How many compositions of two polyominoes?

Günter Rote
Freie Universität Berlin

joint work with Andrei Asinowski, Gill Barequet, Gil Ben-Shachar, Martha Carolina Osegueda

How many compositions of two polyominoes?

$$
P_{1}, \text { size } n_{1}=14 \quad P_{2}, \text { size } n_{2}=4
$$

How many compositions of two polyominoes?

$$
P_{1}, \text { size } n_{1}=14 \quad P_{2}, \text { size } n_{2}=4
$$

How many compositions of two polyominoes?

$$
P_{1}, \text { size } n_{1}=14 \quad P_{2}, \text { size } n_{2}=4
$$

How many compositions of two polyominoes?

$$
P_{1}, \text { size } n_{1}=14 \quad P_{2}, \text { size } n_{2}=4
$$

How many compositions of two polyominoes?

P_{1}, size $n_{1}=14$
P_{2}, size $n_{2}=4$

How many compositions of two polyominoes?

Background

(Wrong) LEMMA. Two polyominoes of total size $n_{1}+n_{2}=n$ have at most $2 n$ compositions.
[G. Barequet and R. Barequet 2015]

Background

(Wrong) LEMMA. Two polyominoes of total size $n_{1}+n_{2}=n$ have at most $2 n$ compositions.
[G. Barequet and R. Barequet 2015]
PROPOSITION. Every polyomino of size n can be composed from two polyomines of size n_{1} and n_{2} with $n_{1}, n_{2} \geq \frac{n-1}{4}$.
$A_{n}=$ the number of polyominoes of size n

$$
A_{n} \leq \sum_{n_{1}=n / 4}^{3 n / 4} A_{n_{1}} A_{n-n_{1}} 2 n
$$

Background

(Wrong) LEMMA. Two polyominoes of total size $n_{1}+n_{2}=n$ have at most $2 n$ compositions.
[G. Barequet and R. Barequet 2015]
PROPOSITION. Every polyomino of size n can be composed from two polyomines of size n_{1} and n_{2} with $n_{1}, n_{2} \geq \frac{n-1}{4}$.
$A_{n}=$ the number of polyominoes of size n

$$
A_{n} \leq \sum_{n_{1}=n / 4}^{3 n / 4} A_{n_{1}} A_{n-n_{1}} 2 n
$$

[G. Barequet, G. Rote, Mira Shalah 2019]: Improved bounds on the number of polyiamonds

Almost tight bounds

OBSERVATION. Two polyominoes of size n_{1} and n_{2} have at most $4 n_{1} n_{2}$ compositions.

Almost tight bounds

OBSERVATION. Two polyominoes of size n_{1} and n_{2} have at most $4 n_{1} n_{2}$ compositions.

Two polycubes in d dimensions of size n_{1} and n_{2} have at most $2 d n_{1} n_{2}$ compositions.

In $d \geq 3$ dimensions, this is tight up to a constant factor.

OBSERVATION. Two polyominoes of size n_{1} and n_{2} have at most $4 n_{1} n_{2}$ compositions.

Two polycubes in d dimensions of size n_{1} and n_{2} have at most $2 d n_{1} n_{2}$ compositions.

In $d \geq 3$ dimensions, this is tight up to a constant factor.

THEOREM. Two polyominoes of size n can have as many as

$$
\frac{n^{2}}{2^{8 \cdot \sqrt{\log _{2} n}}}
$$

compositions.

Compositions \& Minkowski difference

Represent polyomino P by the set A of square centers

Compositions \& Minkowski difference

Represent polyomino P by the set A of square centers

OBSERVATION. P_{1} and $P_{2}+t$ overlap
$t \in M:=A_{1} \oplus\left(-A_{2}\right):=\left\{x_{1}-x_{2} \mid x_{1} \in A_{1}, x_{2} \in A_{2}\right\}$

Compositions \& Minkowski difference

Represent polyomino P by the set A of square centers

OBSERVATION. P_{1} and $P_{2}+t$ overlap
$t \in M:=A_{1} \oplus\left(-A_{2}\right):=\left\{x_{1}-x_{2} \mid x_{1} \in A_{1}, x_{2} \in A_{2}\right\}$
Proof: $t=x_{1}-x_{2} \Longleftrightarrow x_{1}=x_{2}+t$

Compositions \& Minkowski difference

Represent polyomino P by the set A of square centers

P_{1}

\times	\times	\times
\times	\times	

$A_{1} \begin{aligned} & \times \times \times \\ & \times \times\end{aligned}$

$\begin{array}{cl}A_{2} \circ & \circ \\ & \circ\end{array}$
OBSERVATION. P_{1} and $P_{2}+t$ overlap
$t \in M:=A_{1} \oplus\left(-A_{2}\right):=\left\{x_{1}-x_{2} \mid x_{1} \in A_{1}, x_{2} \in A_{2}\right\}$
Proof: $t=x_{1}-x_{2} \Longleftrightarrow x_{1}=x_{2}+t$

Compositions \& Minkowski difference

Represent polyomino P by the set A of square centers

P_{1}

\times	\times	\times
\times	\times	

$A_{1} \begin{aligned} & \times \times \times \\ & \times \times\end{aligned}$

$\begin{array}{cc}A_{2} \circ & \circ \\ & \circ\end{array}$
OBSERVATION. P_{1} and $P_{2}+t$ overlap
$t \in M:=A_{1} \oplus\left(-A_{2}\right):=\left\{x_{1}-x_{2} \mid x_{1} \in A_{1}, x_{2} \in A_{2}\right\}$
Proof: $t=x_{1}-x_{2} \Longleftrightarrow x_{1}=x_{2}+t$

Compositions \& Minkowski difference

Represent polyomino P by the set A of square centers

P_{1}

\times	\times	\times
\times	\times	

$A_{1} \begin{aligned} & \times \times \times \\ & \times \times\end{aligned}$

$\begin{array}{cl}A_{2} \circ & \circ \\ & \circ\end{array}$
OBSERVATION. P_{1} and $P_{2}+t$ overlap
$t \in M:=A_{1} \oplus\left(-A_{2}\right):=\left\{x_{1}-x_{2} \mid x_{1} \in A_{1}, x_{2} \in A_{2}\right\}$
Proof: $t=x_{1}-x_{2} \Longleftrightarrow x_{1}=x_{2}+t$

Compositions \& Minkowski difference

Represent polyomino P by the set A of square centers

P_{1}

\times	\times	\times
\times	\times	

$A_{1} \begin{aligned} & \times \times \times \\ & \times \times\end{aligned}$

$\begin{array}{cc}A_{2} \circ & \circ \\ & \circ\end{array}$
OBSERVATION. P_{1} and $P_{2}+t$ overlap
$t \in M:=A_{1} \oplus\left(-A_{2}\right):=\left\{x_{1}-x_{2} \mid x_{1} \in A_{1}, x_{2} \in A_{2}\right\}$
Proof: $t=x_{1}-x_{2} \Longleftrightarrow x_{1}=x_{2}+t$

Compositions \& Minkowski difference

Represent polyomino P by the set A of square centers

P_{1}

$A_{1} \begin{array}{lll}\times & \times & \times \\ \times & \times\end{array}$

$\begin{array}{rlr}A_{2} & \circ & \circ \\ & 0 & \end{array}$
OBSERVATION. P_{1} and $P_{2}+t$ overlap
$t \in M:=A_{1} \oplus\left(-A_{2}\right):=\left\{x_{1}-x_{2} \mid x_{1} \in A_{1}, x_{2} \in A_{2}\right\}$
Proof: $t=x_{1}-x_{2} \Longleftrightarrow x_{1}=x_{2}+t$

Compositions \& Minkowski difference

Represent polyomino P by the set A of square centers

P_{1}

\times	\times	\times
\times	\times	

$A_{1} \begin{aligned} & \times \times \times \\ & \times \times\end{aligned}$

$\begin{array}{cc}A_{2} \circ & \circ \\ & \circ\end{array}$
OBSERVATION. P_{1} and $P_{2}+t$ overlap
$t \in M:=A_{1} \oplus\left(-A_{2}\right):=\left\{x_{1}-x_{2} \mid x_{1} \in A_{1}, x_{2} \in A_{2}\right\}$
Proof: $t=x_{1}-x_{2} \Longleftrightarrow x_{1}=x_{2}+t$

Compositions \& Minkowski difference

Represent polyomino P by the set A of square centers

P_{1}

\times	\times	\times
\times	\times	

$A_{1} \begin{aligned} & \times \times \times \\ & \times \times\end{aligned}$

$A_{2} \circ \circ$
\circ
OBSERVATION. P_{1} and $P_{2}+t$ overlap
$t \in M:=A_{1} \oplus\left(-A_{2}\right):=\left\{x_{1}-x_{2} \mid x_{1} \in A_{1}, x_{2} \in A_{2}\right\}$
Proof: $t=x_{1}-x_{2} \Longleftrightarrow x_{1}=x_{2}+t$

Compositions \& Minkowski difference

Represent polyomino P by the set A of square centers

P_{1}

$A_{2} \circ \circ$
\circ
OBSERVATION. P_{1} and $P_{2}+t$ overlap
$t \in M:=A_{1} \oplus\left(-A_{2}\right):=\left\{x_{1}-x_{2} \mid x_{1} \in A_{1}, x_{2} \in A_{2}\right\}$
Proof: $t=x_{1}-x_{2} \Longleftrightarrow x_{1}=x_{2}+t$

Compositions \& Minkowski difference

Represent polyomino P by the set A of square centers

$A_{2} \circ \circ$
\circ
OBSERVATION. P_{1} and $P_{2}+t$ overlap
$t \in M:=A_{1} \oplus\left(-A_{2}\right):=\left\{x_{1}-x_{2} \mid x_{1} \in A_{1}, x_{2} \in A_{2}\right\}$
Proof: $t=x_{1}-x_{2} \Longleftrightarrow x_{1}=x_{2}+t$

M

Compositions \& Minkowski difference

Represent polyomino P by the set A of square centers

$$
\begin{aligned}
& A_{2} \circ \circ \\
& \circ
\end{aligned}
$$

OBSERVATION. P_{1} and $P_{2}+t$ overlap

$t \in M:=A_{1} \oplus\left(-A_{2}\right):=\left\{x_{1}-x_{2} \mid x_{1} \in A_{1}, x_{2} \in A_{2}\right\}$
Proof: $t=x_{1}-x_{2} \Longleftrightarrow x_{1}=x_{2}+t$

P_{1} and $P_{2}+t$ valid $\Longleftrightarrow t \notin M$ and t is adjacent to M

Motion Planning

Motion Planning

$\Theta\left(n^{2}\right)$

Motion Planning

Many Compositions

Many Compositions

Even more compositions

Even more compositions

Even more compositions

Numerical experiments

normalized number of compositions $n+n$

Numerical experiments

Compute the (number of) compositions freie Univeritite 4) Berin

Find $M:=A_{1} \oplus\left(-A_{2}\right)$ and find all its neighbors

Compute the (number of) compositions freie Universitat 1) Berin
Find $M:=A_{1} \oplus\left(-A_{2}\right)$ and find all its neighbors

Compute the (number of) compositions frie uniesitit ($\mathcal{4}$ berifin

Find $M:=A_{1} \oplus\left(-A_{2}\right)$ and find all its neighbors

In dimensions: $O\left(n^{2} d\right)$ space and $O\left(n^{2} d^{2}\right)$ time. (Radix sort)

