Der Satz von Clarkson

Wolfgang Mulzer

Sei $P \subseteq \mathbb{R}^2$ eine ebene Punktmenge mit n Punkten. Wir definieren die Menge $S_{\leq k}$ der $(\leq k)$ -Mengen von P als

$$S_{\leq k} := \{Q \subseteq P \mid |Q| \leq k \text{ und } Q = P \cap h, h \text{ offene Halbebene}\}.$$

Der Satz von Clarkson liefert eine obere Schranke für die Anzahl der möglichen ($\leq k$)-Mengen.

Theorem 1. Es gilt $|S_{\leq k}| = O(nk)$.

Proof. Wer nehmen an, dass $2 \le k \le n-2$ ist, da ansonsten der Satz offensichtlich stimmt.

Wir beginnen mit einer Definition: Sei $0 \le \ell \le k$. Ein Paar $(p,q) \in P^2$ von verschiedenen Punkten in P heißt ℓ -Kante genau dann, wenn $|P \cap h_{\overrightarrow{pq}}^+| = \ell$ ist. Hierbei bezeichne $h_{\overrightarrow{pq}}^+$ die offene Halbebene links von der gerichteten Gerade \overrightarrow{pq} . Sei $L_{\le k}$ die Menge aller $(\le k)$ Kanten.

Es gilt $|S_{\leq k}| \leq 2|L_{\leq k}|$. Man kann nämlich jeder ℓ -Kante (p,q) eine ℓ - und eine $(\ell+1)$ -Menge zuordnen, und zwar die ℓ -Menge $P \cap h_{\overrightarrow{pq}}$ und die $(\ell+1)$ -Menge, die abgeschnitten wird, wenn man \overrightarrow{pq} ein wenig im Uhrzeigersinn um p rotiert. Man kann jede $(\leq k)$ -Menge Q auf diese Weise erzeugen. Dies sieht man, indem man eine Gerade g nimmt, welche eine Halbebene begrenzt, die Q definiert, und die Gerade g von Q weg verschiebt, bis sie einen Punkt aus P trifft, und g dann gegen den Uhrzeigersinn rotiert, bis sie einem zweiten Punkt aus P begegnet.

Sei nun $R \subseteq P$ eine zufällige Teilmenge von P, die jeden Punkt $p \in P$ unabhänging mit Wahrscheinlichkeit 1/k enthält. Wir betrachten die Menge E(CH(R)) der Kanten auf der konvexen Hülle von R und bestimmen die erwartete Anzahl der Kanten auf zwei Arten.

Zum einen gilt für den Erwartungswert

$$\mathbf{E}[|E(CH(R))|] < \mathbf{E}[|R|] = n/k,$$

da die konvexe Hülle von R höchstens |R| Kanten hat und jeder Punkt aus P mit Wahrscheinlichkeit 1/k in R enthalten ist.

Sei nun $(p,q) \in P^2$ ein Paar von verschiedenen Punkten in P, und sei $I_{(p,q)}$ die Indikatorvariable für das Ereignis, dass (p,q) eine Kante von CH(R) (im Uhrzeigersinn) definiert. Dann gilt

$$\mathbf{E}[|E(\mathrm{CH}(R))|] = \sum_{(p,q) \in P^2} \mathbf{E}[I_{(p,q)}] \ge \sum_{(p,q) \in L_{\le k}} \mathbf{E}[I_{(p,q)}],$$

aufgrund der Linearität des Erwartungswerts. Für eine $(\leq k)$ -Kante (p,q) ist $\mathbf{E}[I_{(p,q)}]$ genau die Wahrscheinlichkeit des Ereignisses $(p,q) \in E(\mathrm{CH}(R))$. Damit dieses Ereignis eintritt, müssen gelten (i) $p,q \in R$; und (ii) $R \cap h_{\overrightarrow{pq}}^+ = \emptyset$. Die Wahrscheinlichkeit hierfür ist mindestens $k^{-2}(1-1/k)^k$, da $|P \cap h_{\overrightarrow{pq}}^+| \leq k$ ist und die Punkte in R unabhängig gewählt wurden.

Es folgt:

$$\mathbf{E}[|E(\mathrm{CH}(R))|] \geq \sum_{(p,q) \in L_{\leq k}} \mathbf{E}[I_{(p,q)}] \geq \sum_{(p,q) \in L_{\leq k}} k^{-2} (1 - 1/k)^k \geq |L_{\leq k}|/4k^2,$$

da $k \geq 2$. Somit ist $|L_{\leq k}| \leq 4nk$ und $|S_{\leq k}| \leq 8nk$.