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Abstract. We investigate the polytope that describes the motions of
a set of points on a line, subject to certain conditions on the increase
of their distances. It turns out that this polytope has the combinato-
rial structure of the associahedron. In other words, it gives a geometric
representation of the set of triangulations of an n-gon, or of the set of
binary trees on n vertices, or of many other combinatorial objects that
are counted by the Catalan numbers. The neighborhood in the combi-
natorial sense is re
ected by the adjacency in this representation. Our
geometric representation of the associahedron has a large number of free
parameters, allowing representations distinct from the other known rep-
resentations of the associahedron.

1 Introduction

The associahedron. One of the purposes of graph drawing is to have
geometric realizations or pictures that reveal something about the under-
lying structure of some object or some set of objects. The associahedron
is a particularly nice example where the structure of a set of combinato-
rial objects, the Catalan structures, are realized by a geometric object,
a polytope. The Catalan structures refer to any of a great number of
combinatorial objects which are counted by the Catalan numbers (see
the extensive list in Stanley [12]), some of the most notable being the
triangulations of a convex polygon, binary trees, the ways of evaluate a
product of n factors when multiplication is not associative (hence the
name associahedron), and monotone lattice paths that go from one cor-
ner of a square to the opposite corner without crossing the diagonal. For
the sake of illustration, let us focus the attention on the triangulations of
a convex n-gon. The associahedron is a polytope which has a vertex for
every triangulation, and in which two vertices are connected by an edge
of the polytope if the two triangulations are connected by an edge 
ip.
Fig. 1 shows an example of an associahedron.
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Fig. 1. The three-dimensional associahedron. The vertices represent all triangulations
of a convex hexagon or all possible ways to insert parentheses into the product a�b�c�d.

There is an easy geometric realization of this polytope as a special case
of a secondary polytope (Gel0fand, Zelevinski��, and Kapranov [4], see also
Ziegler [14]). Every triangulation is represented by a vector (a1; : : : ; an) of
n components. The entry ai is simply the sum of the areas of all triangles
of the triangulation that are incident to the i-th vertex. We will refer to
this realization as the classical realization of the associahedron. It depends
on the location of the vertices of the convex n-gon, but all polytopes that
one gets in this way are combinatorially equivalent. Dantzig, Ho�man,
and Hu [2, Section 2], and independently de Loera et al. [7] in a more
general setting, have given other representations of the triangulations as
the vertices a 0-1-polytope in

�
n
3

�
variables corresponding to the possible

triangles of a triangulation (the universal polytope), or in
�
n
2

�
variables

corresponding to the possible edges of a triangulation. These realizations
are in a sense most natural, but they have higher dimensions and have
more adjacencies between vertices than the associahedron. Every classical
associahedron, however, arises as a projection of the universal polytope.

The �rst published realization of an associahedron is due to Lee [6],
but it is not fully explicit. A few earlier and more complicated ad-hoc
realizations that were never published are mentioned in Ziegler [14, Sec-
tion 0.10].

In this paper we will give another, di�erent family of geometric real-
izations.
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Expansive motions. We are given a set of n points x1 < � � � < xn on the
real line that are to move with (unknown) velocities vi, i = 1; : : : ; n. An
expansive motion is a motion in which no inter-point distance decreases.
This can easily be written as follows:

vj � vi � 0; for 1 � i < j � n (1)

These constraints in the variables vi de�ne a polyhedral cone. Since a
translation of the whole point set (addition of a constant to all variables
vi) does not change these constraints, we may normalize one variable:

v1 = 0 (2)

This yields a pointed polyhedral cone with the origin as a vertex. This
cone is not very interesting. Its n � 1 extreme rays correspond to the
motions where x1; : : : ; xi remain stationary and the points xi+1; : : : ; xn

move away from them at uniform speed:

0 = v1 = v2 = � � � = vi < vi+1 = � � � = vn

We get a richer structure by perturbing the constraints (1):

vj � vi � fij; for 1 � i < j � n; (3)

for some numbers fij. (Note that the values xi play actually no role in
these constraints.) For an appropriate choice of these numbers, the ver-
tices of the resulting polytope will correspond to non-crossing alternating

trees, which are Catalan structures.

Related Work. Expansive motions were instrumental in showing that ev-
ery polygon in the plane can be unfolded into convex position, see Con-
nelly, Demaine and Rote [1]. More recently, the expansion cone for a pla-
nar set of points was studied as an object in its own right (Rote, Santos,
and Streinu [11]), and certain perturbations of this cone lead to polyhedra
whose vertices correspond to so-called minimums pseudo-triangulations.
Pseudo-triangulations were introduced by Pocchiola and Vegter [8] for
computing visibility graphs and have been useful in other areas [5, 13]. It
turns out that the perturbations chosen in [11] do not work for degenerate
point sets. In particular, for points on a line, one gets a polyhedron equiv-
alent to the one given by (1). For point sets in convex position, however,
pseudo-triangulations coincide with triangulations, and one gets yet an-
other representation of the associahedron. This representation is however
aÆnely equivalent to the classical representation of the associahedron [11].
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One can also look at the whole arrangement of hyperplanes of the
form

vj � vi = fij: (4)

Such arrangements for various special values of f , like f � 0 or f � 1,
have been the object of extensive combinatorial studies, see for example
Postnikov and Stanley [10]. In this paper, we study only one cell of this
arrangement, and moreover, we are trying to avoid degeneracies, in con-
trast to the above-mentioned choices of f which lead to highly degenerate
arrangements.

2 The Expansion Polytope

It is easy to see that the polytope P de�ned by (2{3) is full-dimensional,
after eliminating the constant variable v1 = 0, i. e., it has dimension n�1.
P contains no line, so it must have vertices. For any vertex v, or for any
feasible point v 2 P , we may look at the set E(v) of tight inequalities
at v:

E(v) := f ij j 1 � i < j � n; vj � vi = fij g

We regard E(v) as the set of edges of a graph on the vertices f1; : : : ; ng.
One may get various polyhedra by choosing di�erent numbers fij

in (3). We choose them with the following properties.

fil + fjk > fik + fjl; for 1 � i < j � k < l � n. (5)

For j = k we use this with the interpretation fjj = 0, so we require

fil > fik + fkl; for 1 � i < k < l � n. (6)

One way to satisfy these conditions is to select

fij := h(xj � xi); for i < j (7)

for an arbitrary strictly convex function h with h(0) = 0. The simplest
choice is h(x) = x2 and xi = i, yielding fij = (i� j)2.

Two edges ij and jk with i < j < k are called transitive edges, and
edges ik and jl with i < j < k < l are called crossing edges.

Lemma 1. If f satis�es (5{6) and v 2 P , then E(v) cannot contain

transitive or crossing edges.

Proof. If we have two transitive edges ij; jk 2 E(v) this means that
vj � vi = fij and vk � vj = fjk. This gives vk � vi = fij + fjk < fik,
by (6), and thus v cannot be in P because it violates (3). The other
statement follows similarly. �
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3 Non-crossing Alternating Trees

A graph without transitive edges is called an alternating or intransitive
graph: every path in an alternating path changes continually between up
and down.

Lemma 2. A graph on the vertex set f1; : : : ; ng without transitive or

crossing edges cannot contain a cycle.

Proof. Assume that C is a cycle without transitive edges. Let i and m
be the lowest and the highest-numbered vertex of a cycle C, and let ik
be an edge of C incident to i, but di�erent from im. The next vertex on
the cycle after k must be between i and k; continuing the cycle, we must
eventually reach m, so there must be an edge jl which jumps over k, and
we have a pair ik, jl of crossing edges. �

Since the polyhedron is (n� 1)-dimensional, the set E(v) of a vertex
v must contain at least n� 1 edges. We have just seen that it is acyclic,
and hence it must be a tree and contain exactly n� 1 edges. So we get

Proposition 1. P is a simple polyhedron. The tight inequalities for each

vertex correspond to non-crossing alternating trees. �

We will see below that P contains in fact all non-crossing alternating
trees as vertices.

First, we will study a few combinatorial properties of these trees.
Alternating trees have been studied in combinatorics in several papers,
see for example [9, 10] or [12, Exercise 5.41, pp. 90{92] and the references
given there.

Non-crossing alternating trees were only studied by Gelfand, Graev,
and Postnikov, under the name of \standard trees". They proved the
following fact [3, Theorem 6.4].

Proposition 2. The non-crossing alternating trees non n+1 points are

in one-to-one correspondence with the binary trees on n vertices, and

hence their number is the n-th Catalan number
�
2n
n

�
=(n+ 1). �

The bijection given in [3] to prove this fact is very straightforward. The
vertices of the binary tree correspond to the edges of the alternating tree.
It is easy to see that every non-crossing alternating tree must contain the
edge 1n. Removing this edge splits the tree into two parts; this corre-
sponds to the two subtrees of the root in the binary tree. The two parts
are handled recursively. Fig. 2 gives an example of this correspondence.
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Fig. 2. The bijection with binary trees, and a rotation of binary trees (upper part)
together with the corresponding edge exchange (lower part).

We extend this correspondence to the adjacency structure between
trees:

Lemma 3. If we remove any edge e 6= 1n from a non-crossing alternat-

ing tree T , there is precisely one other non-crossing alternating tree T 0

which shares the edges T � feg with T . This exchange operation between

non-crossing alternating trees corresponds to a rotation of the binary tree

under the above bijection. �

4 A New Realization of the Associahedron

Proposition 1 implies that the edge 1n belongs to E(v) for all vertices v.
This means that all vertices lie on the hyperplane

vn � v1 = f1n: (8)

Therefore, if we intersect P with this hyperplane, we get another polytope
P0 which is a facet of P and which has the same set of vertices of P . It
is clear that P0 is bounded: v1 and vn are �xed and the other values are
locked in between v1 and vn.

Lemma 4. Let v be a vertex of P0. Then v has n� 2 adjacent vertices,

and they correspond to the n � 2 non-crossing alternating trees that can

be obtained from E(v) by exchanging an edge di�erent from the edge 1n.

Proof. Since v is a vertex of an (n�1)-dimensional simple polytope, it has
n�2 outgoing edges and n�2 neighbors on P0. Each edge is obtained by
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relaxing one of the de�ning equations of v, and hence an adjacent vertex
v0 shares all but one of the tight inequalities with v. It follows that E(v)
and E(v0) have n � 2 common edges. Hence E(v0) must be one of the
\exchange neighbors" according to Lemma 3. There are n � 2 of these
neighbors. Therefore, all of them must appear as neighboring vertices of v
on the polytope. �

Theorem 1. P0 is a polytope whose vertices are in one-to-one correspon-

dence with the non-crossing alternating trees on n vertices, or with the

binary trees on n�1 vertices. Two vertices are adjacent if and only if the

two non-crossing alternating trees di�er in a single edge (or if the two

binary trees di�er by a rotation). Hence it is an associahedron.

P is an unbounded polyhedron with the same vertex set as P0. The
extreme rays correspond to the non-crossing alternating trees with the

edge 1n removed.

Proof. For lack of e�ort, we prove only the statements regarding P0. We
know that it has at least one vertex. By Proposition 1, that vertex must
correspond to a non-crossing alternating tree. By Lemma 4, every ex-
change neighbor of a non-crossing alternating tree that is represented in
the polytope must also appear as a vertex. Since the set of all non-crossing
alternating trees is connected under the edge exchange operation (like the
set of binary trees under tree rotations), we conclude that all trees appear
as vertices. �

We remark that we have obtained this result in a somewhat indi-
rect way, by combining combinatorial properties with general structural
knowledge about simple polytopes. We have not explicitly proved that
any single tree E(v) is in fact feasible, i. e., satis�es the constraints (3).

A result which is related to Theorem 1 was proved by Gelfand, Graev,
and Postnikov [3, Theorem 6.3], in a setting dual to ours: Here a triangu-
lation of a certain polytope was constructed. The non-crossing alternating
trees correspond to the simplices of the triangulation. It is shown explic-
itly that the simplices form a partition of the polytope. Certain numbers
fij are then associated to the vertices of the polytope to show that the
triangulation is a projection of the boundary of a higher-dimensional poly-
tope. Incidentally, the numbers that were suggested for this purpose are
(i� j)2, which coincides with the simple proposal given in Section 2, but
the calculations are not given in the paper.

One easily sees that the conditions (5{6) on f are also necessary for
the theorem to hold: If any of these conditions would hold as an equality
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or as an inequality in the opposite direction, the argument of Lemma 1
would work in the opposite direction, and certain non-crossing alternating
trees would be excluded. Thus, (5{6) gives complete characterization of
the possible parameter values fij.

5 Conclusion

The conditions (5{6) leave a lot of freedom for the choice of the vari-
ables fij. We have an

�
n
2

�
-dimensional parameter space. This is in con-

trast to the classical representation mentioned in the introduction, which
has 2n parameters (the coordinates of n points in the plane). A few of
these dimensions only lead to scalings or other trivial transformations of
the polytope, but most of them lead to genuinely di�erent polytopes. We
haven't checked how the appearance of the associahedron changes under
di�erent choices of the parameters. A systematic way of trying di�erent
choices would be to select a convex function h in (7), and to play around
with the values xi. It might also be interesting to observe in what way
the polytope degenerates as h varies from a \strongly" convex function
to a more and more linear shape.
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