1 Mathematics

1.1 Sets

The set of all elements x that satisfy a certain condition is denoted for example by

$$
\{x:\|x\| \leq 1\} \text { or }\{x \in A \mid x \geq 0\}
$$

which you get by writing $\backslash\{\backslash, \mathrm{x}: \backslash|\mathrm{x} \backslash| \backslash$ le $1 \backslash, \backslash\}$ and $\backslash\{\backslash, \mathrm{x} \backslash$ in $\mathrm{A} \backslash$ mid $\mathrm{x} \backslash \mathrm{ge} 0 \backslash, \backslash\}$ respectively. The vertical bar in the middle should be given as \backslash mid, because this provides the correct spacing. With the colon, the spacing is automatically correct for this case. Larger vertical bars, (in conjunction with larger braces) can be obtained by \bigm|, \Bigm|, \biggm|, and \Bigbml, respectively. Knuth [K, p. 134] recommends to add the extra
, spacing inside set braces in the above case, but not when the elements of the set are enumerated: $\{1,2, \ldots, n\}$

1.2 Functions

To indicate that f is a function from a set A to a set B, one writes $f: A \rightarrow B$. To get this in $\mathrm{T}_{\mathrm{E}} \mathrm{X}$, one has to type $\$ \mathrm{f} \backslash$ colon A to $\mathrm{B} \$$. (\backslash to is equivalent to \rightarrow.) If you don't want the colon to be too far from the f, you should not enter the colon as a colon (:) instead of the command \colon. This kind of colon is appropriate for proportions

$$
a: b: c=d: e: f
$$

or for set notation (see above).

2 Text

2.1 Hyphens and dashes

$\mathrm{T}_{\mathrm{E}} \mathrm{X}$ has at least five characters that consist of a horizontal line: the hyphen $(-)$, the en-dash (-), the em-dash (-), then minus (-), and the underscore (_), which are obtained, respectively, by typing -, --, ---, \$-\$, and _. The underscore is easily distinguished, and the em-dash is not very common. Most confusion occurs between the hyphen and the en-dash.

2.1.1 Don't overuse en-dashes!

The hyphen is the character that is automatically inserted when $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ breaks (hyphenates) a long word at the end of a line. It is also used to join different parts of compound words.

Don't use the en-dash as an element of the spelling of individual words!

Since I know that some people disagree with me on this point, I have to cite Webster's dictionary or the authority of Knuth himself [K, p. 4]. The hyphen is used for example in son-in-law, home-grown, x-axis, n-tuple, half-plane, quasiperiodic, twenty-one.

2.1.2 When to use en-dashes

1. The en-dash is used for ranges, or between numbers: Monday-Friday, pp. 212-219, statements (i)-(iv), exercise 1.2-3, equation 3-1.
2. The en-dash may be used to join the names of several persons in the name of a theorem, a conjecture, an algorithm, etc.: the Schröder-Bernstein theorem, Bose-Einstein statistics. Here is one reason to avoid the hyphen in this case.
The abbreaviation AVL in AVL-trees stands for Adelson-Velskiǐ-Landis trees, which are named after Adelson-Velskiĭ and Landis. Adelson-Velskiĭ is one person carrying a double name. Similarly, the Birch-SwinnertonDyer Conjecture in number theory is named after two people. So we should definitely use a hyphen in double names that are written with a hyphen. (By way contrast, consider van Emde Boas trees with no hyphens.) And for distinction, we might want to use the en-dash to separate the two names. To remain consistent, we might always use an en-dash to join the names of several people in the name of a theory or a theorem or other concept. However, I wouldn't insist on this. To my feeling, GramSchmidt orthogonalization, Reed-Solomon codes, or the Euler-Poincaré formula with a hyphen is equally acceptable, and it is common to see it printed in this way.

2.1.3 The minus sign

Don't forget to enclose the minus sign by \$'s if you intend to denote a negative number; write $\$-5 \$$, which gives -5 , not -5 .

2.2 Getting a ~ printed

The tilde character ~ may be rarely needed in mathematical text, but it is increasingly common to give URL's ("uniform resource locators") on the WorldWide Web as part of literature references. Or an author might want to specify his or her home-page in addition to the usual coordinates. References to documents in a person's home directory typically look like
http://www.math.tu-graz.ac.at/~jack/pubs/paper1.ps.gz
where jack is the person's login name in the computer. Typing ~ in $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ produces a space, and the command \backslash^{\sim} is used for an accent. So in order to get a^{\sim} on the printed output, you may type $\backslash \mathrm{char}^{\prime} \backslash$ ~. If you need a white space after the tilde, enclose the command in braces: $\left\{\backslash\right.$ char ${ }^{\prime} \backslash \sim$ \}. (People who want to remember ASCII codes can also write \char126 to get ~.) After giving the definition \chardef \wiggle ' ${ }^{\text {~ }}$, the command \wiggle can be used to produce a ${ }^{\sim}$.

A similar situation occurs for @ in electronic mail addresses, like

```
rote@inf.fu-berlin.at
```

In standard $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ and $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$, typing a @ will work, but in $\mathcal{A} \mathcal{M} \mathcal{S}-\mathrm{T}_{\mathrm{E}} \mathrm{X}$, @ is used as a special character to perform all kinds of tasks. In order to get a @ in $\mathcal{A}_{\mathcal{M}} \mathcal{S}-\mathrm{T}_{\mathrm{E}} \mathrm{X}$, you have to type @@. Typing $\{\backslash c h a r ' \ @\}$ is a solution that works in all cases.

3 Reference

References

[K] D. E. Knuth, The TEXbook. Addison-Wesley, Reading, Mass., 1986.

