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Abstract

We study the complexity of computing the Fréchet
distance (also called dog-leash distance) between two
polygonal curves with a total number of n vertices.
For two polygonal curves in the plane we prove an
Ω(n log n) lower bound for the decision problem in the
algebraic computation tree model allowing arithmetic
operations and tests. Up to now only a O(n2) upper
bound for the decision problem was known.

The Ω(n log n) lower bound extends to variants of
the Fréchet distance such as the weak as well as the
discrete Fréchet distance. For the one-dimensional
case we give a linear-time algorithm to solve the de-
cision problem for the weak Fréchet distance between
one-dimensional polygonal curves.

1 Introduction

The Fréchet distance is a metric for comparing pa-
rameterized shapes. In this paper we consider the
Fréchet distance between polygonal curves. We also
study variants of the Fréchet distance, namely the
weak Fréchet distance, the discrete Fréchet distance,
and the weak discrete Fréchet distance. There is a
quadratic upper bound for solving the decision prob-
lem for the Fréchet distance of polygonal curves [2]
and its variants, but so far no non-trivial lower bound
was known.

In this paper we prove the following lower bound:

Theorem 1 Determining whether or not the Fréchet
distance between two polygonal curves in the plane of
total complexity (i.e., number of vertices) n is less
than a value ε takes Ω(n log n) time in the algebraic
computation tree model allowing arithmetic opera-
tions (+,−,×, /) and tests (>,≥, =).

The same holds for the weak Fréchet distance
with and without the restriction that endpoints are
mapped to endpoints, the discrete Fréchet distance,
and the weak, discrete Fréchet distance with and
without endpoint restriction.

We prove Theorem 1 by reducing a problem with an
Ω(n log n) lower bound in linear time to the decision
problem for the Fréchet distance. The problem we
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reduce from is set inclusion for which the lower bound
in the above model has been proved by Ben-Or [3].

The lower bound in the theorem holds for polygonal
curves in the plane. For the one-dimensional case we
show that the lower bound for the weak Fréchet dis-
tance between one-dimensional polygonal curves does
not hold. We give a linear-time algorithm for this
case.

Note that the definition of the weak Fréchet dis-
tance does not require endpoints to be mapped to
endpoints as does the definition of the non-monotone
Fréchet distance in [2] which coincides with the weak
Fréchet distance with endpoint restriction.

Theorem 2 The weak Fréchet distance of one-
dimensional polygonal curves can be computed in lin-
ear time.

For the weak Fréchet distance with endpoint re-
striction Theorem 2 holds if the polygonal curves lie
between their endpoints. It remains open whether
the lower bound holds if the endpoints lie inside and
whether the lower bound holds for the Fréchet dis-
tance of one-dimensional curves.

2 Fréchet Distance

In this section we recall the definitions of the Fréchet
distance and its variants. For two parameterized
curves f1, f2 : [0, 1] → R

d their Fréchet distance is
defined as

inf
α:[0,1]→[0,1]

β:[0,1]→[0,1]

max
t∈[0,1]

|f1(α(t)) − f2(β(t))|

where | · | denotes the Euclidean metric in R
d and

the reparametrizations α, β range over all orientation-
preserving homeomorphisms.

Figure 1: Fréchet Distance: length of shortest leash.
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The Fréchet distance can be illustrated by a man
and a dog walking on the two curves as in Figure 1.
The man has the dog on a leash. Both may choose
their speed and may stop but not walk backwards.
Then the Fréchet distance corresponds to the length
of the shortest leash that allows them to walk on their
respective curves from beginning to end. The Fréchet
distance is therefore also called the dog-leash distance.

We focus on polygonal curves. Since the Fréchet
distance is invariant under reparametrization we can
assume a polygonal curve P to be given by the ordered
list of its vertices, i.e., P = (p1, . . . , pl).

The weak Fréchet distance of polygonal curves is de-
fined in the same way except that the reparametriza-
tions α, β range over all surjective continuous func-
tions. For the weak Fréchet distance with endpoint re-
striction the reparametrizations are further required
to map 0 to 0 and 1 to 1, respectively. In the man-
dog illustration the weak Fréchet distance with end-
point restriction allows the man and dog to walk also
backwards. In the weak Fréchet distance they may
also choose their starting and ending point, but must
cover both curves.

Since the weak versions of the Fréchet distance are
defined as the Fréchet distance but with less con-
straints, the weak Fréchet distance with endpoint re-
striction is less or equal to the Fréchet distance, and
the weak Fréchet distance is less or equal to the weak
Fréchet distance with endpoint restriction.

The discrete Fréchet distance is defined using dis-
crete maps on the vertices instead of homeomorphisms
on the parameter spaces. Let P = (p1, . . . , pl) and
Q = (q1, . . . , qm) be two polygonal curves given by
their ordered lists of vertices. A coupling of the ver-
tices is an ordered sequence of pairs of vertices in P, Q,
i.e., C = (c1, . . . , ck) with

cr = (a, b), a ∈ P, b ∈ Q for 1 ≤ r ≤ k,

fulfilling (0, 0), (l, m) ∈ C and for 1 ≤ r < k

cr = (ai, bj) ⇒
cr+1 ∈ {

(ai + 1, bj), (ai, bj + 1), (ai + 1, bj + 1)
}
.

The discrete Fréchet distance between polygonal
curves is defined by taking the minimum over all cou-
plings and the maximum over all distances between
coupled vertices, i.e.,

min
C coupling

max
(ai,bj)∈C

|ai − bj|.

A coupling of the vertices can be extended to a limit
of homeomorphisms on the parameter spaces of the
curves. This implies that the Fréchet distance is less
than or equal to the discrete Fréchet distance. Fur-
thermore, for any homeomorphism there exists a cou-
pling which yields a distance that is not more than the

distance of the homeomorphism plus half the length
of the longest edge of either curve. Thus, if we add
vertices to the curves P, Q so that their edge lengths
tend to zero, their discrete Fréchet distance will tend
to the Fréchet distance. The weak versions of the dis-
crete Fréchet distance are defined analogously to the
continuous case, i.e., a coupling can also make back-
ward steps in the sense that from ai it can step to
ai − 1, ai, or ai + 1.

3 Lower Bound

We reduce the problem of set inclusion to the decision
problem for the Fréchet Distance.

Fréchet Distance Given two polygonal curves in R
d

with vertices P = (p1, . . . , pl), Q = (q1, . . . , qm), l +
m ≤ n and ε > 0, determine whether or not the
Fréchet distance of the curves is less than ε.

Set Inclusion Given two sets A = a1, . . . , an ⊂ R,
B = b1, . . . , bn ⊂ R, determine whether or not A ⊆ B.

In terms of distance measures the problem of set in-
clusion corresponds to deciding whether the directed
Hausdorff distance between the point sets is 0, i.e.,
deciding whether

max
a∈A

min
b∈B

|a − b| = 0.

Given sets A and B for which we want to determine
whether or not A ⊆ B, we first scale A and B such
that A ∪ B ⊂ [0, 1] holds. This can be done in linear
time. In the following we assume A ∪ B ⊂ [0, 1]. For
ai ∈ A we define

pi :=
(
2ai/(1 + a2

i ), (1 − a2
i )/(1 + a2

i )
) ∈ R

2

and for bi ∈ B we define

qi :=
(− 2bi/(1 + b2

i ), −(1 − b2
i )/(1 + b2

i )
) ∈ R

2.

The coordinates of all pi and qi can be determined
in linear time in total. We define p0 := (1, 1) and
q0 := (0, 0). Let CA be the polygonal curve with
vertices (p0, p1, p0, p2, . . . , p0, pn, p0) and CB be the
polygonal curve with vertices (q0, q1, q2, . . . , qn, q0).
The construction is illustrated in Figure 2.

Theorem 1 directly follows from the following
lemma:

Lemma 3 Let the curves CA, CB be constructed as
above from two finite sets A, B ⊂ R. Then A 6⊆ B
holds if and only if the Fréchet distance between CA

and CB is less than 2.

2



q0

p0

p1

p2

p3

p4

q1

q2

q3

q4

Figure 2: Polygonal curves CA and CB . The curves
go through p0 and q0 but are drawn slightly perturbed
for illustration purposes.

The same holds for the discrete Fréchet distance,
the weak Fréchet distance with and without end-
point restriction, and the weak variants of the discrete
Fréchet distance.

Proof. We prove the lemma first for the Fréchet dis-
tance, and then generalize it to the weak and discrete
variants of the Fréchet distance. An important prop-
erty of our construction is that the Euclidean distance
between pi and qj equals 2 if and only if ai = bj , oth-
erwise it is strictly less than 2.

Now assume A 6⊆ B, i.e., there is an ak 6∈
{b1, . . . , bn}. Consider the following parametrizations
of CA and CB : First traverse CA until pk is reached.
So far the distance between pairs of points on the
two curves is clearly less than 2 (actually at most

√
2

since on CB we stay in q0). Then CB is traversed com-
pletely. Since no bi equals ak, all pairwise distances
are less than 2. Now the rest of CA is traversed but
since on CB we are again in q0 the distance stays less
than 2. In total these parametrizations yield a dis-
tance less than 2, therefore the Fréchet distance is
less than 2.

For the other direction assume the Fréchet distance
between the two curves is less than 2. Then there are
parametrizations yielding a distance less than 2. Con-
sider such parametrizations. At the point when the
parametrization of CB reaches q1, the parametriza-
tion of CA must be in the neighborhood of some pk.
The neighborhood of pk is the subcurve of CA with
the vertices p0, pk, p0 excluding the two endpoints p0.
Now, until the parametrization of CB reaches qn, the
parametrization of CA cannot leave the neighborhood
of pk because the closest possible point on CB to p0

is the point (−1/2,−1/2), which still has distance
3/2 · √2 > 2 to p0.

It follows that all points in the neighborhood of

pk have distance less than 2 to q1, . . . , qn. Since pk

is the closest point in its neighborhood to all of the
qi, 1 ≤ i ≤ n, the distance from pk to all of them is
less than 2. From this we get that ak 6= bi for all
1 ≤ i ≤ n, thus A 6⊆ B.

This proves the lemma for the Fréchet distance.
Since we did not use the monotonicity of the
parametrizations the proof directly transfers to the
weak Fréchet distance with and without endpoint re-
striction.

For the discrete Fréchet distance, consider again
the two directions of the proof. For A 6⊆ B we con-
structed parametrizations realizing a Fréchet distance
less than two. But these parametrizations also give a
discrete Fréchet distance less than two since they al-
ways map vertices to vertices. For the other direction,
we need to show that a discrete Fréchet distance less
than two implies that A 6⊆ B. This is equivalent to
showing that A ⊆ B implies a discrete Fréchet dis-
tance greater than or equal to two. This follows from
the fact that the discrete Fréchet distance is always
greater than or equal to the Fréchet distance. Com-
bining the arguments for the weak Fréchet distance
and the discrete Fréchet distance yields the result for
the weak discrete Fréchet distance with and without
endpoint restriction. �

4 Curves on a Line

In the previous section we showed an Ω(n log n) lower
bound for the decision problem for various variants of
the Fréchet distance between polygonal curves in 2D.
A natural question is whether these bounds still hold
in 1D, i.e., in the case that the curves are restricted
to lie on a line.

For the weak Fréchet distance we show that the
lower bound does not hold. We show instead (Propo-
sition 5) that the weak Fréchet distance can be com-
puted in linear time by simply considering the differ-
ences of the extremal vertices. If the extremal vertices
are the endpoints of the curves then this equals also
the weak Fréchet distance with endpoint restriction.

Thus, the distance between polygonal curves is sim-
pler to compute if we weaken the constraints of the
Fréchet distance and restrict the dimension of the
curves. Interestingly, there are similar results for the
Fréchet distance between surfaces. While comput-
ing the Fréchet distance between simplicial surfaces is
NP-hard [5], the weak Fréchet distance between sim-
plicial surfaces in 3D can be computed in polynomial
time [1]. If the surfaces are restricted to lie in a plane
and to not self-intersect, i.e., to be simple polygons,
then even the Fréchet distance can be computed in
polynomial time [4].

The weak Fréchet distance between curves in 1D is
closely related to the Mountain Climbing Problem.
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The Mountain Climbing Problem.
Two climbers start at sea-level on opposite sides of a
mountain range and want to meet at the highest peak
without resting on the way. Can they travel in a way
that they stay on equal altitude at all times?

highest

peak

equal

altitude

Figure 3: Mountain Climbing.

This problem is illustrated in Figure 3. It has been
answered many times (see [8]). Homma [6] proved in
1952 that the climbers can stay at equal altitude if
the mountains are locally non-constant. He also gave
an example where it is not possible for the climbers,
where one mountain range has a plateau while the
other mountain range oscillates infinitely often.

In mathematical terms the problem asks for a
characterization of the continuous functions f1, f2 :
[0, 1] → [0, 1] with 0 = f1(0) = f2(0) and 1 =
f1(1) = f2(1) for which there are continuous func-
tions g1, g2 : [0, 1] → [0, 1] with 0 = g1(0) = g2(0) and
1 = g1(1) = g2(1) and

f1 ◦ g1 = f2 ◦ g2.

Weak Fréchet Distance in 1D The mountain climb-
ing problem can be interpreted in terms of the weak
Fréchet distance: Are there reparametrizations of f1

and f2 mapping endpoints to endpoints that realize a
distance of 0?

The answer above directly yields that the weak
Fréchet distance with endpoint restriction is 0 for
curves f1 and f2 which take values in [0, 1], are lo-
cally non-constant, and satisfy 0 = f1(0) = f2(0) and
1 = f1(1) = f2(1). For curves fi, i = 1, 2, which take
values in [ai, bi], are locally non-constant, and satisfy
ai = fi(0) and bi = fi(1), i = 1, 2, this implies that
the weak Fréchet distance with endpoint restriction
of f1 and f2 is max(|a2 − a1|, |b2 − b1|).

A characterization of the functions f1, f2 [7] for
which such reparametrizations exist implies that the
weak Fréchet distance between continuous functions
with the same image is 0 even in the general case, i.e.,
where f1, f2 may be locally constant. In this case the
“climbers” can maintain almost the same altitude.

Corollary 4 (Huneke [7]) For any two continuous,
surjective functions f1, f2 : [0, 1] → [0, 1] and for any
ε > 0, there exist continuous, surjective functions

g1, g2 : [0, 1] → [0, 1] such that for all x ∈ [0, 1]

|f1 ◦ g1(x) − f2 ◦ g2(x)| < ε.

Note that f1 and f2 no longer need to start at 0 and
end at 1. For the weak Fréchet distance this implies:

Proposition 5 Let f1, f2 : [0, 1] → R be continuous
functions with fi([0, 1]) = [ai, bi] for i = 1, 2. The
weak Fréchet distance between f1 and f2 is

max(|a2 − a1|, |b2 − b1|).
Theorem 2 directly follows from Proposition 5. If a1,
a2, b1, and b2 are known, the weak Fréchet distance
can even be computed in constant time.

5 Discussion

We presented an Ω(n log n) lower bound for the deci-
sion problem for the Fréchet distance between polyg-
onal curves in the plane. An open problem is to close
the gap to the known quadratic upper bound. Fur-
thermore, it is open whether the lower bound holds for
underlying metrics other than the Euclidean metric.

We showed that the lower bound does not hold for
the weak Fréchet distance between curves on a line. It
remains to investigate the complexity of the Fréchet
distance for curves on a line for which we only know
the quadratic upper and trivial linear lower bound.
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