On Implicit Assumptions Underlying
Software Engineering Research

Lutz Prechelt
prechelt@inf.fu-berlin.de
Freie Universitit Berlin
Berlin, Germany

ABSTRACT

Background: Software engineering research articles should make
precise claims regarding their contribution, so that practitioners
can decide when they might be interested and researchers can
better recognize (1) whether the given research is valid, (2) which
published works to use as stepping stones for their own research
(and which not), and (3) where additional research is required. In
particular, articles should spell out what assumptions were made
at each research step. Question: Can we identify recurring patterns
of assumptions that are not spelled out? Method: This is a position
paper. It formulates impressions, but does not present concrete
evidence. Results: Assumptions that are wrong or assumptions that
are risky and not explicit threaten the integrity of the scientific
record. There are several recurring types of such assumptions. The
frequency of these problems is currently unknown. Conclusion: The
software engineering research community should become more
conscious and more explicit with respect to the assumptions that
underlie individual research works.

CCS CONCEPTS

« Software and its engineering;

KEYWORDS

research quality, software engineering, credibility, relevance, as-
sumption

ACM Reference Format:

Lutz Prechelt. 2021. On Implicit Assumptions Underlying Software Engi-
neering Research. In Evaluation and Assessment in Software Engineering
(EASE 2021), June 21-23, 2021, Trondheim, Norway. ACM, New York, NY,
USA, 4 pages. https://doi.org/10.1145/3463274.3463356

1 INTRODUCTION

The present article talks only about research works in software
engineering and whithin that realm only about empirical works,
not about tool construction as such and not about theoretical works.

That said, the progress model of scientific research is the “Stand-
ing on the shoulders of giants” idea: We make progress by building
our research on top of previous research that others have performed.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

EASE 2021, June 21-23, 2021, Trondheim, Norway

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9053-8/21/06...$15.00
https://doi.org/10.1145/3463274.3463356

For this idea to work well, it is important that we know what we
know and what we do not know:

e What research questions have already been investigated?
Mapping studies help us understand this.

e What have the studies found out? We might want to build
on top of these findings in various ways.

e What have they not found out? We might want to do research
to fill such a gap.

The latter question refers to the fact that most empirical findings
are not universal; they apply to some set of contexts but not to
others. Our knowledge in this regard is vague and uncertain: For a
given empirical result X and three contexts A, B, C, we may be very
inclined to believe (but not fully certain) X holds in A, inclined to
believe (but not fully certain) it does not hold in B, and explicitly
uncertain whether or not it holds in C.

In this article, we will call the inclination to believe a result the
result’s credibility. It forms the core of a simple model of research
quality presented in Section 2. Assumptions are a key factor in that
model and when assumptions are not spelled out (rather hidden or
implicit) or are wrong they threaten or damage research quality.

The present article assumes (not: demonstrates) that this is a
real problem: That some types of assumptions are often not spelled
out, that they are often dubious or wrong, and that this is actually
damaging the quality of software engineering research to a relevant
degree. Section 3 explains several such types of assumption.

2 A SIMPLE MODEL OF RESEARCH QUALITY

The model explains how to think about research quality in terms of
Credibility and Relevance and what role assumptions are playing.
See Figure 1 for an overview.

2.1 Credibility

The Credibility of a research article is the degree to which we are
willing to trust its conclusion.

For our purposes here, Credibility is a conceptual metric in the
range 0% to 100%. We do not concern ourselves with the question
how to operationalize it.

Conceptually, Credibility starts at 100% and is then gradually
damaged by

o the fear that there may be mistakes in the raw data of the
study

o the fear that some of the steps taken to process the raw
data into the study’s conclusions were inappropriate or not
warranted.


https://doi.org/10.1145/3463274.3463356
https://doi.org/10.1145/3463274.3463356

EASE 2021, June 21-23, 2021, Trondheim, Norway

Raw
obser-
vations

Credibility

is aspect of

decre is

means

Astmpion o

ases

Research
quality

increases are pro-
cessed

i t of )
is aspect o into

nave

Conclusions

Figure 1: Core elements of a simple research quality model

Relevance
have

2.2 Relevance

The Relevance of a research article is the value we see in having
available the benefits that come with its conclusion.

Just like Credibility, for our purposes here, Relevance is a con-
ceptual metric. Its operationalization would be even more difficult
than for Credibility. For practitioners, the unit of measurement
could be a monetary unit. For researchers, an appropriate unit of
measurement is not obvious.

Relevance is increased by

o broad applicability of a result to many software engineering
contexts,

o low difficulty of picking up and making use of the result, and

o the size of the benefit expected if one picks up and uses the
result.

Note that, for a given result, these factors may look very different
to a practitioner than to a researcher. Note also that each invididual
within either group can perceive the amount of Relevance of a
result very differently, depending on their engineering context or
research interests.

The canonical, overall Relevance is conceptually the sum of all
these perceived individual Relevances. Once again, it is highly non-
obvious how one might operationalize such a metric, but even the
conceptual one is helpful for thinking about research quality.

2.3 Results in the literature

Why do Credibility and Relevance refer to conclusions only? Couldn’t
the ideas be applied to smaller bits of evidence within the article?

Yes, they could in principle, but this would have two problems.
First, it fragments the discussion, because then a single research
work could have dozens of different levels of Credibility and Rele-
vance at once. That is impractical for our use of those terms here.
Second, internal bits of evidence is not an appropriate level of con-
sideration for overall research quality: In practice, most references
to a work refer only to statements that appear in the abstract or
conclusion.

Therefore, we consider conclusion statements only, not individ-
ually the evidence that lies beneath them.

Lutz Prechelt

2.4 Credibility/relevance tradeoff

This difference between the raw empirical results and the conclu-
sions drawn from them is a crucial one: The raw results of an
empirical study are extremely narrow. By themselves, their only
context of applicability is the very study itself. For giving the study
Relevance, the raw results need to be generalized and that is what
authors do in their conclusion steps. In the final conclusion steps
they formulate what they believe we (as a community) should con-
sider to have learned from the study. In previous conclusion steps
(which in software engineering articles we allow to be sprinkled
liberally over the methods, results, and discussion sections of our
articles), they pave the way from the raw results to the final con-
clusion steps.

If they formulate their conclusions very generally, the Relevance
generated by those conclusions is large; if they formulate conserva-
tively (narrowly), the Relevance is smaller.

For Credibility, it is the other way round: Narrower conclusions
are less risky and hence more Credible. Wide conclusions are less
Credible - or at least they will be once we recognize that they are
wide.

2.5 Categories of assumptions

When performing a study and writing an article, we unavoidably
make a lot of assumptions that roughly fall into four different
categories:

e Type T: We need to assume some amount of joint terminol-
ogy from the start or else our articles would need to be 100
pages long.

o Type M: We need to assume some joint belief in the sound-
ness of the research methods we are using or else we could
hope for mediocre Credibility at best.

e Type Q: We need to assume some interest in our research
question or else there is no hope for Relevance.

e Type G: We need to make specific assumptions when we
generalize from raw results to conclusions.

Assumptions are part of the backbone of any empirical study; ob-
serve their central position in Figure 1.

2.6 Correct vs. incorrect assumptions:
The R-scale

A given assumption can be correct or incorrect; an incorrect one
may become correct if some additional conditions hold. Unfortu-
nately, we know so little about software engineering that it will
often be difficult to agree in which of these categories a given as-
sumption belongs or what those additional conditions might be.
Even an individual researcher might not be sure about an assump-
tion in this respect.

It might therefore be useful to use the following vague scale of
assumption quality: An assumption is either reliable (considered
almost always correct), reasonable (expected to be often correct),
risky (expected to be not-so-often correct), or ridiculous (considered
almost always incorrect).

It may still be difficult to agree on a grade on this scale, but
hopefully only between neighboring levels.



On implicit assumptions underlying SE research

2.7 Explicit vs. implicit assumptions

Obviously, assumptions in an article ought to be clearly visible to
the reader. And some of them indeed are obvious in this sense: If,
for example, a tool works for Java programs only, this fact will be
mentioned somewhere in the article, all readers will be interested
in the fact, and nobody will perceive the situation wrongly. All
statements about benefits of the tool, unless they generalize explic-
itly, will assume that one is talking about Java programs and this is
alright.

Other assumptions are less conspicuous by themselves, but are
made explicit in the article text by authors making an effort to do
so — ideally in a subsection labeled ’assumptions’.

Still other assumptions remain implicit. They are never men-
tioned, not even alluded to, and only readers who are attentive and
critical will be able to detect them. Such assumptions create the
danger that authors and readers greatly over-estimate the Credi-
bilty and/or Relevance of a work. This effect, by virtue of our coarse
granularity of referencing results (Section 2.3), threatens to distort
the scientific record.

How can we make assumptions explicit? Assumptions of types M
and, to a lesser degree, T can be made explicit by suitable literature
references. Making type-Q assumptions explicit! is one task of an
Introduction section. Making the type-G assumptions explicit is
less straightforward and should receive more attention of authors
and reviewers than it usually does today.

2.8 Why do assumptions stay implcit?

Why are implicit assumptions not made properly explicit; There is
a long list of possibilities; here are some of them.

2.8.1 If the author is aware of the assumption.

e A1l. She decides the explanation would consume to much
space or distract too much.

e A2. She forgets to describe it.

e A3. She decides to omit it to make her article look more
impressive.

Such omissions can be anywhere from totally harmless to extremely
damaging.

2.8.2 If the author is not aware of the assumption.

e U1. She does not recognize the assumption because it was
made so early in the research process that she has since
forgotten it.

e U2. She has somehow never recognized the assumption al-
though she could have. If somebody points out the assump-
tion, it immediately turns into an aware assumption.

e U3. She has never recognized the assumption because it
appears to be an unquestionable fact, not an assumption at
all. Such assumptions are more or less invisible, not just to
this author but to most people in the field.

When somebody would call such an assumption an assump-
tion, it would extend the R-scale to the left: religious assump-
tions that cannot even be seriously questioned.

mplicit type-Q assumptions ought to be harmless, because the readers ought to be
able to decide the relevance of a question. In practice, this does not always work well;
see Section 3.1.

EASE 2021, June 21-23, 2021, Trondheim, Norway

Such assumptions occur in Kuhnian “normal science” (phase
2 of a paradigm shift [2]) as cornerstones of the current
research paradigm. They are recognized as assumptions only
during crisis (phase 3) and then perhaps overthrown in a
scientific revolution (phase 4).

Just like aware assumptions, unaware ones can be anywhere from
harmless to extremely damaging and we as a community should
make a serious attempt at bringing them to light.

3 SOME RECURRING TYPES OF ASSUMPTION

3.1 The “being interesting is enough”
assumption

Fred Brooks has pointed out that there is an important difference in
the pecking order of outputs between science on the one hand and
engineering on the other: Science aims at producing knowledge,
whereas in engineering the knowledge is instrumental and the final
aim is producing useful artifacts [1].

That means an engineering contribution that produces knowl-
edge only, not artifacts (which for empirical work is a common
case), has to explain how that knowledge can be used to eventually
produce better artifacts. Without such an explanation, the Rele-
vance of the contribution remains low; such contributions confuse
engineering with science.

So we must not assume that being “interesting” is a sufficient
justification for a software engineering contribution.

This type of problem is often found in works of the “mining
software respositories” [4] type.

3.2 Overgeneralization

When trading off Relevance against Credibility as discussed in
Section 2.4, authors may assume the results generalize far more
than they actually do, thus increasing the supposed Relevance, but
resulting in invalid conclusions.

If the underlying assumptions are explicit, this will proportion-
ally reduce the contribution’s Credibility. If they are not, it will
distort the scientific record instead.

Fictitious example: Assume we have performed the following
controlled experiment. 42 student subjects from University U; 2
pairs of toy programs of about 300 lines of code each; the experiment
compares program variants with vs. without some design pattern;
it measures the time a subject takes to finish a program extension
task correctly. Subjects finished the task 16% faster (p = 0.03) for the
program with (vs. the one without) the Observer pattern. Subjects
finished another such task 29% faster (p = 0.005) for the program
with (vs. the one without) the Decorator pattern.

Then an acceptable conclusion may look like this: “For subjects
with similar background as ours, if programs use the Observer or
Decorator patterns this can help the subjects finish program extension
tasks faster — at least for programs that are as small and clean as our
toy experiment programs.” This is reasonable, but also humble.

If authors overgeneralize instead, we might get for instance this
invalid, but much flashier-sounding conclusion: Programs using
design patterns are 16% to 29% faster to maintain than equivalent
programs that do not use design patterns.

Doesn’t that sound familiar?



EASE 2021, June 21-23, 2021, Trondheim, Norway

3.3 Zero-cost assumptions

Some studies show benefits, but assume that the cost for obtaining
these benefits is negligible.

Fictitious example: A tool analyzes source code and points out
various classes of potential defects (“bugs”). The precision of its
warnings is shown to be 50%. Such studies often silently assume
that each of these defects is worth analyzing and understanding.

This assumption ignores the cost of analyzing those defects for
which one then decides they are not worth fixing. It also ignores
the cost of recognizing that a false positive is indeed a false positive.
By ignoring these costs, the study overestimates the benefit of the
technique and thus exaggerates its Relevance.

3.4 Ideal-behavior assumptions

Some studies assume that the user of a tool will always do the right
thing with the tool.

Fictitious example: For the defect-finding tool postulated in
Section 3.3 above, such studies ignore the possibility that a user
considers to be a defect what in fact is a false positive. They will
then “fix” code that is correct and break it, triggering potentially
expensive subsequent failures and debugging work.

By ignoring these costs, the study overestimates the benefit of
the tool and thus exaggerates its Relevance.

3.5 This-means-what-I-need assumptions

Some studies apply the most favorable interpretation of some mea-
surement, ignoring one or more alternative interpretations. In par-
ticular, some studies assume, after observing a certain correlation,
that some plausible cause-effect relationship is indeed solely re-
sponsible for that correlation.

Fictitious example 1: A study determines the fraction of meth-
ods that exhibit the “long method” code smell [3] for 100 Java
projects and compares that to the same measurement on 100 Python
projects. It finds the Java projects have a significantly lower fraction
of such methods. It concludes that Java developers care more about
the code than Python developers do.

This explanation ignores the alternative explanation that it is a
large number of trivial one-line getter and setter methods in the
Java projects that is driving the fraction down.

Fictitious example 2: Same study as above, but now with the
opposite finding. The Java projects have a higher fraction of meth-
ods with the “long method” code smell. The study now concludes
that Python developers care more about the code. The explanation
ignores a number of caveats:

e Java is more verbose, so that applying the same threshold
for long methods in both languages may be inappropriate.

e Whether a method of X lines length should be considered
smelly depends on how linear the control flow is and that
may be different in the Python projects versus the Java
projects.

Lutz Prechelt

e Binary classification into only smelly vs. non-smelly might
be inappropriately crude, e.g. if one language has fewer of-
fenders, but far worse ones.

The possibilities for simplistic or one-sided interpretations of mea-
surements are nearly endless.

3.6 I-make-no-assumptions assumptions

Many authors of articles that involve machine learning techniques,
in particular neural networks, appear to assume that their model
assumes nothing, although in reality those techniques compute
regression models, which has lots of implications [5, Chapter 8].

A more realistic attitude would be that we know little about what
properties our data have with respect to the neural network model
and which properties of the model are relevant in which ways. Put
differently, we have a hard time spelling out what the assumptions
even are that we are making when we apply such a model.

4 SO WHAT?

It is my impression that implicit assumptions are frequent, that
many of them are risky, that some are ridiculous, and that all this
is needlessly reducing the value of software engineering research
overall.

I believe that software engineering research could benefit greatly
from

o learning to uncover implicit assumptions,

e agreeing on which assumptions are considered risky and
which are considered ridiculous,

o demanding that articles have to spell out their assumptions
and rejecting articles in which reviewers find substantial
hidden assumptions,

e rejecting articles with ridiculous assumptions, and

e demanding a critical discussion of risky assumptions.

ACKNOWLEDGMENTS

I thank Ina Schéfer and Lars Grunske. Preparing the talks to which
they invited me produced the seed of the ideas presented in this
article. I thank reviewer 2 for the idea for Section 3.6. I thank Paul
Ralph (reviewer 1) for suggesting Section 2.8.

REFERENCES

[1] Frederick P Brooks Jr. 1996. The Computer Scientist as Toolsmith II. Commun.
ACM 39, 3 (1996), 61-68.

[2] Thomas S. Kuhn. 1962. The structure of scientific revolutions. University of Chicago
press.

[3] Mika Mantyla, Jari Vanhanen, and Casper Lassenius. 2003. A taxonomy and an
initial empirical study of bad smells in code. In Proceedings International Conference
on Software Maintenance (ICSM) 2003. IEEE, 381-384.

[4] MSR 2020. Proceedings 17th International Conference on Mining Software Repositories
(MSR). ACM.

[5] William N Venables and Brian D Ripley. 2002. Modern applied statistics with S-PLUS.
Springer Science & Business Media.



	Abstract
	1 Introduction
	2 A simple model of research quality
	2.1 Credibility
	2.2 Relevance
	2.3 Results in the literature
	2.4 Credibility/relevance tradeoff
	2.5 Categories of assumptions
	2.6 Correct vs. incorrect assumptions: The R-scale
	2.7 Explicit vs. implicit assumptions
	2.8 Why do assumptions stay implcit?

	3 Some recurring types of assumption
	3.1 The ``being interesting is enough'' assumption
	3.2 Overgeneralization
	3.3 Zero-cost assumptions
	3.4 Ideal-behavior assumptions
	3.5 This-means-what-I-need assumptions
	3.6 I-make-no-assumptions assumptions

	4 So what?
	Acknowledgments
	References

