
Replication of the first controlled experiment
on the usefulness of design patterns:
Detailed description and evaluation

Lutz Prechelt, Barbara Unger, Douglas C. Schmidt
(prechelt| unger@ira.uka.de, schmidt@cs.wustl.edu)

Department of Computer Science
Washington University, St. Louis, MO 63130-4899

Technical Report wucs-97-34
December 2, 1997

http://www.cs.wustl.edu/cs/techreports/1997/

Abstract

Advocates of software design patterns claim that using design patterns improves communication
between software developers. The controlled experiment that we describe in this report tests the
hypotheses that software maintainers of well-structured, well-documented software containing de-
sign patterns can make changes (1) faster and (2) with less errors if the use of patterns is explicitly
documented in the software.

The experiment was performed with 22 participants of a university course on C++ and design pat-
terns; it is similar to a previous experiment performed in Karlsruhe.

For one of the two experiment tasks the experiment finds that both hypotheses appear to be true.
For the other task the results are inconclusive, presumably because the task was too difficult for the
given experience level of the subjects.

1

Contents

1 Introduction 4
1.1 Design Patterns . 4
1.2 Experiment Overview . 5
1.3 Differences to Karlsruhe Experiment . 6
1.4 Related Work . 6
1.5 How to Use This Report . 7

2 Description of the experiment 8
2.1 Experiment Idea and Hypotheses .. 8
2.2 Experiment Design . 9
2.3 Preparation: The CS242 Course . 9
2.4 Experiment Format and Conduct .. 11
2.5 Experimental Subjects . 11

2.5.1 Education . 11
2.5.2 Programming experience . 12
2.5.3 Knowledge of Design Patterns . 12

2.6 Tasks . 17
2.6.1 Constraints . 17
2.6.2 How Constraints Were Handled . 17
2.6.3 Task “Tuple” . 17
2.6.4 Task “Element” . 18

2.7 Internal Validity . 18
2.8 External Validity . 19

3 Experiment results and discussion 20
3.1 Statistical Methods 20

3.1.1 Inference . 20
3.1.2 Presentation . 21

3.2 Performance on the Tasks . 22
3.2.1 Metrics employed. 22
3.2.2 Task “Element” . 23
3.2.3 Task “Tuple” . 27
3.2.4 Learning effect . 29

3.3 Underlying Effects . 30
3.3.1 Faults in Pattern Recognition. 30
3.3.2 Problem Solving Method . 30

2

CONTENTS 3

3.4 Subjects’ Experiences . 33
3.4.1 Difficulty of tasks . 33
3.4.2 Is Pattern Knowledge Helpful? . 33
3.4.3 Is Pattern Documentation (PD) Helpful? . 36

4 Conclusion 37

Appendix 39

A Tasks and solutions 39
A.1 Handling Description, Solutions . 39
A.2 Original Questionnaire .. 41

B Experiment program listings 54
B.1 Program “Tuple” . 54
B.2 Program “Element” . 64

Bibliography 77

This is a one line proof
. . . if we start sufficiently far to the left

Anonymous math lecturer

Technical Report wucs-97-34, Lutz Prechelt, Barbara Unger, Douglas C. Schmidt

Chapter 1

Introduction

The present report is the definitive and detailed description and evaluation of a controlled experiment on the
influence of design pattern documentation on the maintainability of object-oriented programs.

In the first chapter we will first discuss the general topic of the experiment (design patterns), then give a broad
overview of the purpose and setup of the experiment. We then describe the differences to the previous Karlsruhe
pattern experiment and explain how to read this report.

Chapter 2 describes the preparation, setup, and execution of the experiment, relying heavily on the original
experiment materials as printed in the appendices. It also discusses threats to the internal and external validity
of the experiment.

Chapter 3 presents and interprets in detail the results obtained in the experiment and Chapter 4 presents conclu-
sions and relates the results to our previous ones. The appendices contain the handouts used in the experiment:
questionnaire and program source code.

1.1 Design Patterns

Several years ago, a group of researchers and practitioners from the object-oriented design and programming
community began to collect descriptions of proven solutions to recurring problems in object-oriented design.
Suchdesign patternspackage expert knowledge into a form that can be reused frequently and easily. Rapidly,
these collections have become a promising development for making design a more sound activity in software
engineering. A documentation format was developed and today a design pattern is a packaged description of
a common software design problem, its context, appropriate terminology, one or several solutions, and their
advantages, constraints, and other properties.

According to practitioners [1, 6], there are several advantages of design patterns:

� Less experienced designers can produce better designs with patterns.

� Design patterns encourage recording and reusing best practices even for experienced designers.

� Design patterns can improve communication, both between designers and from designers to maintainers,
by defining a common design terminology.

4

1.2 Experiment Overview 5

The first large, orderly collection of design patterns was presented in 1995 as a book by Gamma, Helms,
Johnson, and Vlissides [6], often called the “Gang of Four (GoF).” The GoF book enjoyed great success and
caused significant interest in design patterns.

Currently the number of design patterns reported in the literature is rapidly increasing and there are several con-
ferences on the topic [10]. Some newly documented design patterns are appealing, though many are variations
of previously documented patterns. The idea of design patterns is also extended in other directions: Groups of
patterns are presented as so-called “pattern languages,” pattern taxonomies are suggested, patterns on higher
levels of abstraction (architectural patterns) or lower levels of abstraction (idioms) are collected, formalizations
are sought, tools are built for discovering new patterns or for recovering known patterns from existing software
etc. [2].

As often occurs in software engineering, the activities related to patterns are built on subjective beliefs, rather
than empirically validated knowledge, that the developments are useful. Currently, these beliefs are grounded
in intuitive judgement or anecdotal evidence reported by practitioners from the pattern community [1].

We believe that systematic tests of the purported advantages of patterns should be conducted to understand the
mechanisms:e.g., whether, why, when, and to what extent these advantages exist. Such tests will also help
avoid expensive developments in useless or less fruitful directions. The tests may come in the form of case
studies, larger field studies, or controlled experiments; a combination of all three will be required before we
really understand design patterns. In this report we present a replication (with some variations) of the first
controlled experiment for testing some aspect of the usefulness of patterns.

1.2 Experiment Overview

One of the advantages that design patterns are assumed to have is improved communication: They provide
a powerful and well-defined terminology that speeds up communication and minimizes misunderstandings of
software design and architecture.

As mentioned above, such communication can occur during design time, implementation time, or program
maintenance. Our experiment considers the latter situation: Do design patterns help the maintainer to under-
stand the design so that s/he can make the desired changes faster, more correctly, or with less negative impact
on the structure of the software?

More precisely, our experiment investigates the following: Assume the maintainer knows what design patterns
are and how they are used. Furthermore, assume that the program in question was explicitly designed using
patterns known by the maintainers. Now the question is:

Given a thorough program documentation, does it help the maintainer if the design patterns in
the program are documentedexplicitly, as opposed to a documentation that merely describes the
resulting structure as it is?

We investigated this question in the following manner: Subjects in the experiment received the same program
(C++ source code) and the same change requests for that program; they had to outline how the changes should
best be done. The program was documented in detail but the subjects in subgroup A received no explicit
information about design patterns in the program, whereas subgroup B received the equivalent program with
Technical Report wucs-97-34, Lutz Prechelt, Barbara Unger, Douglas C. Schmidt

6 Chapter 1: Introduction

the design patterns explicitly marked and named in a small amount of additional documentation embedded in
the source code. We investigated whether and how the performance1 of group A was different from group B.

The experiment was performed with 22 student subjects in a single session ranging from 2 to 4 hours. The tasks
were based on two programs of 8 to 10 printed pages length; solutions had to be implemented on each subject’s
Unix workstation.

1.3 Differences to Karlsruhe Experiment

The experiment described in the present report is based on another experiment that was conducted at the Uni-
versity of Karlsruhe in January 1997 [8, 9]. These are the most important differences of the present experiment
compared to the former one (readers not familiar with the Karlsruhe experiment may want to skip this section):

1. The solutions were produced directly in the computer and could be compiled. The Karlsruhe experiment
was conducted on paper only.

2. Some of the subtasks were left out due to time constraints.

3. The programs were written in C++ instead of Java. Except for the changes noted below, however, the pro-
grams were functionally and architecturally equivalent to the Java programs of the Karlsruhe experiment.

4. TheTupleprogram was not a GUI program, as most participants had no sufficient prior knowledge of
any single GUI library (see Figure 2.5 on page 12).

5. In the Karlsruhe experiment, there was always a class present in the given program that was structurally
rather close to the new class the subjects had to introduce. This class could be used as a model to simplify
the task: By mimicking the model class, the task could be solved without real program understanding.
For theTupletask, these model classes were left out of the programs in the new experiment.

6. The course at whose end the experiment was performed had more design pattern content compared to
the Karlsruhe course. Therefore the participants knew more different design patterns than the Karlsruhe
participants.

7. Here we had only 22 participants instead of 74 and all subjects were undergraduate students.

The present report matches [8] as closely as possible with respect to its structure and style of presentation.

1.4 Related Work

Except for the Karlsruhe experiment mentioned above, no scientific investigation of the assumptions underlying
design patterns has yet been published as far as we know. The only other reports available are experience reports
and anecdotal evidence from researchers and practioners in the design pattern community [1].

1measured by the correctness of the solution and the time taken for constructing it.

Washington University St. Louis, Department of Computer Science

1.5 How to Use This Report 7

1.5 How to Use This Report

This report is meant to provide a most detailed documentation of the experiment and its results. That means that
it should not be read sequentially from front to back, but insteadthe appendix needs to be consulted when
reading the text: The main text does not try to describe the tasks or questionnaires in much detail but instead
relies on the original experiment materials (questionnaires, task sheets, program sources) that are printed in the
appendix.

Technical Report wucs-97-34, Lutz Prechelt, Barbara Unger, Douglas C. Schmidt

Chapter 2

Description of the experiment

2.1 Experiment Idea and Hypotheses

Improved communication is one of the purported advantages of design patterns. Such communication occurs
within or between different groups of people (designers, implementors, maintainers) and in different modes
(either interactively in real time or one-way via documents). Our experiment attempts to investigate the situation
of implementor-to-maintainer communication via the source code document. This is an important question,
because maintenance is known to be a large cost factor in software engineering. In particular, the decay of
software structure (architectural erosion [7]) during maintenance arises from the lack of design understanding.

In our experiment we investigate the following question:

Assume a program was built using design patterns, was thoroughly documented, and now needs
to be maintained. Is it useful to have a small amount of additional documentation that explicitly
describes the design patterns used in the program? In particular, can software maintenance then be
performed quicker, safer, or better?

The basic idea of the experiment is the following: Produce a program using design patterns and come up
with a number of change requests for that program. Document the program thoroughly, but without explicit
description of the design patterns used in the program. Give this program to one group of experimental subjects
and let them do the changes. Give the same program to another (equivalent) group of subjects, but insert a small
amount of additional documentation (called thepattern documentation, PD) into the program source code that
describes the use of design patterns using standard design pattern terminology. Make the amount of PD so
small and the rest of the documentation so complete that the PD does not provide information about program
structure that is not present otherwise; PD should only add another view.

The expected outcome is that on average the group without PD in the program will take longer to finish or pro-
duce solutions with worse structure or will have more errors in their solutions. More specifically, we investigate
the following two hypotheses:

Consider the following type of maintenance task, which we callpattern-relevant task: Given a program that
uses design patterns and that is well commented we call a maintenance taskpattern-relevantif (1) it touches
(is influenced by) one or several uses of design patterns in the program and (2) performing the task requires
understanding at least a substantial part of the software structure embedded in these design patterns. A task is

8

2.2 Experiment Design 9

only partially pattern-relevantif understanding is one option for solving the task but there are also other ways
of solving it.

Hypothesis H1: Pattern-relevant maintenance tasks will on average be completed quicker if PD is given in a
program than if PD is not given in the otherwise same program.

Hypothesis H2: Likewise, fewer errors will be committed on average in pattern-relevant maintenance tasks if
PD is given in a program than if no PD is given.

Another interesting hypothesis is that correct (i.e, functional) solutions of the tasks will, on average, better
maintain the intended design structure of the program, i.e., avoid structural decay. This hypothesis is somewhat
difficult to test objectively, since it is often a matter of taste and expectations what the best design would be.
Therefore we did not formally test this hypothesis in the experiment.

2.2 Experiment Design

To balance differences of ability between the groups and to get more data, the actual experiment used two
different programs (ElementandTuple, see Appendix B on page 54) and each subject worked on both (one
with PD and one without). We measured the time taken by each individual subject and judged the solutions that
they delivered.

The independent variable in this experiment is the presence or absence of design pattern documentation (PD) in
the comments of the source programs. One of the programs given to each subject had its design patterns docu-
mented in addition to the normal comments (22 non-empty lines of PD added to the 498 line programElement,
10 non-empty lines added to the 448 line programTuple), the other had no such additional documentation.

The dependent variables are the time required to complete all tasks given for each program, the degree of
correctness of the solutions for each task, the types of errors found in a solution, and subjective information
from a postmortem questionnaire.

We also administered two short questionnaires immediately before the actual experiment: One for gathering
statistical information about our subjects and another for testing their knowledge of design patterns.

We balanced across the subjects the order of the two programs, the order of having and not having PD, and the
combination of both, i.e., we used a counterbalanced experiment design [3]; see Table 2.1.

Furthermore, we also balanced the four resulting groups for expected subject ability, measured by the percent-
age of points each subject received in the lab course, using stratified random sampling: We grouped the subjects
into blocks of similar percentages and evenly distributed the subjects from each block into the four experimen-
tal groups in a random fashion. The experiment was conducted semi-blindly, i.e., the subjects did not know in
advance whether a program would contain PD or not, but there was no placebo. All the subjects knew was that
the experiment was about design patterns and all the subjects had studied the GoF patterns during the semester.

2.3 Preparation: The CS242 Course

In order to have enough subjects with sufficient ability and comparable background, we gave a course at Wash-
ington University, St. Louis to “breed” our subjects. This CS242 course provided intensive focus on practical
aspects of designing, implementing, and debugging object-oriented software. Topics covered included reuse of
Technical Report wucs-97-34, Lutz Prechelt, Barbara Unger, Douglas C. Schmidt

10 Chapter 2: Description of the experiment

first with PD first w/o PD
then w/o PD then with PD

first Element, then Tuple E+T� E�T+

initial no. of subjects 6 5
number of data points,Tuple 4 3
number of data points,Element 4 4
first Tuple, then Element T+E� T�E+

initial no. of subjects 6 5
number of data points,Tuple 3 3
number of data points,Element 4 4

Table 2.1: The four experiment groups and their size. The number of data points is one for each
subject, except for those subjects that did not complete the respective task, but dropped out of the
experiment instead. (E+T� stands for “first perform Element with PD, then perform Tuple without
PD” etc.)

design patterns and software architectures, as well as developing, documenting, and testing representative ap-
plications using object-oriented frameworks and C++. Design and implementation based on design patterns and
frameworks were central themes to enable the construction of reusable, extensible, efficient, and maintainable
software.

CS242 is a popular class at Washington University. The Spring ’97 offering attracted 23 highly motivated
students. The course lasted 15 weeks, with two 90-minute lectures per week and one programming assignment
due every two weeks. The exercises were submitted electronically and were graded by the instructor in one-on-
one sessions with the students.

There were five programming assignments in the course, each of which introduced various design patterns to
the students. Assignment 1 involved developing dynamic array and stack abstract data types. This exercise fo-
cused on the Wrapper and Adapter patterns. Assignment 2 was a program that checked for balanced delimiters.
This exercise introduced the Template Method and Bridge patterns. Assignment 3 was a system sort utility
using optimized quicksort. This assignment focused on the Singleton, Bridge, Facade, and Strategy patterns.
Assignment 4 was a validation program for the system sort program of assignment 3. This assignment also
focused on the Strategy and Factory Method patterns. The final assignment was on operator precedence pars-
ing and binary trees. This program illustrated the Visitor, Strategy, Factory Method, Interpreter, and Builder
patterns.

Thus, our participants practiced 11 design patterns: Wrapper, Adapter, Template Method, Bridge, Singleton,
Facade, Strategy, Factory Method, Visitor, Interpreter, and Builder. Each of these was shortly introduced in
the lecture and further motivated and explained in the assignment descriptions. The latter made quite precise
prescriptions where and how to apply the design patterns, so actual practice with them was ensured. In addition,
all course participants attended a series of lectures during the same semester where they presented and learned
about all 23 design patterns in the GoF book in a conceptual fashion without hands-on experience.

Unfortunately, only one of the patterns relevant for the experiment (namely the Template Method) was actually
exercised in an assignment by the students. This is because the course and the experiment were designed
independently.

On the other hand, this means the experiment will test effects of PD for patterns with which the programmer is
Washington University St. Louis, Department of Computer Science

2.4 Experiment Format and Conduct 11

familiar only in a theoretical fashion — a situation that will not be uncommon in practice.

2.4 Experiment Format and Conduct

Participating in the experiment and showing reasonable performance was required to receive course credit for
the preparation course. All participants needed that credit.

We carried out the experiment in May 1997 on a Tuesday afternoon, 15:30 to 19:00 hours. The experiment
was conducted as a laboratory exam in two workstation pool rooms. The questionnaires and task descriptions
were administered on paper. The source programs were available as files. The solutions were constructed on
the computer with the help of a compiler; they had to be delivered in files.

The documents were handed out in five parts as described in Appendix A on page 39. The exam was announced
as taking two hours, but each subject could work in his or her personal pace and was given as much time as
s/he wanted. The materials for each task were handed out and collected separately, one after the other. This
way we could collect reliable time information about each task for each subject individually. For all further
details see the actual documents as used in the experiment; they should be self-explanatory and are printed in
the appendices starting on page 39.

2.5 Experimental Subjects

2.5.1 Education

22 subjects participated in our experiment. All of them were Computer Science students (21 male, 1 female)
On average, they were in their 6th term at the university; see Figure 2.1.

5 10
0

2

4

6

8

10
25/50/75% quantile
mean (5.73)

 22 data points

Figure 2.1:Distribution of term numbers of ex-
perimental subjects.

5 10 15
0

2

4

6

8

10
25/50/75% quantile
mean (5.02)

 22 data points

Figure 2.2:Distribution of years of programming
experience of subjects.

Technical Report wucs-97-34, Lutz Prechelt, Barbara Unger, Douglas C. Schmidt

12 Chapter 2: Description of the experiment

2.5.2 Programming experience

These students had an average of 5 years of programming experience (Figure 2.2 above), 91% of them had
written more or much more than 3000 Lines of Code (LOC) in their lifes (Figure 2.3). 73% had significant
practical experience with object-oriented programming (Figure 2.4) and 50% had significant practical experi-
ence in programming graphical user interfaces (Figure 2.5). Our subjects had practice with an average of 4

0 1 2 3 4 5
0

5

10

15

20

25
 22 data points

Figure 2.3:Distribution of previous programming
knowledge and experience: 0=no knowledge,
1=only theoretical knowledge, 2=less than 300
LOC written, 3=less than 3000, 4=less than
30000, 5=more than 30000. The same encod-
ing is used in the other two programming expe-
rience histograms.

0 1 2 3 4 5
0

2

4

6

8

10
 22 data points

Figure 2.4:Distribution of previous experience in
object-oriented programming.

0 1 2 3 4 5
0

2

4

6

8

10
 22 data points

Figure 2.5: Distribution of previous experience
programming graphical user interfaces (GUI).

different programming languages (Figure 2.6 below). The largest program ever written by our subjects had
an average size of 2557 LOC (median: 2000 LOC) and 2.7 person months (median: 1 person month); see
Figures 2.7 and 2.8 below. 18% of the subjects had also previously participated in a team software project
and contributed an average maximum of 7700 LOC (median: 2800 LOC) and 5.6 person months (median: 5
person months) to the total project size of on average 50133 LOC (median: 50000 LOC) and 62 person months
(median: 27 person months); see Figures 2.9 to 2.12 on page 14.

2.5.3 Knowledge of Design Patterns

Before the actual experiment started, we tried to learn about our subjects’ knowledge of design patterns in two
ways. First we asked “estimate subjectively how well you understand the following design patterns.” Answers

Washington University St. Louis, Department of Computer Science

2.5 Experimental Subjects 13

2 4 6 8
0

2

4

6

8

10
25/50/75% quantile
mean (4)

 22 data points

Figure 2.6: Distribution of number of program-
ming languages previously used.

0 5000 10000
0

2

4

6

8

10
25/50/75% quantile
mean (2557.14)

>_

 21 data points

Figure 2.7: Distribution of size (in LOC) of
largest program ever written alone.

0 5 10 15 20
0

5

10

15

20

25
25/50/75% quantile
mean (2.65)

>_

 21 data points

Figure 2.8: Distribution of size (in person
months) of largest program ever written alone.

0 5000 10000 15000 20000 25000
0

2

4

6

8

10
25/50/75% quantile
mean (7700)

>_

 4 data points

Figure 2.9:Distribution of size (in LOC) of sub-
ject’s contribution to his/her largest team soft-
ware project.

0 5 10 15 20
0

2

4

6

8

10
25/50/75% quantile
mean (5.63)

>_

 4 data points

Figure 2.10: Distribution of size (in person
months) of subject’s contribution to his/her
largest team software project.

Technical Report wucs-97-34, Lutz Prechelt, Barbara Unger, Douglas C. Schmidt

14 Chapter 2: Description of the experiment

0 20000 40000 60000 80000100000
0

2

4

6

8

10
25/50/75% quantile
mean (50133.33)

>_

 3 data points

Figure 2.11: Distribution of size (in LOC) of
largest team software project of subject.

0 50 100 150 200
0

2

4

6

8

10
25/50/75% quantile
mean (61.63)

>_

 4 data points

Figure 2.12: Distribution of size (in person
months) of largest team software project of sub-
ject.

were on a qualitative five point scale from 1:“I understand the pattern very well” to 5:“I do not understand it at
all”.1

Our subjects claimed for themselves rather different knowledge of different design patterns: average grades
range from 1.43 (quite good knowledge) down to 3.67 (very little knowledge); see Figure 2.13 below. For the
four patterns relevant to our experiment, only knowledge of the Template Method (average grade 2.05) was
claimed to be good. For each of the other three, a majority of participants claims “rough understanding” at best
and the averages range from 2.63 to 2.71, with considerable spread in each of the distributions. In the Karlsruhe
experiment the four relevant patterns all received average grades in the range 1.82 to 2.16.

This indicates a possible problem with the population used in the new experiment. Except for Template Method,
the patterns relevant for the experiment were only discussed shortly towards the end of the course. Many
participants may not understand the patterns well enough for taking advantage of PD.

In the second questionnaire, we conducted an actual test of pattern knowledge; see Appendix A on page 39 for
its exact form.

The first question of the test asked in which of 8 given design patterns which of 6 given operations usually
occur. Only the 6 positive (’yes’) answers needed to be given by placing a mark in the table, all other fields of
the table could be left empty. This question requires active or passive knowledge or thorough understanding
of the patterns for identifying the ’yes’ answers as well as active knowledge or thorough understanding for
avoiding the wrong ones. We summarize the answers to all of the 48 subquestions in a single number of points.
The rules for assigning these points are shown in Table 2.2 on page 16. The best possible result was 12 points,
the worst possible was -53 points. The actual range obtained by our subjects was from -10 to 11 points. See
Figure 2.14 below for the point distribution. We find that half of the subjects obtained 5 or more of the 12
points, which is a reasonable level of pattern knowledge given the large number of possibilities for scoring
negative points. One quarter of the subjects obtained 8 or more points. Roughly one quarter of the subjects
obtained a negative sum of points and must be considered having low pattern knowledge. These results are
similar to the Karlsruhe experiment.

The second question asked “what is the alternative to the introduction of a Visitor pattern?”. This was directly
relevant for the Element task later in the experiment. The correct answer (A) is adding a method to each class

1We treat this scale as an interval scale in the following.

Washington University St. Louis, Department of Computer Science

2.5 Experimental Subjects 15

1 2 3 4 5
0
5

10
15
20
25 Abstract Factory

25/50/75% quantile
mean (2.86)

 21 data points

1 2 3 4 5
0
5

10
15
20
25 Command

25/50/75% quantile
mean (3.33)

 21 data points

1 2 3 4 5
0
5

10
15
20
25 Observer

25/50/75% quantile
mean (2.62)

 21 data points

1 2 3 4 5
0
5

10
15
20
25 Visitor

25/50/75% quantile
mean (2.71)

 21 data points

1 2 3 4 5
0
5

10
15
20
25 Bridge

25/50/75% quantile
mean (2.52)

 21 data points

1 2 3 4 5
0
5

10
15
20
25 Factory Method

25/50/75% quantile
mean (2.24)

 21 data points

1 2 3 4 5
0
5

10
15
20
25 Iterator

25/50/75% quantile
mean (1.43)

 21 data points

1 2 3 4 5
0
5

10
15
20
25 Composite

25/50/75% quantile
mean (2.67)

 21 data points

1 2 3 4 5
0
5

10
15
20
25 Proxy

25/50/75% quantile
mean (3.67)

 21 data points

1 2 3 4 5
0
5

10
15
20
25 Template Method

25/50/75% quantile
mean (2.05)

 21 data points

1 2 3 4 5
0
5

10
15
20
25 Strategy

25/50/75% quantile
mean (2.24)

 21 data points

1 2 3 4 5
0
5

10
15
20
25 Mediator

25/50/75% quantile
mean (3.43)

 21 data points

1 2 3 4 5
0
5

10
15
20
25 Chain

25/50/75% quantile
mean (3.29)

 21 data points

Figure 2.13:Subjective estimation of pattern knowledge. 1=understand very well, 2=understand well,
3=understand roughly, 4=begin to understand, 5=do not understand.

-10 -5 0 5 10
0

2

4

6

8

10
25/50/75% quantile
mean (3.77)

 22 data points

Figure 2.14: Distribution of points obtained in
first question of pattern knowledge test.

Technical Report wucs-97-34, Lutz Prechelt, Barbara Unger, Douglas C. Schmidt

16 Chapter 2: Description of the experiment

Operation
Com
mand

Obser
ver

Visi
tor

Com
posite

Tem
plate
Meth.

Stra
tegy

Medi
ator

Chain
of
Resp.

accept() -1 -1 2 -2 -2 -1 -1 0
register() -2 2 -2 -1 -2 -1 -2 0
execute() 2 -2 -1 -2 0 0 -1 0
add() -2 0 -2 2 -2 -1 -1 0
notify() -1 2 -1 -2 -2 -1 -1 -1
update() -2 2 -2 -2 -2 -1 -2 -1

Table 2.2:Points given for a ’yes’ mark for each of the fields in the table of first question of pattern
knowledge test. No ’no’ marks were required. Correct answers give 2 points each (printed in bold-
face), wrong answers give -1 or -2 points, depending on the degree of absurdity. Some answers
would be arguable and give 0 points.

to be visited; we counted 3 points in this case. Other answers such as using an Iterator (G) have at least a little
truth, but are not universal and therefore counted only 1 point. Sometimes the correct answer was inflicted with
additional suggestions that were wrong, e.g. to use subclasses (M), or was stated rather vaguely. We counted 1
to 3 points in these cases. Figure 2.15 shows the point distribution for this question. We see that 68 percent

0 1 2 3
0

5

10

15

20

25
25/50/75% quantile
mean (2.14)

 22 data points

Figure 2.15: Distribution of points for second
question of pattern knowledge test: What is the
alternative to introducing a Visitor?

A C F G H J K L M N O
0

5

10

15

20

25

15

9

1 1 1

 27 data points

Figure 2.16: Frequency of different answers
for this question: A:introduce new method,
C:Strategy, F:Mediator, G:Iterator, H:Observer,
J:Adapter, K:Bridge, L:Template Method, M:use
subclasses, N:Chain of Responsibility, O:call
available methods.

of all subjects gave the right answer. 5 of these subjects suggested additional methods that were wrong or less
good, but they still received all 3 points.

As for the frequency of the most common suggestions, see Figure 2.16. Only one subject made a nonsensical
suggestion of using an Observer(H); five others also only had the wrong solution Iterator (G). As in the first
question, however, overall pattern knowledge seems acceptable for a majority of our subjects.

We did not evaluate at all the third and fourth question of this test. The third question resulted in answers that
were often difficult to judge. Evaluating this question would have introduced too much subjective bias. The

Washington University St. Louis, Department of Computer Science

2.6 Tasks 17

fourth question was of only minor interest for the experiment; it was mainly meant to distract the participants
from the patterns relevant for the experiment.

2.6 Tasks

This section will shortly describe the tasks and will explain why we chose them. You can find the original task
descriptions in Appendix A and the corresponding program listings in Appendix B.

2.6.1 Constraints

The tasks used in our experiment had to obey the following constraints:

1. The experiment had to be carried out in a single time interval, as opposed to software development over
several days or weeks. On average the tasks should consume less than one hour each, because the exam
was announced to be two hours long (with open end, though).

2. The application domains of the programs had to be well understandable by all subjects. Therefore we
could only use domains that were either known from the course or were so simple that they could be
explained in a few words and understood readily.

3. The tasks should preferably only employ patterns that had been practiced in the course.

2.6.2 How Constraints Were Handled

We handled these constraints as follows. Constraint 1 rules out large programs or complex change requests.
Therefore, we used programs of a few hundred lines and straightforward tasks.

As the experiment was a replication of the Karlsruhe experiment, yet the underlying course did not perfectly
match the given tasks, constraints 2 and 3 could only partially be obeyed: The course did not cover GUI
programming, therefore the Observer task “Tuple” (see below), although simple enough in principle, was not
very natural for the subjects. The Visitor task “Element” was better in this respect. Except for Template Method,
the relevant patterns for both tasks had not been covered thoroughly in the course.

The subjects were orally told to write only comments instead of program code where they found the task to
be too difficult; most subjects produced at least the class, attribute, and method declarations and left out only
method bodies.

2.6.3 Task “Tuple”

The “Tuple” program reads, stores, and displays structured tuples of firstname, lastname, and phone number.
The store/display part is organized according to the Observer pattern. One actual display class is implemented,
generating a simple chronological list of entries. An abstract superclass is provided that can be used for imple-
menting a variety of different display classes: The superclass contains a Template Method providing 3 slots for
filling in arbitrary methods for selecting, sorting, and formatting tuples.

The actual subtasks require the following: Finding a particular spot in the program (subtask 1); introducing
a new display class using the Template Method superclass (subtask 2); introducing another new display class,
Technical Report wucs-97-34, Lutz Prechelt, Barbara Unger, Douglas C. Schmidt

18 Chapter 2: Description of the experiment

similar to the existing one (subtask 3). Please see the exact task descriptions of subtasks 2 and 3 in the appendix,
as they are central for the experiment.

The program will infinitely go through the following loop: read another tuple from the keyboard, then for each
existing observer redisplay its contents line by line in the appropriate order and format on standard output, one
observer after the other, separated by headlines. This output style makes it more difficult to get an intuitive
grasp on the Observers than in a GUI program where each Observer is a fixed separate screen entity. New
observer objects will be created only at program start, before the loop is entered. For the initial program there
is but one observer, for the final program there are three.

2.6.4 Task “Element”

The “Element” program contains a simple library for constructing AND/OR-trees of character strings. AND
is interpreted as concatenation and OR is interpreted as alternation, so that a tree defines a set of alternative
strings. The library has methods for constructing AND nodes, OR nodes, and leafs, for printing a tree in term
form, and for iterating through a tree in order to compute the depth of the deepest AND node, deepest OR node,
and overall deepest node.

The node classes are arranged as a Composite pattern (leaf nodes are the leafs, AND and OR nodes are the
containers), the depth computation is realized in a separate class using a Visitor pattern.

The actual subtasks require the following: Finding a particular spot in the program (subtask 1); determining
the expression u.variants().size() for computing the number of variants (subtask 2); introducing another Visitor
class for efficiently computing the number of variants (subtask 3). Please see the exact task description of
subtask 3 in the appendix, as it is central for the experiment.

Analog reasoning may be used to solve the task instead of actually understanding the program: Understanding
what the depth computation does and what the variant counting computation must do, it is clear that the same
class structure can be used. The depth computation, however, uses an auxiliary method iterate() for handling
AND and OR nodes that is not useful for variant counting, which has to handle AND and OR differently.
Therefore, we may expect that solutions found by analog reasoning often contain iterate(), while solutions
found from deeper program understanding usually will not.

2.7 Internal Validity

There are two sources of threats to the interval validity of an experiment2: Insufficient control of relevant
variables or inaccurate data gathering or processing.

As far as we can see, all relevant external variables have been appropriately controlled in this experiment. In
particular, there is no bias in the random group sampling, the subjects seemed willing to perform as best as they
could in both experimental conditions, environmental conditions were essentially the same for all subjects,
and the counter-balanced experiment design partially controlled for accidental group differences, learning, and
sequencing effects, if any. The counter-balancing control is only partial for the following reason: While the
experiment itself was counter-balanced, the data analysis and result interpretation partly ignores the results for

2Definition from [3]: “Internal validityrefers to the extent to which we can accurately state that the independent variable produced
the observed effect.”

Washington University St. Louis, Department of Computer Science

2.8 External Validity 19

the Tuple data (for reasons we will discuss in the results section). Therefore, some of the advantages of the
counter-balanced experiment design are lost. However, the power of the experiment is still larger than that of
an ordinary two-group, one-treatment experiment.

The dominant control problem is mortality: Some students gave up on one or both of the tasks, when they
recognized it would (or might) be too difficult for them or take too long. Four students gave up on both tasks.

Fortunately, mortality happened almost exactly as often in the groups with PD as in those without PD. It is
therefore safe to assume that the mortality does not bias the results, provided that we ignore entirely those data
points for which the tasks were not completed — which is just what we choose to do.

We tried to minimize data gathering errors by exercising utmost care. Data processing was almost completely
automated and we believe it to be accurate. Manual and automated consistency checks were applied for detect-
ing various kinds of mistakes in data gathering or processing.

2.8 External Validity

There are three sources of differences between the experimental situation and real software maintenance situ-
ations that limit the generalizability (external validity) of the experiment: in real situations there are subjects
with more experience, programs of different size or structure, and tasks of different kind or complexity.

The most frequent concern with controlled experiments using student subjects is that the results cannot be
generalized to professional software engineers because the latter are so much more experienced. In the present
case, this may either be an advantage or a disadvantage: Professional programmers may have less need for PD
because of their experience but just as well they may also be able to exploit it more profitably than our student
subjects.

Another obvious difference is program size. Compared to typical industrial size programs, the experiment
programs are rather small. This will not invalidate any positive result of the experiment, though: It is highly
plausible that with increasing program size, the benefits from PD, if any, can onlyincreaseas well, because PD
provides program slicing information. For pattern-relevant tasks, PD points out which parts of a program are
relevant and allows to ignore the rest; such information becomes the more useful the more source code can be
ignored. It is impossible to predict what implications different application domains will have for our results,
but it seems likely that at least domains that do not distort the design patterns’ metaphors will behave similar to
those of the experiment.

Finally, the kind of task and its complexity may be different. In the experiment, the kind of task was program
additions by complete new classes and the complexity was rather low. The experiment does not really tell us
about other kinds of task, but its results may be interpreted to indicate that tasks of higher complexity will
benefit more from PD, see the discussion below.

Technical Report wucs-97-34, Lutz Prechelt, Barbara Unger, Douglas C. Schmidt

Chapter 3

Experiment results and discussion

This chapter presents and interprets the results of the experiment. The first section explains the means of sta-
tistical analysis and result presentation that we use and explains why they were chosen. The second section
presents the central results (subjects’ objective performance) and the third section adds data from the post-
mortem questionnaire for understanding some of the effects underlying the performance.

3.1 Statistical Methods

3.1.1 Inference

Most formal statistical reasoning used below is meant for comparing the means of pairs of distributions. Hardly
any of these distributions are normal distributions: Most of them are discrete and coarse-grained, several of
them have two peaks, and many are heavily skewed or even monotone. Therefore, statistical analysis must not
use a parametric test such as the t-test that assumes a normal distribution. On the other hand, classical non-
parametric tests, such as the Wilcoxon Rank-Sum Test, cannot perform inference for the mean but only for the
median, which is less relevant for our purpose. Moreover, rank sum tests cannot provide confidence intervals.

In this report, we thus use resampling statistics (bootstrap) to compare the means of arbitrary distributions non-
parametrically. The basic idea of resampling is considering the distribution of the sample to be the distribution
of the underlying universe1, as it is the best approximation of the actual distribution we have, unless we make
assumptions. Instead of making assumptions and then using an analytical procedure for inference, resampling
uses a computational procedure. In resampling one produces an arbitrary number of samplesSi from the given
sampleA by picking an arbitrary element ofA at random each time. The chosen elements are not removed
from A, so they can appear multiple times in the sameSi (“sampling with replacement”). This “re-sampling”
produces arbitrary amounts of observations that directly simulate the universe from whichA was taken. From
these observations, a confidence interval for the target statistic (whatever it may be) can be computed directly.

In this report, the only resampling procedure used is the comparison of the means of two samplesA andB
(which may have the same or different size). To do this, we repeatedly draw resamplesAi andBi fromA and
B, compute their means, and collect the setD of differencesdi := Ai �Bi. From the empirical distribution of
D we directly read confidence limits ford and the significance of the difference.

1This principle is known asplug-in estimation.

20

3.1 Statistical Methods 21

Our resampling program for this purpose is written in Java using the packageresamplethat is available from
http://wwwipd.ira.uka.de/˜prechelt/sw/. The core part of this program is roughly as follows:

/* a, b contains the sample A, B */
ResampleVector result = new ResampleVector();
ResampleVector resample_a,

resample_b;
Double d;
for (int i = 1; i <= 10000; i++) { // number of resample trials

resample_a = a.sample(a.size()); // take a resample from A
resample_b = b.sample(b.size()); // take a resample from B
// compute the difference of the resample means:
d = resample_a.mean() - resample_b.mean();
result.addElement(d); // store the result

}
result.sort();

After this procedure,result contains an empirical distribution of 10000 differences, from which quan-
tiles (for confidence limits) or inverse quantiles (at zero, for computing the significance of the differ-
ence) can be read: The 90% confidence interval ford ranges fromresult.quantile(0.05) to
result.quantile(0.95) and the significance isresult.quantileWhere(0.0) (or one minus
that, depending of the sign of the difference). In the tables below, the confidence intervals are normalized
and converted into percentages ofb.mean() .

Of course resampling is no cure-all: If there is too little data, the confidence intervals will be imprecise. How-
ever, for our purposes, it works well: We have several dozen data points in each sample, one-dimensional
distributions only and the underlying distributions either have only few distinct values or are quite smooth.
Under such circumstances, enough data is available so that resampling produces reliable results. On the other
hand our sample distributions have very different shapes and few of them are anything close to normal. In
contrast to classical statistical methods, resampling avoids distributional assumptions and allows for using the
same procedure in all cases.

A nice introduction into resampling for statistical laymen is by Simon [11]. Readers with deeper statistical
knowledge may prefer the more mathematical yet highly understandable text of Efron and Tibshirani [4].

The only other statistical test used is the�2 test on a four field table for testing the significance of frequency
differences of a binary attribute. The application is comparing the incidence of a certain event in two exper-
imental groups. If the number of events is under 5, I also report the Fisher exactp statistic in addition to the
p-value of the�2 test; the exactp is more reliable in this case. These statistical tests were performed using
Statistica 5.0.

We consider a test result significant ifp is less or equal0:1.

3.1.2 Presentation

The presentation of the results uses two forms: The data that underwent formal statistical inference is presented
either in tables or directly in the test using probabilities, absolute values, and percentages.

For other data or for additional illustration we use histograms. Since most distributions have only few distinct
values, histograms represent the data quite precisely, yet allow for easy consumption and comparison.
Technical Report wucs-97-34, Lutz Prechelt, Barbara Unger, Douglas C. Schmidt

22 Chapter 3: Experiment results and discussion

3.2 Performance on the Tasks

In this section we compare the performance of the groups with and without PD. For each task, we first consider
the individual classes of errors that occurred and then investigate global quantitative effects with respect to
time required and solution quality obtained. We also study the learning effect from the first to the second task
performed by each subject.

3.2.1 Metrics employed

In the evaluation below, the following measurements and criteria will be used. Each class of them is described
by the following terms [5]: A measurement can be either objective (and therefore in principle completely
reproducible and out of question) or subjective (and therefore subject to debate); it can be either direct or be
derived from other measurements; it can be on a nominal, ordinal, interval, cardinal, or absolute scale; it can
have limited precision and limited accuracy even if it is objective.

Groups (objective, direct, nominal scale, completely accurate): The groups (as described in Section 2.2 on
page 9) were used for two purposes: Comparing performance with PD against performance without PD and
additionally comparing performance in the first task against performance in the second. For instance for the
Element task comparing PD against no PD means comparing the union of the groupsE+T� and T�E+

against the union of the groupsT+E� andE�T+and comparing each subject’s first task against the second
means comparingE+T� againstT�E+ (once with respect toElementand once with respect toTuple) and
E�T+ againstT+E�(likewise).

Incidence counts(subjective/objective, direct, absolute scale): Incidence counts reflect how often a particular
event occurs in a group. We considered incidence counts for various classes of errors in the solutions delivered
by the subjects. In a few of the cases, it is debatable whether a certain solution is an instance of the event or
not, so there is some amount of subjectivity in the data. Except for subjectivity, the incidence data is considered
accurate, as we gathered it carefully.

Time measurements(objective, direct, cardinal scale, precision 1 minute, accuracy about 1 minute): The
subjects noted start and end times on each page of the experiment materials. We computed the difference
between the end of the last page of a task and the start of the first page of the task as the work time measurement;
the subjects did not make major breaks that had to be subtracted. We used the time data only on the task level (as
opposed to the subtask level) as it is the one with the clearest interpretation and the only one that was validated
upon collection of each part of the experiment materials.

Points (subjective/objective, direct, cardinal scale, precision 1 point, completely accurate): We graded the
solutions by assigning points, using a penalty system where possible (subtracting a fixed number of points for
each kind of error). The individual penalties are explained in the actual results sections below. We consider
the differences of numbers of points between the groups for each subtask individually (“points 1, points 2,
points 3), for the whole task (“all points”), and for the possibly PD-relevant subtasks (“relevant points”, for
Element this is points 3, for Tuple it is points 2+points 3). Points are meant to characterize the quality of a
solution, but this interpretation must be applied only with care, as the scale chosen is necessarily subjective.

Productivity (subjective/objective, derived, cardinal scale, precision 1 point per hour): A measure that is meant
to characterize productivity was derived by computing points per hour. Due to the restrictions of the point
measure, points per hour also have to be interpreted with care.

Washington University St. Louis, Department of Computer Science

3.2 Performance on the Tasks 23

Group filters (objective, derived, nominal scale): For the interpretation of results it is sometimes useful to
consider only those subjects that have a certain attribute. In particular we would like to know how the results
for talented subjects differ from the less talented ones. For this purpose, we use three different filters for
selecting parts of a group:

1. Experience: We consider a subject to have high programming experience, if he has written a largest
program of at least 2000 LOC and has used at least 4 programming languages. Otherwise we consider
him to have low experience. The above threshold values are the medians of the answer distributions of the
respective questions in our first questionnaire. There are 10 subjects with high experience and 12 with low
experience.

2. Pattern knowledge: We consider a subject to have good knowledge of design patterns, if he has obtained
at least 8 points for answers a.) and b.) in the pattern test (second questionnaire). Otherwise we consider
him to have low pattern knowledge. The threshold of 8 is the median of the respective point distribution.
Note that the equivalence of many points to a good active knowledge of design patterns might be dubious.
It is possible that our test is no good measure of applicable pattern knowledge. There are 13 subjects with
high pattern knowledge and 9 with low pattern knowledge.

3.2.2 Task “Element”

As mentioned above, for subtasks 1 and 2 it should not matter whether PD is present or not. For subtask 1,
we see the absolute frequency of different kinds of errors in the solutions in Figure 3.1. In the left histogram,
the data for the group with PD is shown, on the right without PD. The individual error codes were chosen in
an ad-hoc fashion and do not mean anything in particular. In principle, there could be more data points than
subjects in the group because each solution can have more than one error. As we see, there is little difference
between left and right — just as expected.

A B X Z
0
2
4
6
8

10 Element with PD
 8 data points

A B X Z
0
2
4
6
8

10 Element without PD
 8 data points

Figure 3.1:Frequency of different errors for subtask 1 of Element.
Codes: A:correct solution B:changes individual strings in main(), X:other, Z:no answer.
A represents no error and costed no points. B costed both points.

The same is true for subtask 2 as shown in Figure 3.2 below. There are much fewer error classes, but still only
small differences in their frequency from one group to the other.

For subtask 3, PD was supposed to be relevant. Therefore one might expect to find error class N more frequently
in the group without PD; see Figure 3.3 below). However, there is no significant difference.

Next, we aggregate all error classes into a sum of points per subtask by applying the penalties indicated in the
figure captions above. We also review the time required and the resulting value of points per hours. For all
of these analyses we removed the data points of subjects that did not complete the Element task. Fortunately,
there are exactly as many such data points from theE+ group as from theE� group, namely 3. These 6 data
points are ignored completely in the discussion below.
Technical Report wucs-97-34, Lutz Prechelt, Barbara Unger, Douglas C. Schmidt

24 Chapter 3: Experiment results and discussion

A I K X Z
0
2
4
6
8

10 Element with PD
 8 data points

A I K X Z
0
2
4
6
8

10 Element without PD
 8 data points

Figure 3.2:Frequency of different errors for subtask 2 of Element.
Codes: A:correct solution, I:counter in print() method in xxElement classes, K:counter elsewhere in
xxElement classes, X:other, Z:no answer.
A represents no error and costed no points. I and K costed one point. X was judged individually.

A N O X Z
0
5

10
15
20
25 Element with PD

 8 data points

A N O X Z
0
5

10
15
20
25 Element without PD

 8 data points

Figure 3.3:Frequency of different errors for subtask 3 (class construction) of Element.
Codes: A:correct solution with new Visitor class N:new method in xxElement classes, O:modifies
existing Visitor class instead, X:other, Z:no answer.
A represents no error and costed no points. N costed two points. O costed four points.

The results are presented in Table 3.1 below. Note that the table does not contain some of the lines present in
the corresponding table from the Karlsruhe experiment report, due to differences in the experiment design. The
results can be summarized as follows:

Points: As expected, there are no differences in the points for subtasks 1 and 2, where PD was not supposed
to be relevant (lines 1 and 2). However, there is also no significant difference for the pattern-relevant class
construction subtask (line 3). As a result, the differences for all points (line 6) or relevant points (line 7, see
also Figures 3.4 and 3.5 on page 26) are not significant as well.

There are similar numbers of correct solutions with and without PD for subtask 3 (4 out of 8 versus 3 out of 8,
�2 = 0:25, p = 0:61, Fisher exactp = 0:50).

If we look separately at only those subjects that have high (line 10) or low (line 11) amounts of previous
programming experience, or those with good (line 8) or less good (line 9) results in the pattern knowledge
test, we find a few differences that appear significant. However, there are so few data points in the respective
samples that these results should be considered highly dubious and be discarded, as they are highly susceptible
to even modest changes in but a single data point.

Summing up, PD had rather little influence on the number of points. Most of the subjects that did not drop out
of the task entirely performed rather well.

Time: The time required for solving Element was significantly lower with PD than without (line 12, see also
Figures 3.6 and 3.7 on page 26). This is a rather clear result: The introduction of PD reduces task completion
time by about one quarter of its previous value. Again, the results from applying the pattern knowledge and
experience filters should be discarded (lines 15 to 18).

Washington University St. Louis, Department of Computer Science

3.2 Performance on the Tasks 25

Task Element mean means difference signifi-
with PD w/o PD (90% confid.) cance

Variable best P+ P� I p

1 points 1 2 1.7 2.0 (�38% : : : 0:0%) (0.34)

2 points 2 2 1.3 1.5 �50% : : : 33% 0.42

3 points 3 8 6.7 6.5 �11% : : : 19% 0.28

6 all points 12 9.8 10.0 �18% : : : 13% 0.48

7 relevant points 8 6.7 6.5 �12% : : : 19% 0.28

8 — high pat.knwldg. 8 7.1 7.0 �13% : : : 17% 0.41

9 — (low pat.knwldg.) 8 4.0 6.0 �50:0% : : : � 16% 0.003
10 — (high experience) 8 7.1 7.3 �16% : : : 14% 0.40

11 — (low experience) 8 4.0 6.0 �47% : : : � 20% 0.000
12 time (minutes) 29 52.1 67.5 �43% : : : � 0:5% 0.046
15 — high pat.knwldg. 29 45.5 68.0 �52% : : : � 14% 0.000
16 — (low pat.knwldg.) 45 98.0 67.0 31% : : : 63% 0.000
17 — (high experience) 29 45.5 62.0 �55% : : : � 0:3% 0.047
18 — (low experience) 54 98.0 70.8 29% : : : 49% 0.000
19 points per hour 20 13.4 9.4 3:4% : : : 81% 0.035
20 — high pat.knwldg. 20 14.9 9.6 23% : : : 87% 0.001
21 — (low pat.knwldg.) 14 3.1 9.2 �101% : : : � 38% 0.000
22 — (high experience) 20 14.9 11.4 �2:8% : : : 66% 0.066
23 — (low experience) 11 3.1 8.2 �79% : : : � 46% 0.000

Table 3.1:(left to right:) Name of variable, best result obtained by any subject, arithmetic average P+

of sample of subjects provided with design pattern information, ditto without, 90% confidence interval
I for difference P+ � P� (measured in percent of P�), significance p of the difference (one-sided).
“relevant points” are identical to points 3. I and p were computed using resampling with 10000 trials.
Parentheses around intervals and p values mean dubious results due to zero variance in at least one
of the samples. Parentheses around variable names mean dubious results due to at least one sample
having less than four entries (low pat.knwldg. E+ (E�) samples have 1 (4) entries, respectively; high
experience E+ (E�) samples have 7 (3) entries; low experience E+ (E�) samples have 1 (5) entries)
due to subject mortality.

Technical Report wucs-97-34, Lutz Prechelt, Barbara Unger, Douglas C. Schmidt

26 Chapter 3: Experiment results and discussion

0 5 10
0

2

4

6

8

10
25/50/75% quantile
mean (6.75)

 8 data points

Figure 3.4: Distribution of “relevant points” ob-
tained in task Element with PD.

0 5 10
0

2

4

6

8

10
25/50/75% quantile
mean (6.5)

 8 data points

Figure 3.5:Ditto, without PD.

0 20 40 60 80
0

2

4

6

8

10
25/50/75% quantile
mean (52.13)

>_

 8 data points

Figure 3.6: Distribution of time (in minutes) re-
quired for solving task Element with PD.

0 20 40 60 80
0

2

4

6

8

10
25/50/75% quantile
mean (67.5)

>_

 8 data points

Figure 3.7:Ditto, without PD.

Washington University St. Louis, Department of Computer Science

3.2 Performance on the Tasks 27

For points per hour, the results are analog to time alone (lines 19 to 23).

3.2.3 Task “Tuple”

In subtask 1 of Tuple, only a single subject made an error, all others were completely correct. For subtask 2 we
do also not find any large differences in the number of errors in both groups as shown in Figure 3.8.

A B C D F X Z
0
2
4
6
8

10 Tuple with PD
 8 data points

A B C D F X Z
0
2
4
6
8

10 Tuple without PD
 9 data points

Figure 3.8:Frequency of different errors for subtask 2 (class construction) of Tuple.
Codes: A:correct solution B:inherits from class Name Number Tuple Display 1, C:modifies class
Name Number Tuple Display 1, D:output not sorted, F:inherits from class Tuple Display, X:other,
Z:no answer.
A does not represent an error and costed no point. B, D costed two points. C, F costed four points.

Subtask 3 again exhibits more errors in the group with PD, but there is no striking pattern is the distributions
(see Figure 3.9).

A L M N O P Q X Z
0
2
4
6
8

10 Tuple with PD
 14 data points

A L M N O P Q X Z
0
2
4
6
8

10 Tuple without PD
 8 data points

Figure 3.9:Frequency of different errors for subtask 3 (class construction) of Tuple.
Codes: A:correct solution, L:inherits from Tuple Display, M:inherits from Tuple Display A,
N:less than() not implemented, O:format() not implemented, P:select() not implemented,
Q:new tuples() not implemented, X:other, Z:no answer.
A does not represent an error and costed no point. N, O, P, Q, X each costed one point. L, M each
costed two points.

Next, we aggregate all error classes into a sum of points per subtask by applying the penalties indicated in the
figure captions above. We also review the time required and the resulting value of points per hours. For all of
these analyses we removed the data points of subjects that did not complete the Tuple task. Fortunately, there
are about as many such data points from theT+ group as from theT� group, namely 5 versus 4, so that the
mortality does not bias the results a lot. These 9 data points are ignored completely in the discussion below.

The results are presented in Table 3.2 below. Note that the table does not contain some of the lines present in
the corresponding table from the Karlsruhe experiment report, due to differences in the experiment design. The
results can be summarized as follows:
Technical Report wucs-97-34, Lutz Prechelt, Barbara Unger, Douglas C. Schmidt

28 Chapter 3: Experiment results and discussion

Task Tuple mean means difference signifi-
with PD w/o PD (90% confid.) cance

Variable best P+ P� I p

1 points 1 2 1.8 2.0 (�25% : : : 0) (0.32)

3 points 2 8 5.5 5.8 �44% : : : 29% 0.41

5 points 3 8 5.0 6.4 �44% : : :� 0:3% 0.048
6 all points 18 12.3 14.2 �33% : : : 5:6% 0.12
7 relevant points 16 10.5 12.2 �38% : : : 8:5% 0.15
8 — (high pat.knwldg.) 16 9.3 13.2 �45% : : : � 13% 0.001
9 — (low pat.knwldg.) 16 11.6 10.0 �20% : : : 53% 0.26

10 — (high experience) 16 11.0 13.2 �42% : : : 12% 0.23

11 — (low experience) 16 10.2 10.0 �33% : : : 40% 0.42

12 time (minutes) 29 64.1 62.7 �23% : : : 29% 0.45

15 — (high pat.knwldg.) 29 63.6 55.2 �23% : : : 56% 0.27

16 — (low pat.knwldg.) 50 64.6 81.5 �45% : : : 3:2% 0.087
17 — (high experience) 29 55.0 55.2 �28% : : : 25% 0.48

18 — (low experience) 50 68.7 81.5 �40% : : : 8:8% 0.12
19 points per hour 29 11.8 15.5 �55% : : : 4:0% 0.086
20 — (high pat.knwldg.) 29 11.6 18.2 �69% : : :� 6:3% 0.019
21 — (low pat.knwldg.) 15 12.1 9.0 �4:4% : : : 67% 0.054
22 — (high experience) 29 13.5 18.2 �53% : : :� 1:7% 0.030
23 — (low experience) 16 11.0 9.0 �16% : : : 62% 0.16

Table 3.2:(left to right:) Name of variable, best result obtained by any subject, arithmetic average P+

of sample of subjects provided with design pattern information, ditto without, 90% confidence interval
I for difference P+ � P� (measured in percent of P�), significance p of the difference (one-sided).
“relevant points” are points excluding subtask 1. I and p were computed using resampling with 10000
trials. Parentheses around intervals and p values mean dubious results due to zero variance in at
least one of the samples. Parentheses around variable names mean dubious results due to at least
one sample having less than four entries (high pat.knwldg. T+ (T�) samples have 3 (5) entries,
respectively; low pat.knwldg. T+ (T�) samples have 3 (2) entries, respectively; high experience T+

(T�) samples have 2 (5) entries; low experience T+ (T�) samples have 4 (2) entries) due to subject
mortality.

Washington University St. Louis, Department of Computer Science

3.2 Performance on the Tasks 29

Points: As expected, there is no significant difference in the number of points obtained in subtask 1 (line 1).
There is also no difference for the class construction subtask 2 implementing an observer using the Template
Method superclass (line 2). Surprisingly, there is a significant difference favoring the groupwithoutPD in the
other class construction subtask. This result seems to contradict our hypothesis that PD is helpful. However,
we believe the result to be spurious as we will argue below in Chapter 4.

There are similar numbers of correct solutions with and without PD for subtask 2 (3 out of 6 versus 2 out of
7, �2 = 0:63, p = 0:43, Fisher exactp = 0:41) as well as subtask 3 (1 out of 6 versus 2 out of 7,�2 = 0:26,
p = 0:61, Fisher exactp = 0:56) and both together (1 out of 6 versus 1 out of 7,�2 = 0:01, p = 0:91, Fisher
exactp = 0:73). The small fraction of correct solutions makes it obvious, though, that overall the task was too
difficult for these subjects.

Similar statements apply also to the total number of points and the relevant points (lines 6 and 7, see also
Figures 3.10 and 3.11).

0 5 10 15
0

2

4

6

8

10
25/50/75% quantile
mean (10.5)

 6 data points

Figure 3.10:Distribution of “relevant points” ob-
tained in task Tuple with PD.

0 5 10 15
0

2

4

6

8

10
25/50/75% quantile
mean (12.29)

 7 data points

Figure 3.11:Ditto, without PD.

As discussed in the section on the Element task above, applying the pattern knowledge and experience filters
for splitting the groups leads to dubious results as the groups become too small (lines 8 to 11). The results
should therefore be taken out of account.

Time: For program Tuple, subjects with PD required almost exactly the same amount of time as subjects
without PD (line 12, see also Figures 3.12 and 3.13 below). The results for partial groups should again be
discarded (lines 15 to 18). Combining points and times into productivity, we find another spurious difference,
just like for points alone (line 19).

3.2.4 Learning effect

For the Karlsruhe experiment, we had evaluated the subgroups separately to assess a possible learning effect
during the experiment. For instance for the Element task, we compared the groupE+T� to groupE�T+ to
review performance for the first task performed by each subject only. Likewise for the second task and likewise
for Tuple. We also compared the differences of groups with and without PD for the first versus the second task.

In the present experiment, such an analysis is not reasonable: The groups just become too small to be reliable.
We therefore leave the analysis out of the present report.
Technical Report wucs-97-34, Lutz Prechelt, Barbara Unger, Douglas C. Schmidt

30 Chapter 3: Experiment results and discussion

0 20 40 60 80
0

2

4

6

8

10
25/50/75% quantile
mean (64.17)

>_

 6 data points

Figure 3.12:Distribution of time (in minutes) re-
quired for solving task Tuple with PD.

0 20 40 60 80
0

2

4

6

8

10
25/50/75% quantile
mean (62.71)

>_

 7 data points

Figure 3.13:Ditto, without PD.

3.3 Underlying Effects

In this section we analyze data from our postmortem questionnaire that might explain some of the effects
underlying the results.

3.3.1 Faults in Pattern Recognition

The first question in our postmortem questionnaire concerned the patterns found by the subjects. We see the
results for Element in Figures 3.15 and 3.14 below. Not surprisingly, the subjects identified the patterns more
reliably when PD was given although the difference is not significant for the Composite pattern (Visitor: 7 out
of 8 versus 3 out of 8,�2 = 4:27, p = 0:039, Fisher exactp = 0:059. Composite: 8 out of 8 versus 6 out
of 8, �2 = 2:29, p = 0:13, Fisher exactp = 0:23). The number of spurious pattern identifications is smaller
with than without PD (3 out of 18 versus 9 out of 19,�2 = 3:98, p = 0:046, Fisher exactp = 0:049). As
we see, subjects will not recognize patterns as reliably without PD, even if the program is not overly large or
complex.2.

For Tuple, on the other hand, PD did not make a difference either for correct nor for spurious pattern recognition
as shown in Figures 3.17 and 3.16 below; another indication that something went wrong with the Tuple task in
the experiment. (Observer: 4 out of 6 versus 5 out of 7,�2 = 0:03, p = 0:85, Fisher exactp = 0:66. Template
Method: 5 out of 6 versus 4 out of 7,�2 = 1:04, p = 0:31, Fisher exactp = 0:34. spurious patterns: 4 out of
13 versus 7 out of 16,�2 = 0:51, p = 0:47, Fisher exactp = 0:37).

Check marks decorated with parentheses or question marks were counted as one half. Note that the above
numbers exclude the subjects that did not complete the respective task (as opposed to the following figures
below, which all include them).

3.3.2 Problem Solving Method

Directly after each task we asked how the subjects had solved them. Unfortunately, the free-text answers to
these questions were unusable, as different subjects used different views and different levels of abstraction in

2Another interpretation of the results is that some subjects forgot the patterns again before the postmortem questionnaire.

Washington University St. Louis, Department of Computer Science

3.3 Underlying Effects 31

1 2 3 4 5 6 7 8
0

5

10

15

20

25
 18 data points

Figure 3.14:Number of times each pattern was
checked as “found in Element” by subjects
with PD. 1=Command, 2=Observer, 3=Visitor,
4=Composite, 5=Template Method, 6=Strategy,
7=Mediator, 8=Chain of Responsibility.

1 2 3 4 5 6 7 8
0

5

10

15

20

25
 19 data points

Figure 3.15:Ditto for subjects without PD. In all
cases, checkmarks that were accompanied by
question marks or question marks alone were
counted as 0.5.

1 2 3 4 5 6 7 8
0

5

10

15

20

25
 13 data points

Figure 3.16:Number of times each pattern was
checked as “found in Tuple” by subjects with
PD. Encoding as in Figure 3.14.

1 2 3 4 5 6 7 8
0

5

10

15

20

25
 15.5 data points

Figure 3.17:Ditto for subjects without PD.

Technical Report wucs-97-34, Lutz Prechelt, Barbara Unger, Douglas C. Schmidt

32 Chapter 3: Experiment results and discussion

their answers. However, there also was a multiple-choice question in our postmortem questionnaire concerning
whether, when, and why subjects had actively searched for design patterns in the programs.

1 2 3 4 5 6 7
0

2

4

6

8

10
 11 data points

Figure 3.18: Element with PD: Whether, why,
and when subjects actively searched for pat-
terns. 1=No, unnecessary to know patterns;
2=No, patterns were documented; 3=No, found
them immediately; 4=No, other reason; 5=Yes,
right from the start; 6=Yes, when it became my
only chance; 7=Yes, later for other reason.

1 2 3 4 5 6 7
0

2

4

6

8

10
 10 data points

Figure 3.19:Ditto for subjects without PD.

1 2 3 4 5 6 7
0

2

4

6

8

10
 11 data points

Figure 3.20:Tuple with PD: Whether, why, and
when subjects actively searched for patterns.
Encoding as in Figure 3.19.

1 2 3 4 5 6 7
0

2

4

6

8

10
 11 data points

Figure 3.21:Ditto for subjects without PD.

The results are shown in Figures 3.18 to 3.21. For Element/Tuple, as many as 55%/55% of the subjects with
PD stated that they actively searched for patterns, whereas without PD these numbers are 20%/36%. Moreover,
it is striking that so few of the subjects with PD chose the expected answer 2 “I did not search for patterns,
because the patterns were documented.” These two observations may mean that for some reason the question
was difficult to interpret for the subjects. As for a learning effect, see Figures 3.22 and 3.23 below. Apparently
only few subjects consciously learned that searching for the patterns might be helpful.

Washington University St. Louis, Department of Computer Science

3.4 Subjects’ Experiences 33

1 2 3 4 5 6 7
0

2

4

6

8

10
 21 data points

Figure 3.22:Whether, why, and when subjects
actively searched for patterns in their first task.
Encoding as in Figure 3.19.

1 2 3 4 5 6 7
0

2

4

6

8

10
 22 data points

Figure 3.23:Ditto for second task.

3.4 Subjects’ Experiences

3.4.1 Difficulty of tasks

Our question on how difficult the subjects found the tasks had the following results, see Figure 3.24 below:3

Little more than one quarter of the subjects found the tasks difficult and on average the subjects found the
second task somewhat easier than the first — two opinions that are not backed up by the objective results.
For the overall difficulty the histograms show that some “difficult” answers are reduced to “somewhat difficult”
when PD is introduced, but overall it did (subjectively!) make only a modest difference whether PD was present
or not.

How well the subjects were subjectively able to concentrate on the tasks is shown in Figure 3.25 below. Gener-
ally, our subjects could, so they claimed, concentrate sufficiently well; not much worse in the second task than
in the first. Interestingly, the presence or absence of PD had no impact.

We also asked how many errors the subjects thought they had in their solutions. The results are shown in
Figure 3.26 on page 35. Generally, the subjects had no high confidence in their solutions. Two thirds or more
of them expected to have at least one error. Confidence did not change from the first task to the second, but was
a little lower with PD than without.

These confidence ratings are far more negative than the difficulty ratings would suggest. This discrepancy may
mean that at least the difficulty ratings are dubious.

3.4.2 Is Pattern Knowledge Helpful?

Two further questions concerned a subjective estimation whether knowledge of design patterns was useful for
solving the tasks.

The first question asked for the usefulness of design pattern knowledge in general. The results are shown in
Figure 3.27 on page 35. From all aspects, a majority of the subjects found previous pattern knowledge useful:

3Again, we treat the ordinal scale of the answers as an interval scale.

Technical Report wucs-97-34, Lutz Prechelt, Barbara Unger, Douglas C. Schmidt

34 Chapter 3: Experiment results and discussion

1 2 3 4 5
0
5

10
15
20
25 all first task

25/50/75% quantile
mean (2.81)

 21 data points

1 2 3 4 5
0
5

10
15
20
25 all second task

25/50/75% quantile
mean (2.45)

 22 data points

1 2 3 4
0
5

10
15
20
25 Element without PD

25/50/75% quantile
mean (2.73)

 11 data points

1 2 3 4
0
5

10
15
20
25 Element with PD

25/50/75% quantile
mean (2.45)

 11 data points

1 2 3 4
0
5

10
15
20
25 Tuple without PD

25/50/75% quantile
mean (2.73)

 11 data points

1 2 3 4
0
5

10
15
20
25 Tuple with PD

25/50/75% quantile
mean (2.6)

 10 data points

1 2 3 4
0
5

10
15
20
25 all Element

25/50/75% quantile
mean (2.59)

 22 data points

1 2 3 4
0
5

10
15
20
25 all Tuple

25/50/75% quantile
mean (2.67)

 21 data points

1 2 3 4
0
5

10
15
20
25 all without PD

25/50/75% quantile
mean (2.73)

 22 data points

1 2 3 4
0
5

10
15
20
25 all with PD

25/50/75% quantile
mean (2.52)

 21 data points

Figure 3.24:Subjective difficulty of tasks. 1=quite simple, 2=not too simple, 3=somewhat difficult,
4=difficult.

1 2 3 4 5
0
5

10
15
20
25 all first task

25/50/75% quantile
mean (2.77)

 22 data points

1 2 3 4 5
0
5

10
15
20
25 all second task

25/50/75% quantile
mean (2.55)

 22 data points

1 2 3 4 5
0
5

10
15
20
25 all Element

25/50/75% quantile
mean (2.64)

 22 data points

1 2 3 4 5
0
5

10
15
20
25 all Tuple

25/50/75% quantile
mean (2.68)

 22 data points

1 2 3 4 5
0
5

10
15
20
25 all without PD

25/50/75% quantile
mean (2.64)

 22 data points

1 2 3 4 5
0
5

10
15
20
25 all with PD

25/50/75% quantile
mean (2.68)

 22 data points

Figure 3.25:Subjective concentration ability during tasks. 1=very high, 2=high, 3=OK, 4=somewhat
low, 5=low.

Washington University St. Louis, Department of Computer Science

3.4 Subjects’ Experiences 35

1 2 3 4
0
5

10
15
20
25 all first task

 22 data points

1 2 3 4
0
5

10
15
20
25 all second task

 22 data points

1 2 3 4
0
5

10
15
20
25 Element without PD

 11 data points

1 2 3 4
0
5

10
15
20
25 Element with PD

 11 data points

1 2 3 4
0
5

10
15
20
25 Tuple without PD

 11 data points

1 2 3 4
0
5

10
15
20
25 Tuple with PD

 11 data points

1 2 3 4
0
5

10
15
20
25 all without PD

 22 data points

1 2 3 4
0
5

10
15
20
25 all with PD

 22 data points

Figure 3.26:Subjects’ estimate of errors in solutions. 1=none, 2=at most one,3=several, 4=don’t know.

1 2 3 4 5
0
5

10
15
20
25 all first task

25/50/75% quantile
mean (3.64)

 22 data points

1 2 3 4 5
0
5

10
15
20
25 all second task

25/50/75% quantile
mean (3.68)

 22 data points

1 2 3 4 5
0
5

10
15
20
25 Element without PD

25/50/75% quantile
mean (3.73)

 11 data points

1 2 3 4 5
0
5

10
15
20
25 Element with PD

25/50/75% quantile
mean (4)

 11 data points

1 2 3 4 5
0
5

10
15
20
25 Tuple without PD

25/50/75% quantile
mean (3)

 11 data points

1 2 3 4 5
0
5

10
15
20
25 Tuple with PD

25/50/75% quantile
mean (3.91)

 11 data points

1 2 3 4 5
0
5

10
15
20
25 all without PD

25/50/75% quantile
mean (3.36)

 22 data points

1 2 3 4 5
0
5

10
15
20
25 all with PD

25/50/75% quantile
mean (3.95)

 22 data points

Figure 3.27:Subjective helpfulness of previous pattern knowledge for tasks. 1=no, 2=little, 3=am
unsure, 4=yes, 5=yes much.

Technical Report wucs-97-34, Lutz Prechelt, Barbara Unger, Douglas C. Schmidt

36 Chapter 3: Experiment results and discussion

This is true for the first task as well as the second, for Element as well as for Tuple, and with PD given as well
as without. However, without PD the usefulness was considered lower than with PD, in particular for Element.
The latter is another positive result: as the programs were the same, this result (if correct) indicates that PD
allows for better exploitation of pattern knowledge.

3.4.3 Is Pattern Documentation (PD) Helpful?

The second question asked for the usefulness of the concrete PD given in the programs. The results are shown
in Figure 3.28. In principle, an answer to this question makes sense only for the cases with PD. Most of the

1 2 3 4 5
0
5

10
15
20
25 all first task

25/50/75% quantile
mean (3.05)

 21 data points

1 2 3 4 5
0
5

10
15
20
25 all second task

25/50/75% quantile
mean (3.21)

 19 data points

1 2 3 4 5
0
5

10
15
20
25 (Element without PD)

25/50/75% quantile
mean (3)

 9 data points

1 2 3 4 5
0
5

10
15
20
25 Element with PD

25/50/75% quantile
mean (3.36)

 11 data points

1 2 3 4 5
0
5

10
15
20
25 (Tuple without PD)

25/50/75% quantile
mean (2.22)

 9 data points

1 2 3 4 5
0
5

10
15
20
25 Tuple with PD

25/50/75% quantile
mean (3.73)

 11 data points

1 2 3 4 5
0
5

10
15
20
25 (all without PD)

25/50/75% quantile
mean (2.61)

 18 data points

1 2 3 4 5
0
5

10
15
20
25 all with PD

25/50/75% quantile
mean (3.55)

 22 data points

Figure 3.28:Subjective helpfulness of pattern documentation in the programs. 1=no, 2=little, 3=am
unsure, 4=yes, 5=yes much.

subjects answered even without PD, though, probably meaning “would have been useful”. A majority of the
subjects with PD found it helpful, but there is also a significant number of subjects who think otherwise. Only a
small number found it very helpful. There are significantly more “not useful” answers in the group without PD
than in the group with PD (7 out of 18 versus 1 out of 22,�2 = 7:30, p = 0:0069, Fisher exactp = 0:0097).

Washington University St. Louis, Department of Computer Science

Chapter 4

Conclusion

The design of this experiment was very conservative; many design decisions biased the experiment towardsnot
showing any effects from adding PD (see also the discussion of external validity in Section 2.8 on page 19):

1. The subjects knew they would participate in an experiment “about design patterns”, so they were well
motivated to find patterns in the programs. In many cases, this may have made PD superfluous and
reduced its apparent benefits.

2. The programs were rather small, so even without PD the subjects could achieve program understanding
within a reasonable time. Again, in reality PD will be more helpful for pattern-relevant tasks as the
program understanding effort that it can save grows with the size of the program.

3. Due to the small program size, the pattern density in the programs was quite large. Therefore one could
find the patterns quickly even if they were not documented. In industrial reality a smaller fraction of tasks
will be pattern-relevant, but for those that are, patterns would be correspondingly harder to exploit without
PD, as the patterns are less frequent (thus more surprising) and are buried in a host of other details.

4. The programs were thoroughly commented, not only on the statement level, but also on the method, class,
and program levels. Thus, the subjects had sufficient documentation available for program understanding
even without PD. In contrast, most programs in the real world lack sufficient design information. PD might
be a good means to improve design documentation, as it is rather compact and easy to provide.

Given these circumstances, we expect performance advantages from having PD to be much more pronounced
in real situations than in our experiment. Therefore, any significant result found in the experiment is a strong
sign that PD in program documentation is really useful.

In fact we find that our results for the Element task support our hypothesis H1 (“PD makes changes faster”),
but is inconclusive with respect to H2 (“PD reduces mistakes”), see Section 2.1 on page 8):

For the Element task, the quality of the solutions was about the same with and without PD given, but the group
with PD was about 25% faster. This result neatly complements the Karlsruhe experiment, which supported H2
but was inconclusive for H1 in the Element task.

The Tuple task had a rather clear result (supporting H2, inconclusive for H1) in the Karlsruhe experiment. On
first look, the Tuple data of the present experiment appears to be inconclusive with respect to H1 and appears
to indicate that the opposite of H1 might be true: that PD actually hampers maintenance. We believe that these
results are due to unfortunate circumstances and have to be discarded altogether for the following reasons:

37

38 Chapter 4: Conclusion

1. The hampering effect mentioned above is completely implausible. There is no explanation why such a
small amount of additional information as the PD present in our Tuple program (2.5% of the lines) should
have such a negative effect. The only plausible explanation is as an artifact of the experimental situation:
some subjects vainly tried to understand the documented pattern for a long time instead of ignoring the
PD. This would probably not happen in reality.

2. The rather small fraction of completely correct solutions indicates that the task was in fact too difficult.

3. The large fraction of drop-outs (9 out of 22 subject, or 41%) indicates the same.

We believe that for the Tuple task the pattern knowledge of our subjects was simply too low. The negative
influence that PD had on solution quality is probably due to an effect of the sort “Oh damn, there is an Observer
pattern and I don’t really understand it!”1 This effect happened to the group with PD but not to the group
without PD. Our hypothesis is corroborated by the observation that the solution quality difference between the
group almost disappears for subtask 2 (in which the Template Method was relevant); the Template Method
pattern was far better understood than the Observer pattern according to our pattern knowledge questionnaire
(see Figure 2.13 on page 15).

Probably one main problem with the Tuple task in this experiment was the form of the Observers: No standard
GUI representation was possible due to the subjects’ missing GUI knowledge. Therefore, all our Observer
objects just produced text output lines on a single common output stream, which is quite different from the
functionality and appearance with which Observers are usually presented when taught. Thus, the Tuple program
was discouraging for the group with PD who knew they should recognize and understand an Observer in it but
could not quite do so.

However, concluding from both the Karlsruhe and the new experiment together, we recommend that usage
of design patterns routinely be documented in program source code, as the benefits appear to be rather large
compared to the effort invested.

Further work should perform similar experiments in different settings, in particular using more difficult tasks,
to see whether the benefits from PD are really more pronounced then.

Acknowledgements

Barbara Unger conducted the experiment and Doug Schmidt made it possible by providing the subjects.
Michael Philippsen helped during experiment design. Doug Schmidt converted the programs from Java to
C++. Barbara Unger and Lutz Prechelt performed the evaluation of the experiment and Michael Philippsen and
Walter Tichy (the latter of whom also suggested the whole thing) helped with the interpretation of the results.
Lutz Prechelt wrote most of the report.

1If this effect is really the reason, the observation is a good motivation forteachingdesign patterns more thoroughly so that they
will be understood more readily when they appear in programs.

Washington University St. Louis, Department of Computer Science

Appendix A

Tasks and solutions

A.1 Handling Description, Solutions

This appendix contains the original questionnaire administered to the subjects. The questionnaire was handed
out in five parts:

1. a part about personal information and subjective knowledge of design patterns

2. design patterns test questions

3. the explanation of the first task (handed out together with the corresponding program file)

4. the explanation of the second task (handed out together with the corresponding program file)

5. a posttest questionnaire

The subjects had to give each part back to the experimenters when they received the next part. Each subject
could promptly do this at any time.

The page breaks are similar to those used in the experiment; a few empty pages that were present to give
subjects enough room for their answers are left out here.

Here is a very compact description of the correct solutions for the design pattern test questions and for the first
and second task:

� Pattern question a:
See Table 2.2 on page 16

� Pattern question b:
“Introducing a new method in all classes to be visited”

� Pattern question c:
“Both allow late specification of some part of a method, but with Template Method the missing part is
fixed at object creation time, whereas for Strategy it can still be changed later on.”

39

40 Appendix A: Tasks and solutions

� Pattern question d:
“Introduce a separate abstractContainer superclass that introduces these operations and leave them
out of the Composite top class.”

� Tuple subtask 1:
Change line 241 (inNameNumber Tuple Display 1::newTuple())

� Tuple subtask 2:
First, introduce a new class NameNumber Tuple Display N by subclassing
NameNumber Tuple Display A; in particular implement an appropriateselect() method.
Second, callTuple Display *disp2 = new Name Number Tuple Display N (String
("nonlocal")); tuple set.new display (disp2);

� Tuple subtask 3:
Introduce a new classNameNumber Tuple Display I by subclassingTuple Display . The
new class is exactly likeNameNumber Tuple Display 1 except for line 245, which must use
enqueue head() instead ofenqueue tail() . SubclassingNameNumber Tuple Display A
does not work, because the sorting mechanism does not allow for maintaining the (reverse) original order
of the entries.

� in Element subtask 1:
Change line 305 (inAndElement::variants())

� in Element subtask 2:
u.variants().size()

� in Element subtask 3:
Introduce a new classVariants as a subclass ofElement Action . It has a singleint instance
variable which is set to 1 at each leaf. The subtree values are added inORnodes and multiplied inAND
nodes. Note that one has to think about what the method bodies would look like or may be tempted to
include aniterate() auxiliary method as in the pre-existingDepth visitor, although such a method
is not useful here.

Washington University St. Louis, Department of Computer Science

A.2 Original Questionnaire 41

A.2 Original Questionnaire

Instructions and Questionnaire for
the C++ - Experiment

Douglas C. Schmidt, Barbara Unger, Lutz Prechelt
Washington University

May 6, 1997

Student Id:

(Please do not write here)

Task Points

E

S

Ms

Ma

Mb

Mc

Md

T1

T2

T3

E1

E2

E3

Technical Report wucs-97-34, Lutz Prechelt, Barbara Unger, Douglas C. Schmidt

42 Appendix A: Tasks and solutions

Questionnaire Part 1: Personal Information

Please fill in this part of the questionnaire before reading further and before the actual experiment starts. Enter
data or check the boxes as appropriate.All information will be considered confidential.

Completeness and correctness of your information (please print!) are important for the accuracy of the scientific
results of the experiment. Therefore, please answer all questions.

lastname firstname

student id sex: m/f

today’s date time

I am
subject

major in my -th term,

undergraduate, graduate.

Before the CS242 course started I had the following programming experience (altogether):

only theoretical knowledge

wrote less than 300 lines of code myself

wrote less than 3,000 lines of code myself

wrote less than 30,000 lines of code myself

wrote more than 30,000 lines of code myself

I have been programming for about years now and used predominantly the following programming

languages (ordered by decreasing experience):

language 1, language 2, . . .
Washington University St. Louis, Department of Computer Science

A.2 Original Questionnaire 43

Before the CS242 course started I had the following experience in object oriented programming:

no knowledge

only theoretical knowledge

wrote less than 300 lines of code myself

wrote less than 3,000 lines of code myself

wrote less than 30,000 lines of code myself

wrote more than 30,000 lines of code myself

Before the CS242 course started I had the following experience in programming graphical user interfaces:

no knowledge

only theoretical knowledge

wrote less than 300 lines of code myself

wrote less than 3,000 lines of code myself

wrote less than 30,000 lines of code myself

wrote more than 30,000 lines of code myself

The longest program that I have writtenalone had about
LOC

lines of code. It was written in

programming language
and consumed an effort of

person months
person months.

Answer the following question only if you have already worked in a team software project or are doing this
currently. The largest program in whose construction I haveparticipatedhad about

LOC
lines of

code altogether and consumed an effort of
person months

person months. My own contribution was about

LOC
lines of code or

person months
person months, respectively.

Technical Report wucs-97-34, Lutz Prechelt, Barbara Unger, Douglas C. Schmidt

44 Appendix A: Tasks and solutions

My understanding of design patterns is as follows:
(Enter a number between 1 and 5 for each design pattern. The number indicates how well you subjectively
believe you understand the design pattern.
1: I understand and apply it very well,
2: I understand it well,
3: I understand it roughly,
4: I am beginning to understand it,
5: I do not understand it)

Abstract Factory.

Command.

Observer.

Visitor.

Bridge.

Factory Method.

Iterator.

Composite.

Proxy.

Template Method.

Strategy.

Mediator.

Chain of Responsibility.

Now please enter Student Id and time and request new materials from the experimentors.

Student Id: Time:

Washington University St. Louis, Department of Computer Science

A.2 Original Questionnaire 45

Please enter the time here when you first read this page thoroughly. Time:

Questionnaire Part 2: Design Patterns

a.) Each column of the table below contains one design pattern and each row contains the name of an operation that
a method in that design pattern might perform. The actual name of the method in an instance of the design pattern will
usually be different; the given name only indicates the purpose of the method.

On each line, mark all those patterns that usually have the respective operation. (The full name of the abbreviated pattern
is “Chain of Responsibility”.)

Operation
Com
mand

Obser
ver

Visi
tor

Com
posite

Tem
plate
Meth.

Stra
tegy

Medi
ator

Chain
of Re-
spons.

accept()
register()
execute()
add()
notify()
update()

Shortly answer the following questions.

b.) What is the alternative of introducing a Visitor?

Technical Report wucs-97-34, Lutz Prechelt, Barbara Unger, Douglas C. Schmidt

46 Appendix A: Tasks and solutions

c.) Characterize the differences between “Template Method” and “Strategy”.

d.) In a “Composite”, how can one avoid the problem that even the leaf classes have those operations that are useful only
for containers?

Now please enter Student Id and time and request new materials from the experimentors.

Student Id: Time:

Washington University St. Louis, Department of Computer Science

A.2 Original Questionnaire 47

First enhance your PATH-Variable with the command:
source /project/adaptive/cs242/scripts/setpath2

In these directories are the scripts you need.

Please invoke the script:

doit

The script prepares your account. The files you need will be copied in the right
directories and a new tmp directory will be created.

If there are any problems or error messages please check with Dr. Schmidt.

What are the scripts doing:
setpath1, setpath2 enhances your pathes (PATH, LD_LIBRARY_PATH) and adds thepackage sc_3.1
doit copys the files you need for the environment in your directories
emto1, emto2, eotm1, eotm2 copys the source code to the specified directories.
check_in writes the specified file with a different name (the exercise number is appended)
undoit removes all files that the script copied in your directory

Technical Report wucs-97-34, Lutz Prechelt, Barbara Unger, Douglas C. Schmidt

48 Appendix A: Tasks and solutions

Please enter the time here when you first read this page thoroughly. Time:

Task “Tuple”

First you have to type
eotm2
and change the directory to
cd ˜/exp2
Now you have a program in this directory calledTuple.C. Start anemacs with this program.

Functionality: Whenever a tuple consisting of a lastname firstname and a phone number is typed in on stdin, the program
reads the data. All these records are displayed together on stdout in different styles. Only one output style is implemented
yet, called (“chronological”). It shows the records in the order in which they were entered.

Understand this program well enough to perform the tasks described below. If you think that no understanding of certain
program parts is required, you need not look at these parts.

Please enter the time here. Time:

Assignments for “Tuple”

1. Change the program so that the commas between lastname and phone number become colons in the “chronological”
presentation.

When you have finished this task type
check_in 1a Tuple.C

2. Extend the program. Generate a second output style “nonlocal” in which (sorted by lastname) only those Tuples are
displayed whose phone number does not start with a 314.

When you have finished this task type
check_in 2a Tuple.C

3. Extend the program. Write another TupleDisplay class NameNumberTupleDisplayinvers that displays
NameNumberTuple in the format
lastname, firstname; phone number
in inversely chronological order (that is, the youngest Tuple at the top; you can use the method
void enqueue_head(Tuple *t)
from the class TupleQueue).

When you have finished this task type
check_in 3a Tuple.C

Now please enter Student Id and time and request new materials from the experimentors.

Student Id: Time:

Washington University St. Louis, Department of Computer Science

A.2 Original Questionnaire 49

Please enter the time here when you first read this page thoroughly. Time:

Task “Element”

First you have to type
eotm1
and change the directory to
˜/exp1
Now you have a program in this directory calledElement.C. Start an emacs with this program.

Functionality: The program contains a library for constructing And/Or trees. Each leaf of such a tree contains a String.
If we interpret And as concatenation and Or as alternation such a tree defines a set of Strings. This set of Strings is
called thevariantsof the tree and is computed by the method variants(). Other methods compute a compactly encoded
representation of the tree or compute the maximum depth of And nodes, Or nodes, and leafs. The main program generates
such a tree and prints its 4 variants, then its compact representation.

The tree generated by the program has the following structure:

Who OR OR after all ?

actthinkcan will

AND

The program generates the following output:

Who can think after all?
Who can act after all?
Who will think after all?
Who will act after all?
AND (Who & OR (can | will) & OR (think | act) & after all & ?)

Understand this program well enough to perform the tasks described below. If you think that no understanding of certain
program parts is required, you need not look at these parts.

Please enter the time here. Time:

Assignments for “Element”

1. Insert an additional space character between those parts of each variant that were combined by concatenation.

When you have finished this task type
check_in 1a Element.C

Technical Report wucs-97-34, Lutz Prechelt, Barbara Unger, Douglas C. Schmidt

50 Appendix A: Tasks and solutions

2. Insert a statement that computes thenumber of variantsof u after u was generated in main().

When you have finished this task type
check_in 2a Element.C

3. Extend the program. The above way of computing the number of variants is inefficient, because it may generate a
rather large data object that is not required.
Write a program extension that computes the number of variantswithoutgenerating such a large data object.

The algorithm of computing the number of variants is: If you are in a leaf the number of variants is 1, in an Or node it
is the sum of all variants of the branches and in an And node it is the product of all variants of the branches. Here is an
example:

OR (1+1+10 = 12)

a (1) b (1) AND (2*1*5 = 10)

OR (1+1 = 2) d (1) OR (1+4 = 5)

c (1) e (1) f (1) AND (1*2*2 = 4)

g (1) OR (1+1 = 2) OR (1+1 = 2)

h (1) i (1) j (1) k (1)

When you have finished this task type
check_in 3a Element.C

Now please enter Student Id and time and request new materials from the experimentors.

Student Id: Time:

Washington University St. Louis, Department of Computer Science

A.2 Original Questionnaire 51

Please enter the time here when you first read this page thoroughly. Time:

Questionnaire Part 3: Your Experience in the experiment

This part of the questionnaire is meant to complement the answers you gave above by subjective background information
in order to allow for a better analysis of the experiment results.

Most questions have some additional space below for arbitrary comments; your comments will be very useful for us.

Check which of the following design patterns you think occured in one of the programs. If you are unsure, insert a
question mark instead of a check mark.

Task Com
mand

Obser
ver

Visi
tor

Compo
site

Tem
plate
Meth.

Stra
tegy

Medi
ator

Chain
of
Resp.

Task “Element”

Task “Tuple”

Comment:

The questions below have two checkboxes for each answer:
E for task “Element” and
T for task “Tuple”.
So please check exactly one box per column for each question.

Overall and in the given situation I found task “Element”/“Tuple”

E T pretty simple.

E T not quite so simple.

E T pretty difficult

E T difficult.

Comment:

During task “Element”/“Tuple” my concentration ability was

E T very high.

E T high.

E T OK.

E T not so high.

E T low.

Comment:

Technical Report wucs-97-34, Lutz Prechelt, Barbara Unger, Douglas C. Schmidt

52 Appendix A: Tasks and solutions

I believe that my solutions for task “Element”/“Tuple” have

E T no more errors or omissions.

E T at most one error or omission.

E T probably several errors or omissions.

E T (don’t know).

Comment:

I think that for solving “Element”/“Tuple” my previous knowledge of design patterns was helpful.

E T No, not at all.

E T Only a little.

E T Can’t decide.

E T Yes, somewhat.

E T Yes, very much so.

Comment:

I think that for solving “Element”/“Tuple” the labeling, if any, of design patterns in the programs was helpful.

E T No, not at all.

E T Only a little.

E T Can’t decide.

E T Yes, somewhat.

E T Yes, very much so.

Comment:

For solving “Element”/“Tuple” I have actively searched for design patterns in the programs.

E T No, because I did not find it necessary to find or recognize the design patterns used.

E T No, because obviously the design patterns were documented.

E T No, because I found the design patterns immediately.

E T No, because

reason for “Element”

reason for “Tuple”

E T Yes, right from the start.

E T Yes, but only after nothing else seemed to help.

E T Yes, but only after a while, because

reason for “Element”

reason for “Tuple”

Comment:

Washington University St. Louis, Department of Computer Science

A.2 Original Questionnaire 53

Something else I would like to say (e.g. what I found particularly difficult, unclever in the experimental setup, interesting
etc.):

Please invoke now the scriptundoit

Thank you!

Many thanks for participating in our experiment. We hope you learned as much as we did.

Again please enter Student Id and time and return all materials to the experimentors.

Student Id: Time:

Technical Report wucs-97-34, Lutz Prechelt, Barbara Unger, Douglas C. Schmidt

Appendix B

Experiment program listings

This appendix contains listings of the the programs given to the subjects during the experiment. The programs
use comment conventions introduced in the course. Each program was provided as an ASCII file when the
subjects executed the copying script as indicated in the task description.

The listings are given here in the version with PD. The corresponding versions without PD are exactly the same
except that in any comment that has a PD marker the part of the comment from the PD marker to the end of the
comment would be missing. The PD marker is*** DESIGN PATTERN: ***

B.1 Program “Tuple”

/�
2
3 ##################################
4 This program is enhanced by:
5 PUT IN YOUR NAME!!!
6 ##################################
7
8 This program manages sets of tuples.
9
10 A tuple consists of several fields, e.g., last name, first name,
11 telephone number. There are several such tuple types and for each of
12 them there is a tuple set type.
13
14 Furthermore, the program contains classes for displaying tuple sets of
15 a particular tuple type. Currently only the tuple type
16 NameNumberTuple is fully supported.
17
18 This is the class hierarchy:
19
20 abstract class Tuple
21 class NameNumberTuple

54

B.1 Program “Tuple” 55

22
23 class Tupleset
24
25 abstract class TupleDisplay
26 class NameNumberTuple Display 1
27 abstract class TupleDisplay A
28 class NameNumberTuple Display 2
29
30 Note, do not worry about memory leaks in this code.
31
32 ��� DESIGN PATTERN:���
33
34 <TupleDisplay> is the abstract Superclass of��Observer��
35 for the data structure<Tupleset>.
36
37 <TupleDisplay A> is the abstract Superclass of a number of such
38 observers that differ with respect to selection, ordering, and
39 formatting of the tuples to be shown. A��Template Method��
40 is used to vary these aspects.�/
41
42 // Forward declarations.
43 classTuple;
44 classTuple Display;
45 classTupleset;
46
47 // These are necessary to provide String and Queue abstractions.
48
49 #include ”ace/SString.h ”
50 #include ”ace/Containers.h ”
51
52 // Some typedefs.
53 typedef ACE CString String;
54 typedef ACE UnboundedQueue<Tuple�> Tuple Queue;
55 typedef ACE UnboundedQueueIterator<Tuple�> Tuple QueueIterator;
56 typedef ACE UnboundedQueue<Tuple Display�> Tuple Display Table;
57 typedef ACE UnboundedQueueIterator<Tuple Display�> Tuple Display Table Iterator;
58 typedef ACE UnboundedQueue<String> Tuple String Vector;
59 typedef ACE UnboundedQueueIterator<String> Tuple String Vector Iterator;
60
61 classTuple Display
62 // = TITLE
63 //
64 // Tuple Display shows multiple Tuples on the output stream. Each
65 // subclass defines its own presentation style. TupleDisplays
66 // guarantee that they do not modify the Tuple objects (so that it
67 // is possible to commit originals to the TupleDisplay’s custody

Technical Report wucs-97-34, Lutz Prechelt, Barbara Unger, Douglas C. Schmidt

56 Appendix B: Experiment program listings

68 // instead of creating copies). A program may create a number of
69 // Tuple Display objects and give the same Tuple objects to each of
70 // them.
71 f
72 public:
73 Tuple Display (constString &name)
74 : display name (name)
75 f
76 g
77
78 // Is called by the user of the<TupleDisplay> to announce that a
79 // new <Tuple> should be added to the ones already displayed.
80 virtual void new tuple (Tuple�t) = 0;
81
82 // Is called by the user of the<TupleDisplay> to announce that
83 // multiple new<Tuples> shall be added to the ones already
84 // displayed. The caller guarantees that all objects in the
85 // <Tuple Queue> are <Tuple> objects. <newtuples> does not change
86 // <tq>.
87 virtual void new tuples (TupleQueue &tq) = 0;
88
89 protected:
90 // Queue of tuples.
91 Tuple Queue tuplequeue;
92
93 // Name of the display;
94 String displayname;
95 g;
96
97 classTupleset
98 // = TITLE
99 //
100 // Manages a set of<Tuples> and allows individual Tuples to be
101 // added to this<Set>. Also manages a set of<TupleDisplays>,
102 // which are notified when a<Tuple> is added.
103 f
104 public:
105 // Called by a<Tuple> generator to bring a new<Tuple> into the
106 // <Tupleset>.
107 void new tuple (Tuple�t)
108 f
109 // Store <t> at the end of the queue.
110 tuple queue.enqueuetail (t);
111
112 Tuple Display��td = 0;
113

Washington University St. Louis, Department of Computer Science

B.1 Program “Tuple” 57

114 // Inform each<TupleDisplay> that a new tuple has arrived.
115 for (Tuple Display Table Iterator iter (this!tuple display table);
116 iter.next (td)6= 0;
117 iter.advance ())
118 (�td)!new tuple (t);
119 g
120
121 // Add a new display.
122 void new display (TupleDisplay�td)
123 f
124 // Store <td> at the end of the queue.
125 this!tuple display table .enqueuetail (td);
126
127 // Inform the new display about all the existing<Tuples>.
128 td!new tuples (this!tuple queue);
129 g
130
131 private:
132 // Registered Displays.
133 Tuple Display Table tupledisplay table ;
134
135 // Stores the Tuples.
136 Tuple Queue tuplequeue;
137 g;
138
139 classTuple
140 // = TITLE
141 //
142 // Common interface of all tuple types.
143 f
144 public:
145 // Reads a tuple from<cin> and stores it in the<Tupleset>.
146 virtual void get tuple (Tupleset &ts, istream &is) = 0;
147 g;
148
149 classNameNumberTuple : public Tuple
150 // = TITLE
151 //
152 // An implementation of Tuple for names and telephone numbers.
153 f
154 public:
155 // = Initialization methods.
156 NameNumberTuple (void)
157 f
158 g
159

Technical Report wucs-97-34, Lutz Prechelt, Barbara Unger, Douglas C. Schmidt

58 Appendix B: Experiment program listings

160 NameNumberTuple (constString &lastname,
161 constString &firstname,
162 constString &telephone)
163 : lastname(lastname),
164 firstname (firstname),
165 telephone (telephone)
166 f
167 g
168
169 // = Accessor and mutator methods.
170
171 String lastname (void)f return this!lastname; g
172 String firstname (void)f return this!firstname; g
173 String telephone (void)f return this!telephone; g
174
175 void lastname (constString &l) f this!lastname= l; g
176 void firstname (constString &f) f this!firstname = f; g
177 void telephone (constString &t) f this!telephone= t; g
178
179 // Reads a<Tuple>. The exact strategy used is encapsulated in
180 // <get tuple>. <get tuple> guarantees that the<Tuple> will be
181 // passed to<Tupleset> s after reading and that its fields contain
182 // the correct values.
183
184 void get tuple (Tupleset &ts, istream &is)
185 f
186 char lastname[BUFSIZ];
187 char firstname[BUFSIZ];
188 char telephone[BUFSIZ];
189
190 // Runs the event loop that gets the input tuple from the input
191 // stream and updates the display.
192
193 for (;;)
194 f
195 cout� "enter lastname, firstname, phonenumber" � endl
196 � "(separated by spaces)" � endl;
197
198 is� lastname� firstname� telephone;
199
200 if (is)
201 f
202 NameNumberTuple�nntp =
203 newNameNumberTuple (lastname,
204 firstname,
205 telephone);

Washington University St. Louis, Department of Computer Science

B.1 Program “Tuple” 59

206
207 // Insert the value of this tuple into the<Tupleset>.
208 ts.newtuple (nntp);
209 g
210 else
211 break;
212 g
213 g
214
215 String lastname; // Name of Person
216 String firstname; // Firstname of Person
217 String telephone; // Telephonenumber of Person
218 g;
219
220 classNameNumberTuple Display 1 : public Tuple Display
221 // = TITLE
222 //
223 // Displays <NameNumberTuple> objects in the order in which they
224 // are delivered, showing all their components in a simple format.
225 f
226 public:
227 NameNumberTuple Display 1 (constString &name)
228 : Tuple Display (name)
229 f
230 g
231
232 virtual void new tuple (Tuple�t)
233 f
234 NameNumberTuple�nnt = (NameNumberTuple�) t;
235
236 // Display this Tuple on output stream.
237 String s;
238 s += nnt!firstname ();
239 s += String (" ");
240 s += nnt!lastname ();
241 s += String (", ");
242 s += nnt!telephone ();
243 s += String (" nn");
244
245 this!tuple string vector .enqueuetail (s);
246 this!display ();
247 g
248
249 virtual void new tuples (TupleQueue &tq)
250 f
251 Tuple��t = 0;

Technical Report wucs-97-34, Lutz Prechelt, Barbara Unger, Douglas C. Schmidt

60 Appendix B: Experiment program listings

252
253 // Display all the tuples in the<TupleQueue>.
254 for (Tuple QueueIterator iter (tq);
255 iter.next (t) 6= 0;
256 iter.advance ())
257 this!new tuple (�t);
258 g
259
260 // Displays the contents of<tuple string vector> on the output
261 // stream.
262
263 void display (void)
264 f
265 if (this!tuple string vector .size ()> 0)
266 f
267 cout� " ===========" � endl
268 � "Displaying " � this!display name � endl;
269
270 String�s = 0;
271 size t count = 0;
272
273 for (Tuple String Vector Iterator iter (this!tuple string vector);
274 iter.next (s)6= 0;
275 iter.advance ())
276 cout� count++� ": " � �s;
277
278 cout� " ===========" � endl� endl;
279 g
280 g
281
282 private:
283 // <tuple string vector> contains the display presentation of the
284 // <Tuples>. The contents of<tuple string vector> are written
285 // into the output stream as is.
286 Tuple String Vector tuplestring vector ;
287 g;
288
289 classTuple Display A : public Tuple Display
290 // = TITLE
291 //
292 // Tuple Display A displays Tuplesets in a style that can be
293 // adapted to many different purposes by inserting an appropriate
294 // selection method (reject Tuples completely), comparison method
295 // (define a Tuple order) and formatting method (select Tuple
296 // components and format them).
297 f

Washington University St. Louis, Department of Computer Science

B.1 Program “Tuple” 61

298 public:
299 Tuple Display A (constString &name)
300 : Tuple Display (name)
301 f
302 g
303
304 // Returns desired representation of Tuple a as a String. The
305 // String may contain zero, one, or more newline characters.
306
307 virtual String format (Tuple�a) = 0;
308
309 // Returns true, if the Tuple should be displayed and false otherwise.
310 virtual int select (Tuple�a) = 0;
311
312 // Returns true, if Tuple a should be displayed before Tuple b and
313 // false, if Tuple b should be displayed before Tuple a.
314 virtual int lessthan (Tuple�a, Tuple�b) = 0;
315
316 // Implements adding a new<Tuple>. First <select> is used to test,
317 // whether the<Tuple> should be added at all, then<mergein> moves
318 // it to the right place in the presentation using<lessthan> and
319 // <format> converts it into a String of the desired display format.
320 //
321 ��� DESIGN PATTERN:���
322 new tuple () together with its auxiliary method mergein () forms a
323 ��Template Method��. The empty spots that are filled in subclasses
324 are the methods select (), format (), and lessthan ().
325
326 virtual void new tuple (Tuple�namenumber)
327 f
328 if (this!select (namenumber) == 0)
329 return ; // This Tuple won’t be displayed
330
331 // Puts namenumber into tuplequeue and tuplestring vector
332 this!mergein (namenumber);
333 this!display ();
334 g
335
336 // Analog to<newtuple>, but uses a loop for adding several
337 // <Tuples> at once. The actual display is updated only once at the
338 // end.
339
340 virtual void new tuples (TupleQueue &tq)
341 f
342 Tuple��namenumber = 0;
343

Technical Report wucs-97-34, Lutz Prechelt, Barbara Unger, Douglas C. Schmidt

62 Appendix B: Experiment program listings

344 for (Tuple QueueIterator iter (tq);
345 iter.next (namenumber)6= 0;
346 iter.advance ())
347 f
348 if (this!select (�namenumber))
349 this!mergein (�namenumber);
350 else
351 ; // ignore Tuple
352 g
353
354 this!display ();
355 g
356
357 // Finds the place in<tuple queue> where the new<Tuple> should be
358 // and inserts it there. Generates the final display representation
359 // of the <Tuple> and inserts that in<tuple string vector>.
360
361 void mergein (Tuple�namenumber)
362 f
363 // Index where the new<Tuple> must be inserted.
364 int where;
365
366 for (where = 0;
367 where< tuple queue.size ();
368 where++)
369 f
370 Tuple��tuple = 0;
371
372 // Locate the<tuple �> at location <where>.
373 this!tuple queue.get (tuple, where);
374
375 // If <tuple> is less than<namenumber> then we’ve found
376 // where<namenumber> belongs so we can exit the loop.
377 if (this!lessthan (�tuple, namenumber) == 0)
378 break;
379 g
380
381 // Now <where> indicates the target index where<namenumber>
382 // belongs (in sorted order). Move all other elements one
383 // position towards the end in both<tuple queue> and
384 // <tuple string vector>.
385
386 int size = tuplequeue.size ();
387
388 for (int k = size - 1; // Start at end.
389 k � where;

Washington University St. Louis, Department of Computer Science

B.1 Program “Tuple” 63

390 k--)
391 f
392 Tuple��t = 0;
393 tuple queue.get (t, k);
394 tuple queue.set (�t, k + 1);
395
396 String�s = 0;
397 tuple string vector .get (s, k);
398 tuple string vector .set (�s, k + 1);
399 g
400
401 // Now insert new<Tuple> into <tuple queue> and its formatted
402 // counterpart into<tuple string vector> at position <where>.
403
404 tuple queue.set (namenumber, where);
405 tuple string vector .set (this!format (namenumber), where);
406 g
407
408 // Displays the contents of<tuple string vector> on the output
409 // stream.
410
411 void display (void)
412 f
413 if (this!tuple string vector .size ()> 0)
414 f
415 cout� " ===========" � endl
416 � "Displaying " � this!display name � endl;
417
418 String�s = 0;
419 size t count = 0;
420
421 for (Tuple String Vector Iterator iter (this!tuple string vector);
422 iter.next (s)6= 0;
423 iter.advance ())
424 cout� count++� ": " � �s;
425
426 cout� " ===========" � endl� endl;
427 g
428 g
429
430 private:
431 // <tuple queue> contains all <Tuples> that are to be displayed
432 // (after filtering!), their order represents the presentation
433 // order.
434 Tuple Queue tuplequeue;
435

Technical Report wucs-97-34, Lutz Prechelt, Barbara Unger, Douglas C. Schmidt

64 Appendix B: Experiment program listings

436 // <tuple string vector> parallels <tuple queue> and contains the
437 // final display presentation of the<Tuples>. The contents of
438 // <tuple string vector> are written into the output stream as is.
439 Tuple String Vector tuplestring vector ;
440 g;
441
442 // Main program.
443 ��� DESIGN PATTERN:���
444 The two TupleDisplays are registered as observers at the Tupleset.
445
446 int
447 main (void)
448 f
449 Tupleset tupleset;
450
451 Tuple Display�disp1 =
452 new NameNumberTuple Display 1 (String ("chronologically"));
453
454 tuple set.newdisplay (disp1);
455
456 NameNumberTuple nnt;
457
458 // Runs the event loop that gets the input tuple from the input
459 // stream and updates the display.
460 nnt.gettuple (tupleset, cin);
461
462 return 0;
463 g
464

B.2 Program “Element”

/�
2
3 ##################################
4 This program is enhanced by:
5 PUT IN YOUR NAME!!!
6 ##################################
7
8
9 This program manages And/Or-Sequences of<Strings>. Such sequences
10 consist of<Element> objects. There are three kinds of<Elements>:
11
12 1. <String Element> – which contains a single<String>.
13

Washington University St. Louis, Department of Computer Science

B.2 Program “Element” 65

14 2. <And Element> – which contains a list of elements that are
15 concatenated in the given order.
16
17 3. <Or Element> – which contains a set of elements that are used
18 alternatively, exactly one at a time.
19
20 The <And Element> and the<Or Element> objects can be nested
21 arbitrarily. The lowest level (leafs) of any object tree formed this
22 way always contains<String Element> objects. <Or Elements> result in
23 variants. Where<Or Elements> meet, the cross product of their
24 variants is formed.
25
26 Here is the class hierarchy:
27
28 abstract class Element
29 class StringElement
30 class AndElement
31 class OrElement
32
33 abstract class ElementAction
34 class Depth
35
36 The main function generates an And/Or sequence and prints it.
37
38 Note, do not worry about memory leaks in this code.
39
40 ��� DESIGN PATTERN:���
41
42 Element is the abstract superclass of a��Composite��.
43 String Element is its leaf type.
44 And Element and OrElement are its container (composite) types
45
46 ElementAction is the abstract superclass of a��Visitor��.
47 The data structure that is visited is an Element container nesting.
48
49 �/
50
51 // Forward declarations.
52 classElement;
53 classString Element;
54 classAnd Element;
55 classOr Element;
56
57 // These are necessary to provide String and Queue abstractions.
58
59 #include ”ace/SString.h ”

Technical Report wucs-97-34, Lutz Prechelt, Barbara Unger, Douglas C. Schmidt

66 Appendix B: Experiment program listings

60 #include ”ace/Containers.h ”
61
62 // Some simple typedefs.
63 typedef ACE CString String;
64 typedef ACE UnboundedQueue<Element�> ElementQueue;
65 typedef ACE UnboundedQueueIterator<Element�> ElementQueueIterator;
66
67 classElementAction
68 // = TITLE
69 //
70 // Interface for operations on Element structures that must handle
71 // the parts differently, depending on their type.
72 ��� DESIGN PATTERN:���
73 Design pattern Visitor: ElementAction is the superclass ofall
74 visitors of ’Element’ Composite data structures.
75 f
76 public:
77 // Perform the action for<String Elements>.
78 virtual void string action (StringElement &e) = 0;
79
80 // Perform the action for<And Elements>.
81 virtual void andaction (AndElement &e) = 0;
82
83 // Perform the action for<Or Elements>.
84 virtual void or action (OrElement &e) = 0;
85 g;
86
87 classElement
88 // = TITLE
89 //
90 // Interface of the ’Element’ classes, i.e., StringElement,
91 // And Element, OrElement.
92 //
93 DESIGN PATTERN
94 Element is the superclass of a Composite pattern.
95 f
96 public:
97 // Input operation. Adds another element to this element.
98 virtual void add (Element�e) = 0;
99
100 // Output operation. Prints the whole<Element> on <cout>. Each
101 // variant is printed on a separate line.
102 virtual String tostring (void) = 0;
103
104 // Output operation. Prints the whole<Element> on <cout>. Each
105 // variant is printed on a separate line.

Washington University St. Louis, Department of Computer Science

B.2 Program “Element” 67

106 virtual void print (void)
107 f
108 ElementQueue eq =this!variants ();
109 Element��e = 0;
110
111 // Iterate through all the<Elements> and print each on a
112 // separate line.
113 for (ElementQueueIterator iter (eq);
114 iter.next (e)6= 0;
115 iter.advance ())
116 // Print out the char� representation of the string.
117 cout� (�e)!to string ()� endl;
118 g
119
120 // Representation operation. Returns a<ElementQueue> in which each
121 // element contains the<String> representation of one variant of
122 // the And/Or sequence. Each variant appears exactly once in the
123 // <ElementQueue>.
124 virtual ElementQueue variants (void) = 0;
125
126 // Branching operation. Calls that one operation from
127 // <ElementAction> that is responsible for (i.e., corresponds to)
128 // the present subclass.
129 ��� DESIGN PATTERN:���
130 This is the ’double dispatch’ procedure in the visited data
131 structurefor the Visitor pattern.
132 virtual void perform (ElementAction &a) = 0;
133 g;
134
135 classString Element :public Element
136 // = TITLE
137 //
138 // Element class that contains exactly one String.
139 //
140 DESIGN PATTERN:
141 String Element is the (only) leafclassin a Composite pattern.
142 f
143 public:
144 // Generates a StringElement with empty contents.
145 String Element (void)
146 f
147 g
148
149 // Generates a StringElement with the contents given as argument.
150 String Element (constString &s)
151 : contents (s)

Technical Report wucs-97-34, Lutz Prechelt, Barbara Unger, Douglas C. Schmidt

68 Appendix B: Experiment program listings

152 f
153 g
154
155 // Input operation. Appends<e> to current String contents if<e> is
156 // a <String Element>. We assume that<e> is a <String Element>.
157 virtual void add (Element�e)
158 f
159 // Perform a cast (oh what I wouldn’t give for RTTI... ;-));
160 String Element &s = (StringElement &) e;
161
162 // += is the append operator.
163 this!contents += s.contents;
164 g
165
166 // Representation operation. Returns a coded representation of the
167 // element as a string of the form<contents>.
168 virtual String tostring (void)
169 f
170 return this!contents;
171 g
172
173 // Returns a<ElementQueue> with exactly one element: the String
174 // that the <String Element> contains.
175 virtual ElementQueue variants (void)
176 f
177 ElementQueue sa;
178 sa.enqueuetail (this);
179 return sa;
180 g
181
182 // Calls the stringaction of the ElementAction given as argument.
183 ��� DESIGN PATTERN:���
184 perform() is the dispatch operationfor Visitor
185 (ElementAction).
186
187 virtual void perform (ElementAction &a)
188 f
189 a.stringaction (�this);
190 g
191
192 private:
193 // Contents of the StringElement.
194 String contents;
195 g;
196
197 classAnd Element :public Element

Washington University St. Louis, Department of Computer Science

B.2 Program “Element” 69

198 // = TITLE
199 //
200 // And sequence of elements. That means the elements must be
201 // concatenated.
202 //
203 ��� DESIGN PATTERN:���
204 And Element is one of the container classes of a Composite
205 pattern.
206 f
207 public:
208 // Generates an<And Element> without any contents.
209 And Element (void)
210 f
211 g
212
213 // Input operation. Adds<e> as new element to current sequence of
214 // elements.
215 virtual void add (Element�e)
216 f
217 this!elements.enqueuetail (e);
218 g
219
220 // Representation operation. Returns a coded representation of the
221 // Element as a String of the form ”AND (el1 & el2 & el3)”.
222 virtual String tostring (void)
223 f
224 String b ("AND (");
225
226 Element��e = 0;
227
228 // Iterate through the set of<elements> and convert them into
229 // a String.
230
231 ElementQueueIterator iter (this!elements);
232
233 while (iter.next (e)6= 0)
234 f
235 b += (�e)!to string ();
236
237 // Check to see if we’re at the end of the iteration.
238 if (iter.advance ()6= 0)
239 b += String ("& ");
240 g
241
242 b += String (") ");
243

Technical Report wucs-97-34, Lutz Prechelt, Barbara Unger, Douglas C. Schmidt

70 Appendix B: Experiment program listings

244 return b;
245 g
246
247 // Returns cross product of all variants of all elements in the
248 // <And Element>. The product is formed by concatenating the
249 // Strings of the variants.
250
251 virtual ElementQueue variants (void)
252 f
253 ElementQueue result;
254 Element��e = 0;
255
256 // Iterate over all the elements.
257
258 for (ElementQueueIterator iter (this!elements);
259 iter.next (e)6= 0;
260 iter.advance ())
261 f
262 ElementQueue nextpart ((�e)!variants ());
263
264 if (nextpart.size () == 0)
265 continue; // Nothing to add to result for this element.
266 if (result.size () == 0)
267 f
268 result = nextpart;
269 continue; // Nothing to combine with yet.
270 g
271
272 // Store <result> in <oldreset> and reset<result> to be
273 // empty in preparation for the cross product calculation.
274 ElementQueue oldresult = result;
275 result.reset ();
276
277 size t old n = oldresult.size ();
278 size t next n = nextpart.size ();
279
280 // Generate cross product (by String concatenation):
281 //
282 // result := oldresult x nextpart
283
284 for (size t old i = 0;
285 old i < old n;
286 old i++)
287 f
288 Element��ith element;
289 // Get the ”ith” element in<oldresult>.

Washington University St. Louis, Department of Computer Science

B.2 Program “Element” 71

290 oldresult.get (ithelement, oldi);
291
292 String currentold = (�ith element)!to string ();
293
294 for (size t next i = 0;
295 next i < next n;
296 next i++)
297 f
298 // Find the ”ith” element in <nextpart>.
299 nextpart.get (ithelement, nexti);
300
301 String currentnext = (�ith element)!to string ();
302
303 // Concatenate the strings.
304 String Element�concat =
305 newString Element (currentold + currentnext);
306
307 // Insert the concatenated strings at the end of the
308 // result.
309 result.enqueuetail (concat);
310 g
311 g
312 g
313
314 return result;
315 g
316
317 // Calls the stringaction of the ElementAction given as argument.
318 ��� DESIGN PATTERN:���
319 perform() is the dispatch operationfor Visitor
320 (ElementAction).
321
322 virtual void perform (ElementAction &a)
323 f
324 a.andaction (�this);
325 g
326
327 // @@ private:
328 // Array of the elements forming the<And Element>.
329 ElementQueue elements;
330 g;
331
332 classOr Element :public Element
333 // = TITLE
334 //
335 // Or set of elements.

Technical Report wucs-97-34, Lutz Prechelt, Barbara Unger, Douglas C. Schmidt

72 Appendix B: Experiment program listings

336 // (That means the elements are alternatives.)
337 //
338 ��� DESIGN PATTERN:���
339 Or Element is one of the container classes of a Composite pattern.
340 f
341 public:
342
343 // Generates an OrElement without Contents.
344 Or Element (void)
345 f
346 g
347
348 // Input operation. Adds e as new element to current set of
349 // alternative elements.
350
351 virtual void add (Element�e)
352 f
353 this!elements.enqueuetail (e);
354 g
355
356 // Representation operation. Returns a coded representation of the
357 // Element as a String of the form ”OR (el1j el2 j el3)”.
358
359 virtual String tostring (void)
360 f
361 String b ("OR (");
362
363 Element��e = 0;
364
365 // Iterate through the set of<elements> and convert them into
366 // a String.
367
368 ElementQueueIterator iter (this!elements);
369
370 while (iter.next (e)6= 0)
371 f
372 b += (�e)!to string ();
373
374 // Advance the iterator
375 if (iter.advance ()6= 0)
376 b += String (" j ");
377 g
378
379 b += String (") ");
380
381 return b;

Washington University St. Louis, Department of Computer Science

B.2 Program “Element” 73

382 g
383
384 // Returns the union of all variants of all<elements> in the
385 // <Or Element>.
386
387 virtual ElementQueue variants (void)
388 f
389 ElementQueue result;
390
391 Element��oe = 0;
392
393 for (ElementQueueIterator outeriter (this!elements);
394 outer iter.next (oe)6= 0;
395 outer iter.advance ())
396 f
397 ElementQueue nextpart = (�oe)!variants ();
398
399 Element��ie = 0;
400
401 for (ElementQueueIterator inneriter (nextpart);
402 inner iter.next (ie)6= 0;
403 inner iter.advance ())
404 result.enqueuetail (�ie);
405 g
406
407 return result;
408 g
409
410 // Calls the stringaction of the ElementAction given as argument.
411 ��� DESIGN PATTERN:���
412 perform() is the dispatch operationfor Visitor
413 (ElementAction).
414
415 virtual void perform (ElementAction &a)
416 f
417 a.or action (�this);
418 g
419
420 // @@ private:
421 ElementQueue elements; // vector of the elements forming the OrElement
422 g;
423
424 classDepth :public ElementAction
425 // = TITLE
426 //
427 // Class for computing maximum depths of the different kinds of nodes

Technical Report wucs-97-34, Lutz Prechelt, Barbara Unger, Douglas C. Schmidt

74 Appendix B: Experiment program listings

428 // in an And/Or Element tree.
429 ��� DESIGN PATTERN:���
430 Depth is a Visitor of the Composite data structure Element.
431 Element.perform() is the double dispatch operation of the Visitor.
432 f
433 public:
434 // Walks through Element e to initialize itself. Components
435 // max depth, maxand depth, and maxor depth can be queried afterwards.
436
437 Depth (Element�e)
438 : max depth (-1),
439 max and depth (-1),
440 max or depth (-1),
441 depth (0)
442 f
443 e!perform (�this);
444 g
445
446 virtual void string action (StringElement &)
447 f
448 if (this!max depth < this!depth)
449 this!max depth = this!depth;
450 g
451
452 virtual void andaction (AndElement &u)
453 f
454 if (this!max and depth < this!depth)
455 f
456 this!max and depth = this!depth;
457
458 if (this!max depth < this!depth)
459 this!max depth = this!depth;
460 g
461
462 this!iterate (u.elements);
463 g
464
465 virtual void or action (OrElement &o)
466 f
467 if (this!max or depth < this!depth)
468 f
469 this!max or depth = this!depth;
470
471 if (this!max depth < this!depth)
472 this!max depth = this!depth;
473 g

Washington University St. Louis, Department of Computer Science

B.2 Program “Element” 75

474
475 this!iterate (o.elements);
476 g
477
478 // = These should be private ;-)
479 int max depth; // Depth of deepest Element
480 int max and depth; // Depth of deepest AndElement
481 int max or depth; // Depth of deepest OrElement
482
483 private:
484 // Handle all elements contained in an<And Element> or an
485 // <Or Element>.
486
487 void iterate (ElementQueue &elems)
488 f
489 this!depth++; // these elements are one level deeper
490
491 Element��e;
492
493 for (ElementQueueIterator iter (elems);
494 iter.next (e)6= 0;
495 iter.advance ())
496 (�e)!perform (�this);
497
498 this!depth--;
499 g
500
501 int depth; // current depth (root== 0)
502 g;
503
504 // main program. generates an And/Or sequence and prints it.
505
506 int
507 main (int, char�[])
508 f
509 And Element�u = newAnd Element;
510 Or Element�modal =newOr Element;
511 Or Element�verb =newOr Element;
512
513 u!add (newString Element ("Who "));
514 modal!add (newString Element ("can "));
515 modal!add (newString Element ("will "));
516 u!add (modal);
517 verb!add (new String Element ("think "));
518 verb!add (new String Element ("act "));
519 u!add (verb);

Technical Report wucs-97-34, Lutz Prechelt, Barbara Unger, Douglas C. Schmidt

76 Appendix B: Experiment program listings

520 u!add (newString Element ("after all"));
521 u!add (newString Element ("?"));
522
523 u!print ();
524
525 cout� u!to string ();
526
527 Depth t (u);
528 cout� endl
529 � " Depth = " � t.max depth
530 � " AndDepth = " � t.max and depth
531 � " OrDepth = " � t.max or depth � endl;
532 return 0;
533 g
534

Washington University St. Louis, Department of Computer Science

Bibliography

[1] K. Beck, J.O. Coplien, R. Crocker, L. Dominick, G. Meszaros, F. Paulisch, and J. Vlissides. Industrial
experience with design patterns. In18th Intl. Conf. on Software Engineering, pages 103–114, Berlin,
March 1996. IEEE CS press.

[2] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stal.Pattern-Oriented
Software Architecture — A System of Patterns. John Wiley and Sons, Chichester, UK, 1996.

[3] Larry B. Christensen.Experimental Methodology. Allyn and Bacon, Needham Heights, MA, 6th edition,
1994.

[4] Bradley Efron and Robert Tibshirani.An introduction to the Bootstrap. Monographs on statistics and
applied probability 57. Chapman and Hall, New York, London, 1993.

[5] Norman E. Fenton.Software Metrics: A Rigorous Approach. Chapman and Hall, London, 1991.

[6] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading, MA, 1995.

[7] Dewayne E. Perry and Alexander L. Wolf. Foundations for the study of software architecture.ACM
SIGSOFT Software Engineering Notes, 1992.

[8] Lutz Prechelt. An experiment on the usefulness of design patterns: Detailed description and evalu-
ation. Technical Report 9/1997, Fakult¨at für Informatik, Universität Karlsruhe, Germany, June 1997.
ftp.ira.uka.de.

[9] Lutz Prechelt, Barbara Unger, and Michael Philippsen. Documenting design patterns in code eases pro-
gram maintenance. InProc. ICSE Workshop on Process Modeling and Empirical Studies of Software
Evolution, pages 72–76, Boston, MA, May 1997.

[10] Douglas Schmidt. Collected papers from the PLoP ’96 and EuroPLoP ’96 conferences. Technical Re-
port wucs-97-07, Washington University, Dept. of CS, St. Louis, February 1997. (Conference “Pattern
languages of programs”).

[11] Julien L. Simon. Resampling: The new statistics. Duxbury Press, Belmont, CA, 1992.
http://www.statistics.com.

77

