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Abstract

A large variety of problems in computer science can be viewed from a common viewpoint
as instances of \algebraic" path problems. Among them are of course path problems in
graphs such as the shortest path problem or problems of �nding optimal paths with respect
to more generally de�ned objective functions; but also graph problems whose formulations
do not directly involve the concept of a path, such as �nding all bridges and articulation
points of a graph; Moreover, there are even problems which seemingly have nothing to do
with graphs, such as the solution of systems of linear equations, partial di�erentiation, or
the determination of the regular expression describing the language accepted by a �nite
automaton.

We describe the relation among these problems and their common algebraic foundation.
We survey algorithms for solving them: vertex elimination algorithms such as Gau�-

Jordan elimination; and iterative algorithms such as the \classical" Jacobi and Gau�-Seidel
iteration.
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1 Introduction

Path problems can be seen as a uni�ed framework for a lot of problems from di�erent �elds.

Solution procedures for these problems were initially discovered independently of each other.

When the connection between these solution methods became apparent, various attempts have

been made to lay a common theoretical basis for them. Also, new applications of the method

were explored.

It would be di�cult to give a complete account of the area of path problems. A complete

bibliography including all applications would �ll many pages. There have been several good

accounts in textbooks and treatises, like Gondran and Minoux [6], chapter 3; Zimmermann [17],

chapter 8; Carr�e [4], chapters 3 and 4.

The purpose of this exposition is to give an introduction to this area and an overview of

some of the more interesting applications and interpretations of path problems, and to give a

relatively small glimpse of the theory which has been established in this �eld. We shall do this

in a very elementary way.

We shall not deal with specialized algorithms for the shortest path problem in particular.

Also, algorithms which use special properties of the underlying graphs will only be mentioned.

The reader who wants to know more about path problems in general or about speci�c applica-

tions should consult the above-mentioned references. References to the literature about various

applications are almost completely omitted from this survey unless they appeared recently.

2 Two Example Problems

2.1 Example 1: The shortest path problem

2.1.1 Description of the problem | a numerical example

Consider the directed graph shown in �gure 1. It has n = 4 vertices and ten arcs, which are

labeled with weights. A path in a graph is a sequence of l � 0 vertices (v0; v1; : : : ; vl) such that
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Figure 1: A network

(vi; vi+1) is an arc of the graph, for i = 0; 1; : : : ; l � 1. It is called a path from v0 to vj . For

example, p = (1; 3; 4; 4; 4; 1; 3; 2) is a path from 1 to 2. Note that we allow repetition of vertices

and of arcs in a path. With every path, we may associate its weight, which is the sum of the

weights of its arcs. The weight of the example path p is thus 7+3+2+2+(�5)+7+(�1) = 15.

Note that we must distinguish between an empty path without arcs, like the path q = (1) from

1 to 1, and the path r = (1; 1), which contains one arc (a loop). The weight of the empty path

is assumed to be zero.

The weights can be interpreted as lengths of the arcs, and then the weight of the path is

simply its total length. Or the weights could be the time taken to traverse an arc; or the money

that one has to pay (or that one gains) for traversing an arc. The last interpretation is one for

which arcs of negative weight | as in the example | make sense.

The (all-pairs) shortest path problem is the following:

For each pair (i; j) of vertices, compute the weight xij of the shortest path (i. e., the

path of smallest weight) from i to j.

2.1.2 A system of equations

With the graph G, we may associate its weighted adjacency matrix

A =

0
BBB@

1 4 7 1
1 3 2 1
1 �1 1 3

�5 1 6 2

1
CCCA :

The element aij is the weight of the arc (i; j), if this arc exists. Arti�cial weights of 1 have

been inserted in the places where no arc exists. These arti�cial arcs will do no harm, because a

path using such an arc has weight 1; thus it will certainly not a�ect the shortest path.

Now we are going to set up a system of equations which the desired quantities xij will ful�ll.

Consider a shortest path p from i to j. If i 6= j, this path must contain at least one arc, i. e.,

it is of the form (i = v0; v1; : : : ; vl = j), with l � 1. If it is a shortest path, then the subpath

p0 = (v1; v2; : : : ; vl = j), must be a shortest path from v1 to j. Thus xij = aik + xkj, for some

k = v1. On the other hand, the expression aik + xkj, for any k, is the length of some path from

i to j, namely the path starting with the arc (i; k) and continuing along the shortest path from

k to j. Thus, we have

xij = min
1�k�n

(aik + xkj), for i 6= j. (1)

For i = j, the above considerations apply with one change: The empty path from i to i without

arcs is an additional candidate for the shortest path, and thus we have to extend the above

equation:

xjj = min
�
min
1�k�n

(ajk + xkj); 0
	
: (10)
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In the above example,

X =

0
BBB@

0 4 6 9

0 0 2 5

�2 �1 0 3

�5 �1 1 0

1
CCCA

is the unique solution of this system, and it represents the lengths of the shortest paths.

2.2 Example 2: The language accepted by a �nite automaton

A �nite automaton is a machine which reads words (sequences of symbols over some alphabet �)

and either accepts them or rejects them. It can be speci�ed by its transition diagram, which is

a �nite directed graph (see �gure 2). The vertices of the graph are the states of the automaton.

One of the vertices (vertex 1 in our case) is designated as the start state, and a subset of the

vertices is designated as the �nal states. The arcs are labeled by subsets of letters from �.

(� = ff; g; hg in our example.) The automaton starts in the designated start state and reads

the symbols of an input word one by one. A label z on an arc (i; j) means the following: If the

automaton is in state i and the next symbol which it reads is z, it may go to state j. When

the automaton is in state i and there is no arc labeled z which leaves i, the automaton cannot

continue and stops. When there is at most one choice of an arc for each state and each input

letter, the automaton is called a deterministic automaton; otherwise it is a non-deterministic

automaton, but this di�erence does not concern us here.
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Figure 2: The transition diagram of a �nite automaton.

The initial state is state 1. The �nal states are marked by double circles.

We say that the automaton accepts a word, if there is a sequence of state transitions leading

from the start state to a �nal state while reading this word. To put it di�erently, let p =

(v0; v1; : : : ; vl) be a path from the start state v0 to some �nal state vl. If zi is a label of the edge

(vi�1; vi), for 1 � i � l, then the word z1z2 : : :zn is accepted by the automaton. For example,

the automaton schown in �gure 2 accepts the word fgghhfh�f because it leads from state 1 to

state 3 via the path (1; 3; 4; 3; 2; 2; 2; 2; 2; 1; 3). Thus, the automaton de�nes a subset of words

(a formal language) which it accepts.

Thus our problem is now the following:

For each �nal state j, determine the set x1j of words which lead from the initial

state 1 to state j.

In order to solve this problem, we have to introduce a few notations. We are working with

words (�nite sequences) over some alphabet �, including the empty word ", which contains no

symbols. We write the concatenation of two words a and b as a � b or simply as ab. If A and B

are sets of words, then A �B denotes the set f ab j a 2 A; b 2 B g.
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As above, we can set up a matrix (aij), where aij denotes the set of labels of the arc (i; j).

Let xij denote the set of all words by which the automaton can be lead from state i to state j.

We shall solve the more general problem of computing xij for all pairs of states i and j.

As in the case of the shortest path problem, we shall set up a system of equations. Consider

the set xij. When the automaton is started in state i, the �rst state transition must lead to

some state k. In order to go to k the automaton must read a symbol from aik. Then it must

eventually go to j. The possible words which lead from k to j are collected in the set xjk. Thus,

the words which lead from i to j via k as the �rst vertex are exactly the set aik �xkj. This is also
true if there is no arc from i to k, because then aik = ;. Now we just have to take the union

over all possible states k, and we get an equation for xij. Again, if i = j, we have to consider

the additional possibility that the automaton reads nothing and stays in state i, and thus we

have to adjoin the empty word.

xij =
n[

k=1

(aik � xkj), for i 6= j, and

xjj =
n[

k=1

(ajk � xkj) [ f"g
(2)

2.3 Summary

In this section, we have described two examples of path problems. In both cases, we have stated

the problem, and we have derived a set of equations which the solutions have to ful�ll. It is,

however, not the case that every solution of the equations is a solution of the respective problem

that we started with. We will say more about the relation between the solution of equations

and the original formulation of path problems in sections 4.2 and 7.

In the next section we will exhibit the common algebraic structure of our two sample prob-

lems.

3 An algebraic framework

3.1 Semirings | the algebraic path problem

The two systems of equations (1){(10) and (2) have a similar structure:

xij =
nM

k=1

(aik 
 xkj), for i 6= j, and

xjj =
nM

k=1

(ajk 
 xkj) � i1
(3)

In the case of the shortest path problem, � denotes max, 
 denotes +, and i1 denotes 0,

and in the second example problem, � denotes [, 
 denotes product (concatenation), and i1
means f"g. \Ln

k=1" is a notation for the �-sum of a sequence of elements, analogous to
Pn

k=1.

The algebraic structure which is behind these two operations is a semiring (S;�;
), i. e., a
set S with two binary operations � and 
, which ful�lls the following axioms:

(A1) (S;�) is a commutative semigroup with neutral element i0 :

a� b = b� a;

(a� b)� c = a� (b� c);

a� i0 = a:
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(A2) (S;
) is a semigroup with neutral element i1 , and i0 as an absorbing

element:

(a
 b)
 c = a 
 (b
 c);

a
 i1 = i1 
 a = a;

a
 i0 = i0 
 a = i0 :

(A3) 
 is distributive over �:

(a� b)
 c = (a
 c)� (b
 c);

a
 (b� c) = (a
 c)� (a
 b):

We shall now discuss why these axioms are natural assumptions for any path problem. � must

be commutative and associative, because the sum
Ln

k=1 in equation (3) must be independent of

the order of the operands. 
 is the operation by which the weight of a path is computed from

the weights of its arcs, and we require the operation to be associative.

w((v0; v1; : : : ; vl)) = av0v1 
 av1v2 
 : : :
 avl�1vl :

i1 is the weight of the empty path. What we want to compute is, in terms of the semiring, the

�-sum of the weights of all paths from i to j:

xij =
M

p is a path
from i to j

w(p) (4)

In this formulation, the problem is called the algebraic path problem. However, this formulation

contains an in�nite sum. This raises questions of \convergence", which fall outside the realm of

classical algebra. Thus, we shall mainly stick to the the formulation as a system of equations (3).

Later, in section 4.3, we shall also work with the interpretation of xij as a sum of paths.

We have implicitly used (left) distributivity in the derivation of the equations (1), (2), and (3),

when we have expressed the sum of the paths from i to j whose �rst arc is (i; k) as aik 
 xkj.

The axioms regarding i0 are not essential, since a semiring without i0 can always be ex-

tended by adding a new zero element according to the axioms, like the element1 in the shortest

path problem. Thus, we shall not insist that there is always a zero element. (The axioms regard-

ing the existence of i1 could also be omitted w. l. o. g., but it requires a trickier construction

to show this.) We shall denote the product of an element with itself by the power notation

ak = a
 a
 � � � 
 a (k times)

with the usual convention a0 = i1 . Also, for better readability, we shall omit the multiplication

sign 
, from now on.

3.2 Types of semirings, ordered semirings

The examples of semirings which we will encounter belong mostly to three main groups:

1. (S;
;�) is a linearly or partially ordered semigroup (with neutral element i1 ), and � is

the supremum or in�mum operation (the maximum or minimum operation, in case of a

linearly ordered semigroup).

An ordered semigroup is a semigroup with an order relation which is monotone with respect

to the semigroup multiplication:

a � b and a0 � b0 =) a
 a0 � b
 b0:
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When � is de�ned in this way, it is clearly an associative and commutative operation.

The above monotonicity property translates into distributivity. If necessary, we must add

a smallest (or largest, resp.) element i0 .
In the example of shortest paths, the order � was just the usual order for real numbers, and

� was the minimum operation; in the second example, the order relation is set inclusion,

and � is the supremum (least upper bound) with respect to this order.

Another possibility to characterize this class of semirings is that the idempotent law holds

for �:
a� a = a:

For this class of idempotent semirings, the relation de�ned by

a � b() a� b = b (5)

is a partial order. Thus, we can either start with an ordered semigroup and de�ne � as the

supremum operation (if the supremum exists always), or we can start with an idempotent

semiring and de�ne the partial order by (5). In both cases we get the same kind of algebraic

structure.

2. (S;�;
) is a ring, or a subset of a ring. Examples are the �eld of real numbers (R;+; �)
with ordinary addition and multiplication, or any subsemiring of the reals, like the natural

numbers. For these cases, equation (3) has a closer connection to conventional linear

algebra.

3. The elements of S are sets of paths, of path weights, or the like. An example which we

have already encounter is the set of words which leads a �nite automaton from one state

to another. Here, what we deal with are not sets of paths, but sets of label sequences that

correspond to paths. Usually, � is the union operation, and thus these semirings fall also

under the �rst category, since they are ordered by the set inclusion relation.

A semiring (S;�;
) with a partial order relation � which is monotone with respect to both

operations is called an ordered semiring (S;�;
;�):

a � b and a0 � b0 =) a� a0 � b� b0 and a
 a0 � b
 b0:

All semirings of the �rst type are ordered semirings, but there are also several examples from

the second class, like the non-negative reals (R+;+; �;�) with the usual order.

We say that (S;�;
;�) is ordered by the di�erence relation, or naturally ordered, if

for all a; b 2 S: (a � b() there is a z 2 S such that a� z = b): (6)

When � is the min or inf operation of an ordered semigroup, the relation � must simply be

reversed in order that this de�nition makes sense. With this proviso, all natural examples of

ordered semirings that arise in applications are ordered by the di�erence relation.

3.3 Matrices

The (n � n)-matrices over a semiring S form another semiring if matrix addition and matrix

multiplication are de�ned just as usual in linear algebra: If A = (aij) and B = (bij) then

A�B = C and A
 B = D, where

cij = aij � bij

and

dij =
nM

k=1

aikbkj:
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(Sn�n;�;
) is a semiring. The zero matrix is the matrix whose entries are all i0 , and the unity

element is the unit matrix I with i1 's on the main diagonal and i0 's otherwise.
Thus, we may rewrite equation (3) in matrix form as follows:

X = I �AX: (7)

A symmetric variation of this equation can also be derived by splitting the possible paths from i

to j according to their last arc:

X = I �XA: (70)

4 Direct solution procedures (elimination algorithms)

We are looking for a solution to the matrix equation (7). If we hope to �nd a solution for

(n � n)-matrices we must surely be able to solve the case of (1 � 1)-matrices, i. e., of scalars.

Thus, we look at the following equation, the so-called iteration equation:

x = i1 � ax: (8)

Let us consider what this equation amounts to in the two examples that we have dealt with

in the beginning.

x = minf0; a+ xg
For a > 0, there is a unique solution x = 0. For a = 0, the solution of this equation is not

unique: any x � 0 is a solution. For a < 0, there is no solution.

Correspondingly, the system of equations (1){(10) need not have a unique solution, or it can

have no solution at all. For example, if we add an arc (2; 4) of length 1, then the column vector

(x13; x23; x33; x43) of the matrix X can be changed to (�100;�104;�102;�105), and we still

get a solution. It can be shown that this ambiguity of the solution occurs exactly if the graph

contains a cycle of weight 0. In our case, this is the cycle (1; 2; 4; 1).

If we reduce the length of the new arc (2; 4) to 0, then no solution ful�lls (1){(10). The

reason is that the graph contains a cycle of negative weight, and hence the shortest paths are

unde�ned. We can remedy this situation by adding a new element �1 to the semiring. This

element solves (8) for a < 0. The result xij = �1 means then that there are arbitrarily short

paths from i to j.

In the semiring of formal languages, we get

x = f"g [ a � x:

This equation always has a solution, namely the set

a� = f"g [ a [ a2 [ a3 [ � � � ;

which consists of all words which are concatenations w1w2 � � �wl of an arbitrary number of words

wi 2 a.

In general, we denote the solution (or some solution) of (8) by a�, and correspondingly, we

denote the solution of the matrix equation (7) by A�. Semirings in which a� always exists are

called closed semirings.

If we repeatedly substitute the expression for x in (8) into the right-hand side, starting

with (8), we get

x = i1 � ax

= i1 � a( i1 � ax) = � � � = i1 � a� a2 � a3 � a4 � � � �
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If this sequence remains stable after a �nite numer of iterations, then the sum is a solution

of (8).

By multiplying (8) from the right side with any element b 2 S, we obtain that if x = a�

solves (8) then y = a�b is a solution of the more general equation

y = b� ay: (9)

4.1 An elimination procedure | Gau�-Jordan elimination

In this section we shall derive a solution of (3) or (7) by purely algebraic means, namely by

successive elimination of variables, very much like in solving ordinary systems of linear equations.

Since the intuition for what is acually going on during the solution process may get lost when we

write the procedure in full generality, we will �rst illustrate the method with a speci�c example.

Later, in section 4.3, we will see that the coe�cients that arise in the elimination process can

be interpreted in a di�erent way, namely as sums of certain subsets of path weights.

When we look at equation (3), we can see that the column index j of the unknowns xij is the

same for all variables which occur in one equation. This means that the system (3) consists really

of four decoupled systems of equations, one for each column of X . A column of j respresents

the sums of paths from all vertices to the vertex j. Similarly, an equation system for a row of

X , i. e., for the paths starting from a �xed vertex i (the single-source path problem), can be

obtained from (70).

Let us take a closer look at one speci�c system, say, for the third column of a (4�4)-matrix:

x13 = a11x13 � a12x23 � a13x33 � a14x43

x23 = a21x13 � a22x23 � a23x33 � a24x43

x33 = a31x13 � a32x23 � a33x33 � a34x43 � i1
x43 = a41x13 � a42x23 � a43x33 � a44x43

(10:0)

The quantities aij are the given data, and the xi3 are the unknowns. This is very much like

an ordinary system of equations, except that the unknowns appear on both sides: They appear

explicitly on the left side, and implicitly on the right side. The iteration equation (9) is the

paradigm for handling this situation in the case of one variable: Note that the �rst equation has

the structure

x13 = ax13 � b;

with a = a11 and b = a12x23 � a13x33 � a14x43: If we assume that a� exists, then we know that

x13 = a�b is a solution of the above equation, and thus we get an explicit expression for x13:

x13 = a�11 (a12x23 � a13x33 � a14x43)

= a�11a12 x23 � a�11a13 x33 � a�11a14 x43

Substituting this into the other equations and collecting terms, we get a new system:

x13 = a
(1)
12 x23 � a

(1)
13 x33 � a

(1)
14 x43

x23 = a
(1)
22 x23 � a

(1)
23 x33 � a

(1)
24 x43

x33 = a
(1)
32 x23 � a

(1)
33 x33 � a

(1)
34 x43 � i1

x43 = a
(1)
42 x23 � a

(1)
43 x33 � a

(1)
44 x43;

(10:1)

where the new coe�cients a
(1)
ij are de�ned as follows:

a
(1)
1j = a�11a1j; for j > 1,

a
(1)
ij = aij � ai1a

�

11a1j; for i 6= 1, j > 1.
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Let us summarize what we have done in order to eliminate x13: First we have used the equation

where x13 occurs on both sides for obtaining an explicit expression of x13 in terms of the other

variables. This was done by solving the iteration equation. Then we have have used this explicit

expression for substituting x13 in all other places where it occurred.

The four equations of the last system fall in two groups: The �rst equation is the explicit

expression for x13; the remaining three equations form an implicit system for the other three

variables x23, x33, and x43, which has the same structure as the original system, but one variable

less.

Thus we can repeat the elimination process in essentially the same way as we have begun

it: We eliminate x23 from the second equation, assuming that (a
(1)
22 )

� exists, and substitute this

into the other three equations. We get a new system (10.2), which looks like (10.1) except

that x23 does not appear on the right-hand side and the superscripts are (2) instead of (1). The

elimination of x33 is a bit di�erent, because of the i1 on the right-hand side. We get

x33 = (a
(2)
33 )

� (a
(1)
24 x43 � i1 )

= (a
(2)
33 )

�a
(1)
24 x43 � (a

(2)
33 )

�:

When we substitute this into the other equations, we get a constant term in all equations:

x13 = a
(3)
13 � a

(3)
14 x43

x23 = a
(3)
23 � a

(3)
24 x43

x33 = a
(3)
33 � a

(3)
34 x43

x43 = a
(3)
43 � a

(3)
44 x43

(10:3)

The new coe�cients are determined by the following recursions:

a
(3)
33 = (a

(2)
33 )

�;

a
(3)
i3 = a

(2)
i3 (a

(2)
33 )

�; for i 6= 3,

a
(3)
3j = (a

(2)
33 )

�a
(2)
3j ; for j > 3,

a
(3)
ij = a

(2)
ij � a

(2)
i3 (a

(2)
33 )

�a
(2)
3j ; for i 6= 3, j > 3.

For reasons which will become clear later, we regard the constant terms as the third column of

the coe�cient matrix. In the remaining elimination steps (there is only one more to follow), this

column will remain, whereas the remaining columns will be successively eliminated.

So we �nally eliminate x43 from the last equation, and we are left with the explicit solution

x13 = a
(4)
13

x23 = a
(4)
23

x33 = a
(4)
33

x43 = a
(4)
43

(10:4)

with

a
(4)
44 = (a

(3)
44 )

�;

a
(4)
i4 = a

(3)
i4 (a

(3)
44 )

�; for i 6= 4.

The purpose of this calculation has been to make it clear that the solution of the matrix

iteration X = AX � I (equation (7)) can be reduced to n solutions of the scalar iteration

x = ax� i1 for the pivot elements a = a11; a
(1)
22 ; a

(2)
33 ; a

(3)
44 . The remaining steps in the derivation
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were merely substitutions of variables and applications of the semiring axioms (distributivity,

etc.) which pose no problems.

Let us summarize in a general way the equations that we have obtained. In the above

example, the column index of the solution was l = 3. The index k denotes the step number. We

denote the elements of the original coe�cient matrix by a
(0)
ij = aij.

xil =
nM

j=k+1

a
(k)
ij xjl; for 0 � k < l; i 6= l,

xll =
nM

j=k+1

a
(k)

lj xjl � i1 ; for 0 � k < l,

xil =
nM

j=k+1

a
(k)
ij xjl � a

(k)

il ; for l � k � n,

(11)

The formulas for the coe�cients a
(k)
ij were as follows:

a
(k)

kk = (a
(k�1)

kk )�;

a
(k)

ik = a
(k�1)

ik (a
(k�1)

kk )�; for i 6= k,

a
(k)

kj = (a
(k�1)

kk )�a
(k�1)

kj ; for j 6= k,

a
(k)
ij = a

(k�1)
ij � a

(k�1)

ik (a
(k�1)

kk )�a
(k�1)

kj ; for i 6= k, j 6= k.

(12)

When we compute only a column xil of the solution, for �xed l, as in our example, we

actually carry out the recursions for a
(k)

kk and a
(k)

ik only for k = l, and the recursions for a
(k)

kj and

a
(k)
ij only for j > k and for j = l < k. Observe, however, that the above recursions are the same

for all columns l, as far as they overlap for di�erent columns. Thus, when we want to determine

the whole matrix X we get just the above recursions, and the �nal result is

xij = a
(n)
ij : (13)

We get this by setting k = n in (11), whereas for k = 0 we get the original system (3) or (10).

The nice thing about all these equations is that they can all be interpreted as equations between

sets of paths. We will do this in section 4.3.

We can cast our recursion into an algorithm, in which we can omit the superscripts (k) from

the variables. We start with the given array aij and modify this array step by step until the

�nal solution a
(n)
ij is obtained. This algorithm corresponds just to the Gau�-Jordan elimination

algorithm of ordinary linear algebra, and hence it carries this name.

Gau�-Jordan elimination algorithm for

the solution of the equation X = AX + I

for k from 1 to n do begin

(� Transformation of the matrix A(k�1) into A(k): �)
akk := (akk)

�;

for all i from 1 to n with i 6= k do aik := aik 
 akk;

for all i from 1 to n with i 6= k do

for all j from 1 to n with j 6= k do aij := aij � aik 
 akj;

for all j from 1 to n with j 6= k do akj := akk 
 akj;

end;
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We get a variation of this algorithm if we do not substitute the explicit value for a variable

in the equations preceding the current one, only in the following ones. The resulting system for

our example would look as follows:

x13 = a
(1)
12 x23 � a

(1)
13 x33 � a

(1)
14 x43

x23 = a
(2)
23 x33 � a

(2)
24 x43

x33 = a
(3)
34 x43 � a

(3)
33

x43 = a
(4)
43

The system can now be solved in one backsubstitution pass, starting with the last equation.

This method corresponds to Gau�ian elimination in ordinary linear algebra.

4.2 Theorems about the solution of the elimination algorithm

We can summarize the results of the preceding section as follows:

Theorem 1 If, for all pivot elements a = a
(k�1)

kk of the algorithm, a� is a solution of x = i1 �ax,
then A(n) is a solution of X = I �AX.

Note, however, that the converse of this statement is not true: The Gau�-Jordan elimination

algorithm may fail although a solution exists. This situation is known from ordinary matrix

inversion. There, one cannot always take the next diagonal element as pivot.

We may ask under what conditions the solution of the matrix equation is unique. The

following theorem, which follows readily from the elimination algorithm, gives an answer:

Theorem 2 If, for each pivot element a = a
(k�1)

kk in the algorithm, a�b is the unique solution

of x = b� ax, for all b 2 S, then A(n) is the unique solution of X = I �AX.

Proof. We have to review how the algorithm obtains the solution (10.4) from the original

system (10.0). It does so by a sequence of transformations. In going from (10:k�1) to (10:k),

we solve one iteration equation xk3 = a
(k�1)

kk xk3 � b. Under the assumption of the theorem, the

resulting equation xk3 = (a
(k�1)

kk )�b is an implication of the iteration equation. The remaining

equations of (10:k) are derived by substitution and rearrangement of terms and are therefore

also implied by the given equations.

Thus, the �nal equations (10:n) are implied by the original system, and therefore they

represent the unique solution.

Note that we must require uniqueness of the solution of x = b� ax for all b, since whenever

solve an equation of this form during the elimination process, a is a number that we have

computed, whereas b is an expression which still involves other unknowns.

For the case of shortest paths, this means that the solution is unique as long as no a
(k�1)

kk

is 0. On the other hand, we have seen that, when the graph contains cycles of zero length, a

solution need not be unique. In those cases, it is nevertheless desirable to get a speci�c solution.

In the case of the shortest path problem, the greatest solution is the desired solution, since it can

be shown that it actually represents the lengths of shortest paths. Thus, we may ask ourselves

whether an analog of the above theorem holds for this case, i. e., whether we actually get the

greatest (or smallest) solution of X = I � AX , if we make sure that a�b is always the greatest

(or smallest) solution of x = b� ax.

The following theorem shows that a somewhat weaker statement is true. We formulate

it in terms of the smallest solution. One gets an analogous theorem for largest solutions by

substituting \smallest" by \largest" and \�" by \�".
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Theorem 3 Assume that we have an ordered semiring. If, for each pivot element a = a
(k�1)

kk

in the algorithm, y = a�b is the smallest solution of y � b� ay, for all b 2 S, then A(n) is the

smallest solution of X = I �AX.

Proof. We write � instead of = in all given equations (10:0) and in all equations (10:k) that

are derived during the elimination process. Then, as in the proof of theorem 2, each derived

inequality is an implication of the preceding inequalities: For the solution of the iteration equa-

tion, this follows from the assumptions of the theorem; for the substitution of the lower bound

for this variable in the other inequalities, this follows from the monotonicity of the � and 

operations. Since the �nal inequalities read X � A(n), we have the desired result.

If the semiring is ordered by the di�erence relation (see (6)) we get a result completely

analogous to theorem 2, where the \�" in the preceding theorem is replaced by \=". In fact,

the following theorem strengthens theorem 2:

Theorem 4 Assume that we have a semiring which is ordered by the di�erence relation. If, for

each pivot element a = a
(k�1)

kk in the algorithm, x = a�b is the smallest solution of x = b� ax,

for all b 2 S, then A(n) is the smallest solution of X = I �AX.

Proof. Let a be one of the pivot elements of the algorithm. In order to reduce this theorem to

the preceding one, we only have to show that a�b is the smallest solution of y � b�ay, for any b.

Let y be a solution of the inequality y � b�ay. Since the semiring is ordered by the di�erence

relation, we may write

y = (b� z)� ay;

for some z (see (6)). By the assumption of the theorem, a�(b� z) is the smallest solution of this

equation, and hence

y � a�(b� z) � a�b� a�z � a�b:

The last inequality follows again from the de�nition of the di�erence relation.

Theorems 3 and 4 answer a question posed by Lehmann [9]. The requirement of theorem 4

that the semiring be ordered by the di�erence relation cannot be omitted completely, as can be

shown by a suitable counter-example.

4.3 An interpretation with sets of paths

In this section, we shall give a di�erent interpretation to the equations derived in section 4.1:

We shall interpret the coe�cients as sums of path weights. These sums are in general in�nite.

However, in order to avoid the technicalities which are involved in dealing with in�nite sums, we

shall take a naive approach and assume that all in�nite sums exist. In any case, the following

considerations can at least be taken as heuristic support for the equations of section 4.1.

The quantity xil represents the sum of the weights of all paths from i to l. We can partition

the set of all paths into disjoint subclasses according to some criterion, e. g., according to the

�rst vertex j on the path whose number is greater than i. The paths in one subclass can be

split into two subpaths in a unique way, e. g., at this vertex j. By considering all possibilities

how this can be done, we get an expression for xil in terms of certain sums of subpaths.

To be more speci�c, we de�ne a family of sets of paths as follows: We assume that the

vertices are numbered from 1 to n. For 1 � i; j � n and 0 � k � n, P
(k)
ij denotes the set of

paths from i to j whose intermediate vertices belong to the set f1; 2; : : : ; kg. The intermediate

vertices of a path (i = v0; v1; : : : ; vl = j) are all vertices except the �rst and the last one. In the

case of the empty path (i) we count i as an intermediate vertex; thus, (i) is contained in P
(i)

ii

but not in P
(i�1)
ii .
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We shall give the following interpretation of the coe�cients a
(k)
ij that arise in the elimination

algorithm:

a
(k)
ij =

M
p2P

(k)

ij

w(p):

For k = 0, we get the initial values a
(0)
ij = aij, which is correct because P

(0)
ij contains only the

arc (i; j), if it is part of the graph. Starting from k = 0, the truth of the above expression for

a
(k)
ij can be veri�ed by induction, using the recursions (12). We start with the simplest formula

in (12), a
(k)

kk = (a
(k�1)

kk )�. A path in P
(k)

kk must start at k and end at k. In the meantime, it can

pass arbitrarily many times through k. When we cut the path into pieces at these intermediate

vertices k, we get l � 0 partial paths which are members of P
(k�1)

kk . The expression (a
(k�1)

kk )l is

the sum of all paths which contain exactly l+1 occurrences of k (including the �rst and the last

occurrence). Thus, the expression

(a
(k�1)

kk )� = i1 � a
(k�1)

kk � (a
(k�1)

kk )2 � � � � � (a
(k�1)

kk )l � � � �

accounts for every path in P
(k)

kk in a unique way. On the other hand, it is easy to see that every

path weight contributing to the expression on the right-hand side corresponds to the weight of

some path in P
(k)

kk .

Now, let us consider the second equation: a
(k)

ik = a
(k�1)

ik (a
(k�1)

kk )�, for i 6= k. A path in P
(k)

ik

can be split in a unique way into the initial part from i to the �rst occurrence of k (k must occur

since it is the last vertex) and the remaining part. The �rst part is in P
(k�1)

ik , and the remaining

part is accounted for by (a
(k�1)

kk )�. The third equation follows by a symmetric argument (splitting

at the last occurrence of k instead of the �rst occurrence).

The last case a
(k)
ij = a

(k�1)
ij � a

(k�1)

ik (a
(k�1)

kk )�a
(k�1)

kj , for i; j 6= k, is also straightforward. The

di�erence to the previous case is, that a path in P
(k)
ij need not go through k at all. This is taken

into account by the term a
(k�1)
ij .

Using the previous arguments as inductive steps from k to k+1, we �nally arrive at a
(n)
ij = xij,

because P
(n)

ij is the set of all paths from i to j (cf. (13)).

Next, we shall consider the equations (11) containing the \unknowns" xil and the \coe�-

cients" a
(k)
ij . In this context, the di�erence between coe�cients and unknowns is immaterial,

since we interpret both as sums of path weights.

Let us interpret the �rst equation in (11): xil =
Ln

j=k+1 a
(k)
ij xjl, for 0 � k < l and i 6= l.

The left side represents all paths from from i to l, for some i 6= l. Such a path must contain

at least one intermediate vertex whose number is greater than k, because the last vertex l is

greater than k. Let j be the �rst intermediate vertex along the path which is greater than k,

and split the path into two parts at this vertex. The �rst part of the path from i to k contains

no intermediate vertex greater than k, which is reected in the superscript of the expression

a
(k)
ij . The second part of the path can be an arbitrary path from k to l. Thus the product a

(k)
ij xjl

is the sum of the weights of all paths from i to l whose �rst intermediate vertex which is greater

than k is j. The vertex j can be any vertex between k + 1 and n, and thus every path from i

to l is represented in a unique way on the right-hand side.

The second equation in (11) di�ers from the �rst one only by the additional i1 on the right-

hand side, which accounts for the empty path in P
(n)

ll . The third equation: xil =
Ln

j=k+1 a
(k)
ij xjl�

a
(k)

il , for k � l, di�ers from the �rst one in the additional term a
(k)

il . This term accounts for the

fact that a path from i to l need not contain an intermediate vertex j whose number is greater

than k: The paths which contain no intermediate vertex greater than k are exactly the paths

whose weights sum to a(k)il .
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4.4 Block decomposition methods

As in the case of real matrices, we can decompose a matrix into blocks and carry out the

computations blockwise, as with scalar matrices. For example, when we decompose into 4

blocks, the equation X = AX � I becomes

�
X11 X12

X21 X22

�
=

�
A11 A12

A21 A22

�


�
X11 X12

X21 X22

�
�
�
I11 0

0 I22

�

We assume that all diagonal blocks Xii and Aii are square. I11 and I22 are unit matrices of the

appropriate size.

We can apply the elimination algorithm for this block equation without change. The main

di�erence is that the iteration equation X = AX � B which is used to eliminate a variable

Xij from the right-hand side is now itself a matrix equation instead of a scalar equation, and

the problem of determining A� is of the same type as the original problem, but of smaller size,

however. This opens the possibility for recursive divide-and-conquer solution strategies.

Let us look at the above decomposition into 2�2 blocks and apply the Gau�-Jordan algorithm
for n = 2.

1. A
(1)
11 := (A11)

�;

2. A
(1)
21 := A21A

(1)
11 ;

3. A
(1)
22 := A22 �A

(1)
21 A12;

4. A
(1)
12 := A

(1)
11A12;

5. X22 = A
(2)
22 := (A

(1)
22 )

�;

6. X12 = A
(2)
12 := A

(1)
12X22;

7. X11 = A
(2)
11 := A

(1)
11 �X12A

(1)
21 ;

8. X21 = A
(2)
21 := X22A

(1)
21 ;

(14)

We will consider two opposite possibilities for the partitioning strategy: decomposition into

equal-size blocks of size approximately (n=2) � (n=2), and partitioning into one block of size

(n� 1)� (n� 1) and a scalar.

For the �rst choice, the above program shows that a �-operation for (n�n)-matrices can be

reduced to six multiplications, two additions and two �-operations on (n=2)� (n=2). By using

the reduction recursively, one can derive the result than an O(nc)-time matrix multiplication

algorithm for the semiring, with any �xed exponent c � 2 leads to an algorithm for computing

the �-operation with the same asymptotic time complexity (cf. Aho, Hopcroft, and Ullman [2],

section 5.9).

The other possibility, where A11 consists of the �rst n � 1 rows and columns of A and A22

is just the element ann, corresponds to the escalator method for inverting a matrix, which adds

one column and one row at a time until the whole matrix is inverted. A21 is the last row and

A12 is the last column of the matrix. (A11)
� is the matrix (a

(n�1)
ij )1�i;j�n�1 whose elements

correspond to subsets of paths in the graph with vertex n deleted. If we continue the above

decomposition recursively, we get the following algorithm for computing A�. Since the recursive

step, the evaluation of A�11, comes right at the beginning of the algorithm, it is easy to write

the algorithm without recursion. For easier reference, we have numbered the steps as in the
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algorithm above.

Escalator method for the solution of the equation X = AX � I

for k from 1 to n do begin

(� Transformation of the matrix (bij) = (a
(k�1)
ij )1�i;j�k�1 �)

(� into the matrix (a
(k)
ij )1�i;j�k. �)

1. (� A(1)
11 is already given. �)

2. for j from 1 to k � 1 do bkj :=
Lk�1

i=1 akibij;

3. bkk := akk �
Lk�1

l=1 bklalk;

4. for i from 1 to k � 1 do bik :=
Lk�1

j=1 bijajk;

5. bkk := (bkk)
�;

6. for i from 1 to k � 1 do bik := bikbkk;

7. for i from 1 to k � 1 do

for j from 1 to k � 1 do bij := bij � bik 
 bkj;

8. for j from 1 to k � 1 do bkj := bkkbkj;

end;

Note we have used a di�erent array (bij) for the result variables, because otherwise the k-th row

and column would be overwritten while they are being used in steps 2 and 4. Thus the �nal

result is contained in (bij), whereas the original data (aij) remain unchanged.

In the case of the shortest path problem, this algorithm is known as the algorithm of Dantzig.

There, steps 6 and 8 can be omitted because bkk is always zero, and step 5 reduces to a sign

test. Moreover, since the semiring is idempotent, we do not have to di�erentiate between the

matrices (aij) and (bij), because it does not matter if elements of A are overwritten.

The recursions of this algorithm can also be interpreted as equations between sets of paths,

like in section 4.3. In order to see this, we have to add the correct superscripts. Expressions

without superscripts, like aki denote the initial values of these variables: aki = a
(0)

ki . Since we

have the explicit superscripts, we write a again instead of b:

2. a
(k�1)

kj =
Lk�1

i=1 akia
(k�1)
ij , for j < k: Since a path in P

(k�1)

kj must contain at least one arc,

we can partition this set of paths according to the �rst vertex i which comes after the start

vertex k.

4. a
(k�1)

ik =
Lk�1

j=1 a
(k�1)
ij ajk, for i < k: This is symmetric to 2.

3. a
(k�1)

k = akk �
Lk�1

l=1 a
(k�1)

kl alk : This is similar to the previous case, except that we have to

take the single arc (k; k) into account.

The remaining recursions:

5. a
(k)

kk = (a
(k�1)

kk )�;

6. a
(k)

ik = a
(k�1)

ik a
(k)

kk , for i < k;

7. a
(k)

ij = a
(k�1)

ij � a
(k)

ik 
 a
(k�1)

kj , for i; j < k; and

8. a
(k)

kj = a
(k)

kk a
(k�1)

kj , for j < k;

are the same as in Gau�-Jordan elimination.

There is also a three-phase algorithm which is analogous to LU -decomposition of ordinary

linear algebra (cf. Rote [13]). The top-down pass computes the matrix L + U , where L is a

strictly lower triangular matrix de�ned by lij = a
(j)
ij , for i > j, and lij = i0 for i � j, and U is
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an upper triangular matrix with uij = a
(i�1)
ij , for i � j, and uij = i0 for i > j. Then L� and

U� are computed, with (L�)ij = a
(i�1)
ij , for i > j, and (U�)ij = a

(j)
ij , for i � j. Finally, U� is

multiplied with L�, yielding the result matrix X = A�. The matrices in this algorithm ful�ll the

following relations:

A� LU = L� U (LU -decomposition)

U�L� = A�

All of these equations can be interpreted as path equations as in section 4.3.

4.5 A graphical interpretation of vertex elimination

We can view the elimination of a variable from the right-hand side of the equations as the

elimination of the corresponding vertex from the graph. This is shown in �gure 3. When a

vertex k is removed, we must somehow make up for the paths that have gone lost by this

removal. Thus, for each pair consisting of an ingoing arc (i; k) and an outgoing arc (k; j), we

add a new short-cut arc (i; j). The weight of this additional arc, which is meant to replace the

piece incident to vertex k in every path passing through k, reects the paths that were lost:

aika
�

kkakj. If the arc (i; j) is already present in the graph, we simply add this expression to its

old weight.
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Figure 3: Elimination of the vertex k.

On certain types of sparse graphs (i. e., graphs with few arcs), Gau�ian elimination can be

carried out more e�ciently by using a special ordering in which the variables are eliminated. For

example, using a technique called generalized nested dissection due to Lipton and Tarjan [11],

single-source path problems on planar graphs can be solved in O(n3=2) steps (see also Lipton,

Rose, and Tarjan [10]). Flow graphs from computer programs (cf. section 6.6) usually have a

special structure: They are reducible. There are specialized algorithms for solving path problems

on these graphs (cf. Tarjan [16]).

5 Iterative solution procedures

5.1 Matrix powers

Iterative algorithms are based on the connection between matrix powers and paths of a certain

length. In particular, if (Al)ij denotes the (i; j) entry of the l-th power of the matrix A, then

(Al)ij =
M

p is a path
from i to j

of length l

w(p);

and thus we get

(I �A �A2 � � � � � Al)ij =
M

p is a path
from i to j

of length at most l

w(p):
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For many path problems, paths which are longer than some threshold play no role. For

example, in case of the shortest path problem, no path of length n or longer can be a shortest

path, and thus it su�ces to compute I �A�A2�� � ��An�1: When the semiring is idempotent,

such a sum can be evaluated by successively squaring the matrix (I � A). By the idempotence

law, we get

(I � A)l = I �A� A2 � � � � � Al:

Thus, if we square the matrix (I�A) dlog2(n�1)e times we get a matrix power Al with l � n�1,
and thus Al is the matrix of shortest distances.

5.2 Jacobi iteration and Gau�-Seidel iteration

When we want to compute only one row or one column of the matrix X , (i. e., we want to solve

the single-source path problem), can simply look at this row of the system (70) or at this column

of the system (7). For column j the corresponding system reads:

x = ej � Ax: (15)

ej demodes the j-th column if I , i. e., the j-th unit vector. One can view this equation, which

de�nes the vector x in terms of an expression involving x, as a recursion which de�nes a sequence

x[0]; x[1]; x[2]; : : : of successive approximations of x:

x[0] := ej

x[l] := ej �Ax[l�1] ; for l � 1.
(16)

Any �xed point of this iteration is a solution of (15). By induction one can show that

x[l] = (I � A� A2 � � � � �Al)ej ;

i. e., x[l] is the j-th column of the matrix on the right-hand side. In the case of the shortest

path problem, this means that the elements of x[l] are the lenghts of shortest paths among the

paths which contain at most l arcs. By the results of the previous subsection we conclude that,

in case of the shortest path problem, x[n�1] is the j-th column of the shortest path matrix X .

We can simply iterate the recursion (16) until it converges, i. e., until two successive vectors

are equal. If the iteration does not converge after n steps, we know that there is a negative cycle.

If the iteration converges and the semiring is ordered by the di�erence relation, the resulting

solution is the smallest solution (the least �xed point) of the iteration (cf. theorem 4).

This algorithm corresponds to the Jacobi-iteration of numerical linear algebra. Gau�-Seidel

iteration is a variation of this method. There, when the elements of the vector x[l] are computed

one after the other, they are not computed from the old values of x[l�1], as in (16), but the

new elements of x[l] replace the corresponding entries as soon as they are computed. It can

be shown that, in the case of idempotent semirings, this modi�cation preserves correctness of

the algorithm, and, moreover, the Gau�-Seidel algorithm never needs more iterations than the

Jacobi algorithm.

In contrast to elimination algorithms, these iterative algorithms do not require both (left

and right) distributive laws. For example, for the column iteration (16) described above, only

the left distributive law a(b � c) = ab � ac is required. An example of a semiring where only

one of the distributive laws holds occurs in the computation of least-cost paths in networks with

losses and gains (cf. Gondran and Minoux [6], section 3.7).

5.3 Acyclic graphs

When the graph G = (V;A) on which we want to solve our path problem is acyclic, one can

order the vertices in such a way that an arc (i; j) can only exist if i < j. In this case, the matrix



p

entries aij are zero for i � j and the matrix A is (strictly) upper triangular. Then one can solve

the system (3) in one pass by computing the solution xij in the order of decreasing row indices i.

Thus, one column of X can be computed in O(jV j+ jAj) time. Similarly, one can compute one

row of X in linear time by considering the system (70).

5.4 The Dijkstra algorithm

In some cases, specialized algorithms can solve path problems more e�ciently. The single-

source shortest path problem in graphs with non-negative arc lengths can be solved e�ciently

by the algorithm of Dijkstra. This algorithm can be generalized to semirings which come from a

linearly ordered semigroup in which i1 is the largest element (see the examples in section 6.4.1).

The algorithm works by a clever choice of the vertex to be eliminated next. This is somehow

analogous to elimination algorithms in linear algebra which use pivoting.

6 Further applications

In this last section, we shall present a selection of examples from di�erent areas which can be

interpreted and solved as path problems.

In the �rst three parts of this section, we shall consider problems which involve the �eld

(R;+; �) or a subset of it. Then we shall deal with optimization problems; and we shall return

to the discussion of �nite automata from section 2.2. Finally, we shall present some examples

of \non-standard" semirings, which occur in data ow analysis of programs and in two graph-

theoretic problems.

6.1 Inversion of matrices

When the semiring is a �eld, equation (7) can be rewritten as (I �A)X = I , or X = (I �A)�1

if the matrix I � A is invertible. Then the elimination algorithm corresponds exactly to the

Gau�-Jordan algorithm of linear algebra (without pivoting). The only di�erence is that we get

the inverse of I �A and not the inverse of A. This is reected in the pivoting operation, where

we set a
(k)

kk := (a
(k)�1

kk )� = 1=(1� a
(k)

kk ) and not a
(k)

kk := 1=a
(k)

kk .

This problem has originally nothing to do with path problems. We can just pose the equa-

tion (7) without reference to a particular graph or to sums of path weights. Nevertheless, the

matrix A� = (I�A)�1 has some signi�cance for path problems, as is exempli�ed in the following

two subsections.

6.2 Partial di�erentiation

Many numerical problems, like �nding the minimum of a function f over some domain, can be

solved more e�ciently if the algorithm has access to the derivative of f . When the function f

can be written as a simple expression of one variable, computing the derivative is no problem,

but when f(z1; : : : ; zk) is a function of several variables, which is computed by a complicated

program involving loops and conditional branches, the computation of all partial derivatives

@f=@z1, @f=@z2, : : : , @f=@zk, seems to be a di�cult task. Therefore, one used to resort to

methods which do not require the derivatives, or they di�erentiated numerically, which presents

new problems of numerical stability.

In this section, we show how the problem of computing the partial derivatives can be solved

e�ciently as a path problem in a graph, by applying the chain rule.

The graph on which we will work is the computational graph of the function f . f is given by

a program like the following two-line program, which computes the real root y = f(z1; z2; z3) of
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the equation z21y = z2z3
p
y + z22 :

y := z2*z3 + SQRT( (z2*z3)^2 + 4*z1^2*z2^2 );

y := ( y / (2*z1^2) )^2;

We can resolve this into a sequence of elementary operations, as follows:

1. a := z2*z3;

2. b := a^2;

3. c := z1^2;

4. d := z2^2;

5. e := c*d;

6. g := 4*e;

7. h := b+g;

8. i := SQRT(h);

9. y := a+i;

10. j := 2*c;

11. k := y/j;

12. y := k^2;

Imagine now that this sequence of elementary steps is executed. In the beginning, the graph

consists only of k isolated vertices which correspond to the input variables. Each time a variable

is assigned a new value, we add a new vertex to the graph, and arcs from this vertex to the one

or two operands of this elementary computation (cf. �gure 4). When one of the operands is a

constant, we �rst generate a vertex corresponding to this constant. When a variable is assigned

several values in succession, we generate di�erent vertices for each assignment (y and �y in the

example).
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Figure 4: A computational graph

In our case, the computational graph has a static structure, since it corresponds to a straight-

line program. However, we can also handle programs with loops and conditional branches, since

the computational graph is generated dynamically.

Now let us look at some vertex w with two outgoing arcs leading to vertices u and v. Then
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we can determine @w=@zi by the chain rule:

@w

@zi
=

@w

@u
� @u
@zi

+
@w

@v
� @v
@zi

w is determined from u and v by some elementary operation, and hence @w=@u and @w=@v can

be calculated directly from u, v, and w in a few elementary basic steps, taking constant time.

For example, if w = u=v, then @w=@u = 1=v and @w=@v = �u=v2 = �w=v. When we associate

the value @w=@u with the arc (w; u) and the value @w=@v with the arc (w; v), we can write the

above equation as follows:

xwzi = awuxuzi + awvxvzi : (17)

Here, awu and awv are numbers that can be calculated directly, and xwzi are the unknowns

representing @w=@zi. In �gure 4, the arc weights are shown as small numbers.

We can see that the problem of computing the unknowns is just an instance of the path

problem equation (3). In section 2, we have derived (3) starting from a path problem (4). Now

arguing in the reverse direction, we obtain:

Theorem 5 @f=@zi is the sum of the weights of all paths from f to zi in the computational

graph, where the weight of a path is the product of its arc weights.

Since the computational graph is acyclic, we can compute @u=@v, for some �xed vertex u

and all other vertices v, or for some �xed vertex v and all other vertices u, in time proportional

to the number of arcs of the graph. Since each vertex has at most two outgoing arcs, this is

proportional to the number of vertices of the graph, i. e., the number of steps of the algorithm

for computing f . Thus, in time which is proportional to the time which the original program

takes, we can

� compute @f=@zi, for all input variables zi, or

� compute @v=@zi, for all intermediate variables and output variables v, and for some �xed

zi.

The second problem is solved by a bottom-up pass with a straightforward application of the

chain rule (17). This case is interesting if we have a set of functions f1(z1; : : : ; zk), f2(z1; : : : ; zk),

: : : , fl(z1; : : : ; zk), with l output variables of the program.

The �rst problem is solved by a top-down pass through the tree, starting from f . A drawback

of this method is that the computational tree must be stored, and hence storage requirement is

also proportional to the time complexity of the original program for computing f alone.

Computation of the Jacobi matrix (@fi=@zj) may take much longer than the original program

for computing only the l values fi, since kl values have to be computed. It corresponds roughly

to solving the all-pairs path problem.

We can also iterate the procedure for computing derivatives and compute second-order

derivatives. Again, note that the time for the computation of the whole Hessian matrix

(@2f=@zi@zj) is also longer than the computation of f , by more than a constant factor, since

the Hessian has k2 entries. However, one can compute the product of the Hessian matrix or the

Jacobi matrix with a particular vector in time proportional to the original number of steps of

the program.

Note that, in the algorithm, we also determine partial derivatives of f with respect to all

intermediate variables. These values can be used to estimate the total rounding error which has

been accumulated during the computation of f . For more information, the reader is referred to

the survey of Iri and Kubota [8], or to Iri [7], Sawyer [14], or Baur and Strassen [3].
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6.3 Markov chains | the number of paths

When the matrix A is the (ordinary) adjacency matrix of a graph, i. e., aij is 1 if the arc (i; j)

exists and 0 otherwise, then the weight of every path is 1, if we use the ring of integers (Z;+; �).
Thus, xij represents the number of di�erent paths from i to j. Of course this makes sense only

when the graph is acyclic, because otherwise there will be in�nitely many paths. On the other

hand, from the considerations in section 5.1, we know the the power Al contains the number of

paths of length l between every pair of vertices.

A slight generalization of this is used in the theory of Markov chains. In a Markov chain,

there is a �nite set f1; 2; : : : ; ng of states of a system, and the system changes between states in

a random way in discrete time intervals. The probability that the system is in state j at some

step t depends only on the state of the machine at step t � 1, and it is independent of t and of

previous state transitions. Let aij be the probability that the system is in state j at step t if it

was in state i at step t � 1. Then the probability that a system passes through a sequence of

states (v0; v1; : : : ; vl) is the product av0v1av1;v2 : : :avl�1vl. Thus the (i; j) entry of the matrix Al

is the probability that the the system is in state j at step t if it was in state i at step t � l.

6.4 Optimal paths

6.4.1 Best paths

We have considered the shortest path problem as the �rst instance of a path problem. There are

several other problems, where the set S of path weights is linearly ordered, and the weight of a

best path is desired, i. e., � is the operation min or max. Besides the shortest path problem,

We have the following examples:

� Maximum capacity paths. The solution uses the semiring (R+ [ f1g;max;min);

� Most reliable paths in networks with possible arc failures, where it is assumed that arc

failures of di�erent arcs are independent. Here we use the semiring ([0; 1];max; �). The

entry aij of the initial data matrix represents the probability that the arc (i; j) is all right.

We are looking for the path with the smallest failure probability.

For the case of maximum-capacity paths, the all-pairs problem can be solved more e�ciently

by constructing the maximum spanning tree.

The simplest kind of path problem arises when we only ask for the existence of a path.

Here we take the simplest non-trivial semiring, the Boolean semiring with two elements

(f0; 1g;max;min). aij is 1 if and only if the arc (i; j) exists, and xij is 1 if j is reachable

from i in the graph, i. e., the matrix X represents the transitive closure.

In all cases mentioned above and in the following subsections, the algorithms can be modi�ed

such that they will not only compute the weight of an optimal path, but produce the optimal

path itself. To achieve this, the algorithms must store how the optimal path weight and each

intermediate result was obtained. In some cases, this can only be done at the expense of an

increased storage requirement. We will not discuss this in detail.

6.4.2 Multicriteria problems | lexicographic optimal paths

In many applications, paths are not selected according to one criterion, but according to several

criteria. In the simplest case, we have a de�nite order of importance between di�erent criteria.

This leads to lexicographic optimization problems.

Imagine that a traveler plans a car trip from one city to another. For each street connecting

two points i and j he knows the time tij to travel from i to j and the amount of sprit sij that

his car needs for this distance. He wants to use as little fuel as possible, but if there are several

paths which are equal in this respect, he wants to take the one which takes the shortest time.
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Thus, he has a lexicographic preference relation 4 on the set of vectors (s; t):

(s1; t1) 4 (s2; t2) () s1 < s2 or (s1 = s2 and t1 � t2):

This is a linear order of the vectors (s; t) 2 R2
+. In the semiring, the operation � is the

lexicographic minimum, whereas 
 is the ordinary elementwise vector addition:

(s1; t1)� (s2; t2) =

8<
:
(s1; t1); if s1 < s2
(s2; t2); if s2 < s1
(s1;minft1; t2g); if s1 = s2.

(s1; t1)
 (s2; t2) = (s1 + s2; t1 + t2)

One can even use a di�erent 
-operation for the components. For example, imagine that

the trip goes through the desert. If several journeys have the same time and the same fuel

consumption, the traveler wants to select the safest trip among them, i. e., he wants his minimum

safety reserve, below which his tank will never be emptied, to be as high as possible. This means

that the sprit requirement between any two successive visits to �lling stations on his journey

should be as low as possible. Thus, we have a di�erent semiring, where 
 is de�ned as

(s1; t1; s
0

1)
 (s2; t2; s
0

2) = (s1 + s2; t1 + t2;maxfs01; s02g):

As before, � is the lexicographic minimum operation (of three components, this time).

Note however, that if the primary goal of our traveler is safety, whereas total fuel consumption

and time have second and third priority, the corresponding operations 
, in which the third

component would come in the �rst place, would not yield a semiring, because it violates the

associative law. (The structure (R3
+;
;4) would not be an ordered semigroup.)

If there is no clear preference between the objectives (of fuel over time, or vice versa), we can

still eliminate from consideration a path which is worse than some other path is both respects.

What remains is the set of e�cient or Pareto-optimal or minimal paths; i. e., We are looking

for all path weights (s; t), for which there is no other path with weight (s0; t0) such that s0 � s

and t0 < t, or s0 < s and t0 � t.

This problem can also be formulated as a path problem, with sets of pairs (s; t) as elements

of the semiring. The 
 operation for sets is the elementwise 
-product of the elements, and �
is set union. However, after every operation, we can reduce the resulting sets by throwing away

pairs (s; t) which are not e�cient. Since these sets of e�cient values can become very large, this

approach is limited to small problems.

6.4.3 k-best paths

Another extension of the ordinary best path problem is the determination of the k best di�erent

paths between every pair of vertices. We can solve this by a semiring which operates on vectors

of k elements. For simplicity we will assume that we want to compute the k shortest paths in the

ordinary sense, i. e., we are working with the semiring (R1;min;+). However, the underlying

semiring for the corresponding best path problem can be any semiring in which � is the min

or the max operation (cf. the examples in the previous subsections). We are going to create a

semiring (Sk;�;
), whose elements are k-tuples of S. The vector (a1; a2; : : : ; ak) is meant to

represent the lengths of the best, the second-best, : : : , the k-best path in a certain set of paths.

The operations for the semiring are de�ned as follows:

� (a1; a2; : : : ; ak)� (b1; b2; : : : ; bk) is the sequence of the k smallest values in the combination

(union) of the two given sequences.

� (a1; a2; : : : ; ak)
(b1; b2; : : : ; bk) is the is the sequence of the k smallest values in the (multi-

)set of k2 elements f ai + bj j i = 1; : : : ; k; j = 1; : : : ; k g.
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Note that a sequence (a1; a2; : : : ; ak) can contain repeated elements, which correspond to di�erent

paths with the same length. Moreover, addition in this semiring is not idempotent. However,

the order of the elements in the sequence is immaterial, and thus we might just as well assume

that they are sorted. Thus, by the way we treat the sequences in Sk, they are in fact multisets.

� i1 = (0;1; : : : ;1) and i0 = (1; : : : ;1). The initial entries of the matrix are

(aij;1; : : : ;1), when aij is the weight of the arc (i; j). (Initially, the path (i; j) is the

only path from i to j that we know of. The second-, third-best, etc., paths do not exist.)

� We have to de�ne the �-operation, i. e., the solution of

x = (0;1; : : : ;1)� a
 x: (18)

Let us assume that a = (a1; a2; : : : ; ak) with a1 � a2 � � � � � ak. When we write x as
i1 � a� a2 � � � �, we see the following:

{ If a1 < 0, there is no solution, except perhaps (�1;�1; : : : ;�1).

{ If a1 = 0, we get x = (0; 0; : : : ; 0) as the largest solution. However, any constant

vector x = (c; c; : : : ; c) with c � 0 is also a solution of (18). (These are not the only

solutions.)

{ If a1 > 0, there is a unique solution, which can be determined by looking at equa-

tion (18): x = (x1; x2; : : : ; xk) consists of the k smallest values in the (multi-)set

f0g [ f ai + xj j i = 1; : : : ; k; j = 1; : : : ; k g: (19)

We see that the smallest element in this set is x1 = 0, since the elements of the

right-hand set of the union are all positive. Let us assume that we have determined

the l smallest elements of the set (19). xl+1, the (l + 1)-smallest element of this set

is the l-smallest element of the right-hand set. However, in order to determine the

l-smallest element of a
x, we need only know the l smallest elements of x, which we

know already. Thus, we can successively determine x1, x2, : : : , xk.

Let us discuss the complexity of these operations. � can clearly be carried out in O(k) time. The

operation 
 can also be carried out in (theoretical) O(k) time, using a sophisticated algorithm

of Frederickson and Johnson [5]. The determination of a� as described above, which occurs only

n times during the elimination algorithm, can be carried out in O(k log k) steps, using priority

queues.

Note that we do not get the k best elementary paths by this approach; i. e., the paths that

we get can contain repeated vertices and arcs. The problem of �nding the k best elementary

paths is considerably more di�cult, but also for this problem, algorithms which use the algebraic

framework of the path problems have been proposed.

The k-best path problem is an example of a path problem where non-elementary paths can

have an inuence on the solution. However, in case there are no negative cycles, the longest

path that has to be taken into account has kn � 1 arcs. (For a longer path, one can construct

at least k di�erent shorter paths by successively eliminating elementary cycles from the path.)

Thus, the iterative algorithms of section 5 should converge after at most kn � 1 iterations,

unless there are negative cycles.

6.5 Regular expressions

For our second example from the beginning, the determination of the language accepted by

a �nite automaton (cf. section 2.2, the elimination algorithm seems to be useless, since the
�-operation will probably very soon lead to in�nite sets. However, the algorithms provides us
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with a way to describe the language. In order to explain this, we need one more de�nition: A

regular language is a set of words which is built starting from �nite sets of words using only

the operations � (concatenation), [, and �. For example, e(ffh�(f [ fg; hg�))� [ f"; gggg is a
regular language. (Here, single words denote singleton sets.) Now the Gau�-Jordan elimination

algorithm successively constructs a regular expression for each pair of states i and j, which

describes the language xij leading from i to j: It start from the �nite sets aij, and as it proceeds,

it uses only the operations �, [, and �.

Since the language accepted by the automaton is just the union of several xij, we have proved

the following theorem:

Theorem 6 The language accepted by a �nite automaton is regular.

This is one half of Kleene's theorem about the equivalence of �nite automata and regular ex-

pressions. The other direction, the construction of a �nite automaton which accepts a given

regular language, is even easier. Our proof by Gau�-Jordan elimination is in fact the standard

proof of this result.

6.6 Flow analysis of computer programs

When a compiler wants to optimize the code for a computer program, for example by detect-

ing common subexpressions or by moving invariant expressions out of loops, it needs to know

whether the value of an expression remains unchanged between two uses of this expression. If

this is the case, the expression need not be evaluated the second time.

In order to investigate this problem, for one particular expression f(z1; : : : ; zk) which occurs

in the program, we represent the program by its ow graph. The vertices correspond to basic

blocks of the program, i. e., blocks of consecutive statements with one entry point at the begin-

ning and one exit point at the end. The arcs indicate possible transfers of control between basic

blocks. (This is similar to a owchart.)

The execution of a basic block may have one of the following e�ects on the value of f :

� It may generate f , i. e., the value of f is computed in the block and is available on exit

from this block.

� It may kill f , for example by assigning a new value to one of the input variables z1; : : : ; zk
of f .

� It may leave f unchanged.

We give an arc (i; j) the label G, K, or U, depending on whether the value of f is generated,

killed, or left unchanged between the entry to block i and the entry to block j, (i. e., during the

execution of block i). In addition, we need an element i0 for the arcs which are not present.

Now we can use the following semiring on the set f i0 ; G; U;Kg.

� i0 G U K
i0 i0 G U K

G G G U K

U U U U K

K K K K K


 i0 G U K
i0 i0 i0 i0 i0
G i0 G G K

U i0 G U K

K i0 G K K

a a�

i0 U

G U

U U

K K

U is the i1 -element of this semiring. All semiring axioms hold. Note that in this semiring

the operation 
 is not commutative. The operation � is just the min operation for the order

K < U < G < i0 . This is typical of data ow problems, because when we unite two sets of

possible paths from i to j, we can only keep the weaker information of the information that the

two sets give about f .
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To solve our original problem, let 1 be the start vertex of the program. We can eliminate an

evaluation of the expression f in block j if and only if x1j is G.

Further examples of data ow problems and references can be found in Tarjan [15].

6.7 Some graph-theoretic problems

The following examples are mentioned mainly as curiosities, in order to illustrate the broad

range of applicability of the path problem formulation. For each of the problems, there are in

fact linear-time algorithms to solve them directly.

The transitive closure of a graph, which also falls into this category, has already been men-

tioned briey in section 6.4.1.

Path problem formulations have also been proposed for problems of enumerating elementary

paths or cutsets of a graph. Such problems are exponential by their output size alone. There

the solution procedures by elimination algorithms can be applied only to graphs of moderate

size.

6.7.1 Testing whether a graph is bipartite

An undirected graph is bipartite if it contains no odd cycle (i. e., no cycle containing an odd

number of edges). Since a cycle is just a special case of a path from a vertex to itself, we can

formulate this as a path problem. Let the weight of a path be E or O according to whether

its length is even or odd, and let the weight of a set of paths be ;, E, O, or EO, according to

whether the set is empty, contains only even paths, only odd paths, or paths of both types.

Then we get the following semiring on the four-element set S = f;; E; O;EOg:

� ; E O EO

; ; E O EO

E E E EO EO

O O EO O EO

EO EO EO EO EO


 ; E O EO

; ; ; ; ;
E ; E O EO

O ; O E EO

EO ; EO EO EO

a a�

; E

E E

O EO

EO EO

We initialize the data matrix by setting aij = O if the edge fi; jg exists and aij = ; otherwise.

Then, if any xii = O or EO when the algorithm stops, the graph is not bipartite; otherwise it

is. (Of course, as soon as the element EO appears somewhere in the matrix, we know already

that the graph is not bipartite.)

We can also apply this algorithm to directed graphs and test for the existence of paths of

given parity. Using a generalization of this idea, one can �nd shortest even paths or shortest

odd paths, if one does not insist that the paths should be elementary. One could even �nd a

shortest path whose number of arcs is, for example, congruent to 4 modulo 7, if one wishes to

do so.

6.7.2 Finding the bridges and the cut vertices of a graph

A brigde in an undirected graph G = (V;E) is an edge whose removal causes some connected

component of G to break into two components. Similarly, a cut vertex or articulation point is a

vertex whose removal causes some connected component of G to become disconnected.

For �nding bridges, we use the semiring (2E[f i0 g;\;[), which operates on the set of subsets
of edges augmented by a zero element. \ and [ are the ordinary set intersection and set union

operations, except that their interaction with i0 is speci�ed by the semiring axioms. As unity

element we have i1 = ;, and thus the �-operation presents no problem: x = i1 �ax = ;\(a[x)
always has the same unique solution x = ;, even when a = i0 .

As the weight of an arc (i; j) we take simply the singleton set feg, if e 2 E is the (undirected)

edge corresponding to the (directed) arc (i; j), and we take i0 if no such edge exists. The weight



p

of a path is then just the set of its edges. Using the formulation (4) of the algebraic path

problem, we get:

xij =
\

p is a path
from i to j

w(p):

In other words, xij is the set of edges which belong to every path from i to j. Such edges are

clearly bridges, since their removal causes i to become disconnected from j. Conversely, every

bridge must appear in some set xij.

Note that the semiring axioms would allow us to take the set E as the zero element instead

of i0 . But then we could not distinguish the case where all edges are bridges (xij = E) from

the case when i and j are not connected (xij = i0 ).
The determination of cut vertices proceeds in essentially the same way. We use the semiring

(2V [ f i0 g;\;[), and the weight of (i; j) is fig, if fi; jg 2 E, and i0 otherwise. All elements of

the set xij, except for i, are cut vertices.

7 Conclusion | comparison of di�erent approaches

The general path problem can be approached in several di�erent ways. They are charaterized

by di�erent formulations and by di�erent assumptions about the underlying algebraic structure.

We have taken a purely algebraic approach: Solve the system of equations (3).

The usual approach is more direct. It involves the formulation of the problem as an in�nite

sum (4) of path weights and building up this sum by computing sums a
(k)
ij of larger and larger

path sets, using the equations (12). We have seen this approach in section 4.3. With suitable

axiomatic assumptions for in�nite sums this derivation of the solution can be made precise.

In some semirings in�nite sums do not always exist, although they can be de�ned for some

sequences. These semirings include the important case of the real numbers (R;+; �) with their

rich structure of convergence. Such semirings can also be dealt with quite satisfactorily. This

approach has for example been taken in Rote [13].

A variation of this method speci�es the solution in the free semiring generated by the arc

set. This is the semiring of multisets of paths with set union and concatenation as addition and

multiplication operations. The solution for a speci�c semiring is then obtained by applying a

homomorphism from the free semiring to the speci�c semiring. An approach like this is taken

by Tarjan [15].

Lehmann [9] has taken the 2�2 block decomposition algorithm (14) as the recursive de�nition

ofA� for matrices in terms of the operation a� for scalars. He shows that the result is independent

of how the matrix is decomposed into blocks. A similar approach is taken by Abdali and

Saunders [1] who introduce the concept of eliminants to de�ne A�. Their de�nition corresponds

to a particular way of computing A� in terms of the a� operation, very similar to our elimination

algorithm.

A comparison of di�erent approaches can be found in Mahr [12].

For some applications, like shortest paths, the formulation (4) involving sums of path weights

is more natural, whereas the algebraic formulation (3) is more convenient for other applications

such as the inversion of matrices. However, the relationship between the two formulations is

not so close: The system (3) may have a solution although the in�nite sum (4) makes no sense

(consider the case of matrix inversion), or it may have several solutions (cf. the discussion of

the shortest path example at the beginning of section 4). However, the desired solution of (3)

can often be characterized as the smallest (or largest) solution. Theorems 3 and 4 of section 4.2

show that this desired solution can be obtained by de�ning a� appropriately.

We hope that the broad range of applications from which we could draw our examples has

convinced the reader of the importance and the general usefulness of path problems.
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