
QUASI-MONTE-CARLO METHODS

This paper appears in Mathematical and Computer Modelling 23 (1996), 9{23.

AND

THE DISPERSION OF POINT SEQUENCES

G�unter Rote and Robert F. Tichy

Abstract. Quasi-Monte-Carlo methods are well-known for solving di�erent prob-

lems of numerical analysis such as integration, optimization, etc. The error estimates

for global optimization depend on the dispersion of the point sequence with respect to

balls. In general, the dispersion of a point set with respect to various classes of range

spaces, like balls, squares, triangles, axis-parallel and arbitrary rectangles, spherical

caps and slices, is the area of the largest empty range, and it is a measure for the

distribution of the points. The main purpose of our paper is to give a survey about

this topic, including some folklore results. Furthermore, we prove several properties

of the dispersion, generalizing investigations of Niederreiter and others concerning

balls. For several well-known uniformly distributed point sets we estimate the dis-

persion with respect to triangles, and we also compare them computationally. For the

dispersion with respect to spherical slices we mention an application to the polygonal

approximation of curves in space.

1. Introduction

It is a classical problem in numerical analysis to �nd the maximum of a function.
For example let f be a continuous real function de�ned on the s-dimensional unit
cube Us = [0; 1]s. The following is a simple algorithm for computing its maximum
value M :

Take a point sequence (xn) in Us, de�ne m1 = f(x1) and recursively set

mn+1 := max (mn; f(xn+1)):

This algorithm was analyzed by Niederreiter [1], cf. also [2] and chapter 6 in
the monograph [3]: The numbers mn tend to the maximum M if f is \su�ciently
continuous" and the points xn are \well distributed" in Us. More precisely,

M � !(dN ) �mN �M;

where

!(t) := sup
d(x;y)�t

jf(x) � f(y)j

is the modulus of continuity of f with respect to the Euclidean distance d(x; y) and

dN denotes the dispersion of the sequence x1; : : : ; xN :

(1.1) dN = max
x2Us

min
1�n�N

d(x; xn);
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which was introduced by Hlawka [4] and later investigated in more general form

in Niederreiter [5]. If dN is small the points x1; : : : ; xN are \well distributed" in
the sense that they leave no big circular hole. This measure for the distribution

behavior of a point sequence is particularly suited for the maximization problem.

Another problem that can be tackled by Monte-Carlo methods is integration

in higher dimensions. Here, instead of the maximum of the function values one
computes their average

In :=
1

n
�

nX
i=1

f(xi);

which converges to
R
Us f(x) dx as n goes to in�nity if (xn) is uniformly distributed

in Us. The error estimates that one gets are then proportional to the well-known
discrepancy of the point set AN = fx1; : : : ; xNg:

(1.2) DN = sup
R

����#(AN \R)
N

� �(R)

���� ;
where � denotes the Lebesgue measure on Us and the supremum is taken over all
axis-parallel boxes R, see [3, 6{13].

For certain other application, the discrepancy with respect to other classes of
subsets R of Us are important. For example, in case of a two-dimensional problem
on U2, one can consider all circular disks, all squares, all triangles, or all convex
sets.

The notions of dispersion and discrepancy can be de�ned in a very general set-
ting. Let (X;�) be a probability space and let R be a family of measurable subsets
of X, called ranges. We call (X;R; �) a range space. For a �nite set A � X of N
points, we de�ne the dispersion

(1.3) d(X;R;�)(A) := sup f�(R) : R 2 R; A \R = ; g

and the discrepancy

(1.4) D(X;R;�)(A) := sup

� ����#(A \R)
N

� �(R)

���� : R 2 R
�
:

Usually, X and � will be understood from the context and we will only write
DR(A) or even D(A), and similarly for the dispersion. Intuitively, the dispersion
is the largest empty range, i. e., the largest range containing no point of A.

We will consider range spaces where X is a submanifold of some Euclidean
space and � is the corresponding normalized surface measure. The ranges R 2 R
are usually \natural" geometric regions, as in the above examples. More general
ranges in arbitrary compact metric spaces were considered in Drmota and Tichy

[14] in connection with the discrepancy of continuous curves.
Note that traditionally (also in (1.1) above) the dispersion has been de�ned as

the radius of the largest empty sphere, whereas we consider the volume. This allows

us to consider more general ranges than spheres.
A di�erent approach was taken by Haussler and Welzl [6]. They were motivated

by range query problems in computational geometry. A typical range query problem
would be as follows: A set of N given points in the plane is to be preprocessed in
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such a way that queries for the number of points contained in a triangle can be

answered quickly. The N points are given in advance and remain �xed, and the
preprocessing time to build up a data structure is not so important. However, there

are many subsequent triangle queries, and they should be e�cient. Haussler and

Welzl introduced "-nets to de�ne such a data structure. An "-net is a subset A

of X with dispersion d(X;R;�)(A) at most ", where � is the uniform distribution

on X and R is the family of all possible query regions (triangles in our example).

Haussler and Welzl showed the existence of "-nets of small size under a very general
combinatorial condition on R. Their condition involves the concept of Vapnik-

Chervonenkis dimension [15]: This is the cardinality of the largest subset Y of X

such that the set system fR \ Y : R 2 Rg contains all subsets of Y .
If the range space R has �nite Vapnik-Chervonenkis dimension d then a ran-

dom subset of X of size d
"
log 1

"
is an "-net with high probability. Koml�os, Pach

and Woeginger [16] established that this bound on the size cannot be improved in

general. Their construction for the lower bound is purely combinatorial. The inter-

esting question remains open, whether such a lower bound holds for some natural

geometric range space. Very recently, Matou�sek, Welzl, and Wernisch [17] extended
this approach to subsets of small discrepancy.

In section 2 of this article we collect some elementary inequalities between the
dispersion of point sets for various range spaces in the unit square with respect to
uniform distribution. Sections 3 and 4 are devoted to the investigation of special
sequences which are used for quasi-Monte-Carlo applications, such as the Halton
sequence [18], the Sobol sequence [10, 19], the Faure sequence [20], and the Ham-
mersley sequence [3]. In section 3 we prove bounds for the dispersion of a few of
these point sequences in the unit square with respect to uniform distribution �

and natural geometric range spaces. Procedures for generating quasi-random point
sets are given in [21{25]. Some of these papers test the quality of the point sets
by computational experiments. In section 4 we test the quality of these sets by
computing their dispersion in two and three dimensions.

In the �nal section 5 we mention an application of the dispersion with respect
to slices on the two-dimensional sphere to the piece-wise linear approximation of
curves in space. This problem is of importance for example in motion control in
robotics. For a detailed presentation we refer to [26].

2. General estimates for the dispersion in the unit cube Us

In this section we consider the uniform distribution � in the unit cube X = Us in
connection with various range spaces. For any particular range space the dispersion
is clearly bounded by the discrepancy:

(2.1) d(X;R;�)(A) � D(X;R;�)(A):

This can be seen by restricting the supremum in de�nition (1.4) to those ranges R
with A \R = ;.

In the following we consider three natural classes of range spaces. We will see

that the dispersion is of the same order of magnitude within each class.

1. Range spaces of �xed shape. Examples are the range space of all balls, of all axis-
parallel or of arbitrary cubes. In general a range space of �xed shape consists
of all sets which are homothetic or which are similar to a given convex body
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P . This includes the range space of all balls with respect to some norm in the

s-dimensional Euclidean space (restricted to Us).
2. Axis-parallel range spaces. This includes the range space of all axis-parallel

rectangular boxes or of all axis-parallel ellipsoids. The characteristic feature of

these ranges is that they can be arbitrarily \long and thin" in each coordinate

direction. In general an axis-parallel range space consists of all sets which can be
obtained from a given convex body P by independent scalings of the coordinate

axes.

3. Isotropic range spaces. This includes the range space of all simplices, of all

ellipsoids, of all rectangular boxes, or of all general convex regions. The charac-

teristic feature of these ranges is that they can be arbitrarily \long and thin" in
any direction. This class of range spaces might be de�ned as those ranges spaces

which consist of convex sets and are closed under a�ne transformations. How-

ever, the range space of rectangular boxes would not fall under this de�nition,

and therefore we have to use a broader de�nition: A family R of convex sets
forms an isotropic range space if every ellipsoid S contains a range R 2 R with

�(R) � c�(S), for some constant c.

Most of the simple geometric range spaces that we could think of (as long as
they include only convex ranges) fall into one of the three classes.

Proposition 2.1. Let R and S be two range spaces of the same class. Then there

are constants c1 and c2 such that the following relation holds for all point sets A:

(2.2) c1dR(A) � dS(A) � c2dR(A):

Proof. It is su�cient to show that each range R 2 R contains a range S 2 S with
�(S) � c�(R), for some constant c, and vice versa.

For ranges R in a range space R of �xed shape, it is clear that this relation holds
between R and a Euclidean ball S: R is similar to the convex body P , which has
a largest inscribed ball S1 and a smallest circumscribed ball S2. Thus R contains

a ball S with �(S) � �(S1)

�(P )
�(R) and similarly any ball S contains a range R 2 R

with �(R) � �(P )

�(S2)
�(S). Between two di�erent range spaces of the �rst class the

relation follows via the balls.

For axis-parallel range spaces, the relation (2.2) follows in the same way by
replacing balls by axis-parallel ellipsoids, and for isotropic range spaces we take
arbitrary ellipsoids. Each range R of an isotropic range space R is convex and
therefore it contains an ellipsoid S with �(S) � �(R)=dd; the converse statement

(with a di�erent constant) follows from the de�nition. For particular pairs of range
spaces, the determination of the optimal constants involved in these relations is a
problem of its own geometric interest. For example, every convex body R contains

a triangle S with area �(S) � 3
p
3

4�
�(R); every triangle R contains a rectangle S

with area �(S) � �(R)=2; and every rectangle R contains a triangle S with area
�(S) � �(R)=2, etc., see Fejes T�oth [27].

Theorem 2.2. Let R1, R2, and R3 be range spaces of classes 1, 2, and 3 de�ned

above, respectively. Then the following inequalities hold for all point sets A:

(2.3) c1dR1
(A) � dR3

(A) � c2dR1
(A)1=s
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(2.4) c3dR1
(A) � dR2

(A) � c4dR1
(A)1=s

(2.5) c5dR2
(A) � dR3

(A) � c6dR2
(A)1=s,

where ci are appropriate positive constants.

Proof. By Proposition 2.1 it is su�cient to consider a �xed representative of each

class of range spaces. Thus we take as R1 the class of all Euclidean balls, as R2 the

class of all axis-parallel ellipsoids, and as R3 the class of all convex bodies. Since

R1 � R2 � R3, the left-hand sides of the above relations follow trivially, and for
the right-hand sides it is enough to prove (2.3). For this purpose we make use of

the following lemma.

Lemma 2.3. For an s-dimensional convex body P with volume V , inradius r, and

circumradius R, the following inequality holds:

V � 2!s�1 � rRs�1;

where !s�1 is the volume of the (s � 1)-dimensional unit ball.

Proof. We show that the inequality is true even if we replace the inradius r by
the radius rC of the largest inscribed ball B which is centered at the center of
gravity C of P . Let D be a point where B touches the boundary of P . Since P
is convex, there is a supporting hyperplane h of P through D; since P contains B,
the supporting hyperplane h must be perpendicular to the radius CD (see the left
part of Figure 1, where the line through CD is taken as the x-axis).

| {z }

Z

C
D x

2R

~P

h h
0

C
D x

rC

2R

P

h h
0

B

Figure 1.

Now consider the cylinder Z which is bounded by h and by the parallel hyper-
plane h0 which lies symmetric to h with respect to C, and by the tangents of the
circumsphere which are parallel to the x-axis. The height of this cylinder is 2rC,
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and the volume of its basis is !s�1Rs�1. Hence, the volume of the cylinder is just

our desired upper bound on the volume V of P .
We prove the lemma indirectly and assume the volume V is bigger than this

bound. Then some part of P must lie to the right of h0. Now we construct a

modi�ed body ~P by \moving" some part of the volume of P from the right side of
h0 into the cylinder Z until this cylinder is full. Formally, we take any subset of the

right part of P which has the correct measure and remove it, and we replace the

left part of P by Z, see Figure 1. (We need not care about convexity at this stage

of the proof.)

Since mass has been moved from the right side of h0 to the left of h0, the center
of gravity of ~P has its x-coordinate to the left of C. On the other hand, ~P consists

of two parts: Z, whose center has the same x-coordinate as C; and an additional

part to the right of h0. Thus ~P 's center of gravity must lie to the right of C, a

contradiction.

Now let us conclude the proof of the theorem. For the point set A we have an

empty convex body of volume V = dR3
(A) � ", for any " > 0. Since this body is

contained in the unit cube, its circumradius R is at most
p
s=2. By the lemma,

there is thus an empty ball of radius

r � V

2!s�1 � (
p
s=2)s�1

= c � V:

Hence the volume of this ball is at least cs!s �(dR3
(A)�")s, for any " > 0. From this

the right-hand side of (2.3) follows, and the proof of the theorem can be completed
as described above.

3. The dispersion of special sequences in the unit cube Us

In this section we will establish several bounds for the dispersion of some special
point sequences with lattice structure. All these sequences are multi-dimensional
extensions of the well-known van der Corput sequence, which is de�ned by 
2(n) =P

j�0 aj2
�j�1 for n =

P
j�0 aj2

j in dyadic representation. For the discrepancy

D of the �rst N elements of this sequence with respect to intervals the following
bound holds.

(3.1) c1
logN

N
� D � c2

logN

N
;

where c1; c2 are suitable positive constants, see Kuipers and Niederreiter [9]. Con-
sidering general q-ary digit representations and setting


q(n) =
X
j�0

bjq
�j�1 for n =

X
j�0

bjq
j ;

the following s-dimensional extensions of the van der Corput sequence are known.

De�nition. Let qi be co-prime integers � 2. The Halton sequence in s dimensions

[18] is the sequence

EN = f (
q1 (n); : : : ; 
qs(n)) : 0 � n < N g;
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and the Hammersley sequence in s dimensions is the sequence

HN = f ( n
N
; 
q1(n); : : : ; 
qs�1(n)) : 0 � n < N g:

For the discrepancy (with respect to axis-parallel rectangles) the following esti-
mates are known:

(3.2) D(EN ) � c3
logsN

N
;

and

(3.3) D(HN ) � c4
(logN)

s�1

N
;

where c3 and c4 are suitable constants. For the Halton sequence EN in s = 1

dimension the converse inequality of (3.2) holds also (with a di�erent value of the

constant c3), and similarly, a lower bound matching the upper bound of (3.3) is
known for the Hammersley sequence HN in dimensions s = 1 and s = 2. Further-

more Larcher [28] proved that the isotropic discrepancy of these point sequences is

of the order O(N�1=s). The constants in the above estimates are superexponen-

tially increasing in the dimension s. For getting smaller constants Sobol [10], Faure
[20] and Niederreiter [29, 30] considered far-reaching extensions of these sequences,
the so-called net-sequences, see also [31].

De�nition. Let 0 � t � m be integers. A (t;m; s)-net in base q is a point set A of
qm points in Us such that #(I \A) = qt for every s-dimensional interval

(3.4) I =

sY
i=1

[biq
�di ; (bi + 1)q�di ) (bi; di integral)

with volume q�
P

di = qt�m. Let t be a positive integer. Then a point sequence
x1; x2; : : : 2 Us is called a (t; s)-sequence in base q if for all non-negative integers k
and m � t, the set fxn : kqm < n � (k + 1)qmg is a (t;m; s)-net in base q.

Remark. For (t;m; s)-nets and for (t; s)-sequences the above bounds (3.2) and
(3.3) are true with constants tending to 0 for s ! 1 if q is chosen appropriately
depending on s, see [29].

Proposition 3.1. Let A be the Hammersley sequence or the Halton sequence with

bases q1; q2; : : : , or any (t;m; s)-net with basis q, consisting of N points. Then the

dispersion with respect to axis-parallel boxes satis�es the following estimate:

c5
1

N
� d(A) � c6

1

N
with suitable positive constants c5; c6.

Proof. The lower bound d(A) � 1=(N + 1) holds for any sequence. For the case

of (t;m; s)-nets any interval of type (3.4) with volume qt=N contains exactly qt

points. For the Halton sequence the elementary cells are de�ned in analogy to (3.4)

with di�erent bases qi. In the case of the Hammersley sequence an elementary
cell is also de�ned analogously, except that the �rst dimension of I is bounded by
arbitrary multiples of 1=N . In any case, an elementary cell of volume � 1

N
contains

at least one point. Since any axis-parallel box of volume v contains an interval
of type (3.4) with volume bigger than v=(2q)s (or v=

Q
(2qi) or (v � 2=N)=

Q
(2qi),

respectively), a box with volume greater than qt(2q)s=N (or 2s
Q
qi=N or (2s

Q
qi+

2)=N , respectively) cannot be empty (cf. Larcher [32]).
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Theorem 3.2. Let HN = f ( n
N
; 
2(n)) : n = 0; : : : ;N�1 g be the two-dimensional

Hammersley sequence. Then the dispersion d(HN ) with respect to arbitrary rect-

angles satis�es

(3.5)
c7p
N
� d(HN ) �

c8p
N

with some positive constants c7; c8.

Proof. The right-hand side of (3.5) follows immediately from the above proposition

and Theorem 2.2. For the left-hand side we proceed as follows:

W. l. o. g. we take N = 22s and write n < N in binary representation

n =

2sX
j=1

ej2
j�1:

Hence we get

x =
n

N
=

2sX
j=1

ej2
j�1�2s and y = 
2(n) =

2sX
j=1

ej2
�j :

If ek = e2s�k+1 for all k the point lies on the main diagonal y = x. Otherwise let
k be the smallest index such that ek 6= e2s�k+1. Then we have

jy � xj =
��� n
N
� 
2(n)

��� =
����ek � e2s�k+1

2k
+
ek+1 � e2s�k+

2k+1
+ � � �+ e2s�k+1 � ek

22s�k+1

����
=

����(ek � e2s�k+1)
�

1

2k
� 1

22s�k+1

�
+ (ek+1 � e2s�k)

�
1

2k+1
� 1

22s�k

�
+

� � �+ (es � es+1)

�
1

2s
� 1

2s+1

�����
�
�
1

2k
� 1

22s�k+1

�
�
�

1

2k+1
� 1

22s�k

�
� � � � �

�
1

2s
� 1

2s+1

�
� 1

2s+1
:

(The last sum achieves its minimum for k = s.) Thus the strip 0 < y � x < 2�s�1

contains no point of the point set HN . It contains a rectangle of area 2�s�1 �
2�2s�2 � 1=(4

p
N ), and the proof of the theorem is complete.

Remark. The above theorem can easily be generalized to the two-dimensional

q-ary Hammersley sequence for arbitrary q.

Problem 1. It is an interesting question to ask for dispersion bounds for the
Hammersley sequence in dimension s � 3 as well as for the Halton sequence in
dimension s � 2.

De�nition. For N = 2t the Sobol sequence SN in two dimensions can be de�ned

via the matrix Mt = (
�
j

i

�
mod 2)0�i;j<t of binomial coe�cients modulo 2. We set

SN =
n� X

0�i<t
xi2

�i�1;
X
0�i<t

yi2
�i�1

�o
;
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Figure 2. The Sobol sequence with 27 points.

where the vector X = (xi)0�i<t runs through all 0;1-sequences of length t and

Y = (yi)0�i<t =MtX mod 2:

Figure 2 shows the Sobol sequence with 128 points.

Theorem 3.3. Let t = 2k+1�1 and let SN be the two-dimensional Sobol sequence

with N = 2t elements. Then the dispersion d(SN ) with respect to rectangles

satis�es

(3.6)
c9p
N
� d(SN ) �

c10p
N

with some positive constants c9; c10.

Proof. Since SN is a (0; t; 2)-net the right-hand side of (3.6) follows immediately
from Proposition 3.1 and Theorem 2.2. For the proof of the left-hand side, note
that the upper-triangular matrix Mt for t = 2k+1 can be written recursively as
follows:

M2k+1 =

�
M2k M2k

0 M2k

�
:

From this (or directly from the de�nition) it follows easily that (Mt)
2 = I, for

all t. Let us write the vector X in two groups: X0 = (x0; x1; : : : ; x2k�1) and
X1 = (x2k ; : : : ; x2k+1�3; x2k+1�2; 0) and similarly for (Y0; Y1) = (Y; 0). (For reasons
of symmetry, we have inserted a last component xt = yt = 0.) Then the equations

de�ning the Sobol sequence can be written as

Y0 =M2kX0 +M2kX1

Y1 = +M2kX1

Since the last component of X1 is 0 and the matrix M2k is upper triangular it
follows from the �rst equation that the last components of X0 and Y0 are equal:
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x2k�1 = y2k�1. If we partition the unit square into squares of size 2
�2k�2�2�2

k�2,
x2k�1 = y2k�1 means that the empty squares and the non-empty squares form a

checkerboard pattern, see �gure 2, where k = 2. We will show that the points in the

squares on the main diagonal (X0 = Y0) lie exactly on the main diagonal, i. e., they

also ful�ll X1 = Y1: Multiplying the �rst equation by M2k and using (M2k)
2 = I

and X0 = Y0, we get X1 = (M2k � I)X0, and the second equation gives

X1 � Y1 = (I �M2k)X1 = �(M2k � I)2X0 = 0:

Thus a strip of height 1=22
k�2 = 1=2(t�3)=2 above and below the main diagonal is

empty. It contains a rectangle of area

1

2(t�3)=2
� 1

2t�3
� 1p

2N
;

and the lower bound is proved.

Remark. Since S2t�1 is a subset of S2t , the empty strip in the above proof does
not contain a point in any set S2t , for t � 2k+1 � 1, and yields a lower bound
for the dispersion. However, the area of this strip becomes smaller and smaller
when compared to the number of points as t decreases, and thus the quality of the
bound becomes worse. For powers of 2, t = 2k, we only obtain the trivial bound
d(SN ) � c1=N .

Problem 2. The dispersion of the two-dimensional Sobol sequence S2t for general
values of t is not known. The Sobol sequence has been generalized to other bases
than 2 and to higher dimensions by Faure [20], see also [29] and the following
de�nition in the next section. It is open what happens in these cases.

4. Computational results

In this section we give some numerical results on the dispersion of the following
point sets in the plane: the Hammersley sequence for q = 2 and q = 3, the Sobol
sequence, and the Halton sequence for bases q1 = 2 and q2 = 3. In three dimen-
sions, we consider the Halton sequence for bases q1 = 2, q2 = 3 and q3 = 5, the
Hammersley sequence for bases q1 = 2 and q2 = 3, Sobol's dyadic net sequences

[11], and the Faure sequence for q = 3. The Faure sequence is a generalization of
the Sobol sequence to base q and arbitrary dimension s.

De�nition. Let q be a prime and q � s. For N = qt the Faure sequence FN in
s dimensions to base q can be de�ned via the matrix Mt = (

�
j

i

�
mod q)0�i;j<t of

binomial coe�cients modulo q. We set

FN =
n� X

0�j<t
x1j q

�j�1;
X

0�j<t
x2j q

�j�1; : : : ;
X

0�j<t
xsjq

�j�1;
�o

;

where the vector X1 = (x1j )0�j<t runs through all sequences of length t with digits

from the set f0; 1; : : : ; q � 1g, and

Xi = (xij )0�j<t =MtX
i�1 mod q, for i = 2; : : : ; s.
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In the plane, we constructed the respective sequences for all powers of the ap-

propriate bases (2 or 3) up to N = 312 = 531 441. For each point set we computed
the largest empty triangle that is formed by points of the sequence, because this is

easier to compute than the largest empty triangle T with arbitrary corners. Since

a largest empty triangle T with arbitrary corners always contains a triangle whose

vertices belong to the given set and whose area is at least a quarter of the area of
T , the numbers in tables 1 and 2 give the dispersion with respect to triangles up to

a constant factor. By Proposition 2.1 this also holds for arbitrary isotropic range

spaces. The numbers in the tables are the areas multiplied by N to make them

comparable for di�erent values of N .

We describe now the algorithm that we use to compute the largest empty triangle.

We go through all empty triangles and keep the largest one. In order to enumerate
all empty triangles, we �x the leftmost vertex v1 of the triangle. We declare that

the segment v2v3 between two points to the right of v1 is visible (from v1) if the

triangle v1v2v3 is empty. In fact, if we look at the simple polygon formed by v1
and the points v to the right of v1 in angular order, the visible segments together
with the segments from v1 to all other vertices form the visibility graph of this

polygon, a well-known concept in computational geometry. The visibility graph of
a general simple polygon can be found in time proportional to its size [33, 34]. For
computing the visibility graph one needs a triangulation of the polygon. In our
case the polygon is star-shaped with respect to v1, and a triangulation is readily
available. Thus the algorithm becomes quite simple. We give here only an intuitive
description of the ideas behind the algorithm. Imagine spanning a rubber string
from v2 via v1 to v3 and letting it loose at v1. The string will form a convex
piecewise linear curve between v2 and v3, and it will be a straight segment if and
only if v2v3 is visible. The union of all these strings from a �xed vertex v2 is a tree
rooted at v2.

We sweep through the points v2 to the right of v1 in angular order around v1.
As we go, we maintain the tree of rubber strings from v2 to all points v3 preceding
v2 in the angular order. If we go from a vertex v02 to its successor v2 in the angular
order, the new tree edges in the tree rooted at v2 that were not contained in the
old tree rooted at v02 are precisely the tree edges out of v2. It is possible to update
the tree in time that is proportional to the number of these new edges, by exploring
a subtree of the old tree starting at v02. On the other hand, the tree edges out of

v2 correspond to the empty triangles v1v2v3, and thus, the total work involved in
updating the trees is proportional to the number of empty triangles.

Before we start the sweep, we have to perform an angular sort around each vertex
v1, at a total cost of N �O(N logN). (It is possible to compute the sorted angular
lists around all points in O(N2) total time, but only at the cost of O(N2) storage.)

Thus the overall time for our algorithm is proportional to N2 logN plus the number

of empty triangles. Since we expect our sequences to be \well" distributed, we
may reasonably assume that the number of empty triangles is small compared
to the maximum possible number of O(N3). In our experiments, the number of

empty triangles appeared to be growing at a rate between N2:02 and N2:1, which is

reasonably close to N2. (The exponents were obtained by a logarithmic regression.)
This is in accordance with a result of B�ar�any and F�uredi [35] who showed that, for
N random points, the expected number of empty triangles is O(N2).

The programs were written in Pascal. The codes are available from the authors.
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N � (area of the largest empty triangle)

N Hammersley sequence Sobol Halton seq.

q = 3 q = 2 sequence q1=2; q2=3

3 = 31 0.000000 0.375000
4 = 22 0.375000 1.000000 0.500000
8 = 23 1.312500 1.750000 1.166667
9 = 32 1.777778 1.812500

16 = 24 2.343750 3.500000 2.888889
27 = 33 3.851852 2.296875

32 = 25 4.359375 4.000000 2.901235
64 = 26 4.359375 6.562500 4.475309

81 = 34 5.135802 4.875000

128 = 27 5.953125 7.000000 5.419753
243 = 35 11.950617 5.966797
256 = 28 6.445312 8.562500 6.286008
512 = 29 11.976563 15.750000 9.607682

729 = 36 11.950617 9.216797
1024 = 210 11.976563 22.359375 10.764060
2048 = 211 23.988281 30.312500 12.506401
2187 = 37 35.983539 11.141357
4096 = 212 23.988281 52.939453 14.043439
6561 = 38 35.983539 14.584961

8192 = 213 47.994141 51.767578 15.343520
16384 = 214 47.994141 90.667969 19.415231

19683 = 39 107.994513 20.362000
32768 = 215 95.997070 89.997253 18.413529
59049 = 310 107.994513 25.303238
65536 = 216 95.997070 39.998779 28.082999
131072 = 217 191.998535 80.078125 23.567032
171147 = 311 323.998171 29.122341

262144 = 218 191.998535 159.370117 30.958357
524288 = 219 383.999268 317.802734 28.360017
531441 = 312 28.746941

Table 1. Largest-area empty triangles in quasi-random point sets

We now discuss the results of table 1. We see that for the Hammersley sequence
the area of the largest triangle decreases by a factor of q when N increases from

an odd power of q to the subsequent even power (except for small N). In table 1,

the corresponding entries are equal. On the other hand, when N increases from
an even power of q to the subsequent odd power, the area of the largest empty
triangle remains almost unchanged. (The corresponding entries in the table are

approximately multiplied by q.) We conjecture that this is true in general. The

data seem to support the hypothesis that the area of the largest empty triangle for
the Hammersley sequence with N = 3n and N = 2n points is asymptotically equal

to (4=9) � 3�bn=2c and (3=8) � 2�bn=2c, respectively. This would be in accordance
with Theorem 3.2.
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The �gures for the Sobol sequence exhibit a similar O(
p
N) growth rate, but

the behavior is more erratic. The numbers make large jumps from N = 28 to 29,
from 213 to 214, and from 216 to 217. On the other hand there is a small decrease

from 212 to 213 and a huge decrease from 215 to 216. Note that the case N = 215 is

covered by the lower bound of Theorem 3.3, and thus it is not surprising that this

sequence should have quite large empty triangles.
The Halton sequence is clearly the best-distributed one. The growth of the

numbers is very slow, but it seems that it is slightly faster than logarithmic. Also,

the largest empty triangle was always unique for the Halton sequence, whereas there

were many largest empty triangles for the Sobol sequence and even more for the

Hammersley sequence.
Table 2 shows the area of the largest empty triangle for random (0;m; 2)-nets

in base 2. Such a net is obtained by starting with an arbitrary (0;m; 2)-net whose

point coordinates are multiples of 2�m. Then we look at each pair of adjacent

\elementary" vertical strips [b2�d; (b + 1=2)2�d] � [0; 1) and [(b + 1=2)2�d; (b +
1)2�d]� [0; 1), for 0 � d < t and 0 � b < 2d, and we exchange the points in these

two strips with probability 1=2 (independently of each other). This amounts to a

change of x-coordinates of the points. It is clear that the properties of a net are
maintained, and one can see that every possible (0;m; 2)-net is obtained with the
same probability.

N � (largest empty triangle): average, minimum, maximum
N

random nets random permutations

4 0.700000 (0:375000{0:875000) 0.600000 (0:875000{1:000000)
8 1.450000 (1:062500{2:000000) 1.331250 (0:875000{1:875000)
16 2.075000 (1:812500{2:343750) 2.812500 (1:875000{3:687500)
32 3.350000 (2:859375{3:796875) 3.985937 (2:500000{6:000000)

64 4.354687 (3:640625{5:210938) 5.685156 (4:921875{8:265625)
128 5.639062 (4:960938{6:492188) 7.344141 (5:675781{9:113281)
256 6.941992 (5:949219{8:439453) 9.574609 (7:968750{12:210938)
512 8.413672 (7:693359{9:249023) 11.033594 (10:239258{12:608398)
1024 10.262158 (9:305664{11:684082) 13.008350 (10:472656{15:835449)
2048 12.475562 (11:070313{15:442871) 15.529590 (13:556152{16:931152)
4096 13.878772 (12:431396{15:653809) 16.201721 (15:084106{17:378418)
8192 16.067871 (14:014038{19:222839) 18.151520 (16:203369{20:549500)

16384 18.094440 (16:801270{19:333923) 19.526987 (17:706146{22:538086)

Table 2. Largest-area triangles in random nets and random
permutations. For each value of N we carried out 10 independent runs.

For comparison, the second column shows the result for point sets which form
a random permutation between the x-coordinates f0; 1=N; 2=N; : : : ; (N � 1)=Ng
and the y-coordinates from the same set. It is well-known that the largest empty
triangle in a set of n points drawn independently from a uniform distribution in Us

has an expected area of �(logN=N), as follows from general results, see for example

[15] or [6]. Since our program was designed to work only for permutations, we chose
random permutations as an approximation of independent uniform points. Each
entry represents the average of 10 runs, and the maximum and minimum values
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are also indicated. One can see that random nets give a slightly better distribution

than the Halton sequence. Random permutations are not quite as good, but are
still de�nitely better than the Hammersley sequences. The largest empty triangles

were usually unique, except for a few cases with small numbers of points.

Table 3 presents the analogous results for three dimensions. We computed the
largest empty tetrahedron with vertices from the given point set, for the same

reasons as in the planar case. For generating the point sequences we used codes from

Sobol and Shukhman. In three dimensions we apply a more brute-force method

than in the plane. We generate all
�
n

4

�
tetrahedra and check for each one whether

it is empty. For this check, we use the multidimensional binary search tree data

structure (3-D tree) of Bentley [36], see also [37]: The element whose x-coordinate is

the median of all x-coordinates is stored in the root node, and the remaining points

are split into those with smaller x-coordinates and those with larger x-coordinates.

The two halves become the two sub-trees of the root. At the next level, each
half is again split, this time according to y-coordinates, and the median element is

stored in the root of the subtree. At the third level, the points are split according

to z-coordinates, and in the lower levels, the splitting direction continues to cycle
through the three coordinate directions. Finally, if only a single point remains from
the splitting it forms a leaf of the data structure. For each node we also store the
coordinates of the axis-parallel box enclosing all points in its subtree. A search for
a point contained in a given tetrahedron proceeds from the root to the leaves. In
general, when we search a tree node, we have to recursively search both subtrees.
When we �nd that the enclosing box of a node is disjoint from the tetrahedron in
question, we can abandon the search of the whole subtree. We �rst search that
subtree whose enclosing box contains the center of gravity of the tetrahedron. This
is intended to direct the search quickly onto those regions where a point can be
found. On average, less than 9 tree nodes had to be visited in our experiments
before a point in the tetrahedron was found or the tetrahedron was established to
be empty. (We checked only those tetrahedra which were at least as large as the
largest tetrahedron found so far.)

N � (area of the largest empty tetrahedron)

N
Halton Hammersley Sobol

N
Faure

~q = (2; 3; 5) ~q = (2; 3) q = 2 q = 3

4 0.08888889 0.11111111 0.00000000
8 0.44444444 0.33333333 0.66666667

16 1.77185185 0.94444444 1.26041667
32 2.80059259 2.71141975 2.47916667 9 0.50000000
64 4.83634568 4.17129630 5.29166667 27 3.16666667
128 9.57353086 5.56854424 7.07812500 81 7.77777778

256 15.97181893 8.51485340 8.36421712 243 14.91906722
512 32.89752757 12.73225309 11.51106771 729 50.84339278

Table 3. Largest-volume empty tetrahedra in three-dimensional
quasi-random point sets. ~q stands for the sequence of bases (q1; q2; : : : ).

The Hammersley and Sobol sequences seem to be best, and they beat the Halton
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and Faure sequences clearly. In contrast to the planar case, the Sobol sequence also

seems to be competitive, and it tends to become better as the number of points
grows. The largest empty tetrahedron was usually unique, except when the number

of points was small.

5. Spherical dispersions with an application

to polygonal approximation of curves

In this section we consider the s-dimensional unit sphere X = Ss with the
uniform distribution �. The range space that is usually considered on the sphere is

the range space C of spherical caps, i. e., intersections of the sphere with half-spaces.
For quasi-Monte-Carlo methods on the sphere we refer to Tichy [38].

In the following we will consider the dispersion with respect to the range space

S of spherical slices and we will explain an application of spherical dispersions for

this range space to the piecewise linear approximation of curves in space.

Obviously, as in the case of the unit cube, the dispersion does not exceed the

corresponding discrepancy. The following elementary relation holds between cap
and slice dispersion.

Proposition 5.1. For any point set A on the sphere Ss, we have

dS (A) � c � dC(A)1=s;

for some positive constant c.

Theorem 5.2. For every N there is a point set A on the sphere Ss with slice

dispersion

dS (A) = O(1=N):

A detailed proof is given in [26]. One simply has to distribute the N points as

evenly as possible over the
�
s+1

2

�
\coordinate circles" which are obtained as the

intersections of the coordinate planes with the unit sphere, and place the corre-
sponding points equidistantly on each circle.

In the remainder of this section we will brie
y show how the slice dispersion
on the sphere in three-dimensional space arises in a problem of piecewise linear
approximation of curves in space.

For instance, in robotics it is an important problem to approximate a \general"
curve by simple curves like straight lines, circles etc., because the arm of the robot
can only run along such simple curves. The most important case is the approx-

imation by a polygonal line through suitably chosen interpolation points on the

curve.
Let us �rst consider a plane curve. Suppose we have already selected a starting

sequence of points P1; : : : ; Pk�1. We can then try to advance the new point Pk
on the curve as far as possible while still maintaining the property that the curve
between Pk�1 and Pk lies in an "-strip around the the segment Pk�1Pk, for a given
error bound ". The algorithmic details of this procedure are quite straightforward

and can be found in [26]. If one wants to carry over this method to three dimensions
one runs into some geometric di�culties. However, we can reduce this problem

to the planar case by considering suitably chosen projections. We project the
curve orthogonally onto N di�erent planes and ensure that in each projection the
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projected curve between Pk�1 and Pk lies in an "0-strip around the the projected

segment Pk�1Pk, for a suitably chosen error bound "0 < ". This guarantees that the
original three-dimensional curve between Pk�1 and Pk lies in an a"0-strip around

the the segment Pk�1Pk, for some constant a which we would like to be as small

as possible.

Let us see how a depends on the choice of theN projection directions �1; : : : ; �N .
Let g be the line through Pk�1 and Pk. We know that the curve segment between

Pk�1 and Pk lies in the set

Z = Z(�1; : : : ; �N ; g) =
N\
i=1

fx : dist(�i(x); �i(g)) � "0 g;

where �i(x) denotes the projection of x along the direction �i onto an orthogonal

plane, and dist(P; `) denotes the distance of the point P from the line `. The set Z
is thus an intersection of N parallel slabs. To calculate the maximum distance of

a point in Z from g, we intersect Z with an orthogonal plane g? of g and obtain
a convex symmetric polygon Z whose edges are parallel to the projections of the
directions �i onto g?. The distance of the edges to the center of Z is "0. The
maximal distance of a vertex of Z to the center is

"0

cos�=2
;

where � is the maximal angle between two adjacent edges. If we consider the
projection directions �1; : : : ; �N and the line g as point pairs on the sphere S2,
� is the opening angle of the largest empty slice with corners at the two points
corresponding to g. Since we want � to be small for all directions g, we have to
choose these N points exactly in such a way that the slice-dispersion dS is minimal.

Thus, in order to ensure that the spatial curve lies in an "-neighborhood of
the piece-wise linear curve through the points P1; P2; : : : , we have to set "0 =
" � cos(dS (f��1; : : : ;��Ng)=2).

6. Concluding Problem

As mentioned in the introduction, there is a lower bound of 
( 1
"
log 1

"
) for the

size of an "-net in range spaces of �nite Vapnik-Chervonenkis dimension. It is

conjectured that this lower bound is true even for simple geometric range spaces,
like triangles with the uniform distribution �. We remark that this would imply a
solution to a well-known problem of Danzer (see Beck and Chen [39], p. 285).

Acknowledgement. We are indebted to G. Larcher and Raimund Seidel for valu-

able discussions and comments and to J. Thuswaldner for help with implementing

the programs.

References

[1] H. Niederreiter,Quasi-Monte Carlo methods for global optimization, Mathematical Statistics

and Applications, Vol. B, Proc. 4th Pannonian Symp., Bad Tatzmannsdorf, 1983 (W. Gross-

mann, G. C. P
ug, I. Vincze, and W. Wertz, ed.), Reidel, Dordrecht, 1985, pp. 251{267.

[2] H. Niederreiter and P. Peart, Localization of search in quasi-Monte Carlo methods for global

optimization, SIAM J. Sci. Stat. Comput. 7 (1986), 660{664.



QUASI-MONTE-CARLO METHODS AND DISPERSION 17

[3] H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods, SIAM, Phi-

ladelphia, 1992.

[4] E. Hlawka, Absch�atzung von trigonometrischen Summen mittels diophantischer Approxima-

tion, �Osterreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 185 (1976), 43{50.

[5] H. Niederreiter, A quasi Monte-Carlo method for the approximate evaluation of the extreme

values of a function, Studies in Pure Mathematics (P. Erd�os, ed.), Birkh�auser, Basel, 1983,

pp. 523{529.

[6] D. Haussler and E. Welzl, "-nets and simplex range queries, Discrete Comput. Geom. 2

(1987), 127{151.

[7] N. M. Korobov, The approximate computation of multiple integrals, Dokl. Akad. Nauk SSSR

124 (1959), 1207{1210. (Russian)

[8] N. M. Korobov, Number-Theoretic Methods in Approximate Analysis, Fizmatgiz, Moscow,

1963. (Russian)

[9] L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, Wiley, New York, 1974.

[10] I. M. Sobol0, On the distribution of points in a cube and the approximate evaluation of

integrals, Zh. Vychisl. Mat. i Mat. Fiz. 7 (1967), 784{802 (Russian); English translation in

U.S.S.R. Comput. Math. and Math. Phys. 7 (1967), 86{112.

[11] I. M. Sobol0, Multidimensional quadrature formulas and Haar functions, Nauka, Moscow,

1969. (Russian)

[12] E. Hlawka, Funktionen von beschr�ankter Variation in der Theorie der Gleichverteilung, Ann.

Mat. Pura Appl. 54 (1961), 325{333.

[13] E. Hlawka, Zur angen�aherten Berechnung mehrfacher Integrale, Monatsh. Math. 66 (1962),

140{151.

[14] M. Drmota and R. F. Tichy, C-uniform distribution on compact metric spaces, J. Math.

Anal. Appl. 129 (1988), 284{292.

[15] V. N. Vapnik and A. Ya. Chervonenkis, On the uniform convergence of relative frequencies

of events to their probabilities, Teor. Veroyatnost. i Primenen. 16 (1971), 264{279 (Russian);

English translation in Theory Probab. Appl. 16 (1971), 264{280.

[16] J. Koml�os, J. Pach, and G. Woeginger, Almost tight bounds for epsilon-nets, Discrete Com-

put. Geom. 7 (1992), 163{174.

[17] J. Matou�sek, E. Welzl, and L. Wernisch, Discrepancy and approximations for bounded VC-

dimension, Combinatorica 13 (1993), 455{466.

[18] J. H. Halton, On the e�ciency of certain quasi-random sequences of points in evaluating

multi-dimensional integrals, Numer. Math. 2 (1960), 84{90.

[19] I. M. Sobol0, Uniformly distributed sequences with an additional property of uniformity,

Zh. Vychisl. Mat. i Mat. Fiz. 16 (1976), 1332{1337, 1375 (Russian); English translation in

U.S.S.R. Comput. Math. and Math. Phys. 16 (1976), 236{242.

[20] H. Faure, Discr�epance de suites associ�ees �a un syst�eme de num�eration (en dimension s),

Acta Arith. 41 (1982), 337{351.

[21] J. H. Halton and G. B. Smith, Algorithm 247; radical-inverse quasi-random point sequence,

Commun. ACM 7 (1964), 701{702.

[22] B. L. Fox, Algorithm 647: Implementation and relative e�ciency of quasirandom sequence

generators, ACM Trans. Math. Software 12 (1986), 362{376.

[23] P. Bratley and B. L. Fox, Algorithm 659: Implementing Sobol's quasi-random sequence gen-

erator, ACM Trans. Math. Software 14 (1988), 88{100.

[24] P. Bratley, B. L. Fox, and H. Niederreiter, Implementation and tests of low-discrepancy

sequences, ACM Trans. Modeling and Computer Simulation 2 (1992), 195{213.

[25] I. M. Sobol and B. V. Shukhman, On computational experiments in uniform distribution,
�Osterreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 210 (1992), 161{167.

[26] G. Rote and R. F. Tichy, Spherical dispersion with an application to polygonal approximation

of curves, Anz. �Osterreich. Akad. Wiss. Math.-Natur. Kl. Abt. II 132 (1995), 3{10.

[27] L. Fejes T�oth, Lagerungen in der Ebene, auf der Kugel und im Raum, 2nd ed., Springer-

Verlag, Berlin, Heidelberg, 1972.

[28] G. Larcher, �Uber die isotrope Diskrepanz von Folgen, Arch.Math. (Basel) 46 (1986), 240{249.

[29] H. Niederreiter,Point sets and sequences with small discrepancy, Monatsh. Math. 104 (1987),

273{337.



18 GUNTER ROTE AND ROBERT F. TICHY

[30] H. Niederreiter, Low-discrepancy and low-dispersion sequences, J. Number Th. 30 (1988),

51{70.

[31] I. M. Sobol0, On functions satisfying a Lipschitz condition in multidimensional problems of

numerical mathematics, Dokl. Akad. Nauk SSSR 293 (1987), 1314{1319 (Russian); English

translation in Soviet Math. Doklady 35 (1987), 466{470.

[32] G. Larcher, The dispersion of a special sequence, Arch. Math. (Basel) 47 (1986), 347{352.

[33] J. Hershberger, Finding the visibility graph of a simple polygon in time proportional to its

size, Proc. 3rd Annu. Sympos. Comput. Geom., Assoc. Comput. Mach., New York, 1987,

pp. 11{20.

[34] J. Hershberger, An Optimal Visibility Graph Algorithm for Triangulated Simple Polygons,

Algorithmica 4 (1989), 141{155.

[35] I. B�ar�any and Z. F�uredi, Empty simplices in Euclidean spaces, Canad. Math. Bull. 30 (1987),

436{445.

[36] J. L. Bentley, Multidimensional binary search trees used for associative searching, Commun.

ACM 18 (1975), 509{517.

[37] F. P. Preparata and M. I. Shamos, Computational Geometry: an Introduction, Springer-

Verlag, New York, 1985.

[38] R. F. Tichy, Random points on the sphere with applications to numerical analysis, Z. angew.

Math. Mech. 70 (1990), 642{646.

[39] J�oszef Beck and William Chen, Irregularities of Distribution, Cambridge University Press,

Cambridge, 1987.

Institut f�ur Mathematik,

Technische Universit�at Graz,

Steyrergasse 30,

A-8010 Graz, Austria

e-mail: rote@opt.math.tu-graz.ac.at, tichy@weyl.math.tu-graz.ac.at


