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Abstract

A d-dimensional polycube is a facet-connected set of cubes in d dimensions. Fixed
polycubes are considered distinct if they differ in their shape or orientation. A proper
d-dimensional polycube spans all the d dimensions, that is, the convex hull of the
centers of its cubes is d-dimensional. In this paper we prove rigorously some (previously
conjectured) closed formulae for fixed (proper and improper) polycubes, and show that
the growth-rate limit of the number of polycubes in d dimensions is 2ed − o(d). We
conjecture that it is asymptotically equal to (2d− 3)e + O(1/d).

Keywords: Polyominoes, lattice animals.

1 Introduction

A d-dimensional polycube of size n is a connected set of n cubical cells on the lattice Zd,
where connectivity is through (d−1)-faces. Two fixed polycubes are considered equivalent if
one can be transformed into the other by a translation. (In contrast, two free polycubes are
considered equivalent if one can be transformed into the other by a translation, flip, and/or
rotation.) A fixed polycube is called improper in d dimensions if the centers of all its cubes
lie in a common hyperplane of dimension strictly less than d.

In the literature of statistical physics, fixed polycubes are usually referred to as strongly-
embedded lattice site animals. To understand this term, consider the dual graph of the
hypercubic lattice. The dual entities of a cell and an adjacency relation of two cells are a
vertex and an edge (bond) connecting two cells, respectively. An “animal” is a connected
subgraph (cluster) of vertices. A weakly-embedded animal may contain nearest-neighbor
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lattice vertices but not the bond that connects between them. The size of a site (resp.,
bond) animal is the number of vertices (edges) it contains. A tree animal is a subgraph that
does not contain any cycles.

Counting polyominoes (2-dimensional polycubes) is a long-standing problem in discrete
geometry, originating in statistical physics [BH57] and having many applications, e.g., in
cryptography [SE05]. The sequence A(n), which lists the number of fixed polyominoes, is
currently known up to n = 56 [Je03]. Enumerating polycubes in higher dimensions is an
even more elusive problem. Lunnon [Lu72] manually counted 3-dimensional polycubes (up
to size 6) by considering symmetry groups. In a subsequent work, Lunnon [Lu75] com-
puted the number of small-sized polycubes in up to 6 dimensions. Aleksandrowicz and
Barequet [AB06, AB08] extended polycube counting by efficiently generalizing Redelmeier’s
polyomino-counting algorithm [Re81] to higher dimensions.

There is an extensive statistical-physics literature which provides enumeration data of
polycubes. Gaunt, Sykes, and Ruskin [GSR76] provided the numbers of 3- to 7-dimensional
polycubes up to size 13, 11, 10, 9, and 9, respectively (with a slight error in the count
of 3-dimensional polycubes of size 13). The counts of 3-dimensional polycubes of up to
size 17 can be derived from data obtained by Martin [Ma90] and published by Madras et
al. [MSW+90]. Gaunt and Peard [GP00, p. 7520] claimed to have (and to present in a further
publication) the counts of 3-dimensional polycubes of up to size 19, but we were unable to
locate these numbers. Gaunt [Ga80] provided the counts of polycubes of size up to 9 in 8
and 9 dimensions.

The growth-rate limit of polyominoes in the plane has also attracted much attention
in the literature. Klarner [Kl67] showed that the limit (also called Klarner’s constant)
λ2 = limn→∞ n

√
A(n) exists, although its exact value is to date unknown. The convergence

of A(n+1)/A(n) to λ2, as n tends to infinity, was proved only 32 years later by Madras [Ma99].
The best-known lower [BMRR06] and upper [KR73] bounds on λ2 are 3.9801 and 4.6496,
respectively. It is generally assumed [GSR76, Ga80, GPSW94, Je03], as a conclusion from
numerical methods applied to the known values of A(n), that λ2 ≈ 4.06. In d > 2 dimensions,
the growth-rate limit λd of the number of polycubes is also guaranteed to exist [Ma99].

In the statistical-physics literature there are various models of animals (site or bond,
weakly- or strongly embedded, general or trees, etc.), and the asymptotic growth rate of an-
imals is called the “reduced limiting free energy.” When referring to the strongly-embedded
site animals model, this quantity is usually denoted by the symbol Λs (or Λ

(d)
s to indicate

the dimension). There are many works (e.g., [GSR76, GPSW94, PG95, GP00]) on repre-
sentations of ln Λs (our ln λd), as well as the respective growth constants of other models of
animals, as a power series in 1/d, so-called the 1/d-expansion of the free energy of animals.
As described in more detail in Section 5, the most accurate estimate, that we are aware of,
is (see [GP00])

ln λd = ln σ + 1− 2

σ
− 79

24σ2
− 317

24σ3
− 18321

320σ4
− 123307

240σ5
+ O(

1

σ6
),

where σ = 2d− 1 is the coordination number of the lattice. Such expansions are unrigorous
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since they depend on previously-unproven formulae, e.g., the formula that we prove in The-
orem 6 (see Section 3). It is commonly said that these expansions seem to be “asymptotic
but not convergent.” In the last section of this paper we show how this unrigorous expansion
supports our conjecture that λd ∼ (2d− 3)e as d tends to infinity.

In this paper, we follow Lunnon’s notation [Lu75], denoting by DX(n, d) the number of
proper fixed polycubes of size n in d dimensions, and by CX(n, d) the number of all (proper
and improper) such polycubes. In the mathematical literature on counting high-dimensional
polycubes, the value of d is normally fixed and the functions CX(n, d) and DX(n, d) are
investigated as functions of n only. As mentioned above, the function CX(n, 2) is usually
denoted in the literature as A(n). Similarly, when the dimension d is fixed, the function
CX(n, d) is denoted in [AB06, AB08] as Ad(n). In Section 4 we fix the value of n and
investigate DX(n, d) and CX(n, d) as functions of d only. For clarity of notation, we denote
these functions as CXn(d) and DXn(d), respectively. In the statistical-physics literature,
these functions have several notations, e.g., Dn(d) [GSR76, pp. 1900–1901] (the parameter q
in the formula should be substituted by 1 to count polycubes), Zn(z = 0, k) [PG95, App. 1]
as a function of d (the parameter z should be substituted by 0 to count site animals, and ‘k’ is
an attribute that means the strongly-embedded animals model), Zn(y = 1, z = 0; c, k) [GP00,
App. A] as a function of d (z = 0 as above, and y should be substituted by 1 to count all
animals and not only trees, while c and k refer to the model), etc.

The paper is organized as follows. In Section 2 we review Lunnon’s formula that relates
the total number of polycubes to the number of proper polycubes. In Section 3 we develop a
few diagonal formulae for the number of proper polycubes, in which the difference between
the size and the dimension is at most 3. (Surprisingly, these formulae bear great resemblance
to Chebyshev polynomials.) In Section 4 we show that when the size of the polycubes is
fixed, the number of polycubes is a (“row”) polynomial in the dimension; we compute the
first ten row polynomials. Based on the diagonal formulae, we also compute formulae for
the first three sequences of coefficients of these polynomials. In Section 5 we show, based on
the row polynomials and the coefficient sequences, that the limit growth rate of the number
of polycubes, as d tends to infinity, is roughly (2d − 3)e. We end in Section 6 with some
concluding remarks.

2 Lunnon’s Formula

Lunnon [Lu75, p. 366] observed the following relation between CX(n, d) and DX(n, d):

CX(n, d) =
d∑

i=0

(
d

i

)
DX(n, i).

This is easily justified by summing up all proper polycubes in all dimensions. In 0 ≤
i ≤ d dimensions, each of the DX(n, i) proper i-dimensional polycubes contributes

(
d
i

)
d-

dimensional polycubes by enumerating the spanned dimensions. In case n ≤ d, all the
respective terms of i > n − 1 are zero since DX(n, i) = 0 (see Section 3). Note that for
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1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 4
1 5 4

1 6 9 4
1 7 15 13 4

1 8 22 28 17 4
1 9 30 50 45 21 4

(a) n = 2 (b) n = 3

1 17 32
1 18 49 32

1 19 67 81 32
1 20 86 148 113 32

1 21 106 234 261 145 32
1 22 127 340 495 406 177 32

1 61 348 400
1 62 409 748 400

1 63 471 1157 1148 400
1 64 534 1628 2305 1548 400

1 65 598 2162 3933 3853 1948 400
1 66 663 2760 6095 7786 5801 2348 400

(c) n = 4 (d) n = 5

Figure 1: Lunnon’s formula in a Pascal trapezoid

consistency, DX(1, 0) = 1 and DX(n, 0) = 0 for n ≥ 2 (only the polycube of size 1 is said to
be proper in zero dimensions); thus, we also have CX(1, 0) = 1 and CX(n, 0) = 0 for n ≥ 2.
To summarize, we can rewrite Lunnon’s formula as

CX(n, d) =

min(n−1,d)∑
i=0

(
d

i

)
DX(n, i). (1)

One can visualize Lunnon’s formula in a Pascal triangle-like construction. Figure 1 shows
this trapezoidal diagram for a few small values of n. For a fixed value of n, the first line
of the trapezoid contains the values of DXn(d) for 1 ≤ d ≤ n − 1 (seen in boldface). The
values of CXn(d) (underlined in the figure) are revealed in the nth left-to-right diagonal of
the trapezoid.

Lunnon’s formula has been widely used in the statistical-physics literature on lattice
animals, and is called a “partition formula,” where the partition is usually according to a
few more parameters (attributes of the polycubes). The earliest references for this, that we
are aware to, are from the 1960s.

3 Diagonals, or: Minimal Proper Polycubes

Obviously, we have DX(n, d) = 0 for n < d + 1. This is because the center of a single cube
occupies zero dimensions, and each additional cube increases the dimensionality of the con-
nectivity graph of the centers of the cubes of the polycube by either 0 or 1. That is, polycubes
of size n cannot be proper in more than n−1 dimensions. Equivalently, proper d-dimensional
polycubes must consist of at least d + 1 cubes. Lunnon [Lu75] computed DX(n, n − 1) up
to n = 7. However, as already noted elsewhere (e.g., in [GSR76, AB06, AB08]), he specified
an incorrect value for DX(7, 6). Gaunt [Ga80] provided values of DX(n, n− 1) up to n = 9.
The number of these minimal proper polycubes is given by the following theorem.

Theorem 1. DX(n, n− 1) = 2n−1nn−3.
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This formula is usually justified by the fact that these minimal proper polycubes are in
one-to-one correspondence with Cayley trees. Many works mention it either implicitly of
explicitly; see, e.g., [GSR76, Eq. (2.3)] and [PG95, Eq. (2.9)]. For completeness we provide
here a full proof of it. It is more convenient to use trees that carry labels on the edges rather
than the vertices.

Lemma 2. The number of directed trees with n vertices and n − 1 distinct edge labels
1, . . . , n− 1 is 2n−1nn−3, for n ≥ 2.

In our context, “directed” means that each edge has an arbitrary orientation, in addition
to its label. Thus, the orientations simply contribute the factor 2n−1.

Proof. The number of undirected trees with vertex labels 0, 1, . . . , n − 1 (Cayley trees) is
nn−2, and with directed edges we get 2n−1nn−2. In such a tree, we declare vertex 0 to be
the root and “shift” each remaining vertex label to the incident edge towards the root. In
this way, we get 2n−1nn−2 edge-labeled directed trees as in the lemma, with an additional
marked “root” vertex 0. Since there are n distinct choices for this root vertex, we have to
divide by n, to get 2n−1nn−3 trees without a vertex marked.

Proof of Theorem 1. We show that the edge-labeled directed trees on n vertices of Lemma 2
are in one-to-one correspondence with the proper (n− 1)-dimensional polycubes of size n.

Starting with such a polycube P , we can take the adjacency graph G of cubes in P .
We label each edge by the dimension in which the two cubes are adjacent (i.e., the unique
coordinate in which the two cubes differ by ±1), and we orient the edge from the smaller
coordinate to the larger coordinate. By construction, the graph G is connected.

We claim that it is a tree. To see this, consider a spanning tree T of G. Its n− 1 edges
are labeled by 1, . . . , n − 1, and each label occurs at least once. Otherwise, if some label
k were missing, all cubes would have the same kth coordinate, and hence the polycube P
would not span all n − 1 dimensions. It follows that each label 1, . . . , n − 1 occurs exactly
once. From this we can infer that two cubes u and v that are not adjacent in T are also
not adjacent in G, and hence G = T : the difference in coordinates between u and v can be
calculated by following the labels on the path between u and v, and if this path contains
l ≥ 2 edges, the coordinates differ in l positions.

We have established that each polycube produces an edge-labeled directed tree T . Con-
versely, if we are given such a tree T , we can reverse the process and build the corresponding
polycube P as follows: we start from any node as a singleton cube, and search T (say,
using depth-first search). We attach a new lattice cube for each new vertex in the proper
dimension and the direction (positive or negative) as implied by the label and orientation
of the edge. This results in a valid polycube P with n cubes. It is connected and proper
in n− 1 dimensions, by construction. To see that no two cubes in P “overlap,” we can use
the argument above which showed that no two cubes (non-adjacent in T ) can be adjacent.
Much less can two such cubes coincide.
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Corollary 3. The limit growth rate of the number of minimal proper polycubes (divided by
the size of the polycubes) is 2e.

Proof.

DX(n + 1, n)/DX(n, n− 1)

n + 1
=

2n(n + 1)n−2

2n−1nn−3(n + 1)
= 2

(
n + 1

n

)n−3

−→
n→∞

2e.

Formulae for DX(n, n−2) and DX(n, n−3) can be extrapolated from the known values of
DX. In statistical physics, they are widely assumed to be true, but have never been proven
rigorously. We provide here a full proof of the formula for the second diagonal. First, we
prove a lemma and corollary which generalize Lemma 2.

Lemma 4. The number of ordered sequences of k ≥ 1 rooted trees with a total of n−k edges
and distinct edge labels 1, . . . , n− k is nn−k−1k.

By “rooted” we mean that each tree in the forest has a distinguished marked vertex.

Proof. Recall (see, e.g., [Mo70]) that the number of labeled trees with n vertices of given
degrees d1, . . . , dn is

(
n−2

d1−1,...,dn−1

)
.

In our case, we look at vertex-labeled trees with n+1 nodes, in which an auxiliary “root”
node (labeled n+1) has degree k. Fixing dn+1 = k and summing over all possible d1, d2, ..., dn,
using the above formula, yields the number of such trees. We are interested in the number
X of trees in which the k neighbors of vertex n + 1 have labels n, n− 1, n− 2, . . . , n− k + 1.
Since all

(
n
k

)
subsets of labels are equally likely to occur as labels of the root neighbors, we

divide by the binomial coefficient
(

n
k

)
:

X =

∑
d1,...,dn

d1+···+dn=2n−k

(
n−1

d1−1,...,dn−1,k−1

)
(

n
k

) =

(
n−1
k−1

)
(

n
k

) ·
∑

d1,...,dn
d1+···+dn=2n−k

(
n− k

d1 − 1, . . . , dn − 1

)

=
k

n
·

∑
e1,...,en

e1+···+en=n−k

(
n− k

e1, . . . , en

)

= k
n
· nn−k = nn−k−1k.

The resulting trees are in one-to-one correspondence with the trees of the lemma, discarding
vertex n + 1, using vertices n, n − 1, n − 2, . . . , n − k + 1 as the ordered sequence of roots,
and shifting vertex labels to the incident edges as in the proof of Lemma 2.

Corollary 5. The number of ordered sequences of k ≥ 1 directed rooted trees with a total of
n− k edges and distinct edge labels 1, . . . , n− k is 2n−knn−k−1k.

Theorem 6. DX(n, n− 2) = 2n−3nn−5(n− 2)(2n2 − 6n + 9).
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Proof. Every proper polycube of size n in n− 2 dimensions has one or more spanning tree.
(Multiplicity is caused by possible cycles.) As in the proof of Theorem 1, a spanning tree is
encoded as a directed edge-labeled tree on n nodes with labels from the set {1, . . . , n − 2},
where each label (dimension) appears at least once. Hence, there is precisely one label i that
appears twice, while all other labels appear once. To avoid confusion, we use two distinct
labels i and i′ for the two edges in direction i. Thus, we get spanning trees with n−1 distinct
edge labels 1, . . . , n − 2 and i′, for some i ∈ {1, . . . , n − 2}. We have n − 2 choices for the
duplicated label i, and, thus, we get

(n− 2)2n−1nn−3 (2)

trees. Every spanning tree of a polycube is represented twice since exchanging labels i and
i′ leads to the same tree. Moreover, in contrast to the case of Theorem 1, this count suffers
from two types of errors:

(I) Some polycubes have more than one spanning tree.

(II) Some trees encode invalid (self-overlapping) polycubes.

Let us correct these counting errors. First, consider errors of type I. Polycubes with

multiple trees must contain a path of the form • i
— • j

— • i′
— • in order to close a cycle. The

four vertices marked with ‘•’ form a quadrilateral Q lying in dimensions i and j. Fix a pair
{i, j} with i 6= j. This can be done in

(
n−2

2

)
ways. Removing the four edges of Q breaks the

polycube into a sequence of four directed rooted spanning trees with a total of n− 4 edges
carrying distinct labels from the set {1, . . . , n − 2} \ {i, j}. According to Corollary 5, the
number of such sequences is 2n−2nn−5.

This is the number of polycubes that contain the square block Q: one can simply attach
the four tree roots to the four vertices of Q, taking the latter in some fixed order. On the
other hand, let us check how often we have counted spanning trees that correspond to this
polycube in the expression (2). The quadrilateral Q has two edges in both directions i and j.
There are two choices of omitting one j-edge from Q, and two ways of distributing the labels
i and i′ over the two i-edges, amounting to four possibilities. In addition, there are two
choices of omitting one i-edge from Q, and two ways of distributing the labels j and j′ over
the two j-edges. Thus, each polycube is represented eight times but should be counted twice
as mentioned above. To recap, in order to correct errors of type I we have to subtract

(
n− 2

2

)
× 6× 2n−2nn−5 = 3(n− 2)(n− 3)2n−2nn−5.

Second, consider errors of type II. Trees that lead to self-overlapping polycubes must

contain a path of either the form • i←− • i′−→ • or the form • i−→ • i′←− •. This gives us
two choices. Fix i (in one of n− 2 choices). Again, according to Corollary 5, the number of
sequences of three directed rooted spanning trees with n − 3 edges carrying distinct labels
from the set {1, . . . , n− 2} \ {i} is 3 · 2n−3nn−4. Attaching these trees to the three nodes in
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the above patterns creates all trees with self-overlap. To recap, in order to correct errors of
type II we have to subtract

2(n− 2)× 3 · 2n−3nn−4 = 3(n− 2)2n−2nn−4.

Now we can complete the computation of the correct number of polycubes under consid-
eration:

(n− 2)2n−1nn−3 − 3(n− 2)(n− 3)2n−2nn−5 − 3(n− 2)2n−2nn−4

2
= 2n−3nn−5(n− 2)(2n2 − 6n + 9),

where the division by 2 is due to the double-counting mentioned in the beginning.

The above approach can be extended to proper cubes in n− 3 dimensions, leading to the
formula for the third diagonal:

DX(n, n− 3) = 2n−6nn−7(n− 3)(12n5 − 104n4 + 360n3 − 679n2 + 1122n− 1560)/3.

The proof is similar in nature to that of Theorem 6 but it consists of a more systematic
and much more involved case analysis, and will be given in a future work. This formula
predicted that DX(10, 7) = 17,239,040,000. It took 91 CPU days for the parallel version of
the polycube-counting program [AB08] to confirm this value. To the best of our knowledge,
this is the first verification of this number by direct enumeration of polycubes.

Conjectured formulae for the diagonal formulae DX(n, n−i) up to i = 6 appear in [PG95].
There, Equation (2.15) [ibid., p. 6113] specifies fi,k(n) = 2n−2i+1nn−2i−1gi,k(n), where k is
the number of contacts, and the polynomials gi,k(n) are listed in App. 2 [ibid., p. 6120]:
Since in strongly-embedded polycubes k = 0, we have DX(n, n − i) = gi,0(n). The same
polynomials are further parameterized by c, the cyclomatic index, in [GP00]. Similarly,
Equation (3.4) [ibid., p. 7520] specifies fi,c,k(n) = 2n−2i+1nn−2i−1gi,c,k(n), where the polyno-
mials gi,c,k(n) are listed in App. B [ibid., p. 7533]: one should ignore the polynomials with
k > 0, and have DX(n, n− i) =

∑
c gi,c,0(n).

Corollary 7. The limit growth rate of the number of polycubes along the second and third
diagonals (divided by the size of the polycubes) is 2e.

Proof.

DX(n + 2, n)

DX(n + 1, n− 1)

/
(n + 2) =

2n−1

2n−2
· (n + 2)n−3

(n + 1)n−4
· n

n− 1
· 2(n + 2)2 − 6(n + 2) + 9

2(n + 1)2 − 6(n + 1) + 9
· 1

n + 2

= 2 ·
(

n + 2

n + 1

)n−4

· n

n− 1
· 2(n + 2)2 − 6(n + 2) + 9

2(n + 1)2 − 6(n + 1) + 9

−→
n→∞

2 · e · 1 · 1 = 2e.

Similarly, it is easily verified that

DX(n + 3, n)/DX(n + 2, n− 1)

n + 3
−→
n→∞

2e.
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The conjectured formulae for DX(n, n − i) (4 ≤ i ≤ 6) follow the same pattern. We
conjecture that the limit growth rate of the number of polycubes along any diagonal (divided
by the size of the polycubes) is 2e; that is, (DX(n+ i, n)/DX(n+ i−1, n−1))/(n+ i) −→

n→∞
2e

for all i > 0. In fact, this is a simple consequence of the conjectured formula DX(n, n− i) =
2n−2i+1nn−2i−1Pi(n), where Pi(n) is a polynomial in n. The conjectured diagonal formulae
imply that the degree of Pi(n) is 3i− 4, but this has not been proven either.

4 Rows, or: Polycubes of Fixed Size

In this section we show that for any fixed value of n, the function CXn(d) is a polynomial in d.
Gaunt, Sykes, and Ruskin [GSR76, §2] listed these polynomials up to n = 7 in a Lunnon-like
form: one should substitute q := 1 in the polynomials Dn(d) to obtain CXn(d). Similarly,
Peard and Gaunt [PG95, App. 1] listed implicitly these polynomials up to n = 8:1 one should
substitute z := 1 in the polynomial Zn(z; k) (‘k’ means the site model, and z = 1 stands for
strongly-embedded animals) to obtain CXn(d). In a similar manner, one can deduce these
polynomials up to n = 13 from [GP00, App. A]: one should substitute y := 1 and z := 1 in the
polynomial Zn(y, z; c, k) (‘c’ and ‘k’ indicate the model, y = 1 for counting sites, and z = 1
for strongly-embedded animals) to obtain CXn(d). All these implicit formulae are based on
other conjectured formulae, but they agree with all known counts of polycubes. We provide
below the explicit polynomials for n ≤ 10 (which we know for sure), and also compute the
formulae for the first three sequences of the leading coefficients of these polynomials. The
latter sequences will prove to be beneficial in the next section.

Trivially, CX1(d) = 1. It is also obvious that CX2(d) = d: a domino can be aligned
with any of the d dimensions. It is also rather simple to count d-dimensional trominoes.
A tromino can be either a “stick” or “L-shaped.” There are d sticks, while the number of
L-shaped trominoes is 4

(
d
2

)
(there are four orientations of the L-shape in each pair of spanned

dimensions). In total, there are CX3(d) = d + 4
(

d
2

)
= 2d2 − d trominoes. Note that CX3(d)

is also the dth hexagonal number (sequence A000384 in [Sl]).

In general, we have:

Theorem 8. CXn(d) is a polynomial in d of degree n− 1.

Proof. The claim follows from (1). The quantity CX(n, d) is the sum of min(n−1, d) nonzero
terms. For a fixed value of n, all these terms are polynomials in d, of which the one of the
highest degree is DX(n, n− 1)

(
d

n−1

)
. The respective degree of d is, thus, n− 1.

Note that:

• For n ≥ 2, d = 0 is a root of CXn(d) (i.e., CXn(0) = 0). This follows from the fact
that CX(n, 0) = 0 for n ≥ 2.

1The coefficient of the last term in the formula for n = 8 contains a typo: it should be 4,194,304 rather
than 4,194,309.
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Function Polynomial

CX1(d) 1

CX2(d) d

CX3(d) 2d2 − d

CX4(d) 16
3
d3 − 15

2
d2 + 19

6
d

CX5(d) 50
3
d4 − 42d3 + 239

6
d2 − 27

2
d

CX6(d) 288
5

d5 − 216d4 + 986
3

d3 − 231d2 + 926
15

d

CX7(d) 9604
45

d6 − 1078d5 + 20651
9

d4 − 14927
6

d3 + 120107
90

d2 − 827
3

d

CX8(d) 262144
315

d7 − 26624
5

d6 + 132320
9

d5 − 65491
3

d4 + 1615991
90

d3 − 113788
15

d2 + 52589
42

d

CX9(d) 118098
35

d8 − 26244d7 + 447903
5

d6 − 511082
3

d5 + 23014949
120

d4 − 1522261
12

d3

+38839021
840

d2 − 30089
4

d

CX10(d) 8000000
567

d9 − 2720000
21

d8 + 14272000
27

d7 − 11092360
9

d6 + 239850598
135

d5 − 14606026
9

d4

+1067389643
1134

d3 − 42595493
126

d2 + 2804704
45

d

Table 1: Explicit representations of CXn(d) = an,0d
n−1 + an,1d

n−2 + · · ·+ an,n−2d

• For n ≥ 1, the sum of coefficients of CXn(d) is 1 (i.e., CXn(1) = 1). Obviously, there
is only one 1-dimensional polycube of any size n.

For a fixed value of n, the polynomial CXn(d) can be computed in two ways:

1. If all values of DX(n, d) are known for 1 ≤ d ≤ n − 1 (i.e., all the nonzero values of
DX(n, d)), one can manipulate Equation (1) and obtain a representation of CXn(d) as
a polynomial in d; or

2. Since CXn(d) is a polynomial in d of degree n− 1, it can be deduced from the first (or
any) n known values of CX(n, d) (including CX(n, 0) = 0 and CX(n, 1) = 1).

Table 1 shows explicit representations of the polynomials CXn(d) up to n = 10.

Let us write CXn(d) =
∑n−2

i=0 an,id
n−i−1. (There is no constant term since zero is a root

of CXn(d).) It turns out that there are formulae for the sequences of coefficients of these
polynomials. A direct consequence of the proof of Theorem 8 is that the value of the nth
element of (an,0) = (1, 1, 2, 16/3, 50/3, . . .), the sequence of leading coefficients in CXn(d), is

an,0 = DX(n, n− 1)/(n− 1)! = 2n−1nn−3/(n− 1)!. (3)

From Lunnon’s formula (1) we can infer the value of the nth element of the sequence of
second coefficients of the polynomials CXn(d), (0, 0,−1, 15/2,−42, . . .), by summing up the

10



coefficients of dn−2:

an,1 = DX(n, n− 1)

∑n−2
i=0 (−i)

(n− 1)!
+ DX(n, n− 2)

1

(n− 2)!

= 2n−1nn−3 −1

2(n− 3)!
+ 2n−3nn−5(n− 2)(2n2 − 6n + 9)

1

(n− 2)!

= −3 · 2n−3nn−5(2n− 3)/(n− 3)!.

Here we use the convention 0! = 1 and 1/(−1)! = 1/(−2)! = 0, and so a1,1 = a2,1 = 0 and
a3,1 = −1.

Since we also know the formula for DX(n, n− 3), we can, in the same manner, compute

an,2 = DX(n, n− 1)

∑
0≤i<j≤n−2 ij

(n− 1)!
+ DX(n, n− 2)

∑n−3
i=0 (−i)

(n− 2)!
+ DX(n, n− 3)

1

(n− 3)!

=
2n−1nn−3(n− 1)(n− 2)(n− 3)(3n− 4)

24(n− 1)!

−2n−3nn−5(n− 2)(2n2 − 6n + 9)(n− 3)(n− 2)

2(n− 2)!

+
2n−6nn−7(n− 3)(12n5 − 104n4 + 360n3 − 679n2 + 1122n− 1560)

3(n− 3)!

=
2n−6nn−7(108n3 − 463n2 + 1122n− 1560)

3(n− 4)!
,

which is the formula of the nth element in the sequence (0, 0, 0, 19/6, 239/6, 986/3, . . . ).

We now compute the limit growth rate of these sequences. We observe, again, the familiar
limit

an+1,0

an,0

=
2n(n + 1)n−2(n− 1)!

n!2n−1nn−3
= 2

(
n + 1

n

)n−2

−→
n→∞

2e,

an+1,1

an,1

=
−3 · 2n−2(n + 1)n−4(2n− 1)(n− 3)!

(n− 2)!(−3)2n−3nn−5(2n− 3)

=
2(2n− 1)(n + 1)

(2n− 3)(n− 2)

(
n + 1

n

)n−5

−→
n→∞

2e,

and, similarly,
an+1,2

an,2

−→
n→∞

2e.

Note the resemblance between the formulae of an,i (for i = 0, 1, 2). We conjecture that for
all i ≥ 1 we have an,i = (−1)i2n−2i−1nn−2i−3Pi(n)/(n− i− 2)!, where Pi(n) is a polynomial
in n, and, thus, an+1,i/an,i −→

n→∞
2e.

In summary, we know for sure the formulae for an,0, an,1, and an,2. Based of the con-
jectured formulae for DX(n, n − i) (4 ≤ i ≤ 6), we could obtain, with considerable effort,
conjectured formulae for an,i (3 ≤ i ≤ 5). In the next section we use the sequences an,i;
fortunately, knowing an,i (0 ≤ i ≤ 2) is sufficient for obtaining the main result.
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5 Columns, or: Growth Rate

In this section we show that the asymptotic growth rate of d-dimensional polycubes is linear
in d, and provide a good estimate of it. We prove rigorously that as d tends to infinity, λd

approaches 2ed−o(d), and show, in a semi-rigorous computation, that the asymptotic value is
(2d−3)e. As mentioned in the introduction, this was already argued in the statistical-physics
literature, where, based on the unproven assumption that CX(n, d) ∼ Cdn

θλn
d (where θ is

widely believed to be equal to −1), and using the unproven diagonal formulae for DX(n, n−i)
(i = 2, 3), a 1/d-expansion was computed for ln λd. We show that this representation of λd

supports our estimate.

First, we show an upper bound:

Theorem 9. For any fixed value of d, λd = limn→∞ n
√

CX(n, d) < (2d− 1)e.

Proof. We generalize an idea of Eden [Ed61], who proved the bound limn→∞ n
√

CX(n, 2) ≤
6.75 in the plane. (Klarner and Rivest [KR73, §2] applied a more complex version of
this technique in two dimensions, improving the upper bound to 4.65. Whittington and
Soteros [WS90, §2] use a similar argument for d-dimensional bond animals.) We demon-
strate that CX(n, d) ≤ (

(2d−1)n
n−1

)
by constructing an injection from polycubes of size n to

(n− 1)-element subsets of a set whose cardinality is (2d− 1)n. Given a polycube P , assign
the numbers 1 through n to the cubes of P in lexicographic order (defined by the coordi-
nates of the centers of the cubes in d-space). Now perform a breadth-first search on the
cube-connectivity graph G of P , again, in lexicographic order, starting from cube 1. In the
course of this procedure, any cube c ∈ P (except cube 1) is reached through an incoming
edge e. (An imaginary edge incoming into cube 1 is fixed so as to supposedly originate from
a cube that cannot belong to any polycube. This is possible due to the lexicographic order of
the cubes.) The cube c is connected by edges of G to at most 2d− 1 additional neighboring
cubes. We label each of the outgoing edges leading to these neighbors with a pair of numbers
(i, j). The value i is the number associated with c. The value 1 ≤ j ≤ 2d− 1 is determined
by the orientation of the outgoing edge relative to e. In two dimensions, for example, the
outgoing edges are numbered according to their clockwise order relative to e. By the end of
the search, each of the n−1 edges of the resulting spanning tree is given a unique label from
a set of (2d − 1)n possible labels. Let us argue why this is an injection. Apply the search
procedure to two different polycubes, and let c be the first cube (during the search) in which
a discrepancy in neighboring cubes occurs. This will immediately result in a corresponding
label discrepancy, which the search will not be able to “remedy” later because it will never
visit c again.

Furthermore, it is easily verified that

lim
n→∞

n

√(
(2d− 1)n

n− 1

)
= (2d− 1)(1 +

1

2(d− 1)
)2(d−1) < (2d− 1)e.

Second, we show a lower bound. The asymptotic bound, as d tends to infinity, almost
matches the upper bound proven in Theorem 9.
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Theorem 10. limd→∞ λd/d ≥ 2e.

Proof. Our goal is to show that limd→∞ limn→∞ n
√

CX(n, d)/d ≥ 2e. Fix ε > 0. It can
easily be verified from (3) that the sequence n−1

√
an,0 converges to 2e. Therefore, there exists

n0 = n0(ε) large enough and independent of d, so that n0−1
√

an0,0 ≥ (2− ε/2)e. According to

Theorem 8, CXn0(d) is a polynomial in d of degree n0−1. Thus, limd→∞( n0−1
√

CXn0(d)/d) =

limd→∞( n0−1
√

an0,0dn0−1/d) = n0−1
√

an0,0.
2 Hence, there exists d0 = d0(n0) such that for all

d ≥ d0 we have ( n0−1
√

CXn0(d))/d ≥ (2− ε)e, that is,

n0−1
√

CX(n0, d) ≥ (2− ε)ed. (4)

Now consider any fixed value of d ≥ d0. A standard polycube-concatenation argument (su-
peradditivity of log CX(n, d), d fixed) shows that λd = limn→∞ n−1

√
CX(n, d) ≥ n∗−1

√
CX(n∗, d)

for any n∗, in particular, for n∗ = n0. (Instead of attaching polycubes, we identify the two
anchor cubes.) Together with (4), this implies that λd ≥ (2 − ε)ed for any d ≥ d0. This
establishes the claim.

Note that the main difficulty in the above proof is to justify the exchange of limits in
the term limd→∞ limn→∞ n

√
CX(n, d)/d. If we exchange the order of limits, the claim that

this quantity is at least 2e becomes straightforward. In a beautiful discussion of this issue,
Gaunt and Peard [GP00, p. 7524] mention that “in the formal procedure normally used, the
order of limits is interchanged,” and explain why this operation causes the 1/d-expansion
to sometimes fail. In some models, e.g., that of self-avoiding walks, it is known [HS95] that
this interchange of limits is allowed. In other models, e.g., that of strongly-embedded site
animals, one must justify rigorously why this interchange is permissable. Also note that
the above proof could not use the sequence CX(n0 + 1, d)/CX(n0, d) since it has never been
proven that this sequence is monotone increasing, or, at least, that it fully lies below its
limit. Finally, note that the proof depends only on the formula (3) for an,0, while the exact
formulae for an,i, i > 0, are insignificant.

Combining Theorems 9 and 10, we obtain our main result.

Theorem 11. λd = 2ed− o(d) as d →∞.

As mentioned above, this has already been mentioned in statistical physics, but has never
been proven rigorously. We now make a more precise conjecture on the asymptotic value
of λd. We know exactly the first three coefficients of the polynomial CXn(d) = an,0d

n−1 +
an,1d

n−2 + an,2d
n−3 + · · · . Considering n as a fixed number, we can estimate the terms

2Note that the argument breaks here if we take the n0th root instead of the (n0 − 1)st root.
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CXn+1(d)/CXn(d) and n
√

CXn(d) as power series in 1/d. First,

CXn+1(d)

CXn(d)
=

an+1,0

an,0

d +
an+1,1an,0 − an+1,0an,1

(an,0)2

+
an,0(an+1,2an,0 − an+1,0an,2)− an,1(an+1,1an,0 − an+1,0an,1)

(an,0)3
· 1

d
+ O

(
1

d2

)

= f1(n)d + f2(n) +
f3(n)

d
+ O

(
1

d2

)
,

where

f1(n) = 2(
n + 1

n
)n−2,

f2(n) = −3(n− 1)(n + 1)n−4(2n3 + 6n2 − 5n− 6)

2nn
, and

f3(n) = − (n−2)(n−1)(n+1)n−6(31n6+217n5−4888n4+743n3+13209n2+12660n+3708)
48nn+2 .

It is now easy to verify that limn→∞ f1(n) = 2e, limn→∞ f2(n) = −3e, and limn→∞ f3(n) =
−31e/48. Second,

n
√

CXn(d) = (an,0)
1/nd +

an,1

n(an,0)(n−1)/n
− (n− 1)(an,1)

2 − 2nan,0an,2

2n2(an,0)(2n−1)/n
· 1

d
+ O

(
1

d2

)

= g1(n)d + g2(n) +
g3(n)

d
+ O

(
1

d2

)
,

where

g1(n) =

(
2n−1nn−3

(n− 1)!

)1/n

,

g2(n) = −3(n− 1)(n− 2)(2n− 3)

4n3
·
(

2n−1nn−3

(n− 1)!

)1/n

, and

g3(n) = −(n− 1)(n− 2)(31n4 − 432n3 + 2118n2 − 2817n− 486)

96n6
·
(

2n−1nn−3

(n− 1)!

)1/n

Again, limn→∞ g1(n) = 2e, limn→∞ g2(n) = −3e and limn→∞ g3(n) = −31e/48. Assuming
without proof that the limits n →∞ and d →∞ can be exchanged and yield a converging
series leads us to the conjecture that

λd = 2ed− 3e− 31e

48d
+ O(

1

d2
), (5)

and, thus, λd tends to (2d− 3)e as d tends to infinity.

This is consistent with the unproven 1/d-expansion of the free energy (the logarithm
of the growth constant) found in various publications of Gaunt et al., the most general of
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which, that we are aware of, is Equation (3.8) in [GP00, p. 7521]. By substituting y := 1
and z := 0 in it, we obtain the expansion [ibid., p. 7538, see F (d)(y; C)]

ln λd = ln σ + 1− 2

σ
− 79

24σ2
+ O(

1

σ3
), (6)

where σ = 2d − 1. A common estimate is achieved by truncating this expansion after the
second term and writing (see, e.g., [GP00, p. 7523, Eq. 4.9]) ln λd ∼ ln(2d− 1) + 1, leading
to the inaccurate conclusion λd ∼ (2d− 1)e. This estimate is also known as λB, the “Bethe
approximation” of λ. Refer, for example, to Equation (3.9) in [GSR76, p. 1904], which states
that λB = σσ/(σ − 1)σ−1. Substituting σ = 2d − 1 and taking d to infinity, one can verify
that λB tends to (2d− 1)e. In fact, one or two more terms from Equation (6) are needed in
order to estimate the asymptotic value more accurately. It is easily seen that

λd ∼ (2d− 1) · e · e−2/(2d−1) · e−79/(24(2d−1)2)

= (2d− 1)e
(
1− 2

(2d−1)
+ 2

(2d−1)2
+ O( 1

d3 )
)(

1− 79
24(2d−1)2

+ O( 1
d4 )

)

= (2d− 3)e− 31
48d

+ O( 1
d2 ),

which is in agreement with our conjecture (5).

Finally, we show that the result about the asymptotic growth rate of all polycubes applies
also to proper polycubes. In two dimensions, this follows easily from the fact that DX(n, 2) =
CX(n, 2) − 2 (only the two “sticks” are improper). It is still rather easy to prove a similar
result in d dimensions.

Theorem 12. limn→∞ DX(n + 1, d)/DX(n, d) = limn→∞ n
√

DX(n, d) = λd.

Proof. We will show that there exists a constant cd that depends only on d, such that
cd CX(n, d) < DX(n, d). Due to Madras [Ma99], limn→∞ CX(n, d)/CX(n − d − 1, d) exists
and equals λd+1

d . Thus, for almost all n, we have CX(n, d) < (λd+1
d + 1)CX(n − d − 1, d).

In addition, CX(n − d − 1, d) ≤ DX(n, d) by concatenating an arbitrarily-chosen proper d-
dimensional polycube of size d+1 with all polycubes of size n−d−1 in d dimensions. Hence,
cd = 1/(λd+1

d +1) is an appropriate constant. Since, in addition, DX(n, d) < CX(n, d), and by

applying the squeezing theorem, it follows that limn→∞ n
√

DX(n, d) = λd. A “Madras-like”
pattern argument completes the proof.

6 Conclusion

We have proved in this paper, for the first time, several formulae for polycubes in higher
dimensions. We have also shown that the asymptotic growth rate of polycubes in d dimen-
sions approaches 2ed−o(d) as d tends to infinity. We conjecture that the asymptotic growth
rate is (2d− 3)e.
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