
Shortest Inspection-Path Queries
in Simple Polygons

Christian Knauer, Günter Rote, and Lena Schlipf

Institut für Informatik, Freie Universität Berlin,
Takustraße 9, D–14195 Berlin, Germany.

{knauer,rote,schlipf}@inf.fu-berlin.de

Abstract. We want to preprocess a simple n-vertex polygon P to quickly
determine the shortest path p from a fixed source point s ∈ P to view a
set Q ⊆ P of query points (i.e., such that each point q ∈ Q is visible from
some point on the path p). We call such queries shortest inspection-path
queries. For |Q| ≤ 2 we describe data structures that answer such queries
in logarithmic time. The structures have linear (for |Q| = 1) respectively
quadratic (for |Q| = 2) size and preprocessing time. For |Q| = 2 we also
present a data structure with linear preprocessing time and space which
achieves for any ε > 0 a query time of O(1

ε2
logn) at the expense of

providing only a (1 + ε)-approximate answer.

Keywords: Computational geometry, Simple polygons, Shortest paths, Visibility.

1 Introduction

Many variations of the problem of computing shortest paths in simple polygons
have been studied in the past, c.f. [3]. One instance of the problem is to find
the shortest path from a given fixed source point s in a simple polygon P with
n vertices to view a set Q ⊆ P of query points. Our goal in this paper is to
preprocess the input (P, s) to answer queries of this type: Given a set Q ⊆ P of
query points, find the shortest distance one needs to travel in P from s to see
all points in Q, i.e., such that each point in Q is visible from some point on the
path travelled. Such queries are called shortest inspection-path queries.

In polygons with holes the (off-line) problem is clearly NP-hard for |Q| =
Ω(n), by a reduction from TSP. However, in simple polygons the off-line problem
can most likely be solved in polynomial time using techniques used to solve the
watchman path problem [1].

For |Q| = 1 a query can be answered in O(n) time without preprocessing [8],
and in O(log n) time with O(n2) preprocessing time and space [9]. We improve
and simplify the latter result and describe a solution with linear preprocessing
time and space that achieves O(log n) query time. For |Q| = 2 we describe a solu-
tion with quadratic preprocessing time and space that also achieves logarithmic
query time. These results are summarized in the following

Theorem 1. Let P be a simple polygon with n vertices and let s ∈ P be a fixed
point. We can preprocess (P, s)

– in O(n) time into a data structure of O(n) size that can answer shortest
inspection-path queries for Q ⊆ P with |Q| = 1 in O(log n) time, and

– in O(n2) time into a data structure of O(n2) size that can answer shortest
inspection-path queries for Q ⊆ P with |Q| = 2 in O(log n) time.

We will actually prove a stronger result for the case |Q| = 2 where the source
point s is not fixed but is part of the query.

For the case |Q| = 2 (with a fixed starting point s) we also describe a solu-
tion with linear preprocessing time and space that achieves logarithmic query
time but that provides only an approximate answer. For a constant c > 1 a
c-approximate shortest inspection-path query for a set Q ⊆ P of query points
asks for (the length of) a path from the fixed source point s to view the set Q
that is at most by a factor of c longer than the shortest inspection-path for Q
from s. The result is summarized in the following

Theorem 2. Let P be a simple polygon with n vertices and let s ∈ P be a fixed
point. We can preprocess (P, s) in O(n) time into a data structure of O(n) size
that can answer for any ε > 0 a (1 + ε)-approximate shortest inspection-path
query for Q ⊆ P with |Q| = 2 in O(1

ε2 log n) time.

2 Preliminaries

The visibility polygon of a point q ∈ P will be denoted by V (q), the shortest
path in P between two points x, y ∈ P by p(x, y) and the shortest path tree from
s in P by Ts. For a shortest path p = p(x, y) we denote by x̂ (resp. ŷ) the first
vertex of P on p after x (resp. the last vertex of P on p before y). If we remove
V (q) from P , the polygon splits into disconnected regions that we call invisible
regions. Each such region has exactly one edge in common with V (q). By Ps(q)
we denote the region which contains s. The common edge w(q) between V (q)
and Ps(q) will be called the window of q. Let a and b be the endpoints of w(q),
and r be the last common vertex between the two paths p(s, a) and p(s, b) (i.e.,
the lowest common ancestor LCATs

(a, b) of a and b in Ts), c.f. Fig. 1. The paths
p(r, a) and p(r, b) together with the segment w(q) form the funnel of q which
will be denoted by F (q), c.f. Fig. 2; the vertex r is called the root of the funnel,
the segment w(q) is called the base of the funnel. Note that the paths p(r, a)
and p(r, b) are outward convex. In Section 4 we require a generalization of the
notion of a funnel which was introduced in [5]: The hourglass between two line
segments l1, l2 ⊆ P is the boundary of the union of all shortest paths p(x, y) for
x ∈ l1, y ∈ l2; it will be denoted by H(l1, l2). For two paths p, q we denote the
concatenation of p and q by p+ q. Finally, the (Euclidean) length of the path p
will be denoted by |p|.

In Section 3 we first give a structural characterization of the solution that
forms the basis of our approach and then prove the case |Q| = 1 of Theorem 1.
We consider the case |Q| = 2 in Section 4 and provide some conclusions in
Section 5.

3 The data structure for one query point

If Q = {q} we have to find a point c ∈ P visible from the query point q ∈ P
that has the shortest distance from s. If q is invisible from s, then s lies in an
invisible region (if q is visible from s, then clearly c = s). In this case it is easy
to see that the point c lies on the window w(q), in particular c is the point on
w(q) that has the shortest distance to s, c.f. Fig. 1.

s

b

c

q

V (q)

ar

Fig. 1. The window w(q) = ab separates Ps(q) and V (q). The point with shortest
distance to s that is visible from q is c. The drawing shows p(s, a), p(s, b) and p(s, c).

We next describe a simple characterization of c given in [9]. To this end let
a and b be the endpoints of w = w(q), and r be the lowest common ancestor of
a and b in Ts, i.e., the last common vertex between the two paths p(s, a) and
p(s, b), c.f. Fig. 1.

The paths p(r, a), p(r, b) together with the segment w(q) = ab form the funnel
of w(q) which will be denoted by F , c.f. Fig. 2. Note that the paths p(r, a), p(r, b)
are outward convex.

Let a = v0, v1, . . . , r = vm, . . . , vk, vk+1 = b denote the vertices of the funnel
from a to b. F can be decomposed into triangles by extending the edges of F
until they intersect w(q). Let xi denote the intersection point of the extension of
the edge vivi+1 with w(q) (hence, x0 = a and xk = b). The shortest path from
s to points on the segment xixi+1 passes through vi+1 as the last vertex of P .
Denote the angles between the extension edges and the window by θ0, θ1, . . . , θk,
i.e., θi = 6 bxivi for 0 ≤ i < k and θk = π − 6 abvk.

The outward convexity of the paths p(r, a), p(r, b) implies that the sequence
θ0, θ1, . . . , θk is increasing. As a consequence we can characterize the optimal
contact point c in the following way:

1. θi = π/2 for some 0 ≤ i ≤ k. In this case, c = xi.

r = v3

a = v0 b = v6

v1

v2

v4

v5

x1 x2 x3

c

x4

θ2

Fig. 2. The funnel F over the window w(q) = ab. The optimal point c is the foot of
the perpendicular from v2 to w(q).

2. θi < π/2 and θi + 1 > π/2 for some 0 ≤ i ≤ k. In this case, c is the foot of
the perpendicular from vi+1 to w(q).

3. θ0 > π/2. In this case, c = a.
4. θk < π/2. In this case, c = b.

We can therefore search for c by looking at the angles θi: If θi > π/2 then c
lies left of xi, whereas if θi < π/2 then c lies right of xi.

To answer a query q we will proceed in two steps: First we compute the
window w(q) of q along with the funnel root r. Then we compute the optimal
point c on w(q).

After the preprocessing phase, the first step and the second step can be done
in O(log n) time.

3.1 Preprocessing phase

1. Store the vertices of P in a circular array A, sorted in clockwise order along
the boundary of P .

2. Compute a data structure D1 that supports O(log n) time shortest path
queries in P between any pair of points u, t ∈ P [4].

3. Compute a data structure D2 that supports O(log n) time ray-shooting
queries to P [7].

4. Compute the shortest path tree Ts [5] and preprocess it to support O(1)
time LCA-queries [6].

The total preprocessing time and space is O(n).

3.2 Query phase

In the query phase we will check at first if q is visible from s (in this case c = s).
This can be done in O(log n) time by shooting a ray from q in the direction of s
and testing if the boundary of P is hit before s. In the following we can assume
that q is not visible from s.

Computing the funnel. To find w(q) = ab and r in O(log n) time in the first
step of the query phase we proceed as follows: Since the window separating s
from V (q) is specified by the last vertex of P on the shortest path from s to q
(Fig. 1), we can find a = q̂ in O(log n) time via D1 (c.f. [3], Corollary 8.4.14).
To find b in O(log n) time we shoot a ray from q in the direction of a. Next,
we compute vk = b̂ in O(log n) time via D1, and finally, we get the funnel root
r = LCATs(a, vk) in O(1) time.

Computing the optimal point on the window. To find the optimal point c on w(q)
in O(log n) time in the second step of the query phase we proceed as follows:

– First we check if θ0 > π/2 or θk < π/2. In the first case c = a, in the second
case c = b, and in either case we are finished.

– Next we look at the extensions of the edges emanating from the apex r = vm
of the funnel. If θm−1 = π/2, or θm = π/2, or θm−1 ≤ π/2 < θm, c is the
foot of the perpendicular from vm to w(q) and we are finished.

– If θm−1 > π/2, then θi > π/2 for m ≤ i ≤ k, since the angle sequence is
increasing. In particular c is the foot of the perpendicular from some vertex vi
to w(q), where vi is on the left side p(r, a) of the funnel F (q), i.e., 1 ≤ i < m.
To determine for which vertex vi the perpendicular to w(q) has to be drawn,
we would like to perform a binary search on the sequence v0, . . . , vk. However
this sequence is not directly accessible, so we use the array A instead, and
perform a binary search on the interval [r, a] in A (if r = s and s is not
a vertex from P , we take the first vertex ŝ after s on p(s, a) and search
in the interval [ŝ, a] instead). For a vertex u in this interval we compute
LCATs(u, a), which is one of the vertices v0, . . . , vm on the left edge of the
funnel, say vi. By computing the angle θi we can decide if the binary search
has to continue to the left or to the right of u. After O(log n) iterations
the binary search is narrowed down to an interval between two successive
vertices in A. This implies that the point vi from which the perpendicular
to c has to be drawn is also determined.
Note that for several successive vertices uj in [r, a] we can get the same
vertex vi as a result of computing LCATs

(uj , a). But the number of vertices
in [r, a] is O(n) and so still after O(log n) iteration the binary search is
narrowed down to an interval between two successive vertices in A.

– The case that θm−1 < π/2 is symmetric to the previous case.

In the end, we can compute the length of the shortest path in constant time
from the information stored in Ts. If desired, the shortest path itself can be
output in time linear in its length. This concludes the proof of the case |Q| = 1
of Theorem 1.

The following result can be obtained immediately from the above reasoning:

Corollary 1. Let P be a simple polygon with n vertices and s ∈ P . We can
compute a data structure of O(n) size in O(n) time to answer queries of the
following type in O(log n) time: Given a query segment S ⊆ P , find the shortest
distance one needs to travel in P from s to S. If desired, the actual shortest path
can be reported in time linear in its length.

4 The data structure for two query points

There are several cases for the optimal path p if Q = {q1, q2}. First we consider
the most general case: The path p first reaches w1 = w(q1) to view q1 where it is
reflected and then proceeds to w2 = w(q2) to see q2 (or vice versa), c.f. Fig. 6 for
an example (we also assume that w1 and w2 do not intersect). The full discussion
of all cases is given in Section 4.2.

The basic idea1 behind computing p is to (conceptually) reflect the polygon
P1 = Ps(q1) at the window w1. The resulting polygon P ′1 is then ’glued’ to
P1 along w1 (and the polygon P \ P1 is discarded) to form a (possibly self-
overlapping) polygon P ∗1 . We then compute the shortest path p∗ in P ∗1 from s
to see q′2, the reflection of q2 at w2. To compute (the length of) p∗ during a
query, we (implicitly) determine the funnel F ∗ of q′2 in P ∗1 and then compute
the optimal point on the funnel base w′2 by binary search on its boundaries as
in the previous section. We get F ∗ by combining the funnel F1 = F (q1) and
the hourglass H ′12 = H(w1, w

′
2) using the technique of [4] (which is essentially

a binary search). (The boundaries of) F1 and H ′12 (and thus of F ∗) will be
represented implicitly as paths in precomputed shortest path trees. Note that
the reflection at w1 is not performed explicitly, but ’on demand’.

4.1 Preprocessing phase

1. Compute A, D1, and D2 as in Section 3.1.
2. For each vertex v of P compute the shortest path tree Tv and preprocess it

to support O(1) time LCA-queries.

The total preprocessing time and space is O(n2).

4.2 Query phase

In the query phase we will first check if q1 or q2 is visible from s. This can be
done in O(log n) time in the same way as in Section 3.2. If both query points are
visible from s, the optimal path is the point s. If exactly one of the query points
(say q1) is visible from s the optimal path can be computed in O(log n) time as
in Section 3.22. In the following we will therefore assume that both query points
are not visible from s.

As in Section 3.2 the windows w1 = a1b1 and w2 = a2b2 are computed in
O(log n) time by using D1. Then there are several cases that may occur.

The windows intersect. In this case the intersection t is computed in O(1)
time. Next we identify the endpoint of w1 which lies inside P \ Ps(q2) and the
endpoint of w2 which lies inside P \ Ps(q1) in O(log n) time, c.f. Fig. 3. Let
1 This idea resembles the polygon folding technique of [2].
2 To this end, we first have to identify the root r of the funnel Fq2 and then proceed

as in Section 3.2 with Tr playing the role of Ts.

s

q1

q2

t

b1

b2

a2

a1

Fig. 3. The point b1 lies inside P \ Ps(q2) and b2 lies inside P \ Ps(q1).

b1 ∈ P \ Ps(q2) and b2 ∈ P \ Ps(q1). Then the optimal path we are looking for,
is the shortest of the following three paths:

1. The shortest path from s to b1t
2. The shortest path from s to b2t
3. The shortest path from s that reaches a1t and a2t

(1) and (2): This two paths can be computed in O(log n) time (using a variant2

of Corollary 1).
(3): This path can be computed in the same way as in the general case where
a1t has to be considered as w1 and a2t as w2.

One window lies ’behind’ the other. If w1 lies behind3 (or dominates) w2

(which can be checked in O(log n) time) we have to compute the shortest path
from s to w1 which can be done in O(log n) time (again using the variant2 of
Corollary 1). The case where w2 dominates w1 can be handled analogously.

s q2

a2

b2

b1
a1q1

Fig. 4. The window w1 dominates w2.

3 meaning that w1 lies completely inside P \ Ps(q2)

The general case. In this case no query point is visible from s, the windows do
not intersect and no window dominates the other. We explain how the shortest
path p1 from s that first visits w1 (where it is reflected) and then proceeds to w2

is computed. The path p2 which is the shortest path from s that first visits w2

and then proceeds to w1, can be computed analogously. At the end we determine
which of these two paths is shorter; this is the optimal path p we are looking for.

Computing the funnel. To obtain the root r of the funnel Fq1 we compute the
vertex ŝ1 and the vertex ŝ2 where ŝ1 is the first vertex after s on p(s, a1) and ŝ2
is the first vertex after s on p(s, b1). Either ŝ1 6= ŝ2 then r = s, or ŝ1 = ŝ2 then
r = LCATŝ1

(a1, b1). In the following let p(a1, a2) and p(b1, b2) be the sides of the
hourglass H12 = H(w1, w2). We compute F ∗ by combining the funnel F1 and
the hourglass H ′12 using the technique of [4]. To this end we need to construct
the four common tangents t1, . . . , t4 that touch one side from F1 or H ′12. Since
we cannot afford to reflect P1 explicitly at w1 during a query we compute F ∗

as the combination of F1 with H12 instead. To this end the ’tangents’ t1, . . . , t4
have to be ’folded’ at w1, c.f. Fig. 5. Each tangent can be found in O(log n) time
by performing a binary search on the vertices of p(r, a1), p(r, b1), p(a1, a2) and
p(b1, b2) [10]. These vertices are not directly accessible but given only implicitly
via the trees Tr̂, Tâ1 , and Tb̂1 (we can compute r̂, â1 and b̂1 using D1 in O(log n)
time). Therefore we have to perform the binary search on the array A instead
(as in the previous section).

q1

a2

b2

q2

s = r
m1

m2

b1

a1

m′
2

Fig. 5. To obtain m′2 we reflect m2 on w1. We construct the line l1 between m′2 and
m1 and reflect l1 on w1. Let m1m

∗
2 be the line segment between m1 and m2 which is

folded at w1. If l1 is tangent to p(r, a1) and the reflection of l1 is tangent to p(a1, a2),
m1m

∗
2 is the tangent to p(r, a1) and p(a1, a2).

Let the vertex r∗ be the root of F ∗. Two cases can occur: Either r∗ ∈ F1 or
r∗ ∈ H12.

In the example depicted in Fig. 6 we have that r∗ ∈ F ∗ and the sides of
F ∗ are p(r∗, a2)′ = p(r∗,m1) + m1m

∗
2 + p(m2, a2) and p(r∗, b2)′ = p(r∗,m3) +

m3m
∗
4 + p(m4, b2) where m1 is the last point on p(r, a1) which belongs also to

a side of F ∗, m2 is the first point on p(a1, a2) which belongs also to a side of
F ∗ and m1m

∗
2 is the line segement between m1 and m2 which is folded at w1

(clearly |m1m
∗
2| = |m1m

′
2| where m′2 is the reflection of m2 at w1). The same

holds for m3, m4 and m3m
∗
4. The points m1, m2, m3 and m4 are the points on

which F1 and H12 are connected, so they can be obtained in the same way as in
[4] (note that either r∗ = m1, r∗ = m3 or r∗ = r).

If r∗ ∈ H12 the sides of F ∗ are p(r∗, a2) and p(r∗, b2) (note that r∗ = m3 =
m4).

q1

a2

b2

q2

r = r∗

c

m1

m4

m3

m2 = d

b1

a1

Fig. 6. The drawing shows F ∗ and the optimal path p from s to view q1 and q2.

Computing the optimal point on the window. If r∗ ∈ H12, the optimal point
c on w2 can be computed in the same way as in Section 3.2. If r∗ ∈ F1, we
additionally have to take the following issues into account:

– If r∗ = s and s is not a vertex of P we use Tŝ instead of Ts where ŝ is the
first vertex after s on p(s,m1) or on p(s,m3).

– We have to reflect the extension of an edge vivi+1 in O(1) time on the window
w1 for vivi+1 ⊆ p(r∗,m1) or vivi+1 ⊆ p(r∗,m3) if we want to compute the
angle θi.

– If we want to perform a binary search on p(r∗, b1)′ we first have to look at
the angle between w1 and the extension edges incident to m2. Therefore we
have to reflect m1 on w1. Via this angle we can decide if we have to perform

a binary search on p(r∗,m1) or p(m2, b1). Note that, if we perform a binary
search on p(m2, b1), i.e., on [m2, b1], we compute LCATm2

(u, v1) for a vertex
u ∈ [m2, b1].

– If we want to perform a binary search on p(r∗, b2)′ we proceed analogously.

In the end, we can compute the length of the shortest path in constant time
from the information stored in the precomputed shortest path trees. E.g., if c
is the foot of the perpendicular from d ∈ p(m2, a2), the length of the shortest
path is the sum of the lengths of p(s,m1), m1m

∗
2, p(m2, d) and dc. If desired,

the shortest path itself can be output in time linear in its length.

4.3 Approximate shortest inspection-path queries

We now turn to the proof of Theorem 2. The data structure of Theorem 1 for
the case |Q| = 1 can be used to answer 3-approximate shortest inspection-path
queries for {q1, q2} ⊆ P as follows: We query the structure to compute (the
length of the) path p1 which is the shortest path from s to view q1, as well as
the path p2 which is the shortest path from s to view q2. This requires O(log n)
time. If we walk from s along p1 then back to s along p1 and then along p2 we
get the (non-simple) path p̃ which is clearly an inspection path for {q1, q2}. Since
the shortest path popt from s to view q1 and q2 is an inspection path for q1 as
well as an inspection path for q2 we have that |p1| ≤ |popt| and |p2| ≤ |popt|. It
follows that |popt| ≤ |p̃| = 2|p1| + |p2| ≤ 3|popt|, so p̃ is a 3-approximate answer
to the shortest inspection-path query for {q1, q2}.

In order to answer (1 + ε)-approximate shortest inspection-path queries for
{q1, q2} and ε > 0 we proceed as follows (the approach is illustrated in Fig. 7):

1. Compute the length of the path p̃ as just described in O(log n) time.
2. Compute the windows w1 = w(q1) and w2 = w(q2) as above in O(log n)

time.
3. For i = 1, 2 compute w̃i, the intersection of wi with the disc of radius 2|p̃|

around s. Clearly for any path p′ from s that visits points in wi \ w̃i we have
that |p′| ≥ 2|p̃| ≥ 2|popt|, so popt can only visit points in w̃i. By construction
|w̃i| ≤ 4|p̃|.

4. Let δ = ε|p̃|/3 and compute for i = 1, 2 the set W̃i of equally spaced points
at distance δ/3 on w̃i (including the endpoints of w̃i). The number of points
in W̃i is ni ≤ 2 + d |w̃i|

δ/3 e = 2 + d 4|p̃|
ε|p̃|/9e = O(1/ε). Observe that the shortest

inspection path p̂ from s to view {q1, q2} that is restricted to visit wi only
at the points of W̃i has length at most |popt|+ δ = |popt|+ ε |p̃|3 ≤ (1+ ε)|popt|.

5. For each pair of points {u, v} with u ∈ W̃1, v ∈ W̃2 compute the shortest
path from s that visits u and v in O(log n) time (using the structure of
[4]) and return p̂ as the shortest such path. The total time for this step is
O(n1n2 log n) = O(1

ε2 log n).

q2

a2

b2

s

q1

b1

a1

w1 = w̃1

w2 = w̃2

δ/3δ/3

popt

p̂

Fig. 7. This drawing shows the sets W̃1 and W̃2 as well as the paths p̂ and popt.

5 Conclusion

For a simple n-vertex polygon P with a designated starting point s and a given
set Q ⊆ P of query points we described data structures to find the shortest path
from s to see all points in Q. For |Q| = 1 our approach yields a structure of linear
size that can be computed in linear time and achieves logarithmic query time.
This significantly improves previous work on the subject [9]. Our approach also
seems to be conceptually simpler. For |Q| = 2 our approach yields a structure
of quadratic size that can be computed in quadratic time and achieves also
logarithmic query time, even if the source point is not fixed. We also described
a data structure with linear size and preprocessing time that can answer for any
ε > 0 a (1 + ε)-approximate query in O(1

ε2 log n) time.
It remains unclear if the query problem can (efficiently) be generalized to

more than two query points, and if it can still be solved efficiently if we consider
the case of polygons with holes. As mentioned above the status of the off-line
problem in simple polygons is also unknown.

References

1. S. Carlsson and H. Jonsson. Computing a shortest watchman path in a simple
polygon in polynomial time. In Proc. 4th Workshop Algorithms Data Struct.,
volume 955 of Lecture Notes Comput. Sci., pages 122–134. Springer-Verlag, 1995.

2. W. Chin and S. Ntafos. Optimum watchman routes. Inform. Process. Lett., 28:39–
44, 1988.

3. S. Ghosh. Visibility Algorithms in the Plane. Cambridge University Press, New
York, NY, USA, 2007.

4. L. J. Guibas and J. Hershberger. Optimal shortest path queries in a simple polygon.
J. Comput. Syst. Sci., 39(2):126–152, Oct. 1989.

5. L. J. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. E. Tarjan. Linear-time
algorithms for visibility and shortest path problems inside triangulated simple
polygons. Algorithmica, 2:209–233, 1987.

6. D. Harel and R. E. Tarjan. Fast algorithms for finding nearest common ancestors.
SIAM J. Comput., 13(2):338–355, 1984.

7. J. Hershberger and S. Suri. A pedestrian approach to ray shooting: Shoot a ray,
take a walk. J. Algorithms, 18:403–431, 1995.

8. R. Khosravi and M. Ghodsi. Shortest paths in simple polygons with polygon-meet
constraints. Inf. Process. Lett., 91(4):171–176, 2004.

9. R. Khosravi and M. Ghodsi. The fastest way to view a query point in simple
polygons. In Abstracts of the 21st European Workshop on Computational Geometry
(EWCG), Eindhoven, Netherlands, pages 187–190, 2005.

10. M. H. Overmars and J. van Leeuwen. Maintenance of configurations in the plane.
J. Comput. Syst. Sci., 23:166–204, 1981.

