

Günter Rote Freie Universität Berlin

joint work with Andrei Asinowski, Gill Barequet, Gil Ben-Shachar, Martha Carolina Osegueda

Background

(Wrong) LEMMA. Two polyominoes of total size $n_1 + n_2 = n$ have at most 2n compositions.

[G. Barequet and R. Barequet 2015]

Background

(Wrong) LEMMA. Two polyominoes of total size $n_1 + n_2 = n$ have at most 2n compositions.

[G. Barequet and R. Barequet 2015]

PROPOSITION. Every polyomino of size n can be composed from two polyomines of size n_1 and n_2 with $n_1, n_2 \ge \frac{n-1}{4}$.

 A_n = the number of polyominoes of size n

$$A_n \le \sum_{n_1 = n/4}^{3n/4} A_{n_1} A_{n-n_1} 2n$$

Background

(Wrong) LEMMA. Two polyominoes of total size $n_1 + n_2 = n$ have at most 2n compositions.

[G. Barequet and R. Barequet 2015]

PROPOSITION. Every polyomino of size n can be composed from two polyomines of size n_1 and n_2 with $n_1, n_2 \ge \frac{n-1}{4}$.

 A_n = the number of polyominoes of size n

[G. Barequet, G. Rote, Mira Shalah 2019]: Improved bounds on the number of polyiamonds

OBSERVATION. Two polyominoes of size n_1 and n_2 have at most $4n_1n_2$ compositions.

OBSERVATION. Two polyominoes of size n_1 and n_2 have at most $4n_1n_2$ compositions.

Two polycubes in d dimensions of size n_1 and n_2 have at most $2dn_1n_2$ compositions.

In $d \geq 3$ dimensions, this is tight up to a constant factor.

OBSERVATION. Two polyominoes of size n_1 and n_2 have at most $4n_1n_2$ compositions.

- Two polycubes in d dimensions of size n_1 and n_2 have at most $2dn_1n_2$ compositions.
- In $d \geq 3$ dimensions, this is tight up to a constant factor.

THEOREM. Two polyominoes of size n can have as many as

 $\frac{n^2}{2^{8 \cdot \sqrt{\log_2 n}}}$

compositions.

Represent polyomino P by the set A of square centers

Represent polyomino P by the set A of square centers

OBSERVATION. P_1 and $P_2 + t$ overlap \iff $t \in M := A_1 \oplus (-A_2) := \{ x_1 - x_2 \mid x_1 \in A_1, x_2 \in A_2 \}$

Represent polyomino P by the set A of square centers

OBSERVATION. P_1 and $P_2 + t$ overlap \iff $t \in M := A_1 \oplus (-A_2) := \{ x_1 - x_2 \mid x_1 \in A_1, x_2 \in A_2 \}$

Proof: $t = x_1 - x_2 \iff x_1 = x_2 + t$

Represent polyomino P by the set A of square centers

OBSERVATION. P_1 and $P_2 + t$ overlap \iff $t \in M := A_1 \oplus (-A_2) := \{ x_1 - x_2 \mid x_1 \in A_1, x_2 \in A_2 \}$

Proof: $t = x_1 - x_2 \iff x_1 = x_2 + t$

 $\times \times \times$ × ×

 $-A_2$

Represent polyomino P by the set A of square centers

OBSERVATION. P_1 and $P_2 + t$ overlap \iff $t \in M := A_1 \oplus (-A_2) := \{ x_1 - x_2 \mid x_1 \in A_1, x_2 \in A_2 \}$

Proof: $t = x_1 - x_2 \iff x_1 = x_2 + t$

Freie Universität 🕅

Represent polyomino P by the set A of square centers

OBSERVATION. P_1 and $P_2 + t$ overlap \iff $t \in M := A_1 \oplus (-A_2) := \{ x_1 - x_2 \mid x_1 \in A_1, x_2 \in A_2 \}$

Proof: $t = x_1 - x_2 \iff x_1 = x_2 + t$

Freie Universität 🕅

Represent polyomino P by the set A of square centers

OBSERVATION. P_1 and $P_2 + t$ overlap \iff $t \in M := A_1 \oplus (-A_2) := \{ x_1 - x_2 \mid x_1 \in A_1, x_2 \in A_2 \}$

Proof: $t = x_1 - x_2 \iff x_1 = x_2 + t$

Freie Universität 🕅

Represent polyomino P by the set A of square centers

OBSERVATION. P_1 and $P_2 + t$ overlap \iff $t \in M := A_1 \oplus (-A_2) := \{ x_1 - x_2 \mid x_1 \in A_1, x_2 \in A_2 \}$

Proof: $t = x_1 - x_2 \iff x_1 = x_2 + t$

Freie Universität 🕅

Represent polyomino P by the set A of square centers

OBSERVATION. P_1 and $P_2 + t$ overlap \iff $t \in M := A_1 \oplus (-A_2) := \{ x_1 - x_2 \mid x_1 \in A_1, x_2 \in A_2 \}$

Proof: $t = x_1 - x_2 \iff x_1 = x_2 + t$

Freie Universität 🕅

Represent polyomino P by the set A of square centers

OBSERVATION. P_1 and $P_2 + t$ overlap \iff $t \in M := A_1 \oplus (-A_2) := \{ x_1 - x_2 \mid x_1 \in A_1, x_2 \in A_2 \}$

Proof: $t = x_1 - x_2 \iff x_1 = x_2 + t$

Represent polyomino P by the set A of square centers

OBSERVATION. P_1 and $P_2 + t$ overlap \iff $t \in M := A_1 \oplus (-A_2) := \{ x_1 - x_2 \mid x_1 \in A_1, x_2 \in A_2 \}$

Proof: $t = x_1 - x_2 \iff x_1 = x_2 + t$

Represent polyomino P by the set A of square centers

OBSERVATION. P_1 and $P_2 + t$ overlap \iff $t \in M := A_1 \oplus (-A_2) := \{ x_1 - x_2 \mid x_1 \in A_1, x_2 \in A_2 \}$

Proof: $t = x_1 - x_2 \iff x_1 = x_2 + t$

 P_1 and $P_2 + t$ valid $\iff t \notin M$ and t is adjacent to M

Represent polyomino P by the set A of square centers

OBSERVATION. P_1 and $P_2 + t$ overlap \iff $t \in M := A_1 \oplus (-A_2) := \{ x_1 - x_2 \mid x_1 \in A_1, x_2 \in A_2 \}$

Motion Planning

Motion Planning

Motion Planning

 $\Theta(n^4)$

Many Compositions

Freie Universität

Many Compositions

Even more compositions

Even more compositions

Even more compositions

Numerical experiments

Numerical experiments

Compute the (number of) compositions Freie Universität

Find $M := A_1 \oplus (-A_2)$ and find all its neighbors

Compute the (number of) compositions Freie Universität

Find $M := A_1 \oplus (-A_2)$ and find all its neighbors

Compute the (number of) compositions Freie Universität

Find $M := A_1 \oplus (-A_2)$ and find all its neighbors

In d dimensions: $O(n^2d)$ space and $O(n^2d^2)$ time. (Radix sort)