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TO POLYGONAL APPROXIMATION OF CURVES
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Abstract. Sph�arische Dispersion mit einer Anwendung auf die polygonale

Approximation von Kurven. Wir beschreiben ein Verfahren zur polygonalen

Approximation von Raumkurven unter Verwendung
"
gut verteilter\ Punkte auf der

Kugelober
�ache und analysieren es. Dabei spielt die Dispersion der Punktmenge

bez�uglich
"
Kugelspalten\ (Durchschnitten zweier Halbsph�aren) eine Rolle.

In this note we consider �nite point sets A on the n-dimensional unit sphere Sn.
The dispersion of A with respect to a given family R of subsets of Sn, called ranges,
is de�ned by

dR(A) := sup f�(R) : R 2 R; A \ R = ; g ;

where � is the normalized surface measure on Sn. This notion extends the concept
of dispersion on the unit interval which was introduced by Hlawka [Hl 76] and
later investigated in more general form in Niederreiter [Ni 81]. In that setting, the
dispersion is necessary for analyzing optimization algorithms based on uniformly
distributed sequences, see Niederreiter [Ni 83], cf. also [NP 86] and chapter 6 in the
monograph [Ni 92]. In [Ti 90], optimization problems on the sphere are considered.
As a general reference on uniformly distributed sequences, see for example Kuipers
and Niederreiter [KN 74] and Hlawka [Hl 79]. For applications of point sequences
to numerical integration, we refer to Sobol [So 67].

The range space that is usually considered on the sphere is the range space
C of spherical caps, i. e., intersections of the sphere with half-spaces. Recently,
Bl�umlinger [Bl 91] proved a strong lower bound for the discrepancy with respect to

the family S of spherical slices. A slice is the intersection of two half-spheres.
In the following we will consider the dispersion with respect to S, and we will

explain an application of spherical slice dispersions to the piecewise linear approxi-

mation of curves in space, improving an algorithm of Schachinger [Sch 90] for such
approximations.

Obviously, for any point set A on the sphere Sn, the following elementary relation
holds between cap and slice dispersion:

(1) dS (A) � cn � dC(A)
1=n;

for some positive constant cn. This is obvious from the fact that any slice contains
a cap of corresponding volume.

The second author was supported by the Austrian Science Foundation (Project P8274PHY)

Typeset by AMS-TEX

1



2 G�UNTER ROTE AND ROBERT F. TICHY

We also have the trivial lower bound dS (A) � 1=N for every N-point set A.
The following proposition states that this bound can be achieved, up to a constant

factor.

Proposition. For every N there is a point set A with N points on the sphere Sn

which has slice dispersion

dS(A) = O(1=N):

Proof. W. l. o. g. we assume that Sn is the unit sphere in (n + 1)-dimensional

space. We evenly distribute theN points over the
�
n+1
2

�
two-dimensional coordinate

planes (on the sphere). On each of the \coordinate circles" Ci, i = 1; : : : ;
�
n+1
2

�
,

which are the intersections of the coordinate planes with the sphere, we place the

corresponding points equidistantly.

Now let Z be an empty slice, i. e., a slice containing no point of A. Let U

be the two-dimensional plane through the origin which is orthogonal to the two

hyperplanes bounding Z. Let bi be the projection factors for projections between
U and the i-th coordinate plane, in the sense that a set of area a in the plane
U is mapped to a set of area bia by an orthogonal projection onto the respective
coordinate plane. By the generalized Pythagorean theorem (cf. [Ga 58], section
IX.5, p. 223),

(n+12 )X
i=1

b2i = 1:

Thus there is a coordinate plane whose projection factor bi is at least
q
1=
�
n+1
2

�
.

The projection of the circle Ci onto the plane U is an ellipse with area �bi, whose
major axis is at most 1 and whose minor axis is therefore at least bi. Ci contains
at least bN=

�
n+1
2

�
c evenly spaced points. In order to see how these points restrict

the opening angle of Z, let us imagine that a point moves on Ci at constant speed
!. The projection of this point onto U moves on the ellipse with speed at most
!, and since its distance from the origin is at least bi its angular speed around
the origin is at most !=bi. Since the angle between two adjacent points on Ci is

at most 2�
�
bN=

�
n+1
2

�
c, it follows that the opening angle of Z can be at most

2�
�
bN=

�
n+1
2

�
c
�
bi, and its measure is �(Z) � 1

�
bN=

�
n+1
2

�
c
�
bi �

q�
n+1
2

� �
bN=

�
n+1
2

�
c = O(n3=N):

Remark. The above example shows that the converse of (1) does not hold since
its cap dispersion is 
(1).

In the remainder of this paper we will show how the slice dispersion on the sphere
in three-dimensional space arises in a problem of piecewise linear approximation of

curves in space.

For instance, in robotics it is an important problem to approximate a \general"

curve by simple curves like straight lines, circles etc., because the arm of the robot
can only run along such simple curves. The most important case is the approxima-

tion by a polygonal line.
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Let us �rst consider a twice continuously di�erentiable spatial curve ~x(s) pa-
rameterized by its arc length s. We want to construct a sequence of points ~x(s0);

~x(s1); : : : ; ~x(sM ) such that the polygonal line with vertices at these points is an

"-approximation of the curve segment C: f ~x(s) : s0 � s � sM g, where " is an ar-

bitrarily given (small) positive number. Let us recall here the de�nition of an "-
approximation: A (closed) point set A is an "-approximation of the (closed) set B

if their Hausdor�-distance

�(A;B) = max (max
x2A

d(x;B);max
y2B

d(y;A))

is not greater than " (d denoting the Euclidean distance). We consider a line

segment Lk with endpoints ~x(sk); ~x(sk+1), and denote the tangent vector by _~x(sk).
Then �(C;Lk) < " is guaranteed provided that

k~x(sk+1)� ~x(sk)� _~x(sk)(sk+1 � sk)k � ":

Applying Taylor's formula yields



�~x(sk)

(sk+1 � sk)
2 �

"

2

as an approximate su�cient condition that the polygonal line is an "-approximation.
Thus we obtain the following iteration procedure for computing the vertices of the
polygonal approximation:

sk+1 � sk =

r
"

2�(sk)
;

where �(sk) denotes the curvature in the point ~x(sk), see McClure and Vitale
[MV 75] and M�uller [M�u 92]. This method, of course, has one disadvantage: one
has to know arc length and curvature in advance. In the following we describe a
di�erent method which makes use of low-dispersed spherical point sequences.

Let us �rst consider a plane curve C: f ~x(s) : 0 � s � � g, which we want to
approximate piecewise linearly. We assume that C is parameterized by the arc

length s. We successively construct the vertices ~x(sk) for 0 = s0 < s1 < � � � <

sM = � as follows:
Suppose that sk has already been constructed. Let uk be the largest value

(sk < uk � �) for which there is a direction (i. e., a unit vector) ~wk such that for

any s 2 [sk; uk] there is a scalar � with k~x(s) � ~x(sk)� �~wkk � ". Then we set

(2) sk+1 = max f s � uk : ~x(s) = ~x(sk) + �~wk for some � g:

In other words, the curve C between sk and sk+1 is contained in the in�nitely long

strip of width 2" centered at the line through ~x(sk) and ~x(sk+1), and sk+1 is the
largest possible value with this property. The maximum values uk and the interpo-

lation points ~x(sk) can be computed easily: We discretize the curve su�ciently �ne
and maintain the convex hull as we advance on the curve, see Imai and Iri [II 87].

Using the convex hull, it is straightforward to determine whether the curve still �ts
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inside a strip of width 2" centered at ~x(sk). Once this is no longer the case, we
have found uk. The maximum in (2) can be computed from the discretisation.

However, since the curve is only guaranteed to be contained in the in�nitely long

"-strip, there are \pathological" examples where this procedure does not necessar-

ily lead to an "-approximation. For \reasonable" curves such as may be expected
to arise in practice the procedure works. For example, requiring that the curve

is smooth and has an upper bound less than 1=" on the curvature su�ces to en-

sure that the algorithm yields an "-approximation. This would however exclude

polygonal curves, which are especially important in practical applications, where
one wants to approximate one such curve by another polygonal curve with fewer

vertices.

What we need is a condition on the local \growth rate" of the arc length,

(3) d(~x(s); ~x(s +�s)) � � ��s, for all �s � � and 0 � s < s+�s � �.

Here � � 1 is the parameter determining the growth rate and the parameter �makes

the condition local. We will say that a curve satisfying (3) has �-local minimum

growth rate at least �.
Note that this local condition does not prevent the curve from crossing itself

after making a \big" loop. If the curve should have cusps it must be subdivided at
these points before applying the algorithm.

The following lemma states that this condition is su�cient for the correctness of
our algorithm. Since we will need the spatial case we already formulate the lemma
in arbitrary dimensions.

Lemma. Let C be a (continuous) curve from A to B whose (2"=�)-local minimum

growth rate is bigger than �, for some � > 0. If C is contained in the cylinder with

axis AB and radius " then the segment AB is an ("
p
1 + 1=�2)-approximation of C.

Proof. Let us assume w. l. o. g. that A = ~x(0) is the origin and B = ~x(�) lies on the
positive x-axis. It is su�cient to show that the x-coordinate never goes below �"=�

and never exceeds the x-coordinate of B by more than "=�. By symmetry, we just
have to prove the �rst statement. Let ~x(s0) with s0 2 [0; �] be a point on the curve
with negative x-coordinate. Consider the two nearest points ~x(s1) and ~x(s2) on the
curve with x-coordinates equal to 0: 0 � s1 < s0 < s2 � �, x(s1) = x(s2) = 0, and

x(s) < 0 for s1 < s < s2. We show that s2 � s1 � 2"=�, from which x(s0) � �"=�

follows. Otherwise, assume that s2 � s1 > 2"=� =: �s. By continuity, we can �nd
two intermediate points ~x(s0) and ~x(s0 +�s) with s1 � s0 < s0 +�s � s2 which
have the same x-coordinate: If we let s0 vary from s1 to s2 ��s we initially have

0 = x(s1) > x(s1+�s), and at the end we have x(s2��s) < x((s2��)+�s) = 0;
thus, there must be a crossover point s0. By (3), d(~x(s0); ~x(s0 +�s)) � �0 ��s =
�0(2"=�) > 2"; where �0 > � is the local minimum growth rate. But then ~x(s0) and

~x(s0+�) cannot both be contained in the cylinder with radius " around the x-axis,
a contradiction.

Remark. One way to ensure (3) is to require that the curve has locally increasing

chords:

(4) d(~x(s1); ~x(s4)) � d(~x(s2); ~x(s3));
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for all 0 � s1 � s2 � s3 � s4 � � and s4 � s1 � �. The minimum growth rate of a
plane curve with increasing chords is at least 3=(2�), as is shown in Rote [Ro 94],

extending ideas of Larman and McMullen [LM 73]. This relation directly translates

to the �-local concepts. In three dimensions, the minimum growth rate of a curve

with increasing chords is at least 0:034, and there is a positive lower bound for any
dimension.

A stronger condition than (4) is to require that the curve locally has no angles

sharper than �=2, i. e., for any three consecutive points ~x(s1), ~x(s2), and ~x(s3)

with 0 � s1 � s2 � s3 � � and s3 � s1 � �, the angle at ~x(s2) in the triangle
~x(s1)~x(s2)~x(s3) is at least �=2. Clearly, this implies the local increasing chords

property.

A direct generalization of the above procedure to the three-dimensional case
is not possible for computational reasons. Therefore Schachinger [Sch 90] used

projections to reduce the three-dimensional case to the two-dimensional situation.

Let ~xi(s), (i = 1; : : : ;M) be orthogonal projections P i(~x) of the spatial curve

C: ~x(s), 0 � s � �, ontoM suitably chosen planesE1; : : : ; EM . We compute the in-
terpolation points ~x(sk); k = 1; : : : , recursively and suppose that s0 = 0; s1; : : : ; sk
are known. For each projection i = 1; : : : ;M , let Si be the set of parameter values
s0 > sk such that there exists a scalar � between 0 and 1 satisfying k~xi(s)�~xi(sk)�
�(~xi(s0)� ~xi(sk))k � " for any s 2 (sk; s

0]. Si is the set of possible parameter val-
ues for the next interpolation point sk+1 when seen in the i-th projection direction.
Each set Si is a �nite union of intervals, and we de�ne sk+1 as the largest value in
the intersection of these M sets.

Now we connect the points ~x(sk) by line segments. In each projection i, the
curve between ~xi(sk) and ~xi(sk+1) lies in the in�nite 2"-strip centered at the line
through ~xi(sk) and ~xi(sk+1). Note that it is not su�cient to determine just the
maximum possible parameter value sk+1 by (2) in each projection and take the
minimum of these values, because this value might not be contained in each Si.

Although the 2"-strips cover the curve in each projection, the spatial curve be-
tween ~x(sk) and ~x(sk+1) does not necessarily lie in the in�nite cylinder with radius "
centered at the line through ~x(sk) and ~x(sk+1).

We will now discuss how to choose the M projection planes to ensure that this

holds for a cylinder with radius A", for a constant A > 1 which we want to be as
small as possible.

Denoting the direction of the projection P i by pi we set for any straight line g

Z(p1; : : : ; pM ; g) =

M\
i=1

fx : �(P i(x); P i(g)) � 1 g:

This set is an intersection of M parallel slabs. The intersection of Z(p1; : : : ; pM ; g)

with an orthogonal plane of g is a convex symmetric polygon Z, whose edges are
parallel to the projections of pi onto Z. The distance of the edges to the center of
Z is 1. Setting A equal to the maximal distance of a vertex of Z to the center, the
constant A ful�lls the desired property if we take the line through the points ~x(sk)

and ~x(sk+1) as g. Clearly,

A =
1

cos�=2
;
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where � is the maximal angle between two adjacent edges. If we consider the
projection directions p1; : : : ; pM and the line g as points on the sphere S2, � is the

opening angle of the largest empty slice with corners at the two points corresponding

to g. Since we want � to be small for all directions g, we have to choose these

M points exactly in such a way that the slice-dispersion is minimal. This can
be achieved by taking the point set in the proposition for the two-dimensional

sphere S2.

Assuming a local smoothness property like (3), we can conclude by the lemma

that the polygonal curve is an O(")-approximation of C.
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