Discrete Geometry Workshop - Oberwolfach 2017
 Open Problems
 Collected by J. Pach and S. Zerbib

1. Andrey Kupavskii, kupavskii@ya.ru

"Given n slabs in \mathbb{R}^{d} of total divergent width, can one cover the unit ball with their translates?"
In more details: is it true that there exists $C=C(d)$, such that for any $n_{1}, \ldots, n_{s} \in S^{d-1}, d>2$, and any $\varepsilon_{1}, \ldots, \varepsilon_{s} \in \mathbb{R}_{+}$with $\sum_{i=1}^{s} \varepsilon_{i}>C$, there exist $x_{1}, \ldots, x_{s} \in \mathbb{R}$ satisfying

$$
\left\{x \in \mathbb{R}^{d}:|x| \leq 1\right\} \subseteq\left\{x \in \mathbb{R}^{d}: x_{i} \leq\left\langle x, n_{i}\right\rangle \leq x_{i}+\varepsilon_{i}\right\} ?
$$

Asked in [Makai-Pach, 1983].
E. Makai and J. Pach, Controlling function classes and covering Euclidean space, Studia Sci. Math. Hungar. 18 (1983), no. 2-4, 435-459.

2. Dömötör Pálvölgyi, dom@cs.elte.hu

Can we 3 -color any (finite) set of points such that any disk with at least 3 points is non-monochromatic? Asked originally in [Keszegh, 2012].
B. Keszegh, Coloring half-planes and bottomless rectangles, Computational Geometry: Theory and Applications, 45(9) (2012), 495-507.

3. Eran Nevo, nevo@math.huji.ac.il

Fix d even, and let $n \rightarrow \infty$:
Must d-polytopes with n vertices have only $o\left(n^{d / 2}\right)$ non-simplex facets? (The trivial upper bound is $O\left(n^{d / 2}\right)$.)

Jeff Erickson asked this in 1999, and conjectured that the answer is yes, also for $(d-1)$-polyhedral spheres.
For spheres the answer is no - as was proved in [Nevo-Santos-Wilson, 2016]
The case $d=4$ of the above question is already very interesting. The lower bound obtained in Nevo et al. is $\Omega\left(n^{3 / 2}\right)$.
E. Nevo, F. Santos and S. Wilson, Many triangulated odd-dimensional spheres, Math. Ann. 364 (2016), no. 3-4, 737-762.

4. Arseniy Akopyan, akopjan@gmail.com

Let P_{1} and P_{2} be two combinatorially equivalent convex polytopes in \mathbb{R}^{3}. Is it true that there exist corresponding edges t_{1} of P_{1} and t_{2} of P_{2}, such that the dihedral angle of t_{1} is not greater than the dihedral angle of t_{2}, or all the corresponded angles are equal? This problem is Conjecture 5.1 in the following preprint.
A. V. Akopyan and R. N. Karasev, Bounding minimal solid angles of polytopes, 2015, http://arxiv.org/abs/1505.05263.

5. Micha Sharir, michas@post.tau.ac.il

Danzer's problem. A finite set of pairwise intersecting disks in the plane can be stabbed by 4 points, and there exists a configuration of 10 pairwise intersecting disks that require 4 points [Danzer, 1986].

The problem:

(a) Understand Danzer's solution.
(b) Come up with a simpler solution.
(c) Make it constructive.
L. Danzer, Zur Lösung des Gallaischen Problems über Kreisscheiben in der Euklidischen Ebene [On the solution of the Gallai problem on circular disks in the Euclidean plane, in German], Studia Sci. Math. Hungar. 21 (1986), no. 1-2, 111-134.

6. Xavier Goaoc, goaoc@univ-mlv.fr

Fact: For any probability measure μ that charges no lines, there exist two order types $\omega_{1}(\mu)$ and $\omega_{2}(\mu)$ of size 6 such that if X is a set of 6 points $\sim \mu$ then

$$
\mathbb{P}\left[X \text { realizes } \omega_{1}(\mu)\right]>1.8 \mathbb{P}\left[X \text { realizes } \omega_{2}(\mu)\right]
$$

X. Goaoc, A. Hubard, R. de Joannis de Verclos, J-S. Sereni, and J. Volec, Limits of order types, Proceedings of Symp. of Computational Geometry (SOCG), vol 34, pp 300-314, 2015.

Question: Does there exist $c>0$ such that $\forall \mu \exists \omega_{1}(\mu), \omega_{2}(\mu)$ with $\left|\omega_{1}(\mu)\right|=$ $\left|\omega_{2}(\mu)\right|=n$ and

$$
\mathbb{P}\left[X \simeq \omega_{1}\right]>c^{n} \mathbb{P}\left[X \simeq \omega_{2}(\mu)\right] ?
$$

7. Géza Tóth, geza@renyi.hu

Is the class of intersection graphs of lines in \mathbb{R}^{3} (or \mathbb{R}^{d}) χ-bounded? Namely, is there a function f such that given n lines in the \mathbb{R}^{3}, no k of them pairwise crossing, the lines can be colored with $f(k)$ colors in such a way that crossing lines get different colors?
J. Pach, G. Tardos, and G. Tóth, Disjointness graphs of segments, Proc. 33rd Annual Symposium on Computational Geometry (SoCG 2017), to appear.

8. Imre Bárány, barany@renyi.hu

k-crossing curves in \mathbb{R}^{d}. A curve γ in \mathbb{R}^{d} is k-crossing if every hyperplane intersects it at most k times. Thus $k \geq d$. A d-crossing curve is called convex.

Theorem (Bárány, Matoušek, Pór). For every $d \geq 2$ there is $M(d)$ such that every $(d+1)$-crossing curve in \mathbb{R}^{d} can be split into $M(d)$ convex curves.

The proof gives $M(d) \leq 4^{d}, M(2)=4$ and $M(3) \leq 22$.
Question: Give lower bounds for $M(d)$.
I. Bárány, J. Matoušek, A. Pór, Curves in \mathbb{R}^{d} intersecting every hyperplane at most $d+1$ times, J. Eur. Math. Soc. (JEMS) 18 (2016), no. 11, 2469-2482.

9. Pavel Valtr, valtr@kam.mff.cuni.cz

Lines, line-point incidences, and crossing families in dense sets. Let P be a set of n points in \mathbb{R}^{2} such that $\min \operatorname{dist}(P)=1$ and max $\operatorname{dist}(P)=$ $O(\sqrt{m})$. Prove or disprove:

Conjecture 1. P contains a crossing family of size $\Omega(n)$.

Known: P contains a crossing family of size $\Omega\left(n^{1-\varepsilon}\right)$.
Two lines are essentially different if either their direction differ by at least $1 / n$, or their $\frac{1}{\sqrt{n}}$-neighborhoods do not intersect inside $\operatorname{conv}(P)$.
Conjecture 2. P determines $\Omega\left(n^{2}\right)$ pairwise essentially different lines.
Known: P determines $\Omega\left(n^{2-\varepsilon}\right)$ pairwise essentially different lines.
A point p and a line ℓ determine a rough point-line incidence if $\operatorname{dist}(p, \ell) \leq \frac{1}{\sqrt{n}}$.
Conjecture 3. Let P as before and L a set of nairwise essentially different lines. Then the number of rough point-line incidences is at least $\Omega\left(n^{4 / 3}\right)$.

10. Luis Montejano, luis@matem.unam.mx

Let X be a polyhedron. Let $\mathcal{F}=\left\{A_{1}, \ldots A_{m}\right\}$ be a polyhedral cover of X such that A_{i} is not empty but not necessarily connected. Let N be the nerve of \mathcal{F}.

Fact: Suppose that the following hold: (a) $H_{1}(X)=0$, and (b) for every $i \neq j$, if $A_{i} \cap A_{j} \neq \emptyset$ then $A_{i} \cup A_{j}$ is connected. Then $H_{1}(N)=0$.
Question: Suppose that the following hold: (a) $H_{2}(X)=0$, (b) for every $i \neq j$, if $A_{i} \cap A_{j} \neq \emptyset$ then $A_{i} \cup A_{j}$ is connected, and (c) for every $i<j<k$, if $A_{i} \cap A_{j} \cap A_{k} \neq \emptyset$ then $H_{1}\left(A_{i} \cup A_{j} \cup A_{k}\right)=0$. Is it true that $H_{2}(N)=0$? The answer is yes if $m=4$.

11. József Solymosi, solymosi@math.ubc.ca

Question 1: What is the minimum number of collinear triples in a subset of the integer grid $n \times n \times n$? If $|S|=n^{3-s}, S \subset n \times n \times n$, then S spans at least $\frac{n^{6-4 s}}{c \log n}$ collinear triples. We (with Jozsi Balogh) do not think that this is sharp.

Question 2: Find a bipartite unit distance graph which is rigid.

12. Edgardo Roldán-Pensado, e.roldan@im.unam.mx

Centre of $B M(2)$. Let δ be the Banach-Mazur distance. Find the convex body $C \subset \mathbb{R}^{2}$ such that $\max \left\{\delta(C, D): D \subset \mathbb{R}^{2}\right.$ a convex body $\}$ is minimized.

An update by Edgardo Roldán-Pensado: The answer to the problem is known. A solution appears in:
W. Stromquist, The maximum distance between two-dimensional Banach spaces. Mathematica Scandinavica (1981): 205-225.

