
THE TRAVELING SALESMAN PROBLEM
FOR MOVING POINTS ON A LINE ∗

GÜNTER ROTE †

Abstract. A salesperson wants to visit each of n objects that move on a line at given constant
speeds in the shortest possible time, subject to an upper bound on her own speed. We present a
dynamic programming algorithm to solve this problem in O(n3) time.

1. Introduction. In the Euclidean Traveling Salesman Problem, n points (cities)
in the plane (or in some Euclidean space of other dimension) are given, and a sales-
person wants to visit all of them by a path which is as short as possible. We consider
a generalization of this problem where the points are moving on straight lines at con-
stant speeds, and the salesperson wants to visit all of them as fast as possible, subject
to an upper bound on her speed. Since the Euclidean Traveling Salesman Problem in
the plane is already NP-hard, even with fixed points, we restrict our attention to the
one-dimensional problem, i. e., to points moving on a line.

2. Properties of the Optimal Solution. Henceforth we will use a more ap-
pealing language and consider a cat that can move at a given maximum speed and
that wants to catch n mice which move with constant velocities (the mice-collecting
traveling salescat problem). Formally, we assume that the initial position of the cat
at time 0 is 0, and that the maximum speed is 1. Denoting the cat’s position at time
t by C(t), we have C(0) = 0 and |C(t) − C(u)| ≤ |t − u|. The location of mouse i
at time t is given by ci + vit. Let m denote the number of mice which are initially
to the left of the cat. We number these mice so that mouse 1 is the mouse mov-
ing fastest to the left and the mouse moving fastest to the right is mouse m, i. e.,
−1 < v1 < v2 < · · · < vm < 1, and ci < 0 for i = 1, 2, . . . ,m (see figure 1). If
several of these have the same velocities vi, it is clearly sufficient to retain only the
leftmost of them. The mice on the right of the cat are ordered in the same way, i. e.,
−1 < vm+1 < vm+2 < · · · < vn < 1, and ci > 0 for i = m+1,m+2, . . . , n. (The mice
with ci = 0 obviously have no existence.)

We will say that the cat meets mouse i if C(t) = ci + vit, the cat is to the right
of mouse i if C(t) ≥ ci + vit, and the cat is to the left of mouse i if C(t) ≤ ci + vit.
Note that the possibility of equality is included in these definitions. Note also that
the cat can meet a mouse even after it has eaten the mouse, i. e., we consider just the
straight paths of the mice. Clearly, the cat can eat a mouse if it is to the right of it at
some time instant and if it is to the left of it at some possibly different time instant.
Thus, we are looking for a path C: [0, T] → R of the cat which is to the left of every
mouse 1, 2, . . . ,m at least once in the interval [0, T] and to the right of every mouse
m + 1,m + 2, . . . , n at least once in the interval [0, T]. The total duration T should
be a short as possible.

Lemma 2.1. Assume that the cat can start in a position coinciding with mouse i
any time after some given time t0 and it wants to reach mouse j as early as possible.
The fastest way to reach mouse j is to start at time t0 and to travel into the direction
towards mouse j at full speed, and moreover, this is the only way to reach mouse j in
the shortest possible time.

∗ This research was supported by the Leonardo Fibonacci Institute in Trento, Italy.
† Author’s address: Institut für Mathematik, Technische Universität Graz, Steyrergasse 30,

A-8010 Graz, Austria. Electronic mail: rote@ftug.dnet.tu-graz.ac.at

1

2 The TSP for Moving Points

Proof. The lemma is intuitively obvious, and it can be checked by straightforward
calculations, using the fact that |vi| < 1 and |vj | < 1.

✲ x
0

PPPPPPPPP✏
✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏P

PPPPPPPPPPPPPPPPP✏
✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏

q

q

q

q

q

❛❛❛❛❛❛❛❛❛❛❛❛

✜
✜
✜
✜
✜
✜
✜
✜
✜
✜
✜
✜
✜
✜✜

❉
❉
❉
❉
❉
❉
❉
❉
❉
❉
❉
❉
❉
❉
❉
❉
❉
❉
❉
❉
❉❉

▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲
▲▲

❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈
❈

✱
✱
✱
✱

✱
✱
✱

✱
✱
✱

✱
✱
✱

✱
✱

✱
✱
✱

✱
✱✱

☞
☞
☞
☞
☞
☞
☞
☞
☞
☞
☞
☞
☞
☞
☞
☞
☞
☞
☞
☞
☞☞

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅❅

1

2 3 4

5 = m
6

7 8

9 = n

✻
t

Fig. 1. A possible shape of an optimal path according to theorem 2.2. The x-axis and the time
axis are not drawn to scale. Therefore the cat’s path (bold line) does not have slope ±1.

The following theorem gives a necessary condition for an optimal path of the cat.
Theorem 2.2. The optimal path of the cat is a piecewise linear function with at

most n linear pieces, whose slopes are alternately +1 and −1. The breakpoints (turns
of the cat) are at positions where the cat meets a mouse (see figure 1). For each turn
and also for the final position there is a mouse so that this is the only position where
the cat meets this mouse.

Proof. Let j1, j2, . . . , jn be the sequence of mice that the cat eats. Using the
previous lemma inductively, it follows that the fastest way to meet these mice in the
given order is to move with full speed in one direction between any two instants when
the cat eats a mouse.

This argument also establishes the existence of an optimal solution for any given
eating order j1, j2, . . . of the mice. Since there are only finitely many permutations
j1, j2, . . . , jn of the mice, we also obtain the existence of a globally optimum solution,
which must look as claimed in the first part of the theorem.

To prove the last sentence of the theorem, consider a turning point such that
every mouse that is met at this point is also met at some other time during the cat’s
path. By reassigning these mice to those other points as the points where the cat eats
them, we get a turning point where the cat does not eat a mouse. By the above proof
of the first part, this contradicts optimality.

From the theorem we can draw the following conclusion: Suppose that the cat
starts with a movement to the left. There is a sequence of l ≥ 1 “left” mice j1, j2, . . . , jl
with j1 < j2 < · · · < jl ≤ m and a sequence of r “right” mice k1, k2, . . . , kr, with
l−1 ≤ r ≤ l and k1 > k2 > · · · > kr ≥ m+1, so that the cat starts by going left until
it meets j1; there it turns to the right until it meets k1, where it turns left to meet
j2, etc. The cat stops when it eats the final mouse: this is mouse jl if l = r + 1 and

The TSP for Moving Points 3

mouse kr if l = r. In case the cat starts with a movement to the right an analogous
statement holds. Moreover, each mouse ji and ki is met by the cat only once.

We can plot the path of the cat and the mice in the plane with the horizontal axis
corresponding to position and the vertical axis corresponding to time, as in figure 1.
The paths of the mice become straight lines and the cat moves on a zigzag curve.
The paths of the mice ji and ki are “tangent” to the cat’s path. It follows that the
turning points form two convex chains from the starting point to the endpoint.

The following crucial observation is important for the algorithm:
Lemma 2.3. When the cat turns right at the mouse ji and this is the only instant

when it meets this mouse, the cat must have been to the left of all mice j′ < ji; and
when the cat turns left at the mouse ki and this is the only instant when it meets this
mouse, the cat must have been to the right of all mice k′ > ki.

Proof. If vj′ < vji , i. e., mouse j′ moves to the left relative to mouse ji and
mouse j′ has not been eaten by the time mouse ji is met, the cat has no chance to
catch j′ later without crossing the path of ji again. The second statement of the
lemma is analogous.

In figure 1, the respective mice 1, 9, 3, and 8 fulfill the conditions of the above
lemma. The lemma opens the possibility for a dynamic programming approach that
considers all possibilities for the last two turning points of a partial solution of the
cat’s path.

3. The Algorithm. We define quantities
→
P (j, k) for 0 ≤ j ≤ m and m + 1 ≤

k ≤ n and
←
P (j, k) for 1 ≤ j ≤ m and m+ 1 ≤ k ≤ n+ 1 as follows:

Definition 3.1. If j ≥ 1,
→
P (j, k) is the duration of the shortest zigzag path

whose last movement is a right movement terminating when it meets mouse k, whose
last turn was a right turn at the point where it meets mouse j, and which satisfies to
the following conditions:

(i) The path meets mouse k only in the last point. For each turn on the path
there is a mouse so that this is the only position where the cat meets this
mouse.

(ii) The path has been to the left of every mouse j′′ with 1 ≤ j′′ < j at least
once.

(iii) The path has been to the right of every mouse k′′ with k < k′′ ≤ n at least
once.

If no such path exists, we set
→
P (i, k) = ∞.

→
P (0, k) is the duration of the shortest

path consisting of a single right movement from the cat’s starting position to the
point where it meets mouse k, subject to condition (iii) from above. Again, we set
→
P (0, k) = ∞ if no such path exists.

The quantities
←
P (j, k) for 1 ≤ j ≤ m and m + 1 ≤ k ≤ n + 1 are defined in the

same way, except that the paths have to end with a left movement to the meeting
point with mouse j, and the last turn was at mouse k (or the starting point, for
k = n+ 1).

By theorem 2.2 the optimal path is clearly one of the paths that are considered

in
→
P (jl, kr) or

←
P (jl, kr), and every partial solution consisting of some initial zigzags

is considered in
→
P (ji, ki),

←
P (ji, ki),

→
P (ji, ki±1), or

←
P (ji, ki±1), respectively.

To explain the dynamic programming recursion by which
→
P (j, k) and

←
P (j, k) can

be computed we have to introduce some notation. Consider a path whose length is

4 The TSP for Moving Points

❍❍❍❍❍❍❍❍❍❍❍❍❍
✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟

✟✟✟✟✟✟✟

❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇❇

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

(x′, t′)

(x, t)

(x̃, t̃)

s

s

s
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆

✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟
✆
✆
✆
✆
✆
✆
✆
✆
✆
✆
✆
✆
✆
✆
✆
✆
✆
✆
✆
✆
✆
✆
✆
✆
✆
✆
✆✆ ❊

❊
❊
❊
❊
❊
❊
❊
❊
❊
❊
❊
❊
❊
❊
❊
❊
❊
❊
❊
❊
❊
❊
❊
❊
❊
❊

❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇
❇

❉
❉
❉
❉
❉
❉
❉
❉
❉
❉
❉
❉
❉
❉
❉
❉
❉
❉
❉
❉
❉
❉
❉
❉
❉
❉❉

✡
✡
✡
✡
✡
✡
✡
✡
✡
✡
✡
✡
✡
✡
✡
✡
✡
✡
✡
✡
✡
✡
✡
✡
✡
✡✡

r r

k = k0

L

k′j

Fig. 2. The dynamic programming recursion.

stored in
→
P (j, k), see figure 2. If we remove the last straight movement from mouse

j to mouse k from this path, we get a path whose length t̃ is stored in
←
P (j, k′),

where k′ > k is the mouse where the next-to-last turn occurred. For any k′ we can

immediately compute from t̃ =
←
P (j, k′) the time t′ and the position x′ = ck′ + vk′t′

where the candidate path in
←
P (j, k′) has met mouse k′, and the time t and the position

x = ck + vkt where it will meet mouse k if it is extended by a right movement. Let us
denote these by t′(k′), x′(k′), t(k′), and x(k′), respectively, regarding j and k as fixed
for the moment. For k′ = n + 1, we will set t′(k′) = 0 and x′(k′) = 0 corresponding
to the initial position.

If the path obtained by extending the path
←
P (j, k′) to the right until meeting

mouse k fulfills all three conditions of definition 3.1, we will say that k′ is permissible

for
→
P (j, k).

Lemma 3.1. The index k′ is permissible for
→
P (j, k) if the following conditions

are satisfied:

(a) mouse k passes to the right of point x′(k′) at time t′(k′);
(b) if k′ ≤ n then mouse k′ passes to the right of point x(k′) at time t(k′);
(c) all mice k′′ with k < k′′ < k′ pass either to the left of the turning point x′(k′)

on line k′ at time t′(k′) or to the left of the turning point x(k′) on line k at
time t(k′).

Proof. The resulting extended path ending at mouse k clearly fulfills condition
(ii) above. For checking (i) it suffices to consider mice k′ and k, which is done in
conditions (a) and (b). Moreover, assuming condition (b) is satisfied, condition (iii)

The TSP for Moving Points 5

is already fulfilled for all mice k′′ ≥ k′. Therefore, in order to be sure that we have

a permissible candidate path for
→
P (j, k) we explicitly have to test condition (iii) for

the mice k′′ between k′ and k. However, their slope is between that of k and k′.
Being to the left of some part of the path is therefore equivalent to being to the left
of either the point x′(k′) at time t′(k′) or the point x(k′) at time t(k′) because these
are the points where a supporting line with the slope of k, with the slope of k′, or
with any slope between these two slopes touches the path. So the test in condition
(c) is sufficient.

For 1 ≤ j ≤ m and m+ 1 ≤ k ≤ n we have therefore:

→
P (j, k) = min{ t(k′) | k < k′ ≤ n+ 1 and k′ is permissible for

→
P (j, k) },(1)

and with an analogous definition of permissibility for
←
P (j, k),

←
P (j, k) = min{ t(j′) | 0 ≤ j′ < j and j′ is permissible for

←
P (j, k) }.(2)

To initialize the recursion, we set

→
P (0, k) =

ck/(1− vk), if all mice k′′ with k < k′′ ≤ n+ 1 pass
strictly to the left of point ck/(1− vk)
at time ck/(1− vk),

∞, otherwise,

(3)

for m+ 1 ≤ k ≤ n, and

←
P (j, n+ 1) =

−cj/(1 + vj), if all mice j′′ with 1 ≤ j′′ < j pass
strictly to the right of point cj/(1 + vj)
at time −cj/(1 + vj),

∞, otherwise,

(4)

for 1 ≤ j ≤ m.

To determine the optimal solution, consider the value t of
→
P (j, k). As above, let

x = ck + tvk be the final position and let t̃ be the time and x̃ = ck′ + vk′ t̃ be the
position where the candidate path has met mouse j. For j = 0 we set x̃ = t̃ = 0. We

say that
→
P (j, k) is a candidate for the optimum if the following conditions are satisfied:

(a) all mice j′′ with j < j′′ ≤ m pass to the right of the point x̃ at time t̃; and
(b) all mice k′′ with m+ 1 ≤ k′′ < k pass to the left of the point x at time t.

(For j = 0 condition (a) means that m must be 0, i. e.,
→
P (0, k) can only be a candidate

for the optimum if all mice are initially on the right side of the cat.) In an analogous

way we define when
←
P (j, k) is a candidate for the optimum.

Lemma 3.2. The optimal duration is given by

min{min
j,k

→
P (j, k), min

j,k

←
P (j, k)},(5)

where the minima are taken over all candidates for the optimum.
Proof. From theorem 2.2 and the discussion following it we know that the optimal

path length is among the values considered in (5).

On the other hand, by lemma 3.1 each value
←
P (j, k) and

→
P (j, k) defined by the

recursions (1–4) corresponds to some path on which the mouse has eaten all mice
j′′ ≤ j and k′′ ≥ k. By the discussion before lemma 3.2, any path whose length

6 The TSP for Moving Points

is considered in (5) is a path of the cat where all mice have been eaten and thus a
feasible solution.

A straightforward evaluation of the recursions (1–5) using just the definitions and
lemma 3.1 would take O(n4) steps. In order to reduce this to O(n3) we consider for

each pair (j, k′) and consider the possible contribution to all
→
P (j, k) for which k′ is

permissible.
The algorithm looks then as follows:

begin

initialize all
→
P (j, k) and

←
P (j, k) to ∞;

compute
→
P (0, k) for m+ 1 ≤ k ≤ n by (3);

compute
←
P (j, n+ 1) for 1 ≤ j ≤ m by (4);

for j := 0 to m do
for k := n+ 1 downto m+ 1 do

if j 6= 0 then
k′ := k;

(†) for k0 := k′ − 1 downto m+ 1 do

compute t′(k′), x′(k′), t(k′), and x(k′) for
→
P (j, k0), using

←
P (j, k′);

if k′ is permissible for
→
P (j, k0)

then
→
P (j, k0) := min{→P (j, k0), t(k

′)};
end for;

end if;
if k 6= n+ 1 then
j′ := j;

(‡) for j0 := j′ + 1 to m do

compute t′(j′), x′(j′), t(j′), and x(j′) for
←
P (j0, k), using

→
P (j′, k);

if j′ is permissible for
←
P (j0, k)

then
←
P (j0, k) := min{←P (j0, k), t(j

′)};
end for;

end if;
end for;

end for;
compute the optimum solution value using (5);

end;

Theorem 3.3. The fastest path for catching n moving objects on a line can be
computed in O(m(n − m)n) = O(n3) time and O(m(n − m)) = O(n2) space, if m
objects are initially on the left side and n−m objects are initially on the right side.

Proof. The initial sorting and renumbering of the mice can be done in O(n log n)
time. Each of the O(n) initialization equations (3) and (4) can be computed trivially
in O((m−n)2) time or in O(m2) time, respectively. In the final expression (5), we have
to check O(m(n−m)) expressions, whether they are candidates for the optimum, and
each check can be carried out in O(n) time, by just using the definition of candidates
for the optimum. It remains to show how to carry out each of the O(m(n − m))
for-loops marked (†) and (‡) in linear time.

Consider an instance of the for-loop marked (†) for some fixed j and k′. We want

to check permissibility for each value k0 > k′ fast. We will use the fact that
←
P (j, k′)

is fixed and therefore t′(k′) and x′(k′) on line k′ and t̃ =
←
P (j, k′) and x̃ on line j are

The TSP for Moving Points 7

also fixed, see figure 2. For each k0, t(k
′) and x(k′) can be computed in constant time

by intersecting the fixed line L which describes the right movement of the cat starting
from (x̃, t̃) with the path of mouse k0. Thus, conditions (a) and (b) of lemma 3.1 can
be checked in constant time.

Condition (c) can be reformulated as follows: The point (x(k′), t(k′)) on the line
corresponding to mouse k must lie on the right side of all those lines x = ck′′ + tvk′′

for k0 < k′′ < k′ which do not pass to the left of the point (x′(k′), t′(k′)). If we
intersect these lines with line L, we can also say that the point (x(k′), t(k′)) must
lie to the right of these intersection points. We process the values k0 in decreasing
order. As we decrease k0 we add more and more mice k′′ that we have to check.
The mice k′′ passing to the left of the fixed point (x′(k′), t′(k′)) can be ignored. For
the remaining mice, we intersect them with the line L and remember the right-most
(highest) intersection point (xmax, tmax). Condition (c) is fulfilled if (x(k′), t(k′)) lies
higher than (xmax, tmax), which can be checked in constant time. Formally, the first
for-loop is carried out as follows:

k′ := k;

compute t̃, x̃, t′(k′) and x′(k′) from t̃ =
←
P (j, k′);

let L be the line of slope 1 through (t̃, x̃);
tmax := t̃; (∗ tmax is the highest intersection point with line L so far. ∗)

(†) for k0 := k′ − 1 downto m+ 1 do
compute t(k′) and x(k′);
if the line of mouse k0 passes strictly to the right of the point (x(k′), t(k′))
then
let (t, x) be the intersection of mouse k0 with line L;
if t ≥ tmax then

(∗ k′ is permissible for
→
P (j, k0). ∗)→

P (j, k0) := min{→P (j, k0), t(k
′)};

tmax := t;
end if;

end if;
end for;

This loop can clearly be carried out in O(n) total time, and the time bound of
the theorem follows.

By storing with each computed value
→
P (j, k) and

←
P (j, k) a pointer indicating the

value where the minimum was achieved, it is possible to recover the optimal solution
after the optimal value has be computed.

4. Concluding remarks. In our solution we have minimized the time necessary
to catch all mice. Instead of this, we can also minimize the total distance traveled,
by just ignoring all mice that move towards the cat, and solving the problem of
minimizing the time to catch the mice that run away. After all these mice have been
caught, the cat can just remain where it is and wait for any remaining mice. It is
easy to see that this solution minimizes the total distance.

It is also possible to consider mice which move faster than the cat. If such fast
mice move away from the cat they obviously cannot be caught. Thus we only have
to deal with fast mice moving towards the cat. The problem in this case is that
lemma 2.1 no longer holds for fast mice. In fact, the cat will never make a turn

8 The TSP for Moving Points

after eating a fast mouse, it may only terminate at such a mouse. If fast mice are
approaching both from the left and from the right, there is a point P when the last
fast mouse from the left crosses the last fast mouse from the right. Clearly the cat
cannot finish before this happens. Thus there is one other possibility for an optimal
solution in addition to the paths characterized in theorem 2.2: After eating all slower
mice the cat moves to point P and waits for the fast mice to arrive. Lemma 3.2 can
easily be modified to take this into account.

The problem considered in this paper can obviously be generalized in several
ways, by considering variable speeds or mice moving in other spaces than the line, for
example on a circle or in a graph. We can always take time as a second axis and plot
the path of the mice and the cat in the plane. This eliminates the time component
and transforms the problems into purely geometric problems. Thus all these problems
are instances of the following general problem type:

Given a set of objects, find the best curve of a civen class that meets
all objects.

This class of problems encompasses such diverse problems as the Traveling Sales-
man Problem and the smallest enclosing circle. I believe that many more interesting
problems can be formulated in this framework.

Acknowledgements. I thank Mordecai Golin for posing the problem, and I
thank Danny Chen and Mikhail Atallah for helpful discussions. I also thank the
Leonardo Fibonacci Institute in Trento for the hospitality during my stay there.

Addendum to

“The Traveling Salesman Problem for

Moving Points on a Line”

Here is an example where you can try out my algorithm:

1

✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁

2
❭

❭
❭

❭
❭

❭
❭

❭
❭

❭
❭

❭
❭

❭
❭

❭
❭

❭
❭

❭
❭

❭
❭

❭

3

☎
☎
☎
☎
☎
☎
☎
☎
☎
☎
☎
☎
☎
☎
☎
☎
☎
☎
☎
☎
☎
☎
☎
☎
☎
☎
☎
☎
☎
☎
☎
☎
☎
☎
☎
☎☎

(4)
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁✁

5s
✻starting point

1

Here are some 45◦-lines that help you to evaluate the different paths: (For
hand calculations, it is easier to just apply the recursions (1)–(5) directly.)

❅
❅

❅
❅

❅
❅

❅

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
�
�

�
�

�
��

❅
❅

❅
❅

❅
❅

❅
❅

❅❅
❅

❅
❅

❅
❅

❅
❅

❅
❅❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅❅

1

✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁

2
❭

❭
❭

❭
❭

❭
❭

❭
❭

❭
❭

❭
❭

❭
❭

❭
❭

❭
❭

❭
❭

❭
❭

❭

3

☎
☎
☎
☎
☎
☎
☎
☎
☎
☎
☎
☎
☎
☎
☎
☎
☎
☎
☎
☎
☎
☎
☎
☎
☎
☎
☎
☎
☎
☎
☎
☎
☎
☎
☎
☎☎

(4)
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁
✁✁

5s
✻starting point

If you want to get some more insight you might also try to solve the problem
without mouse 4. Send your entry with your guess of the correct solution to
rote@opt.math.tu-graz.ac.at.

2

