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Abstract. We define the zigzag path of a pseudo-triangulation, a con-
cept generalizing the path of a triangulation of a point set. The pseudo-
triangulation zigzag path allows us to use divide-and-conquer type of
approaches for suitable (i.e., decomposable) problems on pseudo-trian-
gulations. For this we provide an algorithm that enumerates all pseudo-
triangulation zigzag paths (of all pseudo-triangulations of a given point
set with respect to a given line) in O(n2) time per path and O(n2)
space, where n is the number of points. We illustrate applications of our
scheme which include a novel algorithm to count the number of pseudo-
triangulations of a point set.

1 Introduction

Pseudo-triangulations, unlike triangulations, only recently emerged as a promis-
ing data structure with a variety of applications. They were originally introduced
in the context of visibility complexes [15] and ray shooting [8, 12], but in the
last few years they also found application in robot arm motion planning [18],
kinetic collision detection [1, 13], and guarding [17]. In particular the so-called
minimum or pointed pseudo-triangulations introduced by Streinu [18] exhibit
many fascinating properties that initiated a growing interest in their geometric
and combinatorial nature.

There exist already several algorithms to enumerate pseudo-triangulations of
sets of n points. Bespamyatnikh [5], extending his work on enumerating triangu-
lations [6], defines a lexicographical order on pseudo-triangulations which he uses
to enumerate pseudo-triangulations in O(log n) time per pseudo-triangulation.
Brönnimann et al. [7] implemented an ad-hoc technique of Pocchiola based on a
greedy strategy for generating edges of pseudo-triangulations. Unfortunately the
time complexity of this algorithm is not known, but it requires O(n2) space. A
third possibility is to apply some vertex enumeration algorithm to the polytope
of pseudo-triangulations developed in [14, 16]. For example, Motzkin’s double
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description method or the reverse-search technique of Avis and Fukuda [4] are
two methods for vertex enumeration which have been implemented [3, 11].

We propose a different scheme for solving counting and optimization prob-
lems for pseudo-triangulations, inspired by an analogous approach developed for
triangulations. The “path of a triangulation” was introduced by Aichholzer [2]
in order to count the triangulations of a planar point set in a divide-and-conquer
like manner. This concept can be used to attack any decomposable problem on
triangulations. Dumitrescu et al. [9] provided an algorithm that enumerates all
triangulation paths (of all triangulations of a given point set with respect to a
given line) in O(n3 log n) time per path and O(n) space.

In this paper we describe a meaningful extension of the path concept to
pseudo-triangulations. We first recall some definitions concerning pseudo-trian-
gulations and also formalize the notion of a decomposable problem. In Section 4
and 5 we then develop the definition of the zigzag path of a pseudo-triangulation,
which retains all of the useful properties of a triangulation path. Finally in
Section 6 we show how to generate all pseudo-triangulation zigzag paths in
O(n2) time per path (at the expense of O(n2) space and preprocessing time).

The path concept can be generalized to arbitrary (i.e., not necessarily pointed)
pseudo-triangulations. However, in this extended abstract we concentrate on the
results pertaining to pointed pseudo-triangulations. The extension to general
pseudo-triangulations can be found in the journal version of this paper.

2 Pseudo-triangulations

We consider a simple planar polygon P and a point set S ⊆ P , |S| = n, which
contains all vertices of P but may also contain additional inner points. We will
assume throughout that S is in general position, i.e., it contains no three collinear
points. We will refer to the pair (S, P ) as a point set S in a polygon P , or shorter
as pointgon. We denote the boundary of P by ∂P .

Fig. 1. A pointed pseudo-
triangulation of a pointgon.

A pseudo-triangle is a planar polygon that has
exactly three convex vertices, called corners, with
internal angles less than π. A pseudo-triangulation
T of a pointgon (S, P ) is a partition of the inte-
rior of P into pseudo-triangles whose vertex set is
exactly S (see Fig. 1) . A vertex p in a pseudo-
triangulation T of (S, P ) is pointed if there is
one region incident to p (either a pseudo-triangle
or the outer face) whose angle at p is greater
than π. A pseudo-triangulation T of (S, P ) is
called pointed if each point p ∈ S is pointed. A
pseudo-triangulation for a point set S corresponds
to the case where P is the convex hull of S.

Proposition 1 (Streinu [18]) Every non-crossing pointed set of edges in a
pointgon (S, P ) can be extended to a pointed pseudo-triangulation of (S, P ).
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3 Decomposable Problems and Divide-and-Conquer

We are interested in certain types of optimization or counting problems for the
set of pseudo-triangulations for a point set S. We associate with each pseudo-
triangulation a zigzag path, which decomposes the convex hull of S into several
parts on which the problem can be solved recursively. Our approach can be
summarized as follows:

1. Enumerate all zigzag paths α.
2. For each α:
3. Use α to split the problem into several pieces.
4. Solve each subproblem recursively.
5. Combine the solutions of the subproblems.
6. Combine the solutions for all zigzag paths into the solution for the original

problem.

The main contribution of this paper is a proper definition of a zigzag path
and an algorithm for enumerating zigzag paths, in order to carry out step 1 of
this procedure.

The problem that we want to solve must have a certain decomposable struc-
ture in order to be amenable to this approach. This structure can be described
by a commutative semiring (H,⊕,⊗) with two associative and commutative
operations ⊕ and ⊗ which satisfy the distributive law:

a ⊗ (b ⊕ c) = (a ⊗ b) ⊕ (a ⊗ c)

We assume that an “objective function” f(T ) for a pseudo-triangulation T can
be computed as the ⊗-product of f(t) for the individual pseudo-triangles t ∈
T , where f(t) ∈ H is some function that is determined individually for each
pseudo-triangle. We use the ⊕ operation to accumulate the values of all pseudo-
triangulations into the quantity in which we are finally interested in. The task
is to calculate

f̃(T ) :=
⊕

T∈T
f(T ) =

⊕

T∈T

⊗

t∈T

f(t) (1)

over some set T of pseudo-triangulations T .
Now if we can generate all zigzag paths, then we can easily count the number

of pseudo-triangulations as follow: (H,⊕,⊗) = (N,+, ·), with f(t) ≡ 1 for every
pseudo-triangle t. We can also optimize various quantities over the set of pseudo-
triangulations, for example the smallest angle, or the sum of the edge lengths.
In the first case, we take (H,⊕,⊗) = (R,max,min), and f(t) = the smallest
angle in t. In the second case, we take (H,⊕,⊗) = (R,min,+), and f(t) = the
perimeter of t. Here we count the length of the interior edges twice, but since the
total length of the boundary edges is constant, this is equivalent to optimizing
the total length.

As mentioned before, one can of course solve these problems, and more gen-
eral optimization problems, by enumerating all pseudo-triangulations by one of
the methods mentioned in the introduction, evaluating f(T ) for each pseudo-
triangulation T , and taking the ⊕-sum. However, our divide-and-conquer proce-
dure is usually several orders of magnitude faster than this trivial approach.
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4 The Zigzag Path

es

ef

l

Fig. 2. The pseudo-trian-
gulation zigzag path.

Assume that we are given a pseudo-triangulation
T of a pointgon (S, P ). We have to choose a cut
segment l that connects two boundary points of P
through the interior of P but avoids all points in S.
For simplicity we will assume throughout the paper
that l is vertical. The endpoints of l lie on two edges
of P , the start edge es on the top and the final edge
ef on the bottom. Let E = {e1 = es, e2, · · · , ek =
ef} be the set of edges of T that are crossed by l,
ordered from top to bottom according to their inter-
section with l. Consider a pair of consecutive edges
ei and ei+1 in E. We say that the pair (ei, ei+1)
leans to the left or to the right, respectively, accord-
ing to the location of the intersection of the lines
through ei and ei+1 with respect to l. Since two
edges of a common pseudo-triangle are never paral-
lel, this direction is always well-defined. If (ei−1, ei)
and (ei, ei+1) lean in different directions, the edge

ei is called a signpost (see Fig. 3.a–b). The starting and ending edges es and ef

are also considered to be signposts.
We define the zigzag path αl(T ) of a pseudo-triangulation T with respect to

a cut segment l as follows: We remove all edges of E that are not signposts. Let

es

ef

ei

ei+1

ei−1

l

(a)

es

ef

l

(b)

es

ef

l

(c)

Fig. 3. Constructing the zigzag path of a pseudo-triangulation. (a) A pseudo-
triangulation cut by a segment l — the pair (ei, ei+1) leans to the right. (b) The
signposts. (c) Removing edges that are cut by l but are not signposts.
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P ∗ denote the resulting set of polygons, see Figure 3.c. We now construct αl(T )
by joining adjacent signposts along the boundary of their common face in P ∗

according to their lean, i.e., if two adjacent signposts lean to the left, then we
connect them via the edges of their common polygon that lie to the left of l, see
Fig. 2. Note that a vertex can appear on the path several times.

Before stating a couple of characteristic properties of the zigzag path, we
introduce some terminology. Consider a pseudo-triangle t ∈ T which is cut by l
in precisely two edges e and f . Let l+ denote the side of l to which e and f lean.
Then the part of t that lies in l+ is a pseudo-triangle. t has one corner v in l+,
which is called a turning point. v is connected to e and f via two x-monotone
chains, whose vertices (excluding v) are called the monotone vertices. In other
words, a monotone vertex of a path has one edge incident from the right and
one edge incident from the left.

Lemma 1. The zigzag path of a pseudo-triangulation T has the following prop-
erties:

1. It starts at es, ends at ef , and contains no edge twice. Its intersections with
l are ordered along l.

2. (Empty Pseudo-Triangle Property) The area bounded by the path between
two consecutive signposts and the line l is an empty pseudo-triangle, i.e., it
contains no points of S in its interior.

3. All vertices of the path which are monotone vertices of an empty pseudo-
triangle in Property 2 are pointed in T .

Proof. Property 1 is true by construction. Properties 2 and 3 can be proved
inductively by successive elimination of edges e which are not signposts. Each
removal will merge two adjacent pseudo-triangles into one. Let e′ and e′′ be e’s
neighboring intersecting edges with l. Suppose that (e′, e) and (e, e′′) lean in the
same direction, say, to the left. Let t1 and t2 be the pseudo-triangles on the left
side of l to which (e′, e) and (e, e′′) belong, respectively. The left endpoint of
e must be a corner (turning point) of t1 or t2 (or both), because it cannot be
incident to two angles larger than π.

Thus, if we remove e, t1 and t2 will merge into a single pseudo-triangle, which
is empty. All its monotone vertices were already monotone vertices on the side
chains of t1 or t2; hence, by induction, they are pointed in T . ut

Lemma 2. The zigzag path of a pseudo-triangulation T is the unique chain of
edges α in T which satisfies Properties 1–3 of Lemma 1.

Here, a chain of edges is taken in the graph-theoretic sense, as a walk (or path)
in the graph.

Proof. The proof is based on the following easy observation, see Figure 4.

Proposition 2 Let t be a pseudo-triangle on one side of l, with a segment of l
forming a side of t. The other two sides of t are formed by edges of T . Suppose
that t contains no points of S in its interior and all monotone vertices of t are
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pointed in T . Let e′ and e′′ denote the two edges of T on the boundary of t which
intersect l. Then any edge e of T which intersects the interior of t intersects l.
Moreover, any two of these edges (including e′ and e′′) lean in the same direction
as e′ and e′′.

l

e′

e′′

t

v

t′

Fig. 4. The pseudo-triangle t in Prop. 2.
The dotted lines are some possible lo-
cations for the edges e. t′ is an alter-
native pseudo-triangle in the proof of
Lemma 2.

Now, to prove the Lemma 2, let us
consider two successive intersections e′

and e′′ of the chain α with l and the
pseudo-triangle t formed between them.
By Proposition 2, all edges of T inter-
secting l between e′ and e′′ lean in the
same direction. Hence there can not be
a signpost of T between e′ and e′′ which
implies that every signpost is part of the
path α.
Let us consider three successive cross-
ings e′, e′′, e′′′ between α and l. Between
two crossings, α forms a pseudo-triangle
with l; hence the two crossing edges lean
to the side on which this piece of α lies.
Since α crosses from one side of l to
the other side at each crossing, the pairs
(e′, e′′) and (e′′, e′′′) lean in different di-
rections. Let e′′ = ei in the ordered set

of intersections of T with l. Proposition 2 implies that (ei−1, ei) leans on the
same side as (e′, e′′) and (ei, ei+1) leans on the same side as (e′′, e′′′). Hence ei

is a signpost of T .
At this point we have established that the intersections of α with l are exactly

the signposts of T . We still have to check that α bounds a unique pseudo-triangle
between two signposts. Let t be the pseudo-triangle between two signposts e′ and
e′′ in the zigzag path αl(T ), and let v be its turning point. Suppose, for the sake
of deriving a contradiction, that α bounds a different pseudo-triangle t′ between
e′ and e′′. Since t bounds the face in T ∗ obtained by removing all crossing edges
between e′ and e′′ from T and since α does not contain these edges, we must
have t ⊂ t′. Because t′ has no interior vertices, it must have all vertices of t on
its boundary. If v is the turning point of t′, then t′ = t. So let us assume w.l.o.g.
that v lies on the upper chain of t′, see Figure 4. Then the lower side chain of
t starts with an edge going from v into the interior of t′ and ends at e′′. This
initial edge contradicts Proposition 2 applied to t′. ut

The properties of Lemma 1 allow us to define a pseudo-triangulation path of
a pointgon without reference to a particular pseudo-triangulation.

Definition 1 (Zigzag Path of a pointgon) Let (S, P ) be a pointgon and let
l be a cut segment. A pseudo-triangulation zigzag path of (S, P ) with respect to l
is a non-crossing path in P using vertices of S with the following properties:

1. It starts at es and ends at ef . Its intersections with l are ordered along l.
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2. (Empty Pseudo-Triangle Property) The area bounded by the path between two
consecutive intersections with l and the line l is an empty pseudo-triangle.

3. The path respects the pointedness property at S, i.e., every vertex of S is
pointed in α ∪ P .

We denote by Πl(S, P ) the set of all paths for a pointgon (S, P ) with respect
to a line l, i.e.,

Πl(S, P ) = {αl(T (S, P )) | T is a pointed pseudo-triangulation of (S, P ) }.

Lemma 3. Let α be a path for (S, P ) with respect to the cut segment l.

1. P ∪ α can be extended to a pointed pseudo-triangulation of (S, P ) .
2. Let T be any pointed pseudo-triangulation of (S, P ) which contains α. Then

α is the zigzag path of T with respect to l. The intersections of α with l are
the signposts of T .

5 Making Progress – Trivial Paths

A zigzag path α for a pointgon (S, P ) that runs completely along the boundary
of P does not cut P into pieces and we will not make any progress by using α.
But we will see that the only case where we cannot continue is in fact a single
pseudo-triangle without interior points. Then clearly, there is only the “trivial”
pseudo-triangulation and we can solve the problem directly.

For a set S of points in the plane a direction d is feasible if no line spanned by
two points of S is parallel to d. A feasible line is a line with a feasible direction.

Theorem 1. If δP of a pointgon (S, P ) contains at least 4 convex vertices or
if (S, P ) has at least one inner point, then for each given feasible direction there
exists a line l such that all path in αl(P ) are non-trivial.

Proof. (Sketch) Any trivial path α is a part of δP , i.e., there are no signposts
between start and final edge. By Definition 1 two signpost are always connected
via exactly one turning point which implies that if the part of δP in consideration
contains two convex corners no trivial path can be part of it.

W.l.o.g. let the given orientation of l be vertical. We will use l as a sweep-line
for P , moving from left to right. We consider any convex corner of δP , any inner
point of (S, P ), as well as the left- and rightmost point of any side-chain of δP as
an event. There are five different types of events: (1) A corner c of δP , such that
after the sweep line passes through c the two incident side chains of δP form a
wedge opening to the right. (2) Two of these wedges coalesce at a vertex. (3) A
wedge is ’split’ by a vertex of δP into two wedges. (4) One of the side chains of
a wedge swept by l ends in a convex corner of δP . (5) An inner point of (S, P ).
A careful case analysis (full details can be found in the journal version) shows
that during the sweep there always occurs a position for l such that any path
with respect to l and P is non-trivial. ut

7



6 Generating pseudo-triangulation zigzag paths

We will construct the zigzag paths incrementally, edge by edge, starting from
the start edge es. In each stage, there may be several possibilities to continue the
path. All these possibilities are explored in a backtracking tree. The important
point of our construction is that one can never get stuck. There is always at least
one way to continue. This means that the total work of the algorithm can be
bounded in terms of the number of paths generated. This is in sharp contrast
to the zigzag path of a triangulation, which cannot be generated in this way
without backtracking [2].

Definition 2 (Partial path of a pointgon) A partial path α of a pointgon
(S, P ) with respect to a line l is a noncrossing chain starting with es with the
following properties.

1. The intersections of α with l are ordered from top to bottom on l
2. The path respects the pointedness property at every vertex of S, i.e., every

vertex of P ∪ αl(S, P ) is pointed.
3. The area bounded by the path between two consecutive intersections with l

and the line l is an empty pseudo-triangle.
4. If we extend the last segment of α until it hits l, the area bounded by this

extension, the line l, the path from the last intersection with l to the end of α
is an empty pseudo-triangle. (If the last edge of α moves away from l, then
this last segment is not included in this pseudo-triangle. In particular, if the
last edge intersects l, the pseudo-triangle degenerates into a line segment and
the condition is trivially fulfilled.)

For a partial path α∗ we define the lower opposite wedge as follows: we extend
the last edge of α∗ across l to the opposite side of the current endpoint of α∗

until it hits δP . The area in P below this line and on the opposite side of l is
the lower opposite wedge (the shaded region in Figure 5a).

Lemma 4. A partial zigzag path α can be extended to a complete zigzag path if
and only if the lower opposite wedge contains a point of S.

Proof. Suppose that such a point exists. We will construct an extension for α,
without destroying the pointedness of any vertex. W.l.o.g., assume that α ends
on the right side of l in the point a. α may partition P into several regions.
We look at the region R which contains a and the left endpoint b of ef , see
Figure 5.b. The desired extension of α must pass through R. If the angle at a
in R is bigger than π, then we walk along the boundary of R away from l to the
next point a′ where the angle in R is less than π, see Figure 5.a. (This is done
to maintain pointedness at a.) If the angle at a in R is smaller than π, we set
a′ = a. Similarly we construct a point b′ by starting at b and walking away from
l to the first small angle.

Now we take the following path β from a′ to b′: Start at a′, follow the bound-
ary of R to a, follow the extension of the last edge towards l, follow l to its
intersection with the lower edge ef , follow ef to its left endpoint b, and continue
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Fig. 5. (a) The lower opposite wedge of a partial zigzag path α and the path β in the
proof of Lemma 4. (b) The region R (shaded) and the extension of α.

to b′. The path β runs in P and does not intersect α. Now we take the shortest
path β̃ homotopic to β. In other words, we consider β as a string and pull it
taut, regarding the points of S as obstacles, see Figure 5.b. The path β̃ may
share some initial part of the boundary of R between a′ and a with β, and it will
split off at some vertex a′′. Similarly we can define such a point b′′ towards the
end of β̃. The path from a to a′′, from there to b′′ via β̃, and from there to b and
ef extends α to a zigzag path. Since the additional edges come from a geodesic
path between two convex vertices, pointedness is maintained.

On the other hand, suppose that the lower opposite wedge is empty. Then
the extension of the last edge hits the lower edge ef in an interior point, and the
lower opposite wedge is a triangle. Clearly, the path cannot be extended by an
edge which leads to a point on the other side of l without violating Property 3 of
Definition 2. If α is extended without crossing l, this makes the lower opposite
wedge smaller, and hence there is no way to complete the zigzag path. ut

Note that the construction in the above proof is only carried out for the purposes
of the proof; it is not performed by our algorithm.

Now, if we have a partial path satisfying the condition of Lemma 4, we have
to find all edges that may be used to extend the path. We will show that this
can be done in O(n) time, after some preprocessing of the point set which takes
O(n2) time and storage. In the preprocessing phase we compute and store the
circular order of the edges from each point to all other points of S in O(n2)
time [10]. At this stage, we can already eliminate edges which do not lie insideP .

The next edge which is added to a partial path must fulfill Properties 2
(pointedness) and 3 (empty area) of Definition 2, the non-empty opposite wedge
condition of Lemma 4, and it must not cross the previous edges of the path.
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Let a be the endpoint of α∗ and assume w.l.o.g. that it lies on the right side of
l. Take a line through the last edge of α∗ and rotate it counterclockwise around

a

P

b

α∗

Fig. 6. The possible continua-
tions of a partial path.

a until it hits the first point b on the right
side of l. All points that are hit by this line
and that are visible from a (including b) are
candidates for the next point that satisfy the
empty area condition, see Figure 6. If the last
edge has moved away from l, then this holds
for points on both sides of l. Otherwise, the
next point must either be b or on the opposite
side of l.

This set of continuation points depends
only on a and on the last edge of α∗, and
hence it can be determined in the preprocess-
ing phase. Similarly the condition of Lemma 4

can be checked beforehand and edges which violate the condition are eliminated.
The only conditions which have to be checked dynamically are the pointedness
and non-crossing conditions.

Pointedness is easy to maintain: For each vertex a of S we store the unique
angle between two incident edges which is larger than α. If a new edge incident
to a is inserted, we see whether it falls into the wedge of the big angle, and if so, we
either updated the big angle or we reject the edge because it destroys pointedness,
in constant time. During the generation of all paths in the enumeration tree,
edges are removed in the reverse order as they were inserted, so it is easy to
maintain the big angle in stack-like manner.

al

es

Fig. 7. The visibility polygon.

Now we still have to check that the new
edge does not cross the partial path α∗. We
show that we can do this, for all possible con-
tinuation edges from the endpoint a, in linear
time.

We can easily check whether any edge in-
tersects α∗ if we know the visibility polygon
from a with respect to α∗, see Figure 7. The
visibility polygon is stored as a sequence of
consecutive angular intervals together with an
identification which edge of α∗ is first first hit
by a ray from a in that interval. We will show
below in Lemma 7 how to exploit the special
structure of the path to compute the desired
visibility polygon in O(n) time in an easy way.

Lemma 5. For a given partial path all possible edges which extend it to a legal
partial path satisfying the condition of Lemma 4 can be found in O(n) time.

Proof. For the last edge of the partial path leading to the endpoint a, we have
already precomputed the set of possible extension edges for which the following
conditions are maintained: the empty pseudo-triangle condition (Property 3 of

10



Definition 2), the non-empty opposite wedge condition of Lemma 4, and the
edge lies inside P . This list of O(n) candidate edges is given in cyclic order. We
compute the visibility polygon of a with respect to α∗ in O(n) time, by Lemma 7,
and we merge the candidate edges into the cyclic order of the visibility polygon,
checking for each edge whether it intersects α∗ in constant time.

As mentioned above, pointedness can also be checked in constant time for
each edge. ut

We will now sketch how to construct the (relevant part of) the visibility
polygon in an easy way. Suppose that the current endpoint a is on the right
of l and let us concentrate on the possible continuation edges to the right of a
(moving further away from l). In this case we are only interested in the part of
the visibility polygon that lies to the right of a.

Lemma 6. Suppose a is on the right side of l and let r be a ray which emanates
from a to the right (away from l). Let ei be the first edge of α∗ which is hit by
r. Then all other edges of α∗ which are hit by r come before ei on α∗.

Proof. (Sketch.) This is based on the fact that each of the pseudo-triangles
formed by l and the parts of α∗ right of l consist of two x-monotone chains from
l to the right, meeting at a corner vertex, and that the intersections of α∗ with
l occur in the correct order (Property 1 of Definition 2). ut

It follows that we can simply compute the right part of the visibility polygon
by scanning the edges of α∗ in reverse order, starting at a. The edges which are
scanned so far will cover some angular region Q around a starting at the vertical
upward direction. This part of the visibility polygon is already a correct part of
the final visibility polygon. We only have to wait until some edge of α∗ appears
behind the already seen edges at the right edge of Q, and extend Q accordingly.

The same arguments apply to possible continuation edges to the left of a.
Such an edge can only cross α∗ if it crosses l. For the part of the visibility polygon
that lies to the left of l, the above arguments can be applied. Thus we have:

Lemma 7. The part of the visibility polygon of a with respect to α∗ which lies
to the right of a or to the left of l can be computed in O(n) time.

We can now enumerate all zigzag paths by scanning the enumeration tree. Note
that the path is not automatically complete when it reaches an endpoint of
the final edge ef , but only when the edge ef itself is inserted into the path.
(Lemma 4 also holds when the partial path ends at an endpoint of ef . In this
case the continuation is always guaranteed.)

Theorem 2. For a pointgon (S, P ) and a line l we can enumerate the set
αl(S, P ) of pseudo-triangulation zigzag paths in time O(n2 + n2|αl(S, P )|) and
space O(n2).

Of course, this space bound does not include the space which is necessary to
store all paths.
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Proof. The enumeration tree has |αl(S, P )| leaves. Since a zigzag path has length
O(n), being a noncrossing set of edges, the enumeration tree has depth O(n),
and hence O(n|αl(S, P )|) nodes. By Lemma 5, we spend O(n) per node. The
O(n2) preprocessing time was already mentioned. The O(n2) space includes the
space for storing all cyclic orders and the stack of large angles for each point. ut

Note that the time bound is overly pessimistic. In practice, the tree can be
expected to be “bushy” and have only O(|αl(S, P )|) nodes.
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