
Data Locality and Load Balancing for Parallel

Neural Network Learning

Lutz Prechelt (prechelt@ira.uka.de)
Fakult�at Informatik
Universit�at Karlsruhe

76128 Karlsruhe, Germany
+49/721/608-4068, Fax: +49/721/694092

April 9, 1995

Abstract

Compilers for neural network learning algorithms can achieve near-optimal co-locality of data and
processes and near-optimal balancing of load over processors for irregular problems. This is im-
possible for general programs, but restricting programs to that particular problem domain allows
for the exploitation of domain-speci�c properties: The operations performed by neural algorithms
are broadcasts, reductions, and object-local operations only; the load distribution is regular with
respect to the (perhaps irregular) network topology; changes of network topology occur only from
time to time.

Compilation techniques and a compiler implementation for the MasPar MP-1 is described and
quantitative results for the e�ects of various optimizations used in the compiler are given. Experi-
ments with weight pruning algorithms yielded speedups of 28% due to load balancing, and of 195%
due to data locality. Two other optimizations, connection allocation and selecting the number of
replicates, speed programs up by about 50% or 100%, respectively.

Keywords: compiler optimizations, high level language, portable machine-independent parallel programming,

irregular problems, dynamic data structures, communication optimization

1 Introduction

The �eld of neural networks could in principle bene�t a lot from parallel computation. Most of the
applied work in this area and much of the basic research relies heavily on simulation. Problem rep-
resentations, network types and topologies, training algorithms, and neural network modularization,
combination, and application approaches are usually explored empirically: Prototypes are built in
the form of simulation programs and are then evaluated in dozens or hundreds of program runs.
Since training a neural network is a computationally intensive task and neural networks contain much
inherent parallelism, parallel implementations are an obvious path. In practice, however, there is
lack of such implementations; only simple neural network models have been implemented on parallel
machines.

A reason for this lack is the fact that today it is so di�cult to program distributed memory machines.
No compilers exist that combine both e�ciency and portability of programs. Either the programmer
has to de�ne explicitly the distribution of data and processes over the machine, making programming
cumbersome and the resulting programs unportable. Or the language de�nes an abstraction of the
machine in order to allow for portable programs, sacri�cing e�ciency when it comes to programs
working on irregular, dynamically changing data structures.

1



In this work, I present a compiler that translates machine independent programs for constructive
neural network training algorithms. These programs change the interconnection topology of the neural
network during program execution, leading to dynamic and irregular data and problem structures.
The compiler generates implementations that have near-optimal data locality and load balancing with
a minimum of dynamic data redistribution. The approach assumes a parallel distributed memory
machine with hundreds or thousands of processors that is well-balanced with respect to communication
versus computation performance, so that a �ne-grained implementation can be e�cient.

The state of the art of compiling general-purpose parallel programming languages can be summarized
as follows:

1. Data distributions with high data locality can be found for regular problems in array-based data
parallel languages using static analysis of index expressions.

2. Load balancing can be performed completely dynamically, sacri�cing data locality.

3. Data locality and load balancing can be optimized statically for irregular problems using graph
partitioning.

4. Graph partitioning could also be used at run time for irregular problems that dynamically change
their structure. In most cases, however, this is prohibitively expensive with respect to run time.

The basic idea of my work is that for neural network training algorithms a compiler can �nd inexpensive
data and load distribution schemes that work well even for problems with dynamically changing
structure, if it has enough information about the semantics of the program. Semantically rich program
descriptions supply such information in the form of constraints on the program behavior to be expected.

Two di�erent approaches suggest themselves for how to provide such semantically rich descriptions
of neural algorithms: An existing object oriented language could be extended by providing a set of
prede�ned classes with �xed semantics and constraints on their use. Or a domain-speci�c special
purpose language could be used. In my research, I have used the latter approach, not because it
is better, but because it is much easier to implement. The neural network programming language
designed for this work is called CuPit, after Warren McCulloch and Walter Pitts who �rst described
a formal neuron in 1943 [10]. For a description of CuPit see [13].

Compilers for CuPit can exploit typical properties of neural algorithms: Most computations are local
to objects in the network, non-local operations occur in patterns that are regular with respect to a
given network topology, load is almost proportional to the amount of connections in the network, and
the network topology changes only slowly.

The results obtained with a prototype CuPit compiler indicate that the approach is useful: Over
a set of benchmark problems, program versions with load balancing were found to be 28% faster
than unbalanced ones. With the data locality provided by the compiler the programs executed 195%
faster than without. Comparison with a good optimizing compiler for a general-purpose data parallel
language showed that the code of the CuPit compiler is competitive even for regular problems with
static structure.

The following sections will shortly discuss related work and then describe CuPit's view of neural
networks and neural algorithms, the approach used to achieve data locality and load balancing, some
implementation details of a compiler prototype, and the results obtained with the prototype.

2 Related work

Data locality can be optimized statically for languages with array-based data parallelism, e.g. [3, 12].
Index analysis is used to compute a good data distribution for programs using mostly linear index
expressions, which is the most frequent case. However, in the neural algorithm domain no explicit

2



analysis of data dependencies is needed: Operations either use only local data or have dependencies
that are restricted by the current connection topology of the neural network. Data distributions that
take these restrictions into account can exhibit high data locality without using sophisticated program
analysis.

For load balancing (in the context of data parallel programming sometimes called loop scheduling),
there are two radically di�erent approaches. Dynamic load balancing is the general approach: Work
is distributed as necessary during a parallel section. A variety of methods have been proposed, see [5]
for an overview. For highly irregular problems with unpredictable run time of the parts, only dynamic
methods can guarantee satisfactory balance. The disadvantage of dynamic load balancing methods
is that they are inherently unable to guarantee data locality, because it is impossible to predict on
which processor a certain operation will be executed. Static load balancing, on the other hand, �xes
the distribution of work for a parallel section before that section begins. The simplest version of this
approach is implicitly taken with the data locality optimizations mentioned above: It is the assumption
that the work will be balanced when data is distributed evenly, i.e., that the work to be done is the
same for each data element. A similar assumption is used here for neural algorithms.

A class of methods trying to solve the data locality and load balancing problem at once is based on
graph partitioning; [7] gives a good overview and references. These methods assume that the program's
communication and computation graph is known in advance. Graph partitioning tries to cut this graph
into a given number of parts minimizing the weighted sum of cut edges (maximizing data locality)
and having roughly the same sum of vertex weights in each part (balancing the load). The parts are
then distributed over the processors of the machine. The problem with these methods is that since the
exact solution requires exponential time, they are all heuristic and are either extremely expensive or
produce poor results. The long running time of the better methods forbids to use them repeatedly at
run time. Graph partitioning is also not readily applicable to neural network implementations based
on connection parallelism or to neural algorithms that do not process all nodes in parallel, as is the
case for the most popular class of layered networks. The problem is that the methods assume that all
considered objects (here: all nodes and connections of the network) are worked on at the same time.

I am not aware of research for optimizing simulations of neural networks with dynamically chang-
ing topologies using �ne-grained parallelism. Current work is mostly concerned with either highly
optimized implementations of individual neural algorithms, usually assuming regular neural network
topologies (e.g. [9] and references therein), mapping of more general static neural networks to high-
latency parallel machines (e.g. [18] and references therein, [17] is a bibliography), or very coarse-grained
approaches on workstation clusters (e.g. [8]).

3 What is a neural network?

Let us de�ne neural networks and neural algorithms (neural network training algorithms) as suited
to our needs. Since we are concerned with compilation, the description uses programming language
terminology. Familiarity with common neural network terms is assumed.

3.1 Neural network

A neural network is a collection of nodes (often called units or neurons) and directed connections
(often called weights). These nodes and connections form a directed graph. The structure of this
graph is called the topology of the network. We de�ne neural networks in terms of data types. There
are connection types, node types, node group types, and network types.

A connection may carry an arbitrary data structure of �xed size, determining its connection type. The
data structure consists of �elds called data elements , just like in a record type. A connection links two

3



not necessarily di�erent nodes; at one node it is an outgoing connection, at the other it is an incoming
connection. At a node, a connection is attached to an interface that can accept only either incoming
or outgoing connections of a single connection type.

A node may have arbitrary data elements. In addition, there are a number of interfaces to the node,
each de�ned by an interface mode (either \incoming" or \outgoing") and a connection type. Data
elements and interfaces together determine a node type.

Nodes are aggregated into node groups . A node group type speci�es the node type of its elements.
Objects of a particular node group type can consist of zero or more nodes of that node type.

A network may have arbitrary data elements. In addition, a network type declares a �xed number of
node groups to be parts of the network. The initial status of a network object is that all node groups
consist of zero nodes.

Note that this de�nition rules out symmetric network types (like Hop�eld networks) that require the
connections to be undirected. In other respects, though, the model is quite exible.

3.2 Neural algorithm

A neural algorithm is a program that manipulates a neural network (as described above) with op-
erations of only the following kinds: A sequential program called the central agent , which controls
the learning algorithm, can read and write data from and to the nodes of the network and can call
network procedures . Network procedures can (1) manipulate the data elements of the network object,
(2) call node procedures to be executed for all or some of the nodes of a particular node group that
is part of the network, (3) create or delete nodes in a node group, (4) create or delete connections
between a particular pair of interfaces of some or all of the nodes of two node groups, and (5) compute
a reduction over a particular data element of some or all nodes of a node group using an arbitrary
reduction operator.

Node procedures can (1) manipulate the data elements of the node object, (2) call connection proce-
dures to be executed for all of the connections attached to a particular interface of the node, (3) delete
the node they are applied to or create multiple copies of the node (including cloning of all the con-
nections), and (4) compute a reduction over a particular data element of all connections attached to
a particular interface using an arbitrary reduction operator.

Connection procedures can (1) manipulate the data elements of the connection object, and (2) delete
the connection object they are applied to.

Note that calls to node procedures and connection procedures imply parallelism. Network procedures,
node procedures, and connection procedures operate only on the local data elements of the particular
network, node, or connection object they are applied to and on the parameters that are supplied with
the call. Such parameters are read-only.

In addition, we de�ne network replication to mean the following: Creating network replicates means to
make identical copies of a network; merging network replicates means to unify the data in all network
in a set of replicates by means of elementwise reduction operations (de�ned by a user program) and
redistribution of the results; deleting network replicates means to create a single network from a set
of replicates by merging without redistribution; executing a network operation on replicates means
to execute the operation for each replicate using the same procedure but di�erent training examples.
Replicates can identify themselves by a replicate number. While several replicates of a network exist,
the topology of these networks may not change, because this could lead to diverging topologies, which
can not uniquely be merged again. With network replication, calls to network procedures imply
parallelism, too.

4



Network replication essentially implies parallelism on the level of training examples in a neural algo-
rithm. Note that this kind of parallelism is not applicable to all training algorithms.

The above formulation of neural algorithms gives us three levels of parallelism: The sequential program
invokes a network procedure on several network replicates in parallel; a network procedure invokes
a node procedure on several nodes in parallel; a node procedure invokes a connection procedure on
several connections in parallel.

3.3 Example

t1 t2 t3

h1 h2 h3

f1 f2 f3 f4

A 3-layer feed forward neural network with irregular connection topology.

Figure 1: Example neural network

As an example, consider the neural network shown in �gure 1. It has three node groups f , h, and
t, containing 4, 3, and 3 nodes, respectively. The types of the nodes within each group are the same
but the types of, say, f1 and h1 may di�er. There is only one connection type. Each node has two
interfaces, one for incoming connections and one for outgoing connections. Connections exist only
between nodes of adjacent node groups | the network is called layered . f is called an input layer,
because it has no incoming connections, t is called an output layer, because it has no outgoing nodes,
h is called a hidden layer, because it is neither an input nor an output layer. The data elements of
the network, node, and connection types depend on the neural algorithm that is to be implemented.
Typical backpropagation-type algorithms will at least have in the connections: elements for weight,
delta, input, and output value; in the nodes: elements for input value, output value, and accumulated
error; and in the network itself: an element for accumulated error.

4 Approach

The kernel of a typical neural algorithm consists of repeatedly putting a training example into the
network and then propagating it through the nodes and connections of the network one or several
times. This means that the majority of time is spent in the broadcast from nodes to connections,
reduction from connections to nodes, and local operations in nodes and connections. Note that what
is called reductions above will actually be a number of reductions at once, one for each node.

In this context, the following considerations lead to the maximization of data locality: (1) Local
operations can be forced to have full data locality by attaching the computation to its data object.
(2) Reductions cannot have full data locality in any useful parallel implementation; they can, however,
exploit neighborhood relations in the communication network of the parallel machine. (3) Broadcasts
can be replaced by replication of data and computation.

The following consideration leads to load balancing on the relevant (i.e., connection) level: For each call
of a connection operation, each processor should hold approximately the same number of connections

5



on which the operation works. This simple rule is su�cient, because for each parallel connection
operation the work to be performed is nearly the same for each connection, since connection operations
usually contain no loops.

Note that the data locality and load balancing goals conict, since a node should be local with all
its connections, which can be achieved by replicating it several times, yet will often have di�erent
numbers of connections at di�erent interfaces.

The approach described below is suitable for implementation on any distributed memory parallel ma-
chine, SIMD or MIMD, with explicit distribution and movement of data. Each processor is assumed to
have its own local memory. For machines that perform extensive cacheing or implicit data distribution
(such as the KSR), the considerations become more complicated, although most of the techniques and
analyses described still apply. Synchronization issues will be ignored; they are not critical in neural
algorithms. In the following, we will assume a machine with a static interconnection network in which
neighborhoods can easily be identi�ed, i.e., the machine can be segmented into parts that all have a sig-
ni�cantly smaller diameter than the machine as a whole. All of the common interconnection networks
such as meshes, trees, and hypercubes have this property. Without it, reductions over connections
become less e�cient but all other techniques are still applicable. For simplicity of description, we will
assume a 2-D grid as the interconnection network for the rest of the text; other topologies can be
handled analogously.

The approach taken in this work to combine all of the above considerations is the following:

A1: To use training example parallelism, partition the machine into 2-rectangular segments of several
processors each and use one such segment for each network replicate. A segment is 2-rectangular i�
it is rectangular with the height being a power of two and the width being either the same as the
height or twice the height, all measured in number of processors. This form minimizes the diameter
while making address computations simple and fast. For other topologies than grids, appropriate
analogous de�nitions of 2-rectangular segments can be found. All segments contain exactly the same
data structure, but with di�erent values. Using replicates trades additional work for replicate creation
(once) and replicate merging (repeatedly) for increased parallelism and a reduction of the average
communication distance.

A2: To use node parallelism, do the following for each node group: Partition the segment into
2-rectangular node blocks of one or several processors. Allocate one node block for each node. See
�gure 2 for an example of segment and node block partitioning. How the partitioning is actually
computed will be described in A7 below.

A3: To use connection parallelism, do the following for each interface of each node: Distribute the
connections of the interface over the node's block and virtualize connection operations as needed. See
�gure 3 for an example of connection distribution over node blocks.

A4: To get data locality for the parameter broadcast of calls that introduce additional parallelism,
replicate scalars on all processors of the machine, replicate the data elements of networks on all
processors of the network's segment, and replicate the data elements of nodes on all processors of the
node's node block. This data replication costs one machine-wide broadcast per network procedure
call, a broadcast of the result after each reduction, and some memory. The corresponding broadcast
savings are at least equivalent of the above broadcast costs. More savings result if the user program
computes additional parameters locally in a node.

A5: Do not replicate connection data at both ends of a connection. Instead, one end of a connection
(called the remote end) contains only a pointer to the other end (called the data end); the data end
contains a pointer to the remote end plus the actual connection data object. Data replication would
mean that each change in any data element of a connection had to be send to the opposite end of the
connection, whereas with the above architecture, less than half of this tra�c is needed if the correct
decision is made at which end to put the actual data.

6



A6: To make reductions of connection data into nodes cheap, choose node blocks to be small-
diameter sets of processors. 2-rectangular blocks have almost minimum diameter. Small diameter also
speeds up data replication in a node block which is necessary after a reduction. For instance in �gure
2, the block h3 is sized 2x2 instead of 4x1.

A7: To get load balancing, make the size of each node's block proportional to the work performed
on the connections attached to the node. A simple measure of work is the number of connections, a
more elaborate measure can be obtained by actually measuring the work at run time. When di�erent
interfaces of a node have a di�erent number of connections, node block size can be proportional to the
amount of work only on the average. That node blocks are 2-rectangular has two further consequences:
First, no exact proportionality between node block size and work can be guaranteed. Node blocks can
be too large or small by up to factor 2. Second, not all nodes that have the same amount of work
should be handled the same in order to avoid poor processor utilization. The algorithm given below
can be used to compute the node block sizes b1 : : : bk of k nodes having connection work equivalents of
w1 : : :wk for a segment of S processors; compared to the real algorithm the following one is simpli�ed
in that node blocks must be forced to have at least size 1; let p(n) mean 2n:

W :=
Pk

i=1wi;
Forall i 2 [1 : : :k] :

si := S � wi=W ; (should-be node block sizes)
ui := p(dlog

2
sie); (2-rectangular sizes obtained by rounding up)

di := p(blog
2
sic); (2-rectangular sizes obtained by rounding down)

ri := ui=si; (rounding ratios)
by binary search �nd the maximum � 2 [1 : : :2] so that
P

i;ri<� ui +
P

j;rj��
dj � S

now let J be the sequence of relevant indices j from above and
�J a leading subsequence of J . Find the maximal �J that maintains
P

i;ri<� ui +
P

c2 �J uc +
P

j2Jn �J dj � S

and, using the above index sets of i; c and j, set
bi := ui; bc := uc; bj := dj

From this set of node block sizes the actual node block layout is computed by a bin packing algorithm.
The special version of the bin packing problem assuming 2-rectangular bins and pieces can be optimally
solved in time proportional to the size of the bins and is parallelizable to logarithmic time. An example
is shown and discussed in �gures 2 and 3 in the next section.

A8: No optimization of extra-object locality is performed since it does not pay o�. We could arrange
the node blocks within a segment and the connections within a node block in a way that maximizes
remote connection locality, i.e., that results in having both ends of a connection on the same processor
as often as possible. There are two reasons for not doing this: First, little such locality can be obtained
in neural networks, since their topology typically exhibits almost no clustering of connections. (An
exception are modular neural networks, for which a \locality preference" for the connections holds,
e.g. [18]). With only small gains in locality, the high running time of the optimization computation
takes too long to amortize. Second, arrangement of nodes for optimal extra-object locality interferes
with arrangement of nodes for minimum waste of processors within a segment. Hence, we either have
to trade extra-object locality for processor utilization or have to give up using 2-rectangular node
blocks. The latter would make the layout algorithm prohibitively expensive.

5 Implementation

The implementation discussed here is for a MasPar MP-1 (Model 1216A). The MP-1 is a 16384
processor SIMD machine that is now superseded by a faster model, but is a good basis for this
work because of two properties: First, due to the large number of processors scaling can be explored

7



properly. Second, the machine's communication performance is well balanced with its computation
performance. To communicate an arbitrary permutation of 4-byte packets over all processors using
the general global router communication network takes about as long as 30 single precision oating
point multiplications. Fetching takes the same amount of time as sending. Sending or fetching 4-byte
packets to or from the nearest neighbors using the specialized xnet grid communication network takes
only 3 multiplies, communication with neighbors 20 processors away in the same direction for all
participating processors takes as long as 6 multiplies. For 32-byte packets, the respective values are
roughly 100, 10, and 30, respectively. Since neural algorithms need a mix of these communication
modes, we �nd a cost on the order of 5 to 20 oating point multiplications for each oating point
communication.

The CuPit compiler was implemented using the Eli compiler construction system [6] and generates
MPL code, MasPar's data parallel variant of C. The source code of the compiler is available as a
literate programming document [15]. Some details of the implementation and a data distribution
example are given in the following sections.

5.1 Networks

Network replicates are created only on request from a user program. While network replicates exist, no
changes in network topology are allowed in CuPit. After topology changes, the network data structure
is completely reorganized when replicates are created again or upon program request. Calls to network
procedures are executed on all processors of the segment. Virtualization of network procedures is never
necessary, since having more replicates than processors does not make any sense.

CuPit allows the programmer to specify the number of network replicates as an interval; the program
may choose any number of replicates from this interval at run time. The compiler should generate code
to select that number of replicates which leads to fastest execution. However, to determine this optimal
number of replicates is quite di�cult: The best value depends on the current size of the network, the
number of training examples in the dataset, the size of the machine, and the training algorithm used.
Therefore, the only practical way to �nd good choices for this parameter automatically | and the
one used in the compiler | is to generate code that makes the program iteratively search for optimal
values at run time, using changes in run time per training iteration as a hint for when to restart the
search.

5.2 Nodes

Calls to node procedures are executed on all processors of the node blocks of the participating nodes.
No broadcast of parameters is necessary, since these are locally available due to network data element
replication. An exception are input or output of training examples into or from nodes, performed by
special CuPit operators that are called from the sequential part of the program and that act on all
nodes of a node group in all network replicates at once. The input operator implies broadcast over
the node block. Another special case are reduction operations over the connections of a node. Such
reductions return their result in the �rst processor of each node block; it is then immediately broadcast
to all processors of the node block in order to maintain the data replication invariant. Virtualization
is done for node procedures as needed.

Figure 2 shows an example layout of node blocks. What you see is the node group of layer h of the
network from �gure 1; the network is replicated fourfold. In the example network, the work required
for the connections is about the same for h1 and h2, while h3 requires about twice as much, so the
layout given above results (see also �gure 3). Since the h3 block is the largest, it was placed �rst and
is therefore to the left of the h1 and h2 blocks.

8



h3 h3

h3

Processor

Node block

h3

h1

h2 h2

h2

h1

h2

h1

h1

Example node block layout of layer h of the example network on a 4x8 processor grid using 4 replicates. Replicate

boundaries are indicated by straight lines.

Figure 2: Segments and node blocks

5.3 Connections

Within each node block, the connections attached to the node are distributed evenly on a per-interface
basis. For each connection type, a decision is made as to whether the data end of the connections
is located at the input interface or the output interface. This decision should not be based on static
program analysis, because the optimal data allocation will usually be data dependent. It could be
made based on run time analysis of the program, but currently no automatic scheme is implemented in
the compiler | connection allocation is changed via compiler options if necessary. Calls to connection
procedures are executed on all processors of the node blocks of the nodes issuing the call, so no
broadcast of parameters is necessary. Code for each connection procedure is generated in three parts:
One procedure L for the operation on a single connection object as speci�ed in the user program; one
procedure V L for virtualization over local connection objects (using L); and one procedure RL for
virtualization over remote connection objects (also using L). RL makes L believe it is working on a
local connection object by constructing such a local object before L is called: The relevant elements of
the remote connection are fetched and a local connection object is initialized with these values. Then
L is executed on the local object and the elements that have changed are sent back to the remote
connection object.

The CuPit compiler computes the sets of elements to fetch and send for each connection procedure
by a very simple conservative static analysis. The criterion used is textual presence of an element
in any read (right hand side) or write (left hand side) position, respectively, somewhere in the static
call chain of the procedure. This criterion works pretty well for typical neural algorithms for normal
user program coding style, but could be replaced by sophisticated data ow analysis. The elements to
be fetched or sent are not communicated individually but are aggregated into packets that minimize
communication time. On the MasPar, this means to aggregate all elements that have gaps of less
than 12 bytes between them into one packet and to transfer also the gaps instead of starting a new
communication; packing and unpacking is not feasible in reasonable time.

Since node blocks are 2-rectangular, reductions over a data element of the connections of a node use the
e�cient xnet neighbor communication network on the MasPar. Figure 3 shows the data distribution
inside the node blocks of �gure 2 for one segment. Each processor contains one node object copy,
plus zero or more connection objects, plus zero or more remote connection objects. Connection
objects correspond to outgoing connections, while remote connection objects correspond to incoming
connections. The block size has been chosen in approximate proportion to the amount of connection
work to be done by each node. This amount is a weighted sum of the numbers of incoming and outgoing
connections; the weights used are the average amount of work to be done for each connection kind.
This amount is usually higher for remote connections, since sending and fetching remote connection
parts takes a signi�cant part of overall connection operation run time.

Figure 4 shows the distribution of connections and corresponding remote connections between layers h
and t of the example network from �gure 1 for one segment. The distribution shown in the �gure uses

9



h3

Processor

Node block

Node object

Connection object

h3 h3

h3 h3
Remote connection

h1 h1

h1

h2

h2h2

Distribution of node, connection, and remote connection objects of layer h of the example network from �gure

1 within one segment from �gure 2.

Figure 3: Node blocks and connections

h3 t1 h3 t1 h1 t2 h1 t2

h2 h2t3h3t3h3

p1 p2 p3

p4 p5 p6 p7

p0

Layout of nodes of layers h and t of the example network and the connections between them. Each connection

is implemented as a pair of a connection object and a remote connection object, each having a pointer to its

counterpart.

Figure 4: Connections and remote connections

the straightforward node block sizes; in contrast to these, the node block size computation algorithm
given above would assign 4 processors to t1 in order to avoid wasting processors. Extrapolating the
situation shown in the �gure to more and larger layers on more processors and more connections
between them illustrates why it is hard to arrange nodes so that connections and remote connections
are on the same processor signi�cantly more often than by random assignment.

5.4 Miscellaneous details

All objects carry along descriptors that indicate their validity (existence) and other data as needed:
Networks know their replicate number and segment size. Node groups know their number of nodes
and factor of virtualization. Nodes know their index and their block size. Connection interfaces know
their factor of virtualization, number of connections, and amount of work performed per connection.
Connections know the location of their opposite end.

Self-deletion of connections and nodes is done by setting the existence indicator in the respective
descriptors to false; creation of nodes is done by reorganization of the node group. There is always an
exact one-to-one correspondence of the data structures in each segment, thus replicate merging can
be computed easily.

10



6 Results and discussion

The e�ectiveness of the compiler optimizations was evaluated in various ways.

1. To measure the improvements made through load balancing, a series of experiments was run with
the same programs with and without load balancing.

2. To estimate the savings due to data locality, code with additional communication operations
to simulate non-local data distribution was generated and its run time was compared with the
optimized code.

3. To estimate the cost of computing and creating the data distribution that leads to data locality
and load balancing, the fraction of time spent in data distribution procedures was measured.

4. To estimate how good the overall performance is, a comparison with the code generated by an
optimizing general purpose high level language compiler was made.

5. One experiment assessed the relative speed obtained by making the optimal versus the non-
optimal decision for connection allocation.

6. To estimate the usefulness of communication aggregation, programs with aggregation were timed
against programs that fetched each element individually.

7. One experiment assessed the relative speed obtained by dynamic adaptation versus static choice
of the number of network replicates.

These experiments and their results are described and discussed in the following sections.

6.1 Load balancing

For the load balancing experiments, irregular network topologies were created by a network pruning
algorithm. Such algorithms start with a large, fully connected network and remove some of the
connections in several pruning steps during the training process. Which connections to remove can
be decided in di�erent ways, for instance based on weight (idea: small weights are probably not too
important) or based on a statistical measure of signi�cance of being non-zero. The latter method was
used in the experiments. See [4] for a detailed description.

Training started with 4-layer networks with 20+20 hidden nodes and all possible feed forward con-
nections, including all shortcut connections. To ensure comparability, a static pruning schedule was
used: prune 30%, 15%, 15%, 15%, and 15% of the remaining weights after epoch 40, 80, 120, 160, and
200, respectively. Altogether, this schedule prunes about two thirds of the initial connections. While
such a static pruning schedule is not the way pruning would be used on real-life learning tasks, it is
su�ciently close to real pruning schedules for our timing measurement purposes.

As experiments showed, the actual pruning criterion is less important for the results than the dataset
used to train: Some datasets show signi�cantly higher irregularity in pruned networks than others.
The higher the network irregularity, the more performance can be gained by load balancing.

For the experiments reported here, 11 real training problems from 10 di�erent domains were used,
all taken from the PROBEN1 benchmark set [14]. The name and size of each problem is given in
the �rst four columns of �gure 5. The actual datasets for all these problems contain twice as many
training examples as indicated in the table. Each problem exists in three di�erent variations created
by selecting three di�erent subsets of training examples at random.

For all these 33 problem variations, three di�erent versions of the pruning program were timed: An
optimized one with load balancing based on actual measurements of workload at each connection
(called bal), one with load balancing based on mere connection counting (called dbal for \dumb
balancing"), and one without load balancing (called nbal , for \no balancing"). The timings reported

11



Problem Nin Nout Nex dbal nbal noloc cwrong comm repl

building 14 3 2104 102 123 244 145 110 99
are 24 3 533 105 120 289 141 112 165
hearta 35 1 460 102 114 325 151 111 110
cancer 9 2 350 110 150 305 144 97 98
card 51 2 345 102 139 333 164 108 120
diabetes 8 2 384 108 129 294 159 110 161
gene 120 3 1588 102 115 221 149 119 77
glass 9 6 107 114 130 309 165 101 102
heart 35 2 460 105 130 320 153 111 110
soybean 82 19 342 105 132 288 167 115 130
thyroid 21 3 3600 100 120 247 144 121 114

(average) 34 4.2 934 105 127 289 154 110 115

Nin, Nout, Nex: Number of input nodes, output nodes, and training examples, respectively. dbal, nbal, noloc,

conall, comm, repl: Relative run time of dumb load balancing, no load balancing, no data locality, wrong

connection object placement, no remote connection access communication bundling, and static choice of number

of network replicates, respectively, compared to optimized version for various data sets in a network pruning

situation.

Figure 5: Problem sizes and relative run time of non-optimized program versions

here are based on the time needed for training in epoch 210, i.e., after the last pruning step. The
value of bal is always used as the basis, normalized to 100.

The results appear in �gure 5 (ignore the rightmost columns for now, they will be described in
later sections). Summing up, we �nd an average relative run time for load balancing based on load
estimation instead of load measurement of 105% and for unbalanced load of 128%. Note that the latter
value is a conservative estimation of the e�ect of load balancing for the following reasons: (1) All runs
used high numbers of replicates, hampering load balancing capabilities due to small segment sizes
(node block sizes cannot di�er much). (2) On the MasPar, communication latency is extremely low
for low communication tra�c. Hence, communication gets faster almost in proportion to the reduction
of tra�c as it happens in programs with misbalanced load and reduces the e�ect of load misbalance.
Other machines are less friendly in this respect. (3) The irregularities in the networks of the example
runs were only moderate. Thus, the potential for speedups from load balancing was only moderate,
too. (4) Load misbalance of less than factor 2 is sometimes not corrected by the CuPit compiler,
since node blocks are always 2-rectangular. Thus, we can expect the actual e�ects of load balancing
to be higher than the 28% mentioned above for most situations.

Additional experiments were performed in order to estimate the e�ects of load balancing for machines
that perform latency hiding. The compiler was instrumented to generate code that simulates such
machines by completely ignoring time used for communication of remote connection data in timing
measurements as well as in load balancing computations. We might expect load balancing to be less
e�ective in this situation. Experiments with the gene data sets showed that the decrease in e�ect of
load balancing was minor: The relative run time of the latency hiding program without load balancing
compared to that with load balancing was 113%. This e�ect of load balancing is less than 2% weaker
than for the normal MasPar implementation. Hence, even for machines that have or simulate zero
latency, performance gains due to load balancing will be signi�cant.

Further experiments (performed using the the Chaco [7] program) showed that using graph partition-
ing methods to compute the data distributions would not pay o�: After pruning two thirds of all
connections they could increase remote connection locality only by about 10%, which is not enough
to amortize the signi�cant run time they consume on each data redistribution (even after only minor

12



pruning when savings are only much smaller).

Under the assumption that network pruning leads to topologies that have a typical degree of irregu-
larity, I conclude that load balancing uniformly can save at least about one �fth of overall run time
on a variety of machines.

6.2 Data locality

It is not quite clear with which alternative implementation to compare code generated by the compiler
for an evaluation of the e�ect of data locality. The alternative chosen here is similar to what would
result from formulating the program in a language with array-based parallelism where arrays are
distributed over all processors in some regular fashion. The connections of irregular networks could
be stored in such arrays as follows: The set of all connections attached to one interface of all nodes of
one node group are densely stored in one array. Each node has a pair of indices indicating the part of
the array where its connections are stored. Such a scheme would have remote connection access for all
connection operations. An additional cost of the array-based scheme is that node data replication can
no longer be used to avoid broadcast of the parameters of connection operations. On the other hand,
this array-based implementation has a better memory utilization and always has perfectly balanced
load. This approach to irregular problems is used by languages such as NESL [2].

In order to estimate the impact of such array-based implementations on performance, the compiler
was instrumented to generate code that simulated no connection object data locality for connection
operations (but still avoided parameter broadcast). Timing measurements with these non-data-local
variants of the otherwise unchanged program produced the results indicated in the noloc column of
�gure 5. Note that the time for merging network replicates is excluded in these values, which is
equivalent to measuring with very large training sets. This correction was made because the replicate
merging code generated by the modi�ed compiler did not ignore data locality, which would have
inuenced the results. Thus, implementations without data locality take about two to three times as
long to execute.

6.3 Cost of data distribution

The above results all exclude the time spent in the general data distribution procedure that are able
to achieve data locality and load balancing. Doing without data locality or without load balancing
might allow for simpler and faster data distribution procedures. I thus measured how much time was
spent in the general data distribution procedures. The times were measured in the same experimental
setting as described in the section on load balancing. It was found that, depending on the size and
structure of the network and the number of replicates, the data distribution procedures accounted for
2 percent (gene problem) to 11 percent (glass problem) of run time. This includes the initial creation
of replicates after the construction of the network and the deletion and recreation of replicates before
and after each pruning step.

As we see, the cost of data distribution (of which only parts could be saved) is signi�cantly smaller
than the gains from load balancing let alone data locality. This is true even for problems with
extremely small data sets such as the glass problem where there is little training time to amortize
data distribution costs.

I conclude that the data distribution described in this work is not only e�ective but also e�cient in
accelerating program execution.

13



6.4 Overall performance

To justify all other evaluations, we must be sure that the compiler produces code that is reasonably
e�cient, since otherwise large improvements would not mean much. For this purpose, I compared the
run time of a CuPit program to an equivalent Modula-2� program. The latter was translated by a
compiler that also targets the MasPar and that is known to generate e�cient code [11]. The problem
chosen was backpropagation using the RPROP learning rule [16] for a fully connected 3-layer feed
forward network.

The best was done to ensure that the code generated by the Modula-2� compiler was as e�cient as
possible: A regular network was used, since that (and only that) allowed the Modula-2� compiler
to generate code having data locality; procedure calls on the node and connection level were inlined
in order to avoid the cost implied by the copy-in-copy-out semantics of array parameter passing in
Modula-2�; all levels of parallelism were unrolled into a single FORALL statement to minimize startup
costs of parallel sections; remote data read more than once during one operation was bu�ered in local
variables.

Two disadvantages remained for the Modula-2� code: The code generated for the FORALL is more
general than that used by the CuPit compiler to start parallel sections, and the Modula-2� compiler
is not capable of combining multiple communication operations for remote connection access.

On the other hand, the Modula-2� program had two advantages over the CuPit program: It avoids
copying of unnecessary data upon redistribution of the network data after a network replicate merge
operation and it fetches and sends only those elements of a remote connection that are really used
at run time while CuPit code fetches all elements that may be used as determined by a very simple
static analysis. Avoiding unnecessary data redistributions after network merge is an optimization that
is not implemented in the current CuPit compiler; in the Modula-2� program, redistribution has to
be coded by hand.

Timings were taken for runs of the following problems: a 128:13:127 network (that means 128 input
nodes, 13 hidden nodes, and 127 output nodes) with 127 training examples using 64 or 16 replicates,
a 129:13:128 network with 128 training examples using 16 replicates, and a 501:13:500 network with
500 training examples using 16 or 4 replicates. These problems were chosen to put the CuPit code
at disadvantage: 13 node blocks of equal size cannot be distributed well over a 2-rectangular segment,
and the small number of training examples emphasizes the overhead in redistribution after merge.

The results indicate that Modula-2� code is faster than CuPit code when many replicates are used:
for the 64 replicates example, the relative run time of the Modula-2� program compared to the CuPit
program was 90%. This result is due to the savings during data redistribution after network merge.
For smaller numbers of replicates, CuPit code was always faster. Over all examples, the average
relative run time of the Modula-2� program was 142%. When the ability of the CuPit compiler to
combine multiple fetch or send operations was switched o�, this average dropped to 130%.

As we see, the CuPit code is roughly one third faster than that generated by a known-to-be-e�cient
general purpose parallel compiler. This result suggests that the overall quality of the code generated
by the CuPit compiler is good. It must be emphasized that this test was done on static, regular
problems that the Modula-2� compiler is well suited for but that are not the typical domain of the
CuPit compiler which targets dynamic, irregular problems. No comparisons with other compilers were
made for irregular problems, since no compilers that optimize for irregular problems are available on
the MasPar.

6.5 Connection location

A decision must be made by the compiler where to locate the actual connection objects: at the input
interface or at the output interface (see section 5.3). An experiment explored the results of making the

14



wrong decision in this respect. The experimental setup was exactly as described in the load balancing
section; a program called cwrong that placed connection objects at output interfaces (which is the
wrong decision for this program) was timed. The results are shown in the respective column of �gure
5.

As we see there is a signi�cant performance penalty of about 50 percent run time increase for choosing
the wrong connection location. Note that this value depends on the actual algorithm of the user
program and on the way it is coded.

6.6 Communication aggregation

As is shown in column comm of table 5, not having communication aggregation (see section 5.3) costs
an additional 10% run time on the average for the MasPar. The value would be higher for machines
with higher latency to bandwidth ratio.

6.7 Selecting the number of replicates

0

2

4

6

8

10

700 720 740 760 780 800 820 840

log2(replicates)
time per epoch

pruning

Changes in number of replicates and corresponding run time per epoch initiated automatically after the pruning

step in epoch 755.

Figure 6: Automatic replicate number optimization

Dynamically adaptive search for the optimal number of network replicates (see section 5.1) was also
timed using a pruning algorithm with various networks and data sets and compared with a static
number chosen by educated guess. Figure 6 shows an example of how the adaptive search works.
The relative run time of the latter is shown in table 5 in column repls . As we see, something can be
gained in most cases. The bad result on the gene problem is due to the too simple-minded prototype
implementation of the search method.

7 Conclusion

This work considered the problem of compiling neural algorithms formulated in a problem-oriented and
machine independent parallel language. These neural algorithms describe data parallel computations
on a dynamically changing irregular neural network. The article described an approach to compiling
such programs into code that exhibits near-optimal data locality and load balancing.

15



Over a variety of irregular problems, a prototype implementation of the approach produced the fol-
lowing speedups: 28% due to load balancing, 195% due to data locality, and 54% due to optimal
remote connection object placement. The corresponding data distribution computations took 2% to
11% of the time needed for the user program computations. Even for regular problems, the code
generated by the prototype compiler was shown to be as fast as that of a good optimizing compiler
for a general-purpose high-level parallel language.

I conclude that in the domain of neural algorithms an optimizing compiler can produce e�cient code
for irregular problems from a high-level description automatically. Therefore, the general principles of
the approach should also be applied to machines with smaller numbers of processors and be compared
with other techniques.

References

[1] J.A. Anderson and E. Rosenfeld, editors. Neurocomputing: Foundations of Research. MIT Press,
Cambridge, MA, 1988.

[2] Guy E. Blelloch, Siddhartha Chatterjee, Jonathan C. Hardwick, Jay Sipelstein, and Marco Zagha.
Implementation of a nested data-parallel language. Fourth ACM SIGPLAN Symposium on Prin-
ciples and Practice of Parallel Programming (PPoPP), ACM SIGPLAN Notices, 28(7):102{111,
July 1993.

[3] Siddhartha Chatterjee, John R. Gilbert, Robert Schreiber, and Shang-Hua Teng. Automatic
array alignment in data parallel programs. In Proc. 20th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL), pages 16{28, Charleston, SC, January 1993.

[4] William Finno�, Ferdinand Hergert, and Hans Georg Zimmermann. Improving model selection
by nonconvergent methods. Neural Networks, 6:771{783, 1993.

[5] Susan Flynn Hummel, Edith Schonberg, and Lawrence E. Flynn. Factoring | a method for
scheduling parallel loops. Communications of the ACM, 35(8):90{101, August 1992.

[6] Robert W. Gray, Vincent P. Heuring, Steven P. Levi, Anthony M. Sloane, and William M. Waite.
Eli: A complete, exible compiler construction system. Communications of the ACM, 35(2):121{
131, February 1992.

[7] Bruce Hendrickson and Robert Leland. The Chaco user's guide, version 1.0. UC-405 SAND93-
2339, Sandia National Laboratories, Albuquerque, NM 87185, October 1993.

[8] Christian Jacob and Peter Wilke. A distributed network simulation environment for multi-
processing systems. In Proc. Int. Joint Conf. on Neural Networks (IJCNN), pages 1178{1183,
Singapore, 1991.

[9] Xiao Liu and George L. Wilcox. Benchmarking of the CM-5 and the Cray machines with a
very large backpropagation neural network. Technical Report 93/38, University of Minnesota
Supercomputer Institute, Minneapolis, April 1993.

[10] Warren McCulloch and Walter Pitts. A logical calculus of ideas immanent in nervous activity.
Bulletin of Mathematical Biophysics, 5:115{133, 1943. Reprinted in [1].

[11] Michael Philippsen, Ernst A. Heinz, and Paul Lukowicz. Compiling machine-independent parallel
programs. ACM SIGPLAN Notices, 28(8):99{108, August 1993. Also as report 14/93, Fakult�at
f�ur Informatik, Universit�at Karlsruhe.

16



[12] Michael Philippsen and Markus U. Mock. Data and process alignment in Modula-2�. In AP '93,
Int. Workshop on Automatic Distributed Memory Parallelization, Automatic Data Distribution,
and Automatic Parallel Performance Prediction, pages 141{149, Saarbr�ucken, Germany, March
1993.

[13] Lutz Prechelt. CuPit | a parallel language for neural algorithms: Language reference and tuto-
rial. Technical Report 4/94, Fakult�at f�ur Informatik, Universit�at Karlsruhe, Germany, January
1994. Anonymous FTP: /pub/papers/techreports/1994/1994-4.ps.Z on ftp.ira.uka.de.

[14] Lutz Prechelt. PROBEN1 | A set of benchmarks and benchmarking rules for neural network
training algorithms. Technical Report 21/94, Fakult�at f�ur Informatik, Universit�at Karlsruhe,
Germany, September 1994. Anonymous FTP: /pub/papers/techreports/1994/1994-21.ps.Z on
ftp.ira.uka.de.

[15] Lutz Prechelt. The CuPit compiler for the MasPar| a literate programming document. Technical
Report 1/95, Fakult�at f�ur Informatik, Universit�at Karlsruhe, Germany, January 1995. Anony-
mous FTP: /pub/papers/techreports/1995/1995-1.ps.Z on ftp.ira.uka.de.

[16] Martin Riedmiller and Heinrich Braun. A direct adaptive method for faster backpropagation
learning: The RPROP algorithm. In Proc. of the IEEE Int. Conf. on Neural Networks, San
Francisco, CA, April 1993.

[17] Tom Tollenaere. Neural network simulations on transputers. Technical Report TR 91 0021,
Version 1, Katholieke Universiteit te Leuven, Leuven, Belgium, May 1991.

[18] Tom Tollenaere and Guy A. Orban. Decomposition and mapping of locally connected layered
neural networks on message-passing multiprocessors. Parallel Algorithms and Applications, 1:43{
56, 1993.

17


