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Generalized Self-Approaching Curves

Oswin Aichholzer�� Franz Aurenhammer�� Christian Icking�

Rolf Klein� Elmar Langetepe� G�unter Rote��

Abstract

We consider all planar oriented curves that have the following property

depending on a �xed angle '. For each point B on the curve, the rest of the

curve lies inside a wedge of angle ' with apex in B. This property restrains

the curve's meandering, and for ' � �
2
this means that a point running along

the curve always gets closer to all points on the remaining part. For all ' < �,

we provide an upper bound c(') for the length of such a curve, divided by the

distance between its endpoints, and prove this bound to be tight. A main step

is in proving that the curve's length cannot exceed the perimeter of its convex

hull, divided by 1 + cos'.

Keywords. Self-approaching curves, convex hull, detour, arc length.

1 Introduction

Let f be an oriented curve in the plane running from A to Z, and let ' be an angle

in [0; �). Suppose that, for every point B on f , the curve segment from B to Z

is contained in a wedge of angle ' with apex in B. Then the curve f is called '-

self-approaching, generalizing the self-approaching curves introduced by Icking and

Klein [4].

At the 1995 Dagstuhl Seminar on Computational Geometry, Seidel [1] posed the

following open problems. Is there a constant, c('), so that the length of every '-self-

approaching curve is at most c(') times the distance between its endpoints? If so,

how small can one prove c(') to be?

Both questions are answered in this paper. We provide, for each ' in [0; �), a

constant c(') with the above property, and prove it minimal by constructing a '-self-

approaching curve such that this factor c(') is achieved.

Self-approaching curves are interesting for di�erent reasons. If amobile robot wants

to get to the kernel of an unknown star-shaped polygon and continuously follows the

angular bisector of the innermost left and right re
ex vertices that are visible, the

resulting path is self-approaching for ' = �=2; see [4]. Since the value of c(�=2) is

known to be � 5:3331, as already shown in Icking et al. [5], one immediately obtains
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an upper bound for the competitive factor of the robot's strategy. Improving on this,

Lee and Chwa [6] give a tight upper bound of � + 1 for this factor, and Lee et al. [7]

present a di�erent strategy that achieves a factor of 3:829, while a lower bound of

1:48 is shown by L�opez-Ortiz and Schuierer [8].

In the construction of spanners for euclidean graphs, one can proceed by recur-

sively adding to the spanning structure a point from a cone of angle ', resulting in a

sequence p1; p2; : : : ; pn such that for each index i, pi+1; : : : ; pn are contained in a cone

of angle ' with apex pi; see Ruppert and Seidel [10] or Arya et al. [2]. (Note, how-

ever, that such a sequence of points does not necessarily de�ne a '-self-approaching

polygonal chain because the property may not hold for every point in the interior of

an edge.)

Finally, such properties of curves are interesting in their own right. For example,

in the book by Croft et al. [3] on open problems in geometry, curves with increasing

chords are de�ned by the property that for every four consecutive points A;B;C;D

on the curve, B is closer to C than A to D. The open problem of how to bound the

length of such curves divided by the distance between its endpoints has been solved

by Rote [9]; he showed that the tight bound equals 2

3
�. There is a nice connection to

the curves studied in this paper. Namely, a curve has increasing chords if and only if

it is �=2-self-approaching in both directions.

In this paper we generalize the results of [5] to arbitrary angles ' < �. In Section 2

we prove, besides some elementary properties, the following fact. Let B, C and D

denote three consecutive points on a '-self-approaching curve f . Then

CD � BD � cos' � length(f [B;C]) ;

where CD denotes the euclidean distance between points C andD and length(f [B;C])

denotes the length of f between B and C. This property accounts for the term \self-

approaching"; in fact, for ' � �=2 the factor cos' is not negative, so that CD � BD

holds: The curve always gets closer to each point on its remaining part. Although

this property does not hold for ' > �
2
, we will nevertheless see that our analysis of

the tight upper bound c(') directly applies to this case, too.

In Section 3 we show that the length of a '-self-approaching curve cannot exceed

the perimeter of its convex hull, divided by 1 + cos'. This fact is the main tool in

our analysis. It allows us to derive an upper bound for the curve's length by circum-

scribing it with a simple, closed convex curve whose length can be easily computed,

see Section 4. Finally, in Section 5, we demonstrate that the resulting bound is tight,

by constructing '-self-approaching curves for which the upper bounds are achieved.

2 De�nitions and properties

For two points B and C let ~r(B;C) denote the ray starting at B and passing through

C. We simply write BC for the euclidean distance between B and C.

We consider oriented curves f in the plane, i. e., each curve f has a speci�ed

direction from beginning to end. We do not make any assumptions about smoothness

or recti�ability of the curve, although it will turn out that '-self-approaching curves

are recti�able.
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For two consecutive points B and C on f , we write f [B;C] for the part of f

between B and C. By f�B (f>B) we denote the part of f from B to the end (without

B) and length(f), length(f [B;C]), etc., means the length of the curve or of an arc.

For a curve f [B;C] and a point D 62 f [B;C] let 
(D; f [B;C]) be the positive angle

of rotation around D the curve goes through from B to C. So if we consider f [B;C]

as a continous function in polar coordinates centered at D running from ( B; BD) to

( C ; CD) then 
(D; f [B;C]) = j B �  C j.
De�nition 1 A curve f is called '-self-approaching for 0 � ' < � if for any point

B on f there is a wedge of angle ' at point B which contains f�B. In other words,

for any three consecutive points B;C;D on f , the angle 
(B; f [C;D]) is at most '.

Let f be an oriented curve from A to Z. Then the quantity

length(f [A;Z])

AZ

is called the detour of f .

The detour of a curve is the reciprocal of the minimum growth rate used in [9].

We wish to bound the detour of '-self-approaching curves. The �rst de�nition

of '-self-approaching curves also makes sense for ' � �, but then any circular arc

connecting two points A and Z is '-self-approaching, which means that the detour of

such curves is not bounded. Therefore, we restrict our attention to the case ' < �.

Each 0-self-approaching curve is a line segment and its detour equals 1.

Lemma 2 A '-self-approaching curve does not go through any point twice.

Proof. Suppose the curve visits point B twice. Shortly after the �rst visit of B there

is a point on the curve for which the '-self-approaching property is violated. 2

So a '-self-approaching curve f [B;C] cannot visit B again, now we want to show a

stronger restriction, that is, a '-self-approaching curve f [B;C] cannot loop around B.

Lemma 3 Let B;C;D be three consecutive points on a '-self-approaching curve. If

C lies on ~r(D;B) then CD � BD.

Proof. The assumption CD > BD would lead to an angle 
(B; f [C;D]) = �,

violating the '-self-approaching property. 2

The following lemma shows, roughly speaking, that a '-self-approaching curve

f [A;Z] is enclosed by two oppositely winding '-logarithmic spirals through A with

pole Z, see Figure 1. For ' > �=2, this is true only locally, as long as the curve

does not leave the vicinity of A. In polar coordinates (r;  ), a '-logarithmic spiral

is the set of all points with r = e cot' or r = e� cot'. Each ray through the origin

intersects the spiral in the same angle '. In the appendix we give a short summary

of known facts of '-logarithmic spirals. For ' 6= �=2, the length of an arc S[A;B] of

a '-logarithmic spiral S around pole Z is given by 1

cos'
(AZ � BZ). Note that for

' = �=2, the spiral degenerates to a circle.

The property of Lemma 4a is used in Section 4 for the circumscription of a '-self-

approaching curve by a convex area whose perimeter is easy to determine. With the

help of Lemma 4b we are able to prove a close connection between the length of a

'-self-approaching curve and the perimeter of its convex hull, see Section 3.
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Figure 1: For 0 < ' < �=2 the curve is enclosed by two congruent arcs of a '-

logarithmic spiral S.

Lemma 4 Let B;C;D be three consecutive points on a '-self-approaching curve f .

(a) CD � BD � e�
(D;f [B;C]) cot'

(b) CD � BD � cos' � length(f [B;C])

The inequalities of Lemma 4 are ful�lled by equality for the arc S[A;B] of a '-

logarithmic spiral S around a pole Z, see Figure 1, i. e., we have BZ = AZ � e�
 cot'

and AZ = BZ � cos' � length(S[A;B]).
In order to proof Lemma 4 we will �rst establish a somewhat weaker bound for

the bound of the lemma, from which the stronger bounds will follow by a limiting

argument.

Lemma 5 Let B;C;D be three consecutive points on a '-self-approaching curve f .

Let � denote the angle 
(D; f [B;C]) � 0 and let �' denote the angle 
(B; f [C;D]) �
'. Assume that � < � � '.

(a) Then

CD = BD � sin �'

sin( �'+ �)
� BD � sin'

sin('+ �)
(1)

For � � cot' � 1, � � 1

2
, it follows that

CD � BD � e���cot' � eK�2

; (2)

where the constant K = 2(1 + cot2 ') depends only on '.

(b) We have

CD �BD +BC � cos �' = BC � sin �' � 1� cos�

sin�
: (3)

For � � 1, it follows that

CD �BD +BC � cos' � BC � �: (4)

4



Proof. Within this proof we make use of some elementary inequalities shown in Lem-

ma 12 in the appendix. Equations (1) and (3) follow from the sine law. From (3), we

obtain (4) by using Lemma 12e , cos �' � cos' and jsin �'j � 1.

Now, to prove (2), we have to show the inequality

sin('+ �)

sin'
� e2(1+cot2 ')�2 � e��cot' :

We have

sin('+ �)

sin'
=

sin' cos� + cos' sin�

sin'
= cos� + sin� cot'

� 1� �2 + sin� cot' ;

using Lemma 12a,

e��cot' � 1 + � � cot'+ �2 � cot2 ' ;
using Lemma 12d, and �nally

e2(1+cot2 ')�2 � 1 + 2(1 + cot2 ')�2 ;

using Lemma 12c with x = 2(1 + cot2 ')�2. So we only have to show

(1� �2 + sin� cot')(1 + 2(1 + cot2 ')�2) � 1 + � � cot'+ �2 � cot2 ' :

We show separately

sin� cot' (1 + 2(1 + cot2 ')�2) � � � cot' (5)

and

(1� �2) (1 + 2(1 + cot2 ')�2) � 1 + �2 � cot2 ' ; (6)

from which the previous inequality follows by summation. Inequality (5) follows

from Lemma 12b and cot2 ' � 0. Multiplying out and simplifying (6) leads to the

equivalent inequality

�2(1� 2�2)(1 + cot2 ') � 0 ;

which is obviously true. 2

Now we show how Lemma 4 follows from Lemma 5.

Proof of Lemma 4. First we consider part (a) of Lemma 4 and Lemma 5. We divide

the angular range of 
(D; f [B;C]) into n equal sectors of angle � := 
(D; f [B;C])=n.

By choosing n large enough, we can ensure that � ful�lls the conditions for (2) in

Lemma 5.

By continuity, the curve f [B;C] must pass through n + 1 consecutive points

B = A0; A1; A2; : : : ; An = C with 
(D; f [Ai; Ai+1]) = � for i = 0; : : : ; n � 1. Then

we can apply (2) to the successive distances A0D = BD, A1D, . . . , AnD = CD to

obtain

Ai+1D � AiD � e���cot' � eK�2

;
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and hence

CD � BD � e�
(D;f [B;C])�cot' � eK 
(D;f [B;C])2

n :

Since we can choose n arbitrarily large, we get 
(D;f [B;C])
2

n
! 0 as n ! 1, and

Lemma 4a follows.

Now we consider part (b) of Lemma 4 and Lemma 5. The proof is similar as for

part (a), cutting the curve into pieces which are small enough that the \error term"

BC � � in (4) can be neglected. However, in the way in which the subdivision of the

curve is de�ned, we have to make a case distinction.

Case 1. ' = �=2. Then cos' = 0 and Lemma 4b follows from Lemma 4a.

Case 2. ' < �=2. In this case, cos' > 0, and Lemma 4b gives a lower bound for

the decrease BD�CD of the distance to D from B to C in terms of length(f [B;C]).

From Lemma 4a we conclude that the distance to D is strictly decreasing from B

to C, and hence we have C 0D � CD for all points C 0 on the curve f [B;C]. Let us

choose an arbitrary " > 0. We will show that

BD � CD � length(f [B;C]) � (cos'� ") :

Let us set � := minf"; 1g � jcos'j; so � ful�lls the conditions for (4) in Lemma 5.

The length of a curve f [B;C] is, by de�nition, the supremum of the lengths

of all polygonal chains Q which are obtained as polygonal subdivisions of f with

consecutive vertices on f . Let us take such a subdivision Q = (A0; A1; : : : ; An) with

n + 1 consecutive points Ai on f [B;C] and A0 = B, An = C. We would like to

apply (4) to the segments AiAi+1. Therefore, whenever 
(D; f [Ai; Ai+1]) > �, we

have to re�ne the subdivision Q by inserting at least one additional point between

Ai and Ai+1. Denoting the newly inserted point again by Ai+1 (and renumbering the

points behind it), we select Ai+1 in such a way that we get 
(D; f [Ai; Ai+1]) = �.

Then we have

length(f [Ai; Ai+1]) � AiAi+1 � 2 � CD � sin �
2
;

which is a �xed positive constant. It follows that each newly inserted point consumes

a certain part of length(f [B;C]), and therefore we have to insert only �nitely many

points. We end up with a re�ned subdivision Q0 with length(Q0) � length(Q) and

with the desired property.

Now we apply (4) to the segments AiAi+1, obtaining

AiD � Ai+1D � AiAi+1 � (cos'� �) � AiAi+1 � cos' � (1� ") :

Summation gives

BD � CD � length(Q0) � cos' � (1� ")

� length(Q) � cos' � (1� ") :

Since this holds for any " > 0 and any subdivision Q, the lemma is proved for this

case.

Case 3. �=2 < ' < �. In this case, cos' < 0, Lemma 4b gives an up-

per bound for the increase BD � CD of the distance to D from B to C in terms

of length(f [B;C]). We will proceed similarly as in the proof of Lemma 4a. Let us

choose � as in case 2. On the curve f [B;C], we �nd points n + 1 consecutive points
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A0 = A;A1; A2; : : : ; An = C with 
(D; f [Ai; Ai+1]) = 
(D; f [B;C])=n, choosing n

large enough so that 
(D; f [B;C])=n � �. We apply (4) to the successive pieces and

obtain

Ai+1D � AiD � AiAi+1 � (� cos'+ �)

� length(f [Ai; Ai+1]) � (� cos') � (1 + ") :

Summation gives

CD � BD � length(f [B;C]) � (� cos') � (1 + ") ;

for any " > 0, and the proof of part (b) of Lemma 4 is complete. 2

3 '-self-approaching curves and the perimeter of

their convex hull

In this section we prove that the length of a '-self-approaching curve is bounded by

the perimeter of its convex hull, divided by 1 + cos'.

Let conv(P ) denote the convex hull of a point set P and peri(P ) the length of the

perimeter of conv(P ).

Theorem 6 For a '-self-approaching curve f with 0 � ' < �,

(1 + cos') length(f) � peri(f) :

Proof. The length of a curve f is, by de�nition, the supremum of the lengths

of all polygonal chains Q which are obtained as polygonal subdivisions of f with

consecutive vertices on f . Therefore, an upper bound for the length of all such

chains is also an upper bound for the length of f . Let Q = (A0; A1; : : : ; An) be a

polygonal subdivision of f [A0; An] with n+1 consecutive points on f [A0; An]. Before

we prove that (1+cos') length(Q) is bounded by peri(f), we will introduce additional

subdivision points of the curve into Q. This may only increase length(Q), but it will

make the proof simpler. We go through the vertices of Q, starting at the end. When

considering Ai, we have already added all additional subdivision points after Ai+1,

and we now consider which subdivision points we may add between Ai and Ai+1. Let

P denote the convex hull of all vertices of Q which come after Ai+1, inclusive of Ai+1

and inclusive of the additional points which were added in previous steps. By the

'-self-approaching property, Ai+1 lies on the boundary of P . There are two cases,

depending on whether the point Ai+1 lies on the boundary of conv(P [ fAig) or not.
If Ai+1 lies in the interior of conv(P [ fAig), we do nothing, and we proceed by

looking at Ai�1. Suppose now that the point Ai+1 lies on the boundary of conv(P [
fAig). Let B1; B2; : : : be the sequence of vertices which lie clockwise from Ai+1 on P ,

let B�1; B�2; : : : be the sequence of vertices anti-clockwise from Ai+1 on P , and let

B0 := Ai+1, see Figure 2.

Suppose the left tangent from Ai to P touches P in Bj, and the right tangent from

Ai to P touches P inB�k. Depending on whether the curve f [Ai; B0] \winds" counter-

clockwise or clockwise around P , it will either intersect the extended sides ~r(Bj; Bj�1),
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B3

B�1

Ai

B�2

Ai+1 =: B0

B�k+1

N7

N1

N2
N3

N5

N6

N4

B�3 = B8 =: Bj

P

f [Ai::Ai+1]

B2

B1

B4 = B�7 =: B�k

Bj�1 = B7

Figure 2: The additional subdivision points between Ai and Ai+1 are N1; N2; : : : ; N7.

~r(Bj�1; Bj�2), . . . , ~r(B2; B1), or the extended sides ~r(B�k; B�k+1), ~r(B�k+1; B�k+2),

. . . , ~r(B�2; B�1), in the given order. This follows from the fact that the curve f

is disjoint from P , by the '-self-approaching property. We add these �nitely many

subdivision points between Ai and Ai+1 and proceed by looking at Ai�1.

In this way, after processing the whole chain Q, we obtain a possibly re�ned

subdivision, which we again denote by Q = (A0; A1; : : : ; An). This subdivision has the

property that, if Ai+1 lies on the boundary of conv(fAi; : : : ; Ang), each vertex of P :=

conv(fAi+1; : : : ; Ang) is also on the boundary of conv(fAi; : : : ; Ang) = conv(P [fAig)
(although not necessarily as a vertex).

Now we have to distinguish between the cases ' � �=2 and ' � �=2. If 0 � ' �
�=2, we show that, for a subdivision Q of f with the additional property mentioned

above,

peri(Q) � (1 + cos') � length(Q) : (7)

If �=2 � ' < �, then cos' � 0, and we show the weaker statement

peri(Q) � length(Q) + cos' � length(f) : (70)

The left side is bounded by peri(f), whereas the right side of each inequality can be

made arbitrarily close to (1 + cos') � length(f), thus proving the theorem.

We will use induction on the number of vertices of Q. The assertion is true for Q

being a line segment, so let us assume that Q has at least three vertices, the �rst two

are called A and B. Let Q0 denote the chain Q without the initial segment AB. The

induction hypothesis is that (7) or (70) is ful�lled for Q0 and f�B. For the inductive

step, it is then su�cient to prove

peri(Q)� peri(Q0) � (1 + cos') �AB ; (8)

if 0 � ' � �=2, or

peri(Q)� peri(Q0) � AB + cos' � length(f [A;B]) ; (80)
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if �=2 � ' < �. Note that for ' being in either domain, the inequality of (8) or (80)

that we need to prove is weaker than the other inequality. Hence, independently of

', it is su�cient to prove any of (8) or (80).

We distinguish two cases, depending on whether B lies on the boundary of conv(Q)

or not.

Case 1. The point B is on the boundary of conv(Q). In this case we prove (80).

We have a situation as depicted in Figure 3. When passing from conv(Q0) to conv(Q),

B

conv(Q0)

f

A

B0

Figure 3: (AB + AB0)� BB0 � AB + cos' � length(f [A;B]):

the segment between B and one of its neighboring vertices B0 is replaced by the chain

BAB0. So we need to show

(AB + AB0)� BB0 � AB + cos' � length(f [A;B]) ;

which follows from Lemma 4b, by considering the three consecutive points A;B;B0

on f .

Case 2. The point B is not on the boundary of conv(Q). In this case we

prove (8). We use the notation : : : ; B�2; B�1; B0 = B;B1; B2; : : : for the vertices of

Q0 that was introduced above. The two vertices of conv(Q0) which are adjacent to

B are B�1 and B1. Then A must lie in the wedge included between ~r(B�1; B) and

~r(B1; B), see Figure 4. W.l.o.g. we may assume that B�1 appears before B1 on f so


(B; f [B�1; B1]) is at most ' since f is '-self-approaching.

Suppose the left tangent from A to P touches P in Bj, and the right tangent from

A to P touches P in B�k. Then the points B�k+1; B�k+2; : : : ; Bj�2; Bj�1. are not

vertices of conv(Q). As we move continuously along Q from B to A, the points where

these points disappear from the boundary of the convex hull are point A and the

intersections of the segment AB with the extended sides ~r(Bj; Bj�1), . . . , ~r(B2; B1),

and ~r(B�k; B�k+1), . . . , ~r(B�2; B�1), see Figure 4. We prove (8) by showing that it is

true for each transition from one intersection point D0 on AB to the next intersection

point D00. We have to show

(D00B�k0 +D00Bj0)� (D0B�k0 +D0Bj0) � (1 + cos') �D00D0 :

We may use the fact that D0 is contained in the triangle D00B�k0Bj0, and the angle

at D0 in the triangle B�k0D0Bj0 is less than the angle 
(B; f [B�1; B1]), which is at

most '. This elementary geometric inequality is proved in Lemma 11 in the appendix.

2
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A

B�2B�3 =: B�k

'0 B =: B0

B�(k+1)

conv(Q0)

B�1

B2 =: BjBj+1

D0 D00

B1

Figure 4: (D00B�2 +D00B1)� (D0B�2 +D0B1) � (1 + cos') �D00D0:

4 An upper bound for the detour

Theorem 7 The length of a '-self-approaching curve is not greater than c(') times

the distance of its endpoints, where

c(') :=

8>>>>>>><
>>>>>>>:

1 for ' = 0,

max
�2[0::�

2
]

2� + � + 2p
5� 4 cos �

for ' = �=2,

max
�2[0::']

(1 + e� cot')e� cot' � 2

1+cos'

cos'
q
((1 + e� cot')e� cot' � cos �)2 + sin2 �

(�) otherwise.

Proof. For ' = 0 we have a straight line segment, and the theorem is obvious. So

let us assume 0 < ' < � from now on.

Let f be a '-self-approaching curve from A to Z. W.l.o.g., we may assume that f

does not cross the segment AZ. Otherwise we apply the bound c(') successively to

each subcurve between to successive curve points on AZ and add up the results. Due

to the self-approaching property the curve points on AZ appear in the same order as

on f , so the overall bound is less than or equal to c(').

Assume w.l.o.g. that the curve starts by leaving A on the left side of the directed

line AZ. Let AC be the right tangent from A to the curve, touching the curve in the

point C. (The curve is on the left side of AC.) We select C as far as possible from A,

and we denote the angle at point C in the triangle ACZ by �, see Figure 5. (For

C = Z we set � = 0.) Note that � � ' holds, otherwise there is a point C0 before C

on f such that the angle 
( �C0; f [C;Z]) is also greater than ' which contradicts the

self-approaching property at C0. Let B denote the �rst point of intersection of the

curve with ~r(C;Z). (For C = Z we take B = A.) Since the curve neither crosses

~r(A;C) nor the segment AZ, Z must lie between B and C. We apply Lemma 4a to

the arc f [B;C], considering the three consecutive points B;C; Z on f , and we get

CZ � BZ � e�� cot' :

10
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T

T 0
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f

�
S0

sin(�0)

cos(�0)

Figure 5: A '-self-approaching curve must lie in this area. The angle � 0 shown here

maximizes (�) in the de�nition of c(').

Applying the lemma to f [A;B], considering the three consecutive points A;B;C on

f , we get

CB � CA � e�� cot' :

Note that the last inequalities trivially hold for C = Z, � = 0 and A = B. All in all,

since CB = CZ +BZ, we obtain

CA � CZ � (1 + e� cot')e� cot' : (9)

Now we select a point C 0 on ~r(A;C) with C 0A � CA, let � 0 be the angle at C 0 in the

triangle AC 0Z. We choose C 0 such that the equation

C 0A = C 0Z � (1 + e� cot')e�
0 cot' (10)

is ful�lled. Such a point C 0 exists, since, as we move C 0 further away from A, the

ratio C 0A : C 0Z converges to 1, the angle � 0 decreases towards 0 and hence e�
0 cot'

also converges to 1, whereas 1 + e� cot' is a constant bigger than 1. Therefore the

inequality (9) changes direction as AC 0 !1. We have � 0 � � � ', and also C 0 6= Z.

In the following let B0 be the point on ~r(C 0; Z) with B0Z = C 0Z � e� cot' and

B0 =2 C 0Z, see Figure 5.

Lemma 8 A '-self-approaching curve from A to Z is contained in the convex region

bounded by the following three curves, see Figure 5.

(1) a '-logarithmic spiral from A to B0 of polar angle � 0 with pole C 0;

(2) a '-logarithmic spiral from B0 to C 0 of polar angle � with pole Z;

(3) the segment AC 0.

11



Proof. Let B00 be the �rst intersection point of f with ~r(C 0; Z). By Lemma 4a

applied to the pole C, the arc f [A;B00] lies inside the '-logarithmic spiral S with

pole C with polar angle � starting at A. The '-logarithmic spiral S 0 with pole C 0

through A is obtained from S by stretching it about the center A, and hence f [A;B00]

is also contained inside S 0, and in part (1) of the region boundary. In particular,

B00Z � B0Z. It follows with the help of Lemma 3 that, between the rays ZA and

ZB0, no point of the whole curve f [A;Z] can lie outside S 0.

Now let C 00 be the �rst intersection point of f with ~r(Z;C 0). By Lemma 4a applied

to B00; C 00 and Z, the arc f [B00; C 00] lies inside the '-logarithmic spiral T around pole

Z with polar angle � starting at B00. Since B00Z � B0Z, the arc lies inside the

logarithmic spiral T 0 which forms part (2) of the region boundary. Again, it follows

with the help of Lemma 3 that, below the line C 0B0, no point of the whole curve f

can lie outside T 0.

Finally, in the region between the rays ZC 0 and ZA, the curve cannot escape

across the segment AC 0, and the proof is complete. 2

Now we can prove Theorem 7. We treat only the case ' 6= �=2, where we have

proper spirals. The case ' = �=2, where we have circular arcs, has already been

treated in [5].

We choose a scale such that C 0Z equals 1. Now AC 0 = (1 + e� cot')e�
0 cot' and

B0Z = e� cot' holds by construction. Therefore the lengths of the three curves in

Lemma 8 are given by

L1 :=
1

cos'
(AC 0 � B0C 0) =

1

cos'

�
(1 + e� cot')e�

0 cot' � (1 + e� cot')
�

L2 :=
1

cos'
(B0Z � C 0Z) =

1

cos'
(e� cot' � 1)

L3 := AC 0 = (1 + e� cot')e�
0 cot'

and for the distance of the endpoints of f we have

AZ =
q
((1 + e� cot')e�0 cot' � cos � 0)2 + sin2 � 0 :

Altogether we conclude from Theorem 6

length(f)

AZ
� L1 + L2 + L3

AZ
� 1

1 + cos'
:

The right term can be transformed to

(1 + e� cot')e�
0 cot' � 2

1+cos'

cos'
q
((1 + e� cot')e�0 cot' � cos � 0)2 + sin2 � 0

;

and it is easy to compute the maximum of the last expression for � 0 2 [0; ']. 2

12



The function c(') is strictly monotone and continuous for ' 2 [0; �). It tends

to in�nity if ' tends to �. The graph of the function for 0 � ' � 1:8 is shown in

Figure 6.

c(')

0 �=2 1:8
'

3

2

1

5:3331

11:95

Figure 6: The function c(') is strictly monotone and continuous for ' 2 [0; �).

5 Tightness of the upper bound

Theorem 9 The upper bound c(') given in Theorem 7 for the detour of '-self-

approaching curves is tight.

Proof. We construct a '-self-approaching curve f from A to Z as in the proof of Lem-

ma 8, the construction is shown in Figure 7. The curve starts with two logarithmic

spirals similar to part (1) and part (2) in the proof of Lemma 8, except that part (2)

is split into two parts at point B1. The segment C 0Z of length 1 is replaced by a

'-self-approaching zigzag curve of length L0
3 = 2

1+cos'
from C 0 to Z, which moves

inside a thin rectangle along the segment C 0Z. This last part of the curve, see

Figure 8, is obtained by \stacking" small cycloids (x; y) = (r(�� sin�); r(1� cos�)),

for 0 � � � 2' as described in the appendix. One piece of cycloid has \height"

H = r(1 � cos 2') = 8r sin2 ' cos2 ' and length L = 8r sin2 '

2
. We must choose the

size parameter r in such a way that 1=H is an even integer n; then the curve of n

pieces of cycloids with \height" H will precisely connect the points C 0 and Z. The

length of the curve is then n � L = L=H = 2

1+cos'
, which is what we need. The width

of the construction is W = r(2'� sin 2'). We arrange the cycloid pieces on the left

side of the segment C 0Z, as indicated in Figure 8; then the curve is contained in a

rectangle �C 0Z �Z �C of width W = Z �Z. The long side Z �C 0 slightly extends the segment

ZC 0 by the amount 2r �H.

13
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B1
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�A

Figure 7: The construction of the '-self-approaching curve with maximal detour

for ' = 2.

H = r(1� cos 2') = 8r sin2 '
2
cos2 '

2

L = 8r sin2 '
2

Z
'

C 0

H

L
= cos2

'

2
=

1 + cos'

2

r

�Z
2r�C

W

H
�C 0

Figure 8: A sequence of cycloid parts forming a '-self-approaching curve inside a thin

rectangle.
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Now we can describe the whole construction of the curve, in reverse direction. The

curve consists of the following parts, numbered in accordance with Lemma 8, using

the notation from there:

(30) The curve ends with the '-self-approaching curve from C 0 to Z described above,

whose length is 2

1+cos'
;

(2) before, there is a '-logarithmic spiral of polar angle �=2 with pole Z connecting

C 0 to some point B1 on ~r( �Z;Z).

(20) then, a '-logarithmic spiral of polar angle �=2 with pole �Z connecting B1 to �B;

(10) the curve starts with a '-logarithmic spiral of polar angle � with pole �C between

a point �A and �B, where � � ' is the value for which the maximum in the

de�nition of c(') is attained.

It can be checked that the parts which are logarithmic spirals are always '-self-

approaching, as the line from any point X to the current pole contains the whole

curve on one side. So obviously the whole curve is '-self-approaching. Since r can be

made as small as we like, we have �C ! C 0, �Z ! Z, �A ! A, �B ! B0 as r ! 0, and

the logarithmic spirals that we use will approach the \ideal" logarithmic spirals that

appear in Lemma 8, see Figure 5. This means that

length(f)
�AZ

! L1 + L2 + L0
3

AZ
=

(1 + e� cot')e� cot' � 2 + 2

1+cos'
� cos'

cos'
q
((1 + e� cot')e� cot' � cos �)2 + sin2 �

which equals c('). 2

6 Conclusions

Here we analyze the maximum length of curves with an upper bound on the angular

wedge at A. This condition is not symmetric since it distinguishes the source and the

target of the curve. One might also consider a symmetric situation, where curves are

'-self-approaching in both directions.

Generalizations to three dimensions are also completely open.

A Appendix

Lemma 10 Let ABC be a triangle with angle � � ' at B (0 � ' � �), as in

Figure 9. Then BC � AC � AB � cos'.
Proof. From the cosine law and from jcos'j � 1 we conclude

AC2 = AB2 +BC2 � 2 � AB �BC � cos(��')
= BC2 + 2 � AB �BC � cos'+ (AB cos')2 +

AB2(1� cos2 ')

� (BC + AB cos')2 :
2
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C
B

'

A

Figure 9: BC � AC � AB � cos'

Lemma 11 Let V be a point inside a triangle ABC. We connect each vertex to v

using segments l1 = BV , r1 = CV , and z = AV . Let l2 = AB and r2 = AC be two

edges of the triangle; see Figure 10. Let 0 � ' � � be the angle between l1 and r1
then for the lengths of the segments l1 + r1 + (1 + cos')z � l2 + r2 holds.

l1

l2

�1�1

�2

r2

r1

A

V

B C

z

'

�2

Figure 10: l1 + r1 + (1 + cos')z � l2 + r2 holds for 0 � ' � �.

Proof. The claim is obviously true for z = 0. Let z > 0. We have to prove the

inequality l2 � l1 + r2 � r1 � (1 + cos')z. Using Lemma 10 we conclude

l1 � l2 � z cos(���2)

r1 � r2 � z cos(���2) :
So l2 � l1 + r2 � r1 � �(cos�2 + cos �2)z holds and it is su�cient to show that

�(cos �2+cos �2) � 1+cos' is ful�lled. We know that �(cos �2+cos �2) is equivalent

to �2 cos
�
�2+�2

2

�
cos

�
�2��2

2

�
. Also the following equations are obviously true:

�2 + �2

2
=

2� � '

2
= � � '

2
�2 � �2

2
= (� � �2)�

'

2
:

16



From the position of A we conclude 0 � (� � �2) � ' and so
���(� � �2)� '

2

��� � '

2

holds. Altogether we conclude

�(cos�2 + cos �2) = �2 cos
 
�2 + �2

2

!
cos

 
�2 � �2

2

!

= 2 cos

�
'

2

�
cos

�����(� � �2)�
'

2

����
�

� 2 cos2
�
'

2

�

= 2

�
1 + cos'

2

�
= 1 + cos' :

This completes the proof. 2

Lemma 12

(a) cos x � 1� x2 , for all x 2 IR.

(b) x � sin x � (1 + 2x2) , for 0 � x � 1.

(c) ex � 1 + x , for all x 2 IR.

(d) ex � 1 + x + x2 , for x � 1.

(e)
1� cos x

sin x
� x , for 0 � x � 1.

Proof. In parts (a){(d), the di�erence between the two sides of the inequality is in

each case a convex function achieving its minimum value of 0 for x = 0. (For part (d),

this is only true for x � ln 2.) For ln 2 � x � 1 in part (d), and for part (e), where

the expression on the left-hand side equals tan x

2
, the di�erence between the two sides

is a concave function, taking nonnegative values at the boundaries of the de�nition

interval. 2

Logarithmic spirals. Logarithmic spirals, directed to the center, are used to

construct interesting examples of '-self-approaching curves. In polar coordinates

(r;  ), a logarithmic spiral with pole at the origin Z is the set of all points r = r0q
 ,

 2 (�1;1), for some q > 0. We have right spirals and left spirals, depending on

whether q > 1 or q < 1. For q = 1 we get a circle. The pole Z may be regarded as

a limit point of the spiral. Each ray through the origin intersects the spiral in the

same angle � with cot� = � ln q. We call such a spiral an �-logarithmic spiral, see

Figure 11 as an example with � = 1:3. �-logarithmic spirals with � small enough,

directed to the center, are simple examples of '-self-approaching curves. Parts of

'-logarithmic spirals are used to construct '-self-approaching curves with maximum

detour.

For ' 6= �=2, the length of an arc S[A;B] of a '-logarithmic spiral S is given by

length(S[A;B]) =
1

cos'
(AZ �BZ) :
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Figure 11: A 1:3-logarithmic spiral.

Cf. also Lemma 4b, where the same ratio between change of radius and arc length

appears as an upper bound for '-self-approaching curves.

Cycloids and their '-evolutes. A cycloid is the curve traced by a point M

on the circumference of a circle rolling on a line without slipping, see Figure 12. In

coordinates, a cycloid generated by a circle of radius r rolling on the x-axis is given by

x = (�� sin�)r, y = (1� cos�)r for � 2 IR. Cycloids play a role in our construction

of extreme self-approaching curves. It is well-known that the evolute of a cycloid C 0,

i. e., the envelope of all normals, or the locus of the centers of curvature, is another

congruent cycloid C: Each tangent t of the cycloid C (the evolute) intersects the other

cycloid C 0 (the involute) in a point where it has a tangent t0 that is perpendicular to t.

One may generalize this relation between evolute and involute to an angle ' di�erent

from the right angle: Each tangent t of the '-evolute intersects the '-involute in

an angle '. It turns out that, even for this more general situation, the '-evolute

of a cycloid C 0, i. e., the envelope of all lines which are obtained from the tangents

of C 0 by a rotation of ' about the point of tangency, is another congruent cycloid C,

see Figure 12.

It is known that the tangent MT of a cycloid always goes through the highest

point T of the current position of the circle. It is convenient to measure directions

by the clockwise oriented angle � with the vertical downward direction. The tangent

direction TM (taken always in the direction pointing leftward) turns precisely half

as fast as the radius OM of the rolling circle. When OM has direction �, TM has

direction �=2. Now we trace out the arc of a cycloid C from the lowest point Z until

the radius OM has direction 2'. At this point Z 0, we start another arc of a congruent

cycloid C 0 for which Z 0 is the lowest point, this time rolling counterclockwise, stopping

again when the circle has been rotated by an angle of 2'. The length of each of the

two arcs of the cycloid is L = 8r sin2 '

2
. We can think of C and C 0 being generated by

two circles rolling clockwise simultaneously at the same speed. The circle generating

C 0 rolls on a line which is higher by the distanceH = (1�cos 2')r, and it is always in a
position where the radius O0M 0 is by an angle 2��2' clockwise from the radius OM .

The centers O and O0 of the two circles always have the same relative position; they

are translated horizontally. The highest point T of the lower circle lies on the other
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Figure 12: The envelope of all lines which intersect a cycloid in a given angle ' is

another congruent cycloid.

circle, and similarly for the lowest point on the higher circle. The directed clockwise

angle between TO and TO0 is 2'.

To see that C is the '-evolute of C 0, consider a tangent t = MT of C, having

direction �=2. At the same time the direction of the tangent t0 =M 0T 0 (taken always

in the direction showing leftwards) is �=2 + � � '. The peripheral angle between

the tangent T 0M 0 and M 0T is equal to ', since it corresponds to a central angle

T 0OT = 2'. It follows that the direction of M 0T is �=2, and hence M 0T coincides

with the tangent t =MT , and, as we have already seen, the angle between TM and

T 0M 0 is '.

Thus, if we go through the curve in the reverse direction in which we discussed its

generation, starting at C 0, the curve will always be enclosed in the wedge of angle '

between the tangents to C 0 and C. Thus we have a '-self-approaching curve.
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