ADD ISOTROPIC GAUSSIAN KERNELS AT OWN RISK:
MORE AND MORE RESILIENT MODES IN HIGHER DIMENSIONS
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ABSTRACT. The fact that the sum of isotropic Gaussian kernels can e modes
than kernels is surprising. Extra (ghost) modes do not éxi&! and are generally not
well studied in higher dimensions. We study a configuratibn-6 1 Gaussian kernels for
which there are exactly+ 2 modes. We show that all modes lie on a finite set of lines,
which we call axes, and study the restriction of the Gaussiature to these axes in order
to discover that there are an exponential number of cripeahts in this configuration.
Although the existence of ghost modes remained unknowndaltreestdifficulty of finding
examples ifR?2, we show that the resilience of ghost modes grows like tharsguot of
the dimension. In addition, we exhibit finite configuratiafdsotropic Gaussian kernels
with superlinearly many modes.
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1. INTRODUCTION

The diffusion of chemical substances, such as hormones, and atahgsantities,
such as temperature, is a general phenomenon. Assuming a uniform méwymgcess
is described by the solution to the heat equation. In Euclidean space gstilisrequation
is synonymous to convolving with a Gaussian kernel. This is also a poputgyidational
method, in particular in computer vision, where the 1-parameter family of ¢othwos
of a given image is known as itcale spacesee [13, 18]. A one-dimensional Gaussian
kernel is known as aormal density functiom probability [8].

We are interested in the quantitative analysis of diffusion and Gaussiaolatan. In
particular, we study the evolution of the critical points of a function that ivclwed with
a progressively wider Gaussian kernel. If the function is 1-dimensifnoah R to R, then
Gaussian convolution does not create new critical points [1, 9, 16 AE%h. consequence,
the diffusion ofm point masses (a sum af Dirac delta functions) cannot have more than
m modes (local maxima); see [2, 4, 17]. For two- or higher-dimensionattimms, this
is no longer true; see [12] for a two-dimensional function for which diffa temporarily
increase the number of modes and [7, 15] for a mathematical analysis ohfibleing
events that cause this effect. It has been observed that these eeeratiedn practice [10,
11] and it has been confirmed that the ability to create critical points with egligible
persistence deteriorates rapidly [6]. It is also known thafl point masses can be arranged
in R" so that diffusion creates+ 2 modes during a non-empty time interval; see [5].

The contribution of this paper is a strengthening of the cautionary voicsiog Gauss-
ian convolution in dimensions beyond 1. In particular, we give a detailelysiaaf the
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FIGURE 1. A unit Gaussian kernel with centein R? represented by the
disk with radiusog = 1/v/2m. The linesP andQ define 1-dimensional
sections.

sum ofn+ 1 identical isotropic Gaussian kernels placed at the vertices of a regular
simplex inR". We prove that all critical points lie on the symmetry axes ofrttgmplex,
and we characterize their indices, confirming the- 2)-nd mode at the barycenter as the
sole extra mode. While the extra mode seems fragile, we show that the intEwialtlos
during which it exists grows like the square root of the dimension. It thessdikely
that the phenomenon of extra modes is more prevalent in higher dimensiomgdify
additional evidence, we construct finite configurations of isotropic 8ankernels with
superlinearly many modes.

Outline. Section 2 provides background on Gaussian kernels and the geomegguér
simplices. Section 3 analyzes the sum of kernels placed at the verticesgpiiarrsimplex,
characterizes its critical points, estimates the resilience of the extra modexhitits
configurations with superlinearly many modes. Section 4 concludes this pape

2. BACKGROUND

Our results depend on 1-dimensional Gaussian kernels-aidensional regular sim-
plices. We study these two topics in two subsections.

2.1. Curve Analysis. In this subsection, we introduce Gaussian kernels and discuss some
of their fundamental properties.
Gaussian kernels and derivatives. We call a real-valued function of the forg(x) =

We Clx-2* gn (n+ 1)-dimensional Gaussian kernekhereW andC are real constants,
zec R™1 is a point, and|x— z|| denotes the Euclidean distance between the two points.
We call the kernehormalizedif it integrates to 1, in which case it can be written as:

) 1 _Ix-2?
0(X) = ————7-€ 202
’ (2mo2) "%

We callz e R™1 thecenteror meanando > 0 thewidth (or standard deviatiofif n = 0).
Finally, g; is unitif it is normalized with height 1. Independent of the dimension, the width
and the formula of the unit Gaussian kernel are:

g = l/\/ZT,
g0 = e,

which will simplify our computations. It can be transformed into every otheusSi&n
kernel by a translation (to change the center), a scaling of the domairgigelthe width),
and a scaling of the range (to change the height). For thercas8, we can write the
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FIGURE 2. The graphs of the derivatives@f, and ofg, intersect above
the roots of the (black) ratio function.

formulas for the first two derivatives of the Gaussian kernel centarédte origin:

1) do(X) = [-2mX-go(X),
) W) = [4m% 27 go(X).

Note thatgy is negative in the interior of—0p, do] and positive outside this interval. A
Gaussian kernel is concave at every point in the interior of the clodbdibacenterzand
radiuso, and it fails to be concave at every point outside this ball. This implies that the
ball is a convenient illustration of the kernel; see Figure 1.

Balanced sums. Consider the sum of two unit Gaussian kernels. For symmetry, we choose
their centers at distane> 0 to the left and right of the origin. As proven in [3§ =
0-z+ gz has either 1 or 3 critical points and no other number is possible. More sadlyifi
G has 1 maximum ifz < gp andG has 2 maxima and 1 minimum iff> gp. We present
our own proof of this result, as we need the concepts it uses.

SinceG' =d _,+d,, a pointx € R is a critical point ofG iff the graphs ofp= —g’_, and
g = g, intersect above. Sinced’ is an odd function, the number of intersections (counted
with multiplicities) must be odd, and it is visually plausible that the number can only be

or 3. To be sure, we introduce thatio function r = g — 1, with formula

Z+X 4
7% e Amzx
Z—X

®3) rx) = 1;

see Figure 2. Settingx) = 0 gives us the intersections pfandq and thus the critical
points of G. The roots ofr are necessarily if-z,z]. Independent of, we haver (0) = 0.
To see whether there are additional roots, we take the derivative:

r'x) = Z-x72

Settingr’(x) = 0, we havex’ = 2 — -, which has two real solutions #> 0o and no

solution if z< gp. Consider first the case thd{x) has no real solution. Observing that
r(—z) is negative and that the limit af(x) asx approacheg from the right is positive
infinity, we conclude that there is exactly one rootr¢). In the case wheré(x) =0
has two solutions, a similar argument shows tt{&j has 3 roots. As anticipate@, has 1
critical point if z< gp and it has 3 non-degenerate critical pointsif op.

Unbalanced sums. Next, we study sum&,, = g_, + wg,, wherew > 0 is theweightof
the second term. The number of critical points&f is at most 3, but in contrast to the
balanced case, it can also be 2, as we will see. More specifically,J@$ giecessary and
sufficient conditions for all three cases (1, 2, or 3 critical points) they are not as easy
to state as in the balanced case. As before, we present our own proefige need the
concepts it uses.
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Recalling that the critical points dB,, correspond to the intersections between the
graphs ofp = —g_, andwq = wg,, we consider their ratio function, which is

Its derivative isr), = {,—; which has at most 2 roots. Similarly,(—z) = —1 andry,(z) goes
to infinity asx approacheg, so we see that, has at most 3 roots. It follows th&, has
at most 3 critical points, just lik&.

A new phenomenon is the possibility of 2 critical points. To see when this ca®sa
we setw = r(x) + 1 and note that for this choice of weigh{(x) = 0. In words,p and
wq intersect above and, equivalentlyx is a critical point ofGy,. If x has the additional
property of being critical for, then the intersection betweg@nandwq is degenerate. As

computed above, the critical pointsf are given by® = 22 — o¢. Letx, = —/22— 02

andx, = /22 — ag be the two solutions, and note thatgives a weightv; =r(x;) +1

that is larger than 1, whilg gives a weightv, = r(x2) + 1 between 0 and 1. We calh
andw;, thetransition weightdor z, remembering that they exist #f> gy.

We illustrate the case analysis by moving the centers and observing howaihe ch
Gw changes. We get qualitatively the same behavior for every positive wéigting the
weight tow = % let 2¢ be the distance between the two centers for whidk a transition
weight. Starting with-z= z= 0, we see the evolution sketched in Figure 3. Far{, the
functionGy, has only one maximum. A= {, we have a degenerate critical point forming
a shoulder on the right. Far> ¢, this shoulder turns into a min-max pair. This is a generic
event in the 1-parameter evolution of a Morse function, known as an antiedation.

2.2. Simplex Design. In this subsection, we design a sum of Gaussian kerndié'in
that has the symmetry group of the reguiasimplex. We begin with a geometric study of
the simplex, whose shape properties will play a central role in our design.

FIGURE 3. From top to bottom: the sum of a unit kernel and half a unit

kernel. The kernels are blue, their sum is black, their derivatives-(plus
minus) are pink, and the trajectories of the critical points, drawn over the
interval from 0 to 25y, are yellow.
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FIGURE 4. A 2-design, which is the sum of 3 unit Gaussian kernels
placed at the vertices of an equilateral triangle.

Standard ssmplex. A convenient model is thetandard n-simplexdefined as the convex

hull of then+ 1 unit coordinate vectors iR"1: A" = conv{ep, ey, ...,e,}. Each subset of

k+ 1 vectors definesle-faceof A", which is itself a standarkisimplex. Thebarycenterof

A" is the point whose+ 1 coordinates are all equal ﬁéq LetO<k</withk+¢=n-1

and consider &-face and the unique disjoiéitface. Their barycenters use complementary
subsets of the& + 1 coordinates, which makes it easy to compute the distance between
them as

1 1
@ P = VT

For example, the height of thresimplex, which is defined as the distance between a vertex
to the oppositén— 1)-face, isDon—1 = /(n+ 1)/n. Similarly, we can compute the radius
of the circumsphere:

(5) R, = \/E

Sections. A k-sectionof a Gaussian kernel is the restriction t&-@imensional plané®.
Assuming a unit Gaussian kernel, we can write thigas(x) = g:(y) - gy(x), wherey is

the orthogonal projection afontoP andgy is thek-dimensional unit Gaussian kernel with
centery € P. We callg;(y) the weight noting that it is equal to the integral of over

P and we callg;|p a weightedunit Gaussian kernel. Importantly, we see that the section
has the same width as the original kernel. It is a unit kernel itseP iffasses through

z In this caseg,|p(X) is the weight of the(n — k)-section defined by the plar@ that
intersects” orthogonally atx; see Figure 1. Iterating this construction, we can write the
(n+1)-dimensional unit Gaussian kernel as a product of 1-dimensionatlsern

©) @~ [lox-2)

where the; andz are the Cartesian coordinatesxatndz. In words, the high-dimensional
unit kernel can beeparatednto mutually orthogonal one-dimensional unit kernels.

Standard design. We turnA" into a function by placing a unit Gaussian kernel at every
vertex. Writingg; for the kernel with centeg, we getG = go+ 01 + . .. + gn, Which we
call ann-design see Figure 4. Its symmetry group is that of theimplex with the addi-
tional reflection across the-dimensional plane spanned by thaimplex. It is therefore
isomorphic toZ,1 ® S°, whereZ,,1 is the symmetric group on+ 1 elements. To argue
about the symmetries, we use lines that connect barycenters of complgniacés of the
n-simplex. We call these linemxes Suppose for example that<Ok < ¢ are integers with
k+¢=n-1, and thatA is the axis that connects the barycenter oflt{face spanned by
e to ¢ with the barycenter of thé-face spanned b, 1 to e,. Except for the barycenter
of A", every pointx of A has two distinct barycentric coordinates, one with multiplicity
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k+1 and the other with multiplicity + 1. The orbit ofx has therefore siz ﬁ) Recall

that the section defined by the axis is the restriction of the function to the@he: The
restrictions ofgp,0s,...,0« to A are all identical, namely a weighted 1-dimensional unit
Gaussian kernel whose center is the barycenter okitaee. Similarly, the restrictions

of gk+1,---,0n—1,0n are all identical, and we can write the 1-section as the sum of two
kernels:

(7) Gla = (k+1)-gola+(£+1)-gna,

which are one-dimensional weighted unit Gaussian kernels, with weight$)g(R«) and
(¢+1)g(Ry), and distanc®y , between their centers.

We are interested in changing the widths of the- 1)-dimensional kernels uniformly.
Equivalently, we scale the-simplex by moving the centers of the unit Gaussian kernels
closer to or further from each other, without changing their widths anghte To do
this, we introduce thecaled n-designGs = Qsq, + Jse + --- + 0sq,- Here, we calls the
scale factor and we writesA" for the scaled n-simplewhose vertices are theg. We are
interested in the evolution of the critical points in the 1-parameter family of scatiesign
Gs: R - R, assgoes from zero to infinity.

3. ANALYSIS

We begin this section by proving that all critical points lie on the axes oftbienplex.
Thereafter, we analyze each axis, characterizing for which scalssevi, 2, or 3 critical
points. To decide which of the one-dimensional maxima are modes, we ariaé/ne
sections orthogonal to the axes. As it turns out, all modes lie on axes tmthraugh
vertices of then-simplex. Most interesting is the critical point at the barycenter, which
changes from unique mode during an initial interval of scale$ntp 2)-nd mode during
a non-empty intermediate interval, to a saddle of index one during a final ahteWe
call the length of the intermediate interval the resilience of the extra mode amdtbht
it grows like the square root of the dimension. Finally, we construct sunsotriopic
Gaussian kernels with a superlinear number of modes.

3.1. Linesof Critical Points. In this subsection, we note that all critical points of a scaled
n-design lie on the axes of the scalegimplex. We begin by introducing coordinates
that are more natural for the-design, and we show how they relate to the barycentric
coordinates.

Distance coordinates. Write v; = sg, for 0 <i < n, and letx be a point of the correspond-

ing scaledn-simplexsA™. Settingr; = ||x— vi||, we note thak is uniquely defined by the
vector ofn+ 1 distances sincelies on the hyperplane spanned{ay}. We express this by
writing x = (ro,r1,...,)p, and by calling the; thedistance coordinatesf x. Recall that

(X0, X1,-..,X%n)B IS the representation of the same point in barycentric coordinates. We are
interested in computing the barycentric from the distance coordinates vieothreliGate
Transformation below.

Coordinate Transformation. For 0 <i < n, the " barycentric coordinate is given by:

1 ! 2 2
® o= n+1+2(n+1)52 (Z}U (n+1)r,>.

J:

Proof. Let (ro,r1,...,rn)p be the distance coordinates of a poirih the scaled-simplex

A", Leti # j and consider the edge connectingvith vj, recalling that; andv; are two

vertices ofsA". The length of the edge ®/2. Letx;; be the distance between and the
orthogonal projection ok onto the edge, normalized by dividing wisiy/2; see Figure 5.
We first show that

) Xj = L2

+@(rj —rf).

NI =
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FIGURE 5. The radii of the three circles are the distance coordinates of
the pointx. The orthogonal projections onto the vertical axis and the left
and right edges of the triangle gixg, Xo1, andXgz.

Indeed, ifx = (1—t)vj +tv;, then we have; = sv/2t andr; = sy/2(1—t). Furthermore,
Xij = t, which agrees with the equation we get by plugging the valuesafdr; into (9).
Realizing tharj2 —r? is constant along hyperplanes orthogonal to the edge, we get (9) for
all points of then-simplex.

For the next step, ldt be the barycenter of thn — 1)-face complementary tg and
y be the orthogonal projection afonto the edge between andv;. Setay, to the angle
between the edges that connecto v; and tob;. BecausesA" is regular, this angle does
not depend on the choice bndj. Suppose lies on the latter edge, which conneuts
andb;. Thenx= (1—x)b; + XV and we have two expressions for eps Setting these
two expression equal we arrive at

Don1 _  V2(1-xj)

V2 Don-1(1—x)’
for every 0< j < nandj # i. Adding then equations gives
(10) ND§n_1(1—%) = 2nf2§>qj.

|F#I

Similar to before, we notice that the two sides of the equation are constagt aper-
planes orthogonal to the axis definedwpywandb;. Hence, (10) holds for all pointsof the
scalednh-simplex. It remains to plug (4) and (9) into (10), which gives

1
(N+1)(1-x) = n+ 5 <nri2—;r12) .

The equation simplifies to the claimed equation.

Non-zero gradients. Recall thatGs : R™! — R is the scaled-design formed by taking
the sum of then+ 1 unit Gaussian kernels whose centers are the vertice8"ofWe use
the Coordinate Transformation to show ti&thas no critical points away from the axes
of the scaledh-simplex:

Lemma (Axes Lemma) Every critical point of G lies on an axis of the scaled n-simpléX's

Proof. Recall that a point belongs to an axis afA" iff it has at most two distinct barycen-
tric coordinates. We will show that ¥ has three distinct barycentric coordinates, then the
gradient ofGs atx is non-zero. Writingfi = gsq, We obtain

OGs(x) = —2nGs(x)-x+2n§0fi(x)-vi.
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Setting the gradient to zero, we solve for

GE x - Z) o

We will show that Equation (11) can hold onlyfhas at most two distinct barycentric
coordinates. To this end, we writén distance coordinateg:= (ro,r1,...,M)p. Similar to
the barycentric coordinateslies on an axis ofA" iff there are at most two distinct distance
coordinates. Transforminginto barycentric coordinates, we haxe- (Xg, X1, ...,Xn)B, in
which

1 1 c 2 2
T i anrne (J;rl_(n*l)r')’

for 0 <i < n. Assume now that does not lie on any of the axes. If follows there are three
distinct distance coordinatesi < ry < rp. Subtracting then-th barycentric coordinate
from the other two , we obtain

1
(12) Xc—Xm = E(rzm_rﬁ)a
1
(13) X —Xm = 55(ra—rh).
Assuming a zero gradient, the barycentric coordinates ledve the form given in (11).
Hence xx — Xm andx; — xm, are equal to

() — fm(x) e k—e mh
(14) & G
() —fm(x) e —e
(15) G - G

respectively. Since the right hand sides of (12) and (14) are eqnaklhas the right hand
sides of (13) and (15), we have
2

ra—re 2

2
ra,—r
m 4
2 2
e 'h—ek e h—ei

But this is impossible becausg —r2 > r2 —r2, by assumption, and because the function
f(t) = el is strictly convex.

3.2. One-Dimensional Sections. The restriction 0fGs to an axis ofsA" is a sum of two
weighted Gaussian kernels. This sum has two maxima for a range of sciaesfavhich
we now analyze.

Transitions. Recall that then-design consists of + 1 unit Gaussian kernels placed at
the vertices of the standardsimplex. Consider the 1-section defined by the line that
connects the barycenter okgace with the barycenter of the complementéiface, with
k+¢=n—1, and vary the construction by scaling the design with0. We call a value
atransitionif the number of critical points of the 1-section changes passes the value.

It is easy to compute the transition floe ¢ = ”%1 because the corresponding 1-section is
balanced for all scale factoss The distance between the two centersls, = 2s/v/n+ 1

and we find the transition by setting the distance equabtg @hich givess equal to

n+1
16 U = —.
(16) o= e

Consider next the cade< ¢. Equation (7) gives the weights of the two kernels in the
decomposition of the 1-section és+ 1)g(sRc) and (¢ +1)g(sR/). Using (5) and taking
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FIGURE 6. The vertical interval bounded from below By, and above
by U, contains the scale factors for which an extra mode appears.

the ratio, theveight functions computed by the following function:

17) we(s) = ijj e (r).
We compare this with the twivansition functionswhich we get by setting= 5Dy, and
plugging the two solutions of = 72 — ¢ into the formula for (x) + 1, which we get from

(3). This gives

_ 2 _ g2
V4 z ()

(18) Tk,l(s) R S e4TlZ\/22_G§,
z+./2—0¢
z+ /22— 0

(19) Uke(s) = —V—— e V20
z— /22— 0

Note thatuy ¢(s) = 1/1¢(s). We find the first transitionTy ;, by solvingaw (S) = Tk ¢(S),

and the second transitiob,, by solvingwc () = vk ¢(s). Appendix A will prove that
both transitions are well defined, also showing that the second transitiendEpm but

not onk and/ and is given by (16) in all cases. While we have no analytic expression fo
Tik.¢, we will derive one for an upper bound in Section 3.4.

Section evolution. We follow the 1-section defined by an axis of thesimplex as the
scale factors, goes from 0 to infinity. By construction, we have qualitative changeseat th
transitions, which we now summarize.

Lemma (1-Section Lemma)Let0 < k < ¢ with k4+/=n—1, and let A be the axis passing
through the barycenters of a k-face and its complementdace of 4". Then G|a has
one maximum wheneveksTy ,, and two maxima wheneveg 1< s and s# Un,.

Indeed, the double intersection is responsible for the special evolutithie dfsection.
In particular, we go from one maximum fer< Ty, to two maxima forTy , < s < Uy, of
which one is the barycenter of thesimplex. After the second transition at the double
intersection, we still have two maxima, but now the separating minimum is the Ioaeyce
of the n-simplex. Figure 6 shows all transition scale factors in a single picture foll sma
values ofk and/. First, we look afly ¢ for a fixed value ofh. We observe thaly ; increases
with growing k. This implies that for constam, the axes defined for small values lof
spawn a second maximum earlier than do axes defined by large valkedof k = ¢,
the two transitions coincide and the corresponding 1-section does notwithe extra
maximum at all. Second, we fik and observe thaly, increases with growing. This
implies that thek-faces of a low-dimensional simplex spawn second maxima earlier than
do thek-faces in high-dimensional simplices.
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Next, we look at the second transitidd,. As we have observed, it depends only on
n. This implies that all 1-sections lose the maximum at the barycenter at the salme sc
factor. Fork = ¢, the two transitions coincide, so the interval collapses.

3.3. n-Dimensional Sections. In this subsection, we show that most maxima of the 1-
sections are not modes. We begin with the analysis of the barycerg#t, afhich belongs
to every axis of the scaladsimplex.

Barycenter of n-simplex. Then-design has the symmetry group of thaimplex, which
implies that the barycentdsg € SA", is a critical point ofGs. Indeed, ifbg is not a critical
point, then it has a non-zero gradient, which contradicts the symmetry. $pexfically,
bg is either a maximum or a minimum of thesection defined by the-simplex, and it is
a maximum of the orthogonal 1-section defined by the diagonal lifié"6#.

Lemma (Barycenter Lemma)Let n> 1. Then the barycenter of\8 is a mode of Gfor
s< U, and itis a saddle of indekx for s > U,,.

Proof. We compute the Hessian & at bg by taking partial derivatives with respect to
the Cartesian basis &"*1. Because of the symmetry, we have

9°Gs, . 0%Gs

d = bg) = —=-(b
92Gs 02Gs
¢ = 0X05X1 (bG) N dXian (bG)’
forall 0 <i <nand allj #i. The characteristic polynomial of the Hessian is therefore
d-¢& c C
C da-§& ... C
(20) det ) : : :
C C ... d=¢&

Its roots are the eigenvalues of the Hessian, whichéared + nc, with multiplicity one,
andé = d — c, with multiplicity n. For simple geometric reasorts; nc is negative and
corresponds to the eigenvector in the diagonal directi@?ot. Since all Gaussian kernels
live in a common plane, any point in that plane will be a maximum value in the direction
orthogonal to that plane. To compute-c, it suffices to consider just one 1-section through
the barycenter, and we choose the liBethat passes through the vertex= sey and the
barycenter of the complementafy— 1)-face, which we denote dp. The distances from
the barycenter of the-simplex are||bg — vo|| = SR, and ||bg — bo|| = 2R,. Furthermore,
the common distance of the verticgs= sé from B is Ivi —bo|| = sRy_1, for 1 <i <n.
Plugging these distances into the second derivative of the one-dimenséatian given
by (2), we compute the second derivativebabf the 1-sections defined by timet+ 1 unit
Gaussian kernels as

(21) [ATPs2R2 — 27 & SRR,
(22) 42 SR 2. T R

where the first line applies far= 0 and the second line for4 i < n. Note thatRﬁfl +
RZ/n? = R2 andR2(1+ %) = 1. Adding (21) andh times (22), we obtain the second

derivative of the sum afi+ 1 one-dimensional Gaussian kernels as
d—c = [MmP?-2nn+1)]-e ™R,

which has the same sign s&s— %11 Thus,bg is a maximum of5s for s< U, and a saddle
of index one fors > U, as claimed.
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We note here that the barycenter is an index-1 saddle fod,, as opposed to a mini-
mum, because we place theimplex inR"1. At the transition, whes = U, the barycen-
ter of then-simplex is a degenerate critical point.

Orthogonal sections. We generalize the analysis of the barycenter. Let K< ¢ with
k+¢=n—1, and consider k-face of then-simplex as well as the complementdrace.
Writing Gs as the sum of thé; = gsq, for 0 <i < n, we assume that the centersfgfto
fx span thek-face, and that the centers fif, ; to f, span the/-face. Hence(ss = Ks+ Ls,
whereKs = S o fi andLs = Stk 1 fi. Writing bx andby for the barycenters of the two
faces, we letA be the axis defined bj(t) = (1 —t)bk +tb.. We are interested in the
Hessian ofGs atx = A(t). For symmetry reasons, it has at most four distinct eigenvalues,
each a second derivative along pairwise orthogonal lines. One line &xiheanother is
orthogonal to the-simplex, a third line is parallel to tHeface, and a fourth line is parallel
to the/-face. The latter two eigenvalues have multiplidgitgnd?. We writek for the length
parameter along the third line aidfor the length parameter along the fourth line.

Lemma (n-Section Lemma) Let1 < k < ¢ with k4 ¢ = n— 1. The second derivatives of
Gs at x=A(t) along lines parallel to the complementary k- af¥aces of A" are

(23) 0°Gs (X) = —2nGs(X)+ 4> fo(X)
aKz S )

(24) OCs — _onGux) + 422 e
(?A 2 S n .

Proof. RecallGs = S, fi and f(x) = e 7%-sal? The derivative with respect to thieth
coordinate direction is

0Gs

Tm(x) —271% Gs(X) + 2715 (X).

Deriving again, with respect to the same and a different coordinateidimewe have

0°Gg

e (X) = [—2m+4mx)Gs(x)
(25) —41(25% — ) fi(X),
0°Gs X) = 41[xx;Gs(X)
9% 0x; s
(26) —s% fj(X) — 5% fi (X)].

The point at which we take the second derivative has only two distina:d'crmies,“kfl)s,
repeatek + 1 times, an%, repeated + 1 times. We can therefore substitixteandx;
for any two among the fird¢+ 1 > 2 coordinate directions, and we can substitgtand
Xn—1 for any two among the lagt+ 1 > 2 coordinate directions. The Hessian at the point

XIis

[ d c vy V]

B c d vy y
H(X)_ y yD C )
LY y C D |
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where

@7) ¢ - adzx(g%x), )

29) o = Zom.c= 32,
2

(29) V= )

We get the eigenvalues as the roots of the characteristic polynomial, whié¢imavey
subtracting the variablé from each diagonal element and taking the determinant, as in
(20). In particulard — c is thek-fold eigenvalue that corresponds to théace, andD — C

is the/-fold eigenvalue that corresponds to thiace. Plugging (25) and (26) into (27) and
(28), we arrive at

d—c = —2nGs(x)+ 41 fo(X),
D-C = —27Gs(X)+ 4178 fn(X).
These are the two claimed second derivatives of (23) and (24).

Sign change. A point x = A(t) is a mode ofGs : R™! — R iff it is a maximum of the
1-section defined by as well as of thar-section defined by;. Focusing on the latter,
we compute the values of the parametat which the second derivatives with respeckto
and with respect td vanish. Beginning with, we set (23) to zero and find

(30) (42 - 2n(k+1)]fo(X) = 2m(+1)fn(X).

We note that the natural logarithm &f(x)/ fo(x) is — T times the following difference of
squared distances:

((+1)—t(n+1)

31 x—sa||? — ||x—se||? = 25°-
Plugging (31) into (30) gives us
2ns’ — (k+1) o2 Gy

(+1
Solving this equation, we gétas a function of the scale parameter. We call this function
tk. Doing the symmetric computations far, we find a second functioip : R — R, both
defined by

ké+n 2n32—k—1+ /+1

32 t = N
(32) <(s) 2n2nil) | 41 n+1’

ké+n k+1 (+1
(33) WS = ey Maw—im1 e
For example, fois = Uy, we gettx =t = % which is consistent with the Barycenter
Lemma, wheres = % is identified as the scale factor at which the barycenter ohthe

simplex changes from a maximum to a minimum. Note alsotthetundefined fos = Uy,
andt, is undefined fos = U,.

Chandédlier. To get a feeling for the situation, we draw the trajectories of the critical points
of Gs, and in particular those of the modes. We call this sék'in! x R the chandelier

of the 1-parameter family of functions. Lettirggincrease from bottom to top, Figure 7
sketches the chandelier for=1,2. The most prominent feature is thase pointwhich

we use to decompose the chandelier into curves. Two of these curvesrtical, both
swept out by the barycenter of tmesimplex, which changes from index+ 1 to index

1 when it passes through the base point. For each curve, we consdeight function
defined by mappingx,s) € R™! x R to s, and we further subdivide so that the height
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3 2212 3 3

2 3

FIGURE 7. The chandelier fon = 1 on the the left and faon = 2 on the
right. Each curve is labeled by the index of its critical points.

function is injective. In other words, we cut each curve at the local minimdengaxima of

the height function. The benefit of this subdivision is that now eachecisrswept out by a
critical point of Gs with constant index. While the total number of curves in the chandelier
grows exponentially with the dimension, the number of curves that comesjgpomodes
grows only by one for each dimension. To count the curves, we compeiteutmber of
complementary face pairs of timesimplex:

1t /ny1 on
P = 22 <k+1> =2t
For each pair, two branches emanate from the base point. Adding thealidirte; we
count 2, + 2 = 21 branches. For each complementary face pair with 0< ¢, the

height function of one of the two corresponding branches has a locamonim and is
therefore subdivided into two curves. The number of local minima is

{ Pn if nis even
In -

Pn—3(nthy2) if nisodd

The total number of curves is thereforg,2+ 2+ 1,. Of these, onlyn+ 2 correspond to
modes.

Indices. The index swept out by a curve in the chandelier is easy to determine naiheric
but at this time, we lack analytic proofs. We fist state the result and secqrairethe
numerical evidence that supports it.

0<k< ¢ There are(}'}) complementary face pairs &f and/-faces. Besides the
barycenter, the corresponding axes witness critical points of indexand/ + 1
for se (Tk¢,Un) and two critical points of indek+ 2 for s > Up,.

k== "5 Therearé (}!]) complementary pairs défaces. Besides the barycen-
ter, the corresponding axes witness two critical points of inde® fors> Ty, =
Unp.

To explain the numerical evidence, we consiggs) andt,_(s), which are given by (32) and

(33). We makey injective by restricting it to the rangé, f]_ﬁ] and we make_ injective

by restricting it to the rang 1,1] see Figure 8, which plots the inverses of the restricted
functions. Drawing the horlzontal line for a value®fwe note that the portion below the
graphs oftx andt_ consists of the pointg at which then-section orthogonal to the axis
has a maximum at. We see these graphs for even and odd valuesiofFigure 8. For
each scale factas, there is either one or two modes witnesseddy, drawn in cyan in
Figure 8. We notice empirically that the mode at the barycenter, giv&rtbﬁf%l, is the
only mode under the piecewise defined curve fer K< ¢. This means that the only mode
is at the barycenter and the other critical points are saddles of ihdéxand( + 2.

3.4. Resilient Modes. We have seen that the sum of Gaussian kernels can have extra
modes. In this subsection, we study their significance, showing that thdgrias interval
of scale factors whose length increases with the dimension.



14 HERBERT EDELSBRUNNER, BRITTANY TERESE FASY, ANDUNTER ROTE
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41 L+
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(a) k=2andl =4. (b) k=2andl=5.

[f S
Un Und 7

—0—0> o0—————O0——————0>
F1 (41
0 n+1 1 0 n+1 1

(c) k=1land¢=5. (d) k=3 andl=4.

FIGURE 8. Graphs ofx andt, for select values ok and/.

Balancing scales. To get started, we need more information on the transition at which the
extra maxima appear. We get an upper boundiorby studying the scale factor at which
the weights of the two 1-dimensional kernels in the decompositioBsakestricted to a
relevant axis are balanced. Roe /, the two 1-dimensional kernels in the decomposition
are always balanced. Fki ¢, thebalancing scale factois

(34) Bx/ — \/ In(i?kll)l_—lz(lkj 2
17+

Indeed, recomputing the weights givs+ 1)g(Byx (R¢) = (¢ + 1)9(Bx(R¢). Similar to

Tk andUy, the balancing scale factor increases with respektatod/. Numerically, we
observed thaBy , is not very different, but consistently larger thy. We prove that this
relationship is not accidental.

Lemma (Transition Lemma) We have I, < By, < Up for all integersO < k < ¢ with
kK+/=n-1.

Proof. We prove the claim indirectly, by showing thsit= By, gives two maxima in the
1-section along any axis connecting the barycenterloface with the barycenter of the
complementary-face. For balanced weights, we have two maxima iff the centers of the
two 1-dimensional kernels are further apart than twice the width; see 8éxctito prove

the latter property, we compute

BiDkr n+1 (+1
(35) 200 \/z(e—k) Nt
using Equations (4), (1), and (34). Recall the logarithmic inequality:
X
— < In(1+x),
1+3

for x > 0. Settingx = ﬁfli we see that the right hand side of (35) exceeds 1 for all choices
of 0 < k < ¢. This implies that we have two maxima along the axis, which implies that the
balancing scale factor lies between the first and second transitionsirasdla
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Resilience. We define thaesilienceof a mode as the length of the interval of scale values
at which it exists. This definition is not satisfactory for a general lipatar family of
smooth functions; however, it will suffice in our context, in which we knowegh about
the modes to follow them through the family parameterized by the sc&lpecifically, we
have a single mode for 8 s < Ton—1, and we have+ 1 modes folU, <'s. The picture

is more interesting in the interva 1 < s < Uy, in which we haven+ 2 modes. One of
these modes is the barycenter of tiieimplex, and we study the resilience of tlistra
mode. The upper endpoint of the interval is defined in (16), and anrupqend for the
lower endpoint is given in the Transition Lemma, with the definition of the bouri@4it

- - Inn
on-1 ml-—1/n)’

As n goes to infinityUn grows roughly like the square root nf andTop 1 grows roughly
like the square root of the logarithm af The gap between the two widens, so that the
resilience of the mode at the barycenter ofitk&@mplex grows roughly like/n; see Figure

6.

Summary. We are now ready to summarize the findings in regard to the critical points and
the modes of the 1-parameter family of functidas. R™1 - R. Forvalues < Ton-1, we

have a single critical point with index+ 1. Thereafter, we pick up( ﬁ) critical points

at everyTy ¢, for 0 < k </, until we accumulatel2+ 1 critical points right before reaching

Un. The barycenter has index- 1, and the other critical points come in pairs, with indices
/+2 and?+1, for %1 <f<n-1. ForU, <s, we have P+ 1 critical points. The
barycenter has index 1, and the other critical points come in pairs with inflic&sand

k+ 2, for ”%1 </ <n-1. As a sanity check, we consider the Euler-Poiadarmula,
which states that the alternating sum of critical points is equal to the Euleaatkastic of
RnJrl:

n+1

(36) _;(—1>‘q- = (-)™,

wherec; counts the critical points with indax We also writec = zi”jol ci. Trivially, (36)
holds in the first case. Thereafter, we pick up the critical points in paiosehontribution

to the alternating sum cancel, so (36) is maintained. FinallyJfot s, we have a bijection
between the critical points and the faces ofke@mplex such that the indexis+ 1 minus
the dimension of the face. Since thesimplex is a closed ball, its Euler characteristic is 1,
which again implies (36). We thus have a complete description of the criticatispafithe
n-design as the scale factor increases from zero to infinity.

Main Theorem. Let n> 1 and consider the sum ofnl unit Gaussian kernels placed at
the vertices of the scaled standard n-simpléX, s

(1) For s< Ton-1, We havel critical point which is also a mode.

(2) For Ton-1 < s < Up, we have gradually more critical points after passing each
Tk, until we accumulatel, + 1 critical points right before . Of these critical
points, r4- 2 are modes, and they exist during the entire interval.

(3) For U, < s, we havepy, + 1 critical points, of which n+ 1 are modes.

The resilience of the extra mode in Case (2) is-Ulp n—1, which grows like,/n.

3.5. Many Modes. In this subsection, we construct a finite configuration of isotropic
Gaussian kernels with a superlinear number of modes. While there is a fanslycbf
constructions, it will suffice to explain one.

Products of simplices. The basic building block of our construction is the standard 2-
simplex. Let the dimension ben3and write the B-dimensional Euclidean space as the
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Cartesian product afl 3-dimensional planesR® = Hy x Hy x ... x Hp, in which H; is
spanned by the three coordinate vectess,, esi_1, €3, for 1 <i <n. Let Aiz be the
standard 2-simplex ikl;, with verticesvio = esi_2, Vi1 = €3i_1, Vi2 = €3i. Correspondingly,
we write gjj : Hi — R for the 3-dimensional unit Gaussian kernel with cemgrfor 0 <
j <2, andG; : Hi — R defined by

Gi(x) = io(X)+0i1(X)+di2(X)
for their sum. Next, we construct ardlimensional sum of Gaussian kernels by taking
products. To begin, we I& C R3" be the largest subset of points whose orthogonal pro-
jection toH; is {vip, Vi1, Vi2}, for 1 <i < n. This is the set of Bpoints formed by taking the
Cartesian product of thetriplets of points. For each poimte P, let fj, : R3" — R be the
unit Gaussian kernel with centpr Adding these kernels, we get: R3" — R, defined by

F = fp(X).
() p; p(¥)

To understandr, we recall thatf, can be written as the product of 3-dimensional unit
Gaussian kernels; see (6). Collecting the terms in sets of three, we can write

B = [lai0o.

where] is chosen such that; is the orthogonal projection g ontoH;. Substituting the
sum of the three kernels for the singletons, we obtain

F(x) = i|j Gi(X).

In words, the sum of the"3n-dimensional unit Gaussian kernels is the product sfims
of three 3-dimensional unit Gaussian kernels.

Counting modes. We arrive at the final construction by reintroducing the scale factor,
writing Fs : R3" — R for the product of th&;s : H; — R, whereGs is of course the sum of
the three unit Gaussian kernels with cent#s_», s&i_1, S&i. We have seen in Section 3
thats can be chosen such th@is has 4 modes. Sindg is the product of th&g, its sets

of modes is the largest subset®" whose orthogonal projection t6; is the set of four

modes ofGi, for 1< i < n. Its size is & = 311093 3)n ~ 31261 This shows that the
number of modes is roughly the number of kernels to the powa&g11

There is an entire family of similar constructions. The one presented highemmax-
imizes the number nor the resilience of the extra modes. Indeed, we caasedte
exponent by improving the ratio of modes over kernels in é4¢chnd we can improve the
resilience by using higher-dimensional simplices.

4. DISCUSSION

The main contribution of this paper is a cautionary message about the suaus$ién
kernels. Giving a detailed analysis of the construction studied in [5], wer shat there
is indeed only one extra mode, but that its resilience increases like theesgadiof the
dimension. We also exhibit configurations of finitely many identical isotropiaSSian
kernels whose sums have superlinearly many modes. We thus give pyrepisatified
contradictions to our intuition that diffusion erodes and eliminates local demsikyma.

The results in this paper raise a number of questions. How stable are thenexima?
Our analysis in Section 3.4 answers the question when the perturbation ifftk@d of
density. How robust are they under moving individual kernels or cingnipeir weights?
Related to this question, we ask about the probability of extra modes fopmanghlaced
Gaussian kernels in Euclidean or other spaces. Carreiraf@arand Williams report that
their computerized searchesi? did not turn up any extra modes [5], but what if we did
similar experiments in three and higher dimensions? Finally, it would be interdsting
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determine the persistence of the extra modes; see [6] for a recent reflatiyd In other
words, how large is the difference in function value between an extra arudithe highest
saddle? Understanding the persistence, as well as the basin of attracteach mode
would complement the analysis provided in this paper.
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APPENDIXA

In this appendix, we give a detailed analysis of the intersections betweemeibat
function, wy ¢, and the two transition functions, , anduy , all introduced in Section 3.2.
We recall that the two transition$, , andUp, are the solutions tay ,(s) = Tk ¢(s) and to
Wk ¢(S) = Uy (S) respectively. We will find that both transitions are well defined, and the
second transition depends otut not on the choice dfand/, as claimed in Section 3.2.

Curve analysis. We discuss the graphs of the three functions to convey a feeling for how
they intersect.To begin, we note thgt= 20y/Dy ¢ is the smallest scale factor for which
the transition functions are defined. Writing= §Dk7g, we havez? — ag =0fors=g. It
follows thatt /(Sp) = Uk ¢(So) = 1. To compare this with the weight function at the same
value, we compute

wols) = e H
k,¢(So = k+1 )
vl 200k
(37) Inawe(so) = In kel nel

We interpret the right hand side of (37) as the difference between ¢lacbatow the graph
of )—1( fork+1<x</¢+1, and the area below the line that touches the graph at the midpoint
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S;?_f;k,k’ Un S

FIGURE 9. The graphs of the weight function and the two transition
functions. The intersections define the transitions.

of the interval, again fok+1 < x < ¢+ 1. Since)—l( is a convex function, the second area
is smaller, which implies Iy /(S9) > 0 and thereforey ,(so) > 1. This implies (38),
which is the first of the two pairs of inequalities that describe the relation leetwee
three functions on the left and the right:

(38) Tke(S) = Uke(So) < (o),
(39) Uke(s) < xe(s) < Tke(s),

as in Figure 9. To compare the functions on the right, for sufficiently largee look at

the exponents. Writing = 5Dy, as before, the exponent af ,(s) is —4n22fﬁ, which

is clearly smaller than the exponent af;(s), which is 41z,/z2 — 0Z. Less obvious is

the comparison with the exponent @f ,(s), which is —4mz, /22 — gz. After dividing by

—47z and squaring, we obtaif (¢ — k)2/(n+ 1)% < 22— gZ. It follows that the exponent
of w((s) is larger than that oby ((s), for slarge which implies (39).

From (38) and (39), we conclude that the number of intersections betiweegraphs
of wy, and 1, (counting with multiplicity) is odd. Since both functions are monotonic,
with slopes of opposite signs, we have exactly one intersection. It follosigh is well
defined.

Double intersection. Similarly, we use (38) and (39) to conclude that the number of
intersections between the graphs®f, anduy , (again counting with multiplicity) is even.
We will establish that there is only one double intersection, namedy=at),. To prove
thatUy, is a solution to the equatios /(s) = Uk (S), we writeA= (¢ +1) + (k+ 1) and

B= (£+1) — (k+ 1), noting thatA? — B? = 4(k+ 1)(¢ + 1). Setting

s _ n+1_|_ y
B 2m 2m(n+1)’

and recalling thaf = n+ 1, we have

, _ A?+y
2n(A2 —B2)’
B2+y
2 _

2-0 = \lamar_B?’
2+\Z-0f /N ty+ /Bty
z—\/2—f VR y— /Bty
—4mzy [ 22 — OF _2VRHyVB Y

0 A2 — B2 :
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Using the definitions of the weight function in (17) and the second transitioation in
(19), we arrive at

(A+ B)Z 7%&#2%y

W () = a_ge © e,
(VA y+ By eVt
Uk,f(s) = A2 — BZ .e A2_B2 .

Clearly, wy ¢(S) = Uk (s) if y =0, which shows thas = U, is indeed a solution to the
equation. We continue by showing that for small but non-zewe havew, ((s) > Uk ¢(S).
This is equivalent to showing that the natural logarithnmugf(s) over w () is smaller
than 0. Equivalently, LHS RHS, where

n VA2 +y+ /B4y

LHS =
S A+B '
VA2 +y/B2+y—AB- By
RHS = y :

To prove this inequality for small values gf we use the Taylor expansions of the square
root and the natural logarithm functions:
2
y ¥ ¥
VA2 = A+ -2 4+ 2
Ty oA A e
2 3
XX x2 X
In(1 = X——=+—=——+....
(1+Xx) X—Ztg—7+

With this, we can re-write the two sides of the inequality: LHS1y+ l,y? + ..., and
RHS=ryy+roy? +.... Computing the coefficients, in turn, we find

L = I r
2AB ’
- 7A2+Bz _ 7A2—Bz .
8A3B3 8A3B3 '

In words,s = Uy is a double solution of the equation, aagl,(s) > vy () for values ofs
chosen in a small neighborhood but different from
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