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Abstract. In this paper, we show some properties of a pseudotriangle
and present three combinatorial bounds: the ratio of the size of minimum
pseudotriangulation of a point set S and the size of minimal pseudotrian-
gulation contained in a triangulation T , the ratio of the size of the best
minimal pseudotriangulation and the worst minimal pseudotriangulation
both contained in a given triangulation T , and the maximum number of
edges in any settings of S and T . We also present a linear-time algorithm
for finding a minimal pseudotriangulation contained in a given triangu-
lation. We finally study the minimum pseudotriangulation containing a
given set of non-crossing line segments.

1 Introduction

A pseudotriangle is a simple polygon with exactly three vertices where the inner
angle is less than π, see Figure 1. These three vertices are called corners. The
boundary is composed of three pieces of nonconvex chains, where the nonconvex
chain has either a reflex inner angle at each inner vertex or is a single edge (the
degenerate case). A pseudotriangulation of a point set S is a partition of the
interior of the convex hull of S into a set of pseudotriangles. This geometric
structure plays an important role in planning collision-free paths among polyhe-
dral obstacles [4] and in planning non-colliding robot arm motion [2, 5]. Previous
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Fig. 1. (a) Some typical pseudotriangles. Vertices x1, x2, x3 are corners, and the three
right-hand side cases are degenerate cases of pseudotriangle. (b) A pseudotriangulation
of 10 points.

research on this topic was mainly concentrated on the properties and algorithms
for minimum pseudotriangulation of a given point set or a set of convex objects.
In those cases, the edges of pseudotriangulations are chosen from the complete
edge set of the point set.

It is natural to consider some constraint on the choice of edges. Our work
mainly investigates the properties of the minimal pseudotriangulations con-
strained to be a subset of a given triangulation, the minimum pseudotriangula-
tions constrained to be a superset of a given set of noncrossing line segments, and
on algorithms to find these pseudotriangulations. This investigation is motivated
in some applications that one may compromise a minimal pseudotriangulation
by a faster construction algorithm, or the environment may be constrained by a
set of disjoint obstacles. For example, the paper [1] investigates degree bounds
for minimum pseudotriangulations which are constrained by some given subset
of edges.

In order to find a minimal pseudotriangulation constrained in a given trian-
gulation, one must be able to identify the edges to be removed. In Section 3, we
show a structural property for these edges (Theorem 2). This property allows
us to design a linear-time algorithm for finding a minimal pseudotriangulation,
which is presented in Section 5.

In contrast to the pseudotriangulation of a set S of n points, where all mini-
mum pseudotriangulations of S have the same cardinality, viz. 2n− 3 edges [5],
the size of the minimum pseudotriangulation constrained in a given triangulation
T depends not only on n, but on T .

We investigate the possible sizes of minimal and minimum pseudotriangula-
tions in Section 4. We show that the ratio of the sizes of the best and the worst
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minimum pseudotriangulation constrained in some T against the size of the min-
imum pseudotriangulation triangulation of S can vary from 1 to 2

3 . The above
bound is optimal asymptotically. Furthermore, the size of a ‘minimal’ pseudotri-
angulation constrained in a triangulation depends on the sequence of construc-
tion of pseudotriangles. (In a minimal pseudotriangulation, each pseudotriangle
has been expanded into its limit, a further expansion will violate the definition
of pseudotriangle. A minimal pseudotriangulation may not be minimum with
respect to all possible pseudotriangulations constrained in that triangulation.)
We show that the ratio of the size of the smallest minimal pseudotriangulation
and the size of the largest minimal pseudotriangulation constrained in a same
triangulation can vary from 1 to 2

3 . It is known that the size of minimum pseudo-
triangulation constrained on any setting of S and T is at least 2n− 3. We show
that the maximum number of edges in such pseudotriangulations is bounded by
3n − 8.

In Section 6, we study the pseudotriangulations which contain a given set L
of noncrossing line segments. Interestingly, we find that the size of a minimum
pseudotriangulation for L depends only on the number of reflex vertices of L. The
proof uses an algorithm for constructing such a minimum pseudotriangulation.

Finally, we discuss some open questions.

2 Preliminaries

We shall first give some definitions. A triangulation T of a planar point set S is
a maximal planar straight-line graph with S as vertices. We assume throughout
the paper that the points of S lie in general position, i.e., no three points lie on
a line, and all angles are different from π.

Let T ′ be a subgraph of T . For a vertex p ∈ S define α(p) be the largest angle
at p between two neighboring edges incident to p. A vertex p in T ′ is called a
reflex point if α(p) ≥ π in T ′.

A minimum pseudotriangulation of a point set is one with the smallest num-
ber of edges. It is known that the number of edges in any minimum pseudotri-
angulation of n points is 2n− 3, see [5].

We now prove some properties for a triangulated pseudotriangle.
Let p be a pseudotriangle, T (p) be a triangulation of p. Let T (p)− p denote

the remainder of T (p) after the removal of the edges of p. The dual graph of
T (p) is defined as usual: Each node in the graph corresponds to a triangle face
in T (p), and two nodes determine an edge of the graph if the corresponding
triangles share an edge. A star-chain consists of three simple chains sharing a
common end-node.

Lemma 1. The dual of any triangulation of a pseudotriangle is a simple chain
or a star-chain.

Proof. See Figure 2a for an illustration. Each interior edge of the triangulation
of a pseudotriangle must span on two different chains by the nonconvexity of
its three chains. This implies that these interior edges can form at most one
triangle. The lemma follows. ut
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Fig. 2. (a) Different shapes of the dual graph in Lemma 1. (b) The edges of T (p) − p
in Lemma 2.

Lemma 2. Let T (p) be a triangulation of a pseudotriangle p. There is a perfect
matching between the edges in T (p)−p and the reflex vertices of p, which matches
each edge to one of its vertices.

Proof. By Lemma 1, the edges of T (p) − p form either a tree which contains
exactly one corner of p or a graph with a single cycle, which is formed by a
triangle, see Figure 2b. In the first case, we choose the corner as a root and
direct all edges of T (p)−p away from the root. Then every reflex vertex will have
one edge of the tree pointing towards it, thus establishing the desired one-to-one
correspondence between the edges and the reflex vertices. If T (p)− p contains a
triangle, we orient the edges of the triangle cyclically, in any direction, and we
orient all other edges away from the cycle. Again, every reflex vertex has one
edge of the tree pointing towards it. (In fact, the matching between edges and
reflex vertices is unique up to reorienting the central triangle.) ut

We can extend the statement of the Lemma 2 from a single pseudotriangle
to a pseudotriangulation.

Theorem 1. Let T be a triangulation of a point set S, and let P ⊆ T be a
pseudotriangulation of S. Then there is a perfect matching between the edges in
T − P and the reflex vertices of P , which matches each edge to one of its two
vertices.

Proof. Every reflex vertex of P belongs to exactly one pseudotriangle in which
it is a reflex vertex. Thus, we can simply apply Lemma 2 to each pseudotriangle
of P separately. ut

The following statement is important for our characterization of minimal
pseudotriangulations in Theorem 2.

Lemma 3. Let p be a pseudotriangle, and let E be a nonempty set of edges
inside p which partition p into smaller pseudotriangles. Then one of the following
two cases holds:

(a) E is a triangle.
(b) E contains an edge e such that E − e still partitions p into smaller pseudo-

triangles.
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Proof. Every edge in E connects two different reflex side chains of p. If |E| ≥ 4,
then E contains at least two edges which connect the same pair of reflex side
chains of p. We choose among all these edges the edge e which is incident with
the pseudotriangle containing the common corner of these chains. Removing e
will join two pseudotriangles into a new face which is bounded by portions of
two reflex chains and a single edge between these chains. Hence this face is a
pseudotriangle, and e is the desired edge for Case (b) of the lemma.

We are left with the case that E contains at most three edges. This case can
be treated by an elementary case analysis. ut

3 Minimal pseudotriangulations

Let T denote a triangulation of S and let PT denote a pseudotriangulation
constrained in T , i.e., PT ⊆ T .

A pseudotriangulation PT is minimal (denoted by PT
mal) if no proper subset

of PT is a pseudotriangulation. PT is called minimum (denoted by PT
mum) if

it contains the smallest number of edges over all possible pseudotriangulations
constrained in T . For simplicity, we use ‘constrained pseudotriangulation PT ’ as
pseudotriangulation constrained in a given triangulation T .

The definition of a minimal triangulation involves a statement about all sub-
sets of edges. The following theorem shows that is is sufficient to check only a
linear number of proper subsets to establish that a pseudotriangulation is mini-
mal.

Theorem 2 (Characterization of minimal pseudotriangulations).
A pseudotriangulation P is minimal if and only if

– there is no edge e ∈ P such that P − e is a pseudotriangulation, and
– there is no triangular face {e1, e2, e3} ∈ P such that P − {e1, e2, e3} is a

pseudotriangulation.

Proof. It is clear that the condition is necessary. Now, suppose that P ′ ⊂ P is a
pseudotriangulation which is a proper subset of P . We have to show that some
edge or triangle of P can be removed. Let p be a pseudotriangle face of P ′ which
contains some edges E of P −P ′. These edges subdivide p into pseudotriangles,
and we can apply Lemma 3 to p. We either get an edge whose removal yields
a pseudotriangulation, or E is a triangle, whose removal merges 4 faces of P
into p. ut

4 Ratio of the sizes of pseudotriangulations

In this section, we show some relationships among the sizes of T , P T (constrained
pseudotriangulation), PT

mal (minimal PT in T ), PT
mum (minimum PT in T ), and

Pmum(S) (minimum pseudotriangulation of the point set S).
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Theorem 3. Let S be a set of n points in general position and T be a triangu-
lation of S. The number of edges in P T

mum is at most 3n − 8, for n ≥ 5. There
are infinitely many values of n for which a triangulation exists where PT

mum has
3n − 12 edges.

Fig. 3. Three steps of the inductive construction in Theorem 3. The three edges of the
dotted central triangle can be removed.

Proof. Suppose that If k vertices lie on the convex hull of S, every triangulation
T has 3n−k−3 edges, and every pseudotriangulation P (in fact, any noncrossing
set of edges) has at most 3n − k − 3 edges. This follows from Euler’s relation.
Thus, when k ≥ 5, the upper bound follows. It is easy to check that when n ≥ 5
and k is 3 or 4, we can always remove at least 5 − k edges and still obtain a
pseudotriangulation.

A family of triangulations which show the lower bound is given in Figure 3.
The number of vertices is a multiple of 3 and k = 6. The instances are con-
structed inductively, by removing the central triangle and subdividing the re-
sulting pseudotriangle as shown in Figure 3. The new points are slightly twisted
about the center in order to obtain a point set in general position, and to en-
sure that the “direct paths” which lead from the center to the vertices of the
outer hexagon make zigzag turns. The only edge set which one can remove is the
central triangle. The resulting pseudotriangulation has 3n − 12 edges. One can
check by inspection, using Theorem 2, that it is a minimal pseudotriangulation.
Since there was only one way to obtain a pseudotriangulation as a subgraph of
T , it is the unique minimal pseudotriangulation. Hence, is is also a minimum
pseudotriangulation. ut
We have an example of a minimum pseudotriangulation with n = 41 vertices
and 3n−8 edges. We believe that the upper bound of 3n−8 is tight for infinitely
many values of n.

Theorem 4. (a) There are cases of S and T such that the size of T and P T
mum,

and all other pseudotriangulations PT are the same.
(b) The ratio between the sizes of two different minimal constrained pseudotri-

angulations in a given triangulation is between 2
3 and 3

2 . These bounds are
asymptotically tight.
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(c) The ratio of the size of the minimum pseudotriangulation of S and the min-
imum pseudotriangulation constrained in T is between 1 and 2

3 , which is
asymptotically tight. The same bound holds for the size of the minimal con-
strained pseudotriangulation in T .

Proof. The bounds on the ratios follow from the fact that a pseudotriangulation
of n points has between 2n − 3 and 3n − 6 edges. We omit the detailed general
proofs that the bounds are tight in this version of the paper, but we show some
typical tight instances in Figure 4.

(b)(a)

Fig. 4. Examples for the proof of Theorem 4

(a) The triangulation T in Figure 4(a) is obtained by perturbing a triangular
grid so that the sides bulge. One can check by inspection, using Theorem 2, that
it is a minimal pseudotriangulation, and hence also a minimum pseudotriangu-
lation in T .

(b) In the triangulation of Figure 4(b) we can obtain a minimal triangulation
with 3n − 18 edges by removing the five dotted edges in the center, or we can
get another minimal triangulation with 2n − 2 edges by removing the edges in
the shaded funnels.

(c) The example of Figure 3 in Theorem 3 is a minimum and minimal pseu-
dotriangulation PT (S) with 3n−12 edges. A minimum pseudotriangulation of S
has always 2n − 3 edges. ut

5 Constructing a minimal pseudotriangulation in a
triangulation

In the following, we shall present a linear-time greedy algorithm to construct
a minimal pseudotriangulation in a given triangulation T . By Theorem 2, we
just need to check whether we can remove a single edge or a triangle and keep
a pseudotriangulation. If this is the case, we remove the edge or triangle and
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continue with the resulting pseudotriangulation. The following lemma explains
how to carry out this test efficiently.

Lemma 4. (a) Let P be a pseudotriangulation and e ∈ P be an edge. Then
P − e is a pseudotriangulation if and only if the removal of e creates a new
reflex vertex, in other words, if one endpoint of e is not reflex in P and reflex
in P − e.

(b) Let P be a pseudotriangulation and {e1, e2, e3} ∈ P be a triangular face in P .
Then P − {e1, e2, e3} is a pseudotriangulation if and only if the removal of
the triangle makes all three vertices reflex, or more precisely, if the three
vertices of {e1, e2, e3} are not reflex in P and reflex in P − {e1, e2, e3}.

Proof. Removing an edge or a triangle creates a new face from merging two or
four pseudotriangles, respectively. We have to check whether this new face con-
tains 3 convex vertices. The proof follows easily by counting the convex angles
incident to the affected vertices, before and after removing the edge or the trian-
gle. (It also follows that in case (a), only one endpoint of e can be a new reflex
vertex in P − e.) ut

Computationally, the conditions of Lemma 4 can be checked very easily. For
example, let e = ab be an edge in a pseudotriangulation P . Let α1 and α2 be
the two angles incident to e at a, and let β1 and β2 be the two corresponding
angles at b. Then P − e is a pseudotriangulation if and only if α1 < π, α2 < π,
and α1 + α2 > π, or if β1 < π, β2 < π, and β1 + β2 > π. The condition can
be similarly formulated for the removal of a triangle (Lemma 4(b)). Thus, for
a given edge or triangle, it can be checked in constant time whether it can be
removed.

The algorithm for constructing a minimal pseudotriangulation now works
as follows. We call an edge or a triangle removable if it satisfies the condition
of Lemma 4(a) or (b), respectively. We start with the given triangulation. The
algorithm maintains a list of all removable edges, which is initialized in linear time
by scanning all edges. When a removable edge exists, we simply remove this edge,
and update the list of removable edges. The removal of an edge e = ab may affect
the removability status of at most four edges of the current pseudotriangulation
P (namely, the two neighboring edges at a and at b). These edges can be checked
in constant time.

We repeat this procedure until the list of removable edges becomes empty.
Now we check if there is any removable triangle according to the condition of
Lemma 4(b), and we remove it. One can easily show that the removal of a triangle
cannot create a new removable edge or a new removable triangle. Thus we can
simply scan all faces of P sequentially, in linear time.

In the end we obtain a pseudotriangulation without removable edges or tri-
angles, which is a minimal pseudotriangulation, by Theorem 2.

Theorem 5. The algorithm produces a minimal pseudotriangulation PT
mal of a

given triangulation T in linear time. ut
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6 Constructing a pseudotriangulation containing a given
set of edges

In this section, we find a minimum pseudotriangulation which contains a given
set L of non-crossing line segments. The basic idea is to maintain the set of
reflex vertices of the given straight-line graph G(S, L) as an invariant when we
add extra edges to L to build the pseudotriangulation of L [3].

Theorem 6. For any noncrossing set of line segments L, there is a pseudo-
triangulation T ′

L(S) ⊇ L which has the same set of reflex vertices as G(L, S).

Proof. We prove this by gradually adding edges to the set L until we get a
pseudotriangulation. First we add all convex hull edges to L. This does not
change the set of reflex vertices.

Then the edge set L partitions the interior of the convex hull into faces, which
can be considered independently. So let us consider a single face F , see Figure 5.
The boundary of F has one component B which is the exterior boundary of F ,
and possibly several other components inside F . Note that B is a single cycle
of edges when we walk along the boundary of F inside B, although this cycle
may visit the same edge twice (from two different sides) or it may visit a vertex
several times. Nevertheless, we treat B as if it were a simple polygon.

x3

x2

x1

A1 A3
A2

Fig. 5. Illustration for the proof of the Theorem 6.

We will subdivide F into pseudotriangles by repeatedly carrying out the
following steps:

– Select a corner x1 on B and walk clockwise along B until we find the next
two corners x2 and x3 on B. (B must contain at least 3 corners.) We denote
the path from x1 via x2 to x3 along B by A1, and the remaining part of B
by A2. By A3, we denote the (possibly empty) set of interior components of
the boundary of F , see Figure 5.

– Find the shortest path S from x1 to x3 in F which is homotopic to the
path A1 from x1 to x3. In other words, we put a string from x1 along x2

to x3 and pull the string taut, regarding B and the components inside F
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as obstacles. In other words, we take that shortest path from x1 to x3 in F
which separates A1 from A2 ∪ A3.

It is clear that this path S consists of the following pieces:

(a) an initial piece following some part of B from x1 towards x2, turning left;
(b) a connecting line segment through the interior of F ;
(c) some part of the boundary of the convex hull of A2 ∪ A3, turning right;
(d) a connecting line segment through the interior of F ; and
(e) a final piece following some part of B from x2 to x3, turning left.

Any of the pieces (a), (c), and (e) may be missing. If (c) is missing, then there
is of course only one connecting segment instead of (b) and (d). It follows that
the region that is cut off by this path (on the left side of S) is a pseudotriangle
that contains no points inside. It may happen that S consists of a single reflex
chain from x1 to x3 along B. In this case, F was an empty pseudotriangle, and
we are done with F . Otherwise, we continue this procedure with the remaining
part of F . It is also clear that no edge of S will destroy a reflex vertex. Being a
geodesic path, S will only go through reflex vertices (besides the endpoints x1

and x3), and it will make left turns when passing around a component that is
on the left side, and similarly for right turns. ut

The following immediate consequence of the theorem extends the known
results for L = ∅, where r = n.

Corollary 1. Every minimum pseudotriangulation of a point set S with n points
containing a given set L of edges with r reflex vertices has 2n− r − 2 pseudotri-
angles and 3n− r − 3 edges. ut

7 Conclusion

Several problems remain for further study.

– How to find the minimum pseudotriangulation constrained in T ? Is this
problem NP-hard?

– Study minimum pseudotriangulations subject to some other constraints.
– How to find the minimum-weight pseudotriangulation?
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