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Abstract. The bounded Lipschitz distance can be used as a distance measure between

polygons or between functions. It has several properties which make it attractive to

use from the viewpoint of applications. There are several alternative de�nitions of the
metric, some of which are interesting in their own right. We also give an algorithm for

computing the metric, and we discuss possible implementations.

1 Introduction

1.1 Problem statement

For a given function f : [0; 1]! Rwe want to compute its bounded Lipschitz norm

kfk
BL

= max
nZ 1

0

f(x)g(x) dx : jg(x)j �M; jg(x)� g(y)j � jx� yj
o

(1)

Here, M is a scaling parameter of the norm whose meaning will be explained later. In
practice, f could be given by a sequence of values (f1; : : : ; fn). In that case, the bounded
Lipschitz norm looks as follows:

k(f1; : : : ; fn)kBL = max
n nX

i=1

figi : jgij � m; jgi+1 � gij � 1
o

(2)

For the new parameter m we have m =M � n.

1.2 Why is it interesting to compute the distance between functions?

As de�ned above, the bounded Lipschitz norm is a norm on the vector space of all
sequences or of all piecewise continuous functions. Of course, a norm gives rise to a
metric dBL(f; g) in the usual way:

dBL(f; h) = kf � hkBL:

This concept of distance between functions is where the applications are.
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Pattern recognition: Functions of one parameter. In pattern recognition, it is often re-
quired to classify an \image" of an object by deciding which one of several given patterns
looks most like it. In many cases, the image and the patterns can be speci�ed as one-
parametric functions, or, more concretely, as sequences of measured values. For example,
in a vending machine that accepts money bills, an inserted bill is scanned by moving
it through a beam of light, and the absorption of the light as it passes through the bill
is recorded. The resulting light-and-dark pattern must be compared to each of several
possible patterns.

Pattern recognition: Shapes. A shape might be given as a simple polygon or, more gener-
ally, as a simply connected region. There are several ways to represent this as a function
of one variable. If the \image" polygon and the pattern polygons are convex bodies C,
then one possibility is the support function h: [0; 2�)! R

h(�) = maxfx cos�+ y sin� : (x; y) 2 C g:

Another possibility is to parameterize the boundary by arc length
�
x(t)
y(t)

�
, for 0 � t � L,

with _x(t)2 + _y(t)2 = 1, and use the tangent direction �: [0; L]! [0; 2�) as the function
that characterizes the curve: �

_x(t)
_y(t)

�
=

�
cos�(t)
sin�(t)

�
;

This approach has for example been taken by Arkin et al. (1990), who considered the L1
and L2 norms of the resulting funtion �(t).

Other distances, including the well-known Hausdor� distance, have been investigated
in this context, see Atallah (1983) and Cox et al. (1989).

Quality control. In the production of arti�cial fabric, one aspect of quality is that the
fabric should be as smooth and uniform as possible. A real piece of fabric will always
exhibit irregularities. To monitor the quality, the fabric is passed under a light beam and
its thickness is continuously measured. Now it is important to assign a numerical value
that \measures" the deviation of the measured thickness distribution of a piece of fabric
from the ideal uniform thickness. In this application, it is important that this distance
value is computed fast, because data arrive continuously at a high rate.

1.3 In what respect is the proposed distance di�erent from other metrics?

If you take any Lp norm, �Z 1

0

jf(x)jp dx

�1=p
;

for your favourite value of p, this norm will not be able to distinguish between functions
that have \the same values distributed in a di�erent way over the domain". For example,
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(a) (b) (c)

Fig. 1. Three functions which have the same Lp metrics.

in �gure 1a, �gure 1b, and �gure 1c, the Lp norms will always be identical, although the
functions look completely di�erent. The same holds for the Lmax or L1 norm,

sup
0�x�1

jf(x)j

Figure 1a has one big \hole", wherease �gure 1b has two small holes. It is natural
that small oscillations are more tolerable than big systematic irregularities, and several
small holes should be better than one big hole of the same total \area". This is certainly
true for the quality control of fabrics, at least.

Another distance measure is the discrepancy,

max
0�a�b�1

�����
Z b

a

f(x) dx

����� ;
or the maximum sum of a contiguous subsequence of (f1; : : : ; fn). The discrepancy does
distinguish between big holes and small holes. However, contrary to the bounded Lipschitz
norm, the discrepancy is in
uenced only by the biggest hole, and the smaller holes do
not play any role at all. The situation is similar to the Lmax norm.

The Hausdor� distance between polygons C and D,

max

�
max
x2C

min
y2D

d(x; y); max
y2D

min
x2C

d(x; y)

�
;

su�ers from the same limitation.
To my knowledge, the bounded Lipschitz norm is the only distance measure between

functions that is both sensitive to locality on the x-axis and maintains a global view of
the function on the whole interval. In other words, it distinguishes between big holes and
small holes, and it still takes care of every hole, big and small.

1.4 Examples

Wewill illustrate the bounded Lipschitz norm of a function and not of a sequence, because
this exhibits the essential properties of the bounded Lipschitz distance more clearly and
more intuitively.

Figure 2a shows a function f and the corresponding function g which optimizes the
integral in (1). In general, g will try to follow the trend of f , being as large as possible
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Fig. 2. An example. Part (c) shows the dual problem (section 2.2).

when f is positive and as small as possible when f is negative. We see that g cannot follow
f too closely in the left part because f wiggles too fast, but the big wave in the right
part is fully taken into account. Figure 2b shows what happens when the parameter M in
the constraint jg(x)j � M is decreased. Previously, the wave in the middle was too short
for g(x) to follow it completely, but now there is no longer a di�erence between the big
right wave and the middle wave. Thus M is something like the \precision" of the norm
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or the intended \granularity" of the function f . IfM goes to 0, the e�ect of the Lipschitz
condition jg(x) � g(y)j � jx� yj becomes more and more negligible, and g(x) will be
equal to +M or �M most of the time. Thus, we essentially approach the L1 norm.

1.5 Relation to other work

As mentioned above, the idea of measuring the distance between polygonal shapes by
computing a metric between functions has been used in Arkin et mult. al. (1990).

Neunzert and Wetton (1987) and Hackh (1990) proposed the bounded Lipschitz norm
for applications in quality control. They discussed its advantages, but rejected it for
practical purposes because they did not know how to compute it fast.

We can omit the boundedness condition jg(x)j � 1 in de�nition (1) and require only
the Lipschitz condition jg(x) � g(y)j � jx� yj. This corresponds to making the param-

eter M very big (bigger than 1=2). (Of course we have to insist that
R 1
0
f(x) dx = 0,

because otherwise the solution of (1) is unbounded.) The resulting norm becomes the
Monge-Kantorovich mass transfer problem, whose history goes back to 18th century
work of G. Monge (1781) and to L. Kantorovitch (1942). The bounded Lipschitz norm is
a special case of the Kantorovich-Rubinstein norm which is known in functional analysis
and probability theory, see Kantorovich and Rubinshte��n (1958) or Rachev (1984, 1991).
This relation is described in more detail in section 2.3.

1.6 Overview of the paper

In section 2 we give several alternate formulations of the problem; among them is a
function approximation or function smoothing problem, and two network 
ow models.
Section 3 develops an algorithm and discusses the possible options for data structures.
Is section 4 we mention some open problems.

The main contribution of this paper is not only in the algorithmic part; here we use
more or less standard techniques. It lies rather in the modeling aspect: We unify several
seemingly di�erent problems by showing their equivalence. This opens the way for deeper
understanding of the problems, and algorithms for one of the problems can be translated
into solutions for the others.

2 Di�erent representations

Let us �rst mention the easily proved fact that we really have a norm:

Theorem1. The bounded Lipschitz norm is in fact a norm, and hence the bounded

Lipschitz distance dBL satis�es the triangle inequality.

2.1 A network 
ow model

It is possible to translate the restrictions in (2) into a minimum cost network 
ow model
as shown in �gure 3. The 
ow on the arc from Ai�1 to Ai is the variable gi and it is
restricted between the capacities �m � gi � +m. The cost on this arc is fi. On the arcs
between Ai and B the 
ow can be at most 1 in either direction, except for A0 and An,
where the 
ow is unrestricted. This models the Lipschitz condition. The cost on these
arcs is 0.
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Fig. 3. The network 
ow model.

2.2 The dual problem: smoothing a function

The linear programming dual of problem (2), after some transformation, can be written
as follows: Let Fi denote the partial sums of the sequence fi:

Fk := f1 + f2 + � � �+ fk (3)

Then we have

k(f1; : : : ; fn)kBL = min
n
m �

nX
i=1

jbi � bi�1j+

nX
i=0

jbi � Fij : b0 = F0; bn = Fn

o
: (4)

This problem is of interest in itself because it can be interpreted as a problem of smoothing
a function which is given by a sequence (F0; F1; : : : ; Fn). We are looking for a \smooth"
sequence (b0; b1; : : : ; bn) that approximates the given one. The right sum in the above
expression (4) is the approximation error, and the left sum is a penalty term that keeps
the sequence smooth. By varying the parameter m one can control the desired degree
of smoothness. Figure 2c shows the dual problem to the example of �gure 2b. (This is
the continuous version of the problem again.) The graph of b(x) is shown as a thick
curve overlaid over the graph of F (x) :=

R x
0
f(t) dt. The reader may notice a correspon-

dence between the ranges where b(x) follows F (x) or where it remains constant, and the
ranges in �gure 2a where g(x) is at its upper or lower bound or where it has slope �1,
respectively. This is nothing but a manifestation of complementary slackness in linear
programming duality.

A similar curve �tting problem has been considered by Ohmura et al. (1990) and by
Imai (1991):

min
n nX

i=1

jbi � Fij : b1 � b2 � � � � � bn

o
: (5)

Here a given sequence must be approximated by a monotone sequence.
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Theorem2. The monotone approximation problem (5) is a special case of (4).

This can be seen as follows. We add a value F0 := minfFi : 1 � i � n g at the beginning
and a value Fn+1 := maxfFi : 1 � i � n g at the end of the sequemce, and we set
n := n + 1 and m := n + 2. By the constraints of (4), the sequence (bi) must rise from
b0 = F0 to bn = Fn, and thus the penalty term is at least m(Fn�F0). Since the multiplier
m is so large it would never pay o� to go down again:

Lemma3. With the data as de�ned above, we will always have bi � bi+1 in an optimal

solution of (4).

Thus the penalty term is constant and may be neglected.

Imai gave an O(n logn) algorithm which uses mergeable heaps. Our algorithm which
we give in the next section is very simple and has the same complexity, and, when
appropriately specialized, it uses just plain heap operations. We also give a few other
algorithms whose complexity depends on the size of the Fi values.

2.3 Another network 
ow model | the Monge-Kantorovich mass transfer

problem

A di�erent reformulation leads to the following dual de�nition:

k(f1; : : : ; fn)kBL =

min
n nX

i=1

nX
j=1

cijxij :

nX
j=1

xij �

nX
j=1

xji = fi, for i = 1; 2; : : : ; n; xij � 0
o

where cij := minfji� jj; 2mg. This is a mininum-cost network 
ow problem with nodes
C1; C2; : : : ; Cn. The original problem (2) is the dual problem to this. The restrictions
are the 
ow conservation equations. The supply/demand at node Ci is fi. We assumePn

i=1 fi = 0. By routing the 
ow xij on arc (i; j) over the vertices Ci+1; Ci+2; : : : ; Cj�1

if ji� jj � 2m, and via an auxiliary vertex D otherwise, we can correctly model the costs
cij with the arcs shown in the network of �gure 4. The costs on the arcs between Ci�1

and Ci are 1, in both directions, and the costs on the arcs between Ci and D are m, in
both directions. The 
ow must be nonnegative, but there are no upper capacities.

This model has a nice direct interpretation: fi is the excess or the lack of material at
location i. We have to transport the material to balance the excesses and the demands
in the cheapest possible way. Without the additional vertex D, this is the original mass
transfer problem that goes back to G. Monge (1781) and to L. V. Kantorovitch (1942).
In our case, the price that we have to pay is proportional to the distance, except that we

only have to pay a 
at rate of 2m for very long distances.
The cost coe�cients cij can be generalized to be an arbitrary metric on the point set

f1; 2; : : :; ng (or on the interval [0; 1] in the continuous formulation), and unter suitable
conditions the equivalence between the di�erent dual formulations still holds. The result-
ing general metric between functions is known as the Kantorovich-Rubinstein distance
or the Wasserstein distance, depending on the formulation, see Rachev (1984, 1991).

Note that the network in both network 
ow models of �gure 3 and �gure 4 is series-
parallel. Booth and Tarjan (1993) have given an O(E logE) algorithm for a mininum-cost
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Fig. 4. Another network 
ow model.

network 
ow in a series-parallel network with E arcs. When applied to our networks, the
algorithm coincides for the two networks; the algorithm in section 3 can actually be
derived as a special case and simpli�ed version of Booth and Tarjan's algorithm.

3 Algorithms

3.1 Dynamic programming

We can solve the linear program in (2) by considering all possible values j = �m; : : : ;m

for gk, successively for k = 1; : : :n. De�ne

Gk(j) := max
n kX

i=1

figi : jgij � m; jgi+1 � gij � 1; gk = j
o
:

Then we can set up the recursion

Gk+1(j) = fk+1 � j +maxfGk(j � 1); Gk(j); Gk(j + 1)g, for �m � j � m, (6)

where we take Gk(�m � 1) = Gk(m + 1) = �1 for the \out-of-boundary" values.

Lemma4. Gk(j) is a concave function of j.

Thus, we can represent the function Gk(j) by the \start value" S := Gk(�m) and
the decreasing sequence of increments Ej := Gk(j + 1)�Gk(j). Let us see how Gk+1 is
derived from Gk. The maximumof the three expressions in (6) can be obtained by taking
three copies of the graph of the function Gk: one which is shifted one unit to the left, one
which is shifted one unit to the right, and an unshifted one. Then we take the pointwise
maximum, see �gure 5. The result will have the same sequence of increments Ej as the
original Gk, except that two horizontal pieces Ej = 0 are inserted in the middle, and
the �rst and the last entry is deleted. Adding the linear function fk+1 � j means that we
have to add the value fk+1 to each Ej. We also have to compute the new start value
S = Gk+1(�m) from Gk(�m). The following algorithm summarizes this procedure.
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Fig. 5. Deriving Gk+1 from Gk.

(� Start with G0(j) � 0: �)
Let E = (0; 0; : : :; 0); (2m zeros)
S := 0;
for k := 1 to n do

(� compute Gk: �)
insert 0,0 into the decreasing sequence E (at the correct position);
S := S + the largest (i. e., �rst) element of E;
remove the largest and the smallest element from E;
add fk to all elements of E;
S := S + (�m) � fk;

end for;

add all positive elements of E to S; this is the result.

Instead of adding a constant to all elements of E, which costs too much time, we can
also add it to a separate value F which we maintain; we represent the \true value" of Ej

by E0j + F . The resulting algorithm is as follows:

Let E0 = (0; 0; : : : ; 0); (2m zeros)
S := 0; F := 0;
for k := 1 to n do

(� compute Gk: �)
insert �F ,�F into E0;
S := S + F + the largest element of E0;
remove the largest and the smallest element from E0;
F := F + fk;
S := S + (�m) � fk;

end for;

for all elements e0 of E0 with e0 + F > 0, add e0 + F to S; this is the result.

3.2 Data structures

Clearly, there is really no need to represent E0 as a sorted list. The amount of work is
constant per iteration of the loop, except for the operations of the set E0. Let us discuss
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the necessary operations on E0:

1. insert

2. �nd and remove the smallest and largest element.

We have 2n operations of each type. E0 has always 2m or 2m+2 elements. The elements
that are inserted are the partial sums Fi of (3).

Depending on the size of the universe F̂ := maxk jFkj, there are several choices of
data structures.

Ordinary priority queues. This leads to O(n logm) time and O(m) storage if we simply
use heaps. (Actually, we have to use max-min heaps, see Atkinson et al. 1986.) Since
the list E0 is initialized with zeros, we can in fact achieve O(n logminfm;ng) time and
O(minfm;ng) space. By using a balanced search tree augmented with appropriate in-
formation �elds, we can solve the problem on-line with O(logm) time per data point:
Immediately after we have read the next value fi, we can output the bounded Lipschitz
norm of the sequence so far.

Subsets of a small universe. The remaining possibilities are more \data-dependent", be-
cause they are only useful when the data are integers or F̂ is small. In applications, F̂ will
not be too large, because it does not make sense to measure the image with a very high
precision. If F̂ is large or the data are \real numbers", this approach can still be used if
one is satis�ed with an approximate value, because the data can be scaled and rounded
to small integers. Using the appropriate data structures (see Mehlhorn and N�aher 1990)
we can achieve O(m) storage and O(n log log F̂ ) time. If the fi are very small it might
even be preferable to use a much simpler sequential search, which would lead to a time
of O(

P
i jfij) with O(F̂ ) storage.

The o�-line min approach. If we can a�ord to sort the values Fi by some method of
distribution sort or radix sort, using O(n+ F̂ ) time or O(n logn F̂ ) time, respectively, we
can then use the algorithm for the o�-line-min problem (cf. the three Americans' book,
Aho et al. 1974).

This leads to a very simple algorithm with a complexity of O(n�(m;m)); where
�(m;n) is the extremely slowly growing inverse function of the Ackermann function,
cf. Tarjan and van Leeuwen (1984). Using the improvement of Gabow and Tarjan (1985),
which makes the algorithm slightly more complicated, we can even achieve O(n) time.
(All these times are in addition to sorting.)

However, there is a slight catch: Usually, in the o�-line min problem, we are given a
sequence of INSERT and DELETE-MIN operations. We are given the whole sequence in
advance. We start by looking at the smallest element that was inserted and �nd out at
what time it was deleted: this is the nearest DELETE-MIN that follows the respective
INSERT. We match o� this INSERT and this DELETE-MIN, look at the second-smallest
element, and so on.

In our case, we also have DELETE-MAX operations, and these might interfere with
the DELETE-MIN's: We cannot be sure whether an element for which we are looking
for the corresponding DELETE-MIN operation should not really have been removed
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by a DELETE-MAX. There is no easy way to decide this, except by carrying out the
operations in sequence, which is just what we want to avoid.

We solve this dilemma by cutting the sequence of operations into blocks of length 4m,
i. e., we have 2m INSERT's, m DELETE-MIN's and m DELETE-MAX's.

Lemma5. Let x be the median of the 2m elements that are initially in the list before

the a block starts. Then all elements which are removed by DELETE-MIN's in the block

are smaller than x, and all elements which are removed by DELETE-MAX's in the block

are larger than x.

It follows that we can process the DELETE-MIN's and DELETE-MAX's in a block
separately without caring about interference.

4 Open questions and further research

The algorithm can be extended compute the norm of a piecewise linear functions. For
a function with n linear pieces, it takes O(n logn) time. In addition, O(n) equations
involving at most O(n) square roots must be solved. More precisely, if the function f has
s sign changes, the algorithm needs O(n logn + s2) time. The details will be given in a
later version of this paper.

A question for further research is the minimization of the bounded Lipschitz distance
under various transformations of the functions, like scalings of coordinates or cyclic rota-
tions of the de�nition interval. This is of interest when comparing two polygonal shapes,
as described in the introduction. The arbitrary choice of the starting point for the param-
eterization of the boundary or a rotation of the polygons should not have an in
uence
on their distance measure.

The de�nition of the bounded Lipschitz norm in section 2.3 can be extended naturally
to two- and higher-dimensional arrays (functions of more than one variable). Already in
two dimensions, it is an open question whether the bounded Lipschitz norm can be
computed more e�ciently than by solving a network 
ow problem. Even with m = 1,
i. e., with the distance coe�cients c((xi; yi); (xj; yj)) = jxi � xjj + jyi � yj j, there is no
simple way to compute the metric. (Setting m = 1 corresponds to deleting the super-
vertex D in �gure 4.)

Another open question is whether the heap operations in section 3.2 are really neces-
sary if nothing is assumed about the values Fi. Since we are not interested in the sequence
in which the elements are removed from the data structure but only in the set of elements
which are removed by DELETE-MAX and DELETE-MIN operations (actually, only in
their sum), it is not clear whether 
(n logminfm;ng) is a lower bound for the problem.
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