p

d
+O(1

d
).

Proof 4 The Laplacian of the weighted CCC(d) is of the

form LCCC(d) =

�
Cd Dd

Dd Cd

�
where

C1 = LCd + a � Id; Ck =

�
Ck�1 Dk�1
Dk�1 Ck�1

�
and

Dk = I2k�1

0
@ Od�k O O

OT �a O
OT OT Ok�1

1
A ; 1 < k � d:

Here, Cd represents the unweighted Cycle of length d, LCd

its Laplacian, O denotes a matrix where all entries equal
0 and the operation “
” is the Kronecker Product: For
A 2 IRm�n, B 2 IRp�q the matrix A
B 2 IRmp�nq is
the matrix obtained from A by replacing every element aij
by the block aijB. The eigenvalues of LCCC(d) are equal
to the eigenvalues of the matrices Cd +Dd and Cd �Dd.
Applying this transformation d times, we obtain some ma-
trices of the form Ed � ACd where ACd represents the the
adjacency matrix of an unweighted cycle of length d. Ed

is a diagonal matrix with all diagonal entries belonging
to the set f2; 2 + 2ag and all of-diagonal entries set to
0. Lemma 4 states that the second smallest eigenvalue of
the Laplacian of the weighted CCC(d) is the smallest eigen-
value ofEd�ACd , whereEd contains exactly one diagonal
entry set to 2 + 2a and all other diagonal entries equal 2.
Furthermore, lemma 4 also implies that the largest eigen-
value of this Laplacian is the largest eigenvalue ofE 0

d�ACd

where all diagonal entries of E 0
d equal 2 + 2a. Thus, �(x)

calculated in lemma 5 equals the condition number of the
LCCC(d) and we obtain the theorem. ut

Analyzing the improvement of the condition number of
the Laplacian by setting the weight of the hypercube edges

to 2
p
2p
d

, it can be calculated that the quotient between the
condition number of the weighted Laplacian and the condi-
tion number of the unweighted Laplacian converges to3=2.
Therefore, we can save about1=3 of the time needed for
FOS to balance the load on large topologies of this kind.

Due to space limitations, the remaining part of this sec-
tion contains only a brief overview of our proves and cog-
nitions on other network topologies.

The structure of the Cube Connected Path is similar to
the one of the CCC. Its definition is identical to the Cube
Connected Cycle, except that the edges between(0; q) and
(d � 1; q) are missing. Similar to the CCC, edges of the
first type are calledpath edges, while edges of the second
type arehypercube edges. In the following we denote the
d-dimensional Cube Connected Path ofd � 2d vertices by
CCP(d). The CCP is not a Cayley graph and therefore it is
quite difficult to determine optimal parameters for its edges.
Anyway, a similar approach can be used to improve the
convergence rate, assigning weight1 to the path edges and
a to the hypercube edges. Doing this, the calculations in
lemma 5 and theorem 4 provide a value of

p
2p
d
+O(1=d) for

a. As in the case of the CCC, this value improves the condi-
tion number of the Laplacian compared to the unweighted
case by a factor of approximately3=2 for larged.

Another common interconnection topology is the But-
terfly graph, which has a similar structure to the CCP and is
defined as follows. The nodes of thed-dimensional Butter-
fly BF(d) correspond to pairs(i; q) wherei is the dimension
of the node(0 � i � d) andq is ad-bit binary number that
denotes the row of the node. Two nodes(i; q) and(i 0; q0)
are adjacent iffi0 � i = 1 and eitherq = q0 or q andq0

differ in precisely thei0th bit. In the first case the edges
are calledpath edges, while in the second case the edges
arecross edges. These graph is neither a Cayley graph, so
that using similar approaches as applied for the CCC we
can only derive improvements for the convergence rate of
diffusion algorithms, but we can not determine the optimal
values for the edge weights. However, using weight1 for
the path edges and weighta for the cross edges it turns out,
that the condition number of the Laplacian is maximized for
a = 1.

Like in the case of CCC and CCP, we can define a But-
terfly graph with wrap around edges. Two vertices(i; q) and
(i0; q0) are adjacent, iffi0 � i = 1 modd and eitherq = q 0

or q andq0 differ in precisely thei0th bit. Again, edges of
the first kind areCycle edges while edges of the second kind
arecross edges. This type of graph is a Cayley graph [1],
so optimal values for the edge weights can be determined.
Similar to lemma 5 and theorem 4, the optimal condition
number occurs when the weight of the cycle edges equals1
and the weight of the cross edges area = 1p

2�1+O(1=
p
d).

However, there is no significant improvement of the condi-
tion number for larged. To obtain this value fora, we have

reduced the eigenvalues of the weighted Laplacian of the
wrapped Butterfly to the eigenvalues of some matrices of
the formEd � BCd . BCd represent the adjacency matri-
ces of some weighted Cycles of lengthd with edge weights
from the setf1; 1 + ag while Ed is a diagonal matrix with
all diagonal entries set to2 + 2a and all others0.

We finish this section by considering the de Bruijn graph
DB(d). The directed de Bruijn graph contains2d vertices
labeled from0 to 2d � 1 with d-bit binary numbers, such
that there is a directed edge from vertex(i1; : : : ; id) to
(j1; : : : ; jd) wheneverjl = il+1 for all 1 � l � d � 1.
By replacing each directed edge by an undirected edge, we
obtain the undirected de Bruijn which is regular graph of
degree4. Note, that this definition allows 2 loops at the
vertices(0; 0; : : : ; 0) and(1; 1; : : : ; 1) and one double edge
between the vertices(0; 1; 0; 1 : : :) and(1; 0; 1; 0; : : :). To
improve the diffusion algorithms on the de Bruijn network,
we assign1 to the edges formed between(i1; : : : ; id) and
(j1; : : : ; jd) wherejd = i1, anda to the edges between
(i1; : : : ; id) and(j1; : : : ; jd) wherejd = i1. By using tech-
niques from [6] and lemma 5 together with theorem 4, we
get the same value fora as we obtain for the wrapped But-
terfly. The reason for this is that the eigenvalues of the
de Bruijn graph are reduced to the eigenvalues of matrices
also contained in the set of matrices used for calculating the
eigenvalues of the wrapped Butterfly.

4. Experiments

To show the effects of the approach introduced in chap-
ter 3, we have implemented a simulation program and
run several tests. Network types included are Grid (G),
Torus (T), Cube Connected Cycles (CCC), Cube Connected
Paths (CCP), Butterfly (BF), wrapped Butterfly and de
Bruijn (DB). The program was implemented in C++, using
the ARPACK++ library [15] for eigenvalue computations.
While it is possible to determine eigenvalues of relatively
small networks (e.g. CCC(8)) from the Laplacian itself, we
are not able to do this for larger networks (e.g. CCC(16))
in a reasonable amount of time. Therefore, we determine
the second smallest and largest eigenvalues of these graphs
by either using explicit formulas or by reducing their cal-
culations to the computation of eigenvalues of only parts of
the original graph. A detailed description of this approach
applied to the CCC can be found in section 3 and we use
similar techniques for other hypercubic networks.

Prior to the first iteration of the simulation, the network’s
load is either distributed randomly (RS) over the network
or placed onto a single node (SS), while we normalize the
balanced load(w = 1). The total amount of load is there-
fore equal to the total number of nodesn in the graph. We
apply the FOS and the SOS and keep iterating until an al-
most evenly distributing flow is calculated. For our tests,

we define this to be archived as soon as after thetth it-
erationjjwt � w jj2 is less than 0.01. For both diffusion
schemes, we have chosen the optimal value of� = 1

�2+�n
,

for SOS we used� = 2

1+
p
1��2

2

. The time spent on com-

puting eigenvalues of large graphs is reduced by applying
the approach described in section 3, and most of the com-
putation time is consumed by the flow calculations.

Figures 1 through 6 show some results of our experi-
ments. For each selection ofa on thex-axis the resulting
convergence rate�2 of FOS applied on the specific network
type (left) and the number of iterations needed by SOS to
compute a balancing flow (right) is shown. Note, that since
the results are very similar for any combination of one of the
schemes (FOS/SOS) and one of the load patterns (RS/SS),
we have only included those for the SOS and SS. The results
shown in figures 1 through 6 are also included in tables 1,
2 and 3, where a short overview on the simulation results
with other network sizes is given.

0.966

0.968

0.97

0.972

0.974

0.976

0.978

0.98

0 0.5 1 1.5 2 2.5 3 3.5 4
46

48

50

52

54

56

58

60

62

µ 2

ite
ra

tio
ns

a

µ2
iterations

Figure 1. SOS SS
CCC(8)

0.986

0.9865

0.987

0.9875

0.988

0.9885

0.989

0.9895

0.99

0.9905

0 0.5 1 1.5 2 2.5
70

72

74

76

78

80

82

84

86

88

µ 2

ite
ra

tio
ns

a

µ2
iterations

Figure 2. SOS SS
CCP(8)

0.932

0.934

0.936

0.938

0.94

0.942

0.944

0.946

0.948

0.95

0.952

0.5 1 1.5 2 2.5 3 3.5 4 4.5
34

35

36

37

38

39

µ 2

ite
ra

tio
ns

a

µ2
iterations

Figure 3. SOS SS
wrapped BF(8)

0.932

0.934

0.936

0.938

0.94

0.942

0.944

0.946

0.948

0.95

0.952

0.5 1 1.5 2 2.5 3 3.5 4 4.5
30

31

32

33

34

35

µ 2

ite
ra

tio
ns

a

µ2
iterations

Figure 4. SOS SS
DB(8)

0.981

0.982

0.983

0.984

0.985

0.986

0.987

0.988

0.989

0.99

0.991

0 5 10 15 20 25 30
48

50

52

54

56

58

60

62

64

66

68

µ 2

ite
ra

tio
ns

a

µ2
iterations

Figure 5. SOS SS
G(4� 16)

0.93

0.935

0.94

0.945

0.95

0.955

0.96

0.965

0.97

0 5 10 15 20 25 30
24

26

28

30

32

34

36

38

µ 2

ite
ra

tio
ns

a

µ2
iterations

Figure 6. SOS SS
T(4� 16)

As we can see from figures 1 to 6, the closera is to
the optimal valueaopt, the smaller becomes the number of

iterations needed to compute a balancing flow on all net-
work types. First, let us study the CCC. In case of the3 to
8-dimensional CCC we have an optimalaopt greater than
1. We obtain the best improvements for the4-dimensional
CCC and the savings decrease when increasing the dimen-
sion. Considering CCC of higher dimensions than9, we
observe that the improvements increase again with larger
dimension. As described in section 3, we can win using
FOS at most1=3 for the flow computation whend tends
to infinity. Similar savings can be archived for the CCP, but
we obtain anaopt value smaller than1 for the3-dimensional
CCP and the improvements become higher with higher di-
mensions. Note however, that for the CCCaopt converges
to 0 for largen in contrast to wrapped BF and DB, where
aopt will stay about the same. A special case is the BF with
its optimal valueaopt = 1. Here of course, no savings are
possible at all, so we omit the corresponding graph. In the
case of the wrapped BF and DB, the maximum savings are
also modest, ranging from 3% to 14% and as pointed out in
section 3, we cannot expect higher improvements for larger
dimensions.

Second Order Scheme (SOS), Single Source (SS)
n CCC(n) CCP(n)

Iterations (a =) aopt Savings Iterations (a =) aopt Savings
1 aopt 1 aopt

3 16 16 1.50 0% 19 19 0.88 0%
4 23 22 1.50 4% 29 28 0.77 3%
5 28 28 1.29 0% 38 38 0.69 0%
6 35 34 1.23 3% 49 48 0.63 2%
8 48 48 1.07 0% 74 72 0.54 3%
12 83 83 0.87 0% 141 134 0.43 9%
16 127 126 0.75 1% 225 211 0.37 6%

n wrapped BF(n) DB(n)
Iterations (a =) aopt Savings Iterations (a =) aopt Savings
1 aopt 1 aopt

3 11 10 2.23 9% 10 9 2.23 10%
4 16 14 2.31 12% 14 12 2.31 14%
5 20 19 2.35 5% 18 16 2.35 11%
6 25 24 2.37 4% 22 21 2.37 5%
8 36 35 2.39 3% 32 30 2.39 6%
12 63 60 2.40 5% 54 52 2.40 4%
16 98 95 2.41 3% 84 81 2.41 4%

Table 1. Number of iterations needed to calcu-
late a balancing flow for unweighted graphs
(a = 1) and optimal weighted graphs (a =
aopt). aopt is the optimal edge weight for one
edge type (see Section 3) assuming the other
edges have weight 1.

The results for Grid and Torus given in Figures 5 and
6 differ from the others in the way that large savings of
iterations are possible, what is due to the large value of
aopt. As shown in Table 2 and 3, savings up to 28% can be
archived. Note, that by fixing one dimension and increasing
the other dimension to infinity, the optimal value ofa will
grow quadratically with the cardinality of the graph in the
second dimension leading to improvements up to a factor
of 2. We have restricted our experiments to2-dimensional
Grid and Torus, but similar results can also be obtained for
higher dimensional graphs of the same type. This is an in-
teresting result, since these networks of about the same size
are widely available. The hpcline [12] operated by thePC 2

in Paderborn, for example, is designed as an8 � 12 torus.
Hence, these improvements are directly applicable.

Second Order Scheme (SOS), Single Source (SS)
Size Grid Torus

Iterations (a =) aopt Savings Iterations (a =) aopt Savings
1 aopt 1 aopt

4 � 4 15 15 1.00 0% 9 9 1.00 0%
4 � 8 31 26 3.85 16% 17 14 3.40 18%
4 � 12 48 38 8.60 21% 26 20 7.45 23%
4 � 16 66 51 15.20 23% 35 26 13.10 26%
4 � 32 137 105 60.80 23% 73 53 52.00 27%

Table 2. Iterations needed for calculating a
balancing flow for 4� x Grid and Torus.

Second Order Scheme (SOS), Single Source (SS)
Grid Torus

Size Iterations (a =) aopt Savings Iterations (a =) aopt Savings
1 aopt 1 aopt

8 � 8 35 35 1.00 0% 8 8 1.00 0%
8 � 12 52 45 2.20 13% 27 24 2.20 11%
8 � 16 71 58 3.95 18% 37 30 3.85 19%
8 � 32 148 112 15.80 24% 76 57 15.20 25%
8 � 64 310 228 63.10 26% 159 115 60.80 28%

Table 3. Iterations needed for calculating a
balancing flow for 8� x Grid and Torus.

5. Conclusion

We have shown that optimal edge weights can im-
prove diffusion load balancing schemes on selected network
types. Although the benefit is only modest on Hypercubic
topologies, Grid and Torus based networks can highly profit
by this approach. Furthermore, these results cannot only
help to improve load balancing software, but also can give
valuable information on how to construct communication
hardware. Since the amount of load that has to be trans-
ferred over a communication edge depends on its type [7],
dimensioning the bandwidth accordingly could help to im-
prove performance.

References

[1] F. Annexstein, M. Baumslag, and A.L.Rosenberg.
Group action graphs and parallel architectures.SIAM
J. Computing, 19:544–569, 1990.

[2] N. Biggs. Algebraic Graph Theory. Cambridge Uni-
versity Press, second edition, 1993.

[3] J.E. Boillat. Load balancing and poisson equation in a
graph.Concurrency - Practice & Experience, 2:289–
313, 1990.

[4] D.M. Cvetkovic, M. Doob, and H. Sachs.Spectra of
Graphs. Johann Ambrosius Barth, 3rd edition, 1995.

[5] G. Cybenko. Load balancing for distributed memory
multiprocessors.Journal of Parallel and Distributed
Computing, 7:279–301, 1989.

[6] C. Delorme and J.P. Tillich. The spectrum of de bruijn
and kautz graphs.European Journal of Combina-
torics, 19:307–319, 1998.

[7] R. Diekmann, A. Frommer, and B. Monien. Efficient
schemes for nearest neighbor load balancing.Parallel
Computing, 25(7):789–812, 1999.

[8] R. Diekmann, S. Muthukrishnan, and M.V. Nayakkan-
kuppam. Engineering diffusive load balancing algo-
rithms using experiments. In G. Bilardi et al., editor,
IRREGULAR’97, LNCS 1253, pages 111–122, 1997.

[9] R. Diekmann, F. Schlimbach, and C. Walshaw. Qual-
ity balancing for parallel adaptive fem. InIRREGU-
LAR’98, Springer LNCS, 1998.

[10] R. Elsässer, A. Frommer, B. Monien, and R. Preis.
Optimal and alternating-direction loadbalancing
schemes. In P. Amestoy et al., editor,EuroPar’99,
LNCS 1685, pages 280–290, 1999.

[11] G. Fox, R. Williams, and P. Messina.Parallel Com-
puting Works! Morgan Kaufmann, 1994.

[12] Fujitsu-Siemens. hpcline at thepc2. http://www.uni-
paderborn.de/pc2/services/systems/psc/.

[13] B. Ghosh, S. Muthukrishnan, and M.H. Schultz. First
and second order diffusive methods for rapid, coarse,
distributed load balancing. InSPAA, pages 72–81,
1996.

[14] Y.F. Hu, R.J. Blake, and D.R. Emerson. An opti-
mal migration algorithm for dynamic load balancing.
Concurrency: Practice & Experience, 10(6):467–483,
1998.

[15] R. B. Lehoucq, D. C. Sorensen, and C. Yang. Arpack
users’ guide: Solution of large scale eigenvalue prob-
lems with implicitly restarted arnoldi methods. Tech-
nical report, Computational and Applied Mathemat-
ics, Rice University, October 1997. Technical Report
from http://www.caam.rice.edu/software/ARPACK/.

[16] K. Schloegel, G. Karypis, and V. Kumar. Parallel mul-
tilevel diffusion schemes for repartitioning of adaptive
meshes. InEuroPar’97, Springer, LNCS, 1997.

[17] C. Walshaw, M. Cross, and M. Everett. Dynamic load-
balancing for parallel adaptive unstructured meshes.
In Proc. 8th SIAM Conf. on Parallel Processing for
Scientific Computing, 1997.

[18] J. H. Wilkinson. The Algebraic Eigenvalue Problem.
Oxford University Press, 1965.

[19] C. Xu and F.C.M. Lau.Load Balancing in Parallel
Computers. Kluwer, 1997.

